FactorArg( U, N )
Let N be a normal subgroup of an ag group U. Then FactorArg
returns
a record with the following components with can be used as argument for
Exponents
.
isFactorArg
:true
.
factorNum
:
factorDen
:
identity
:
generators
:
operations
:FactorArgOps
.
Note that FactorArg
is bound to AgGroupOps.mod
.
gap> d8 := Subgroup( s4, [ a, c, d ] ); Subgroup( s4, [ a, c, d ] ) gap> c2 := Subgroup( s4, [ d ] ); Subgroup( s4, [ d ] ) gap> M := d8 mod c2;; gap> d8.1 * d8.2 * d8.3; a*c*d gap> Exponents( M, last ); [ 1, 1 ] gap> d8 := AgSubgroup( s4, [ a*c, c, d ], false ); Subgroup( s4, [ a*c, c, d ] ) gap> M := d8 mod c2;; gap> Exponents( M, a*c*d ); [ 1, 0 ]
GAP 3.4.4