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1 Introduction and overview

Systems of ordinary or partial differential equations which admit a local Lie
transformation group of symmetries (equivalently, infinitesimal symmetries)
have been the object of intense research activity in the past decades. As
representatives for numerous monographs on this subject we mention only
the classical works by Bluman and Cole [2], and Olver [22]. Symmetric sys-
tems admit two characteristic features. First, one may reduce the system
(locally, near points of maximal orbit dimension) to an orbit space with
respect to the group action; this is realized via group invariants. Second,
from symmetries one obtains special invariant sets, such as group-invariant
solutions (also known as relative equilibria in the ODE case).
However, it has been noticed that the feature of reducibility also holds for
systems that are not necessarily symmetric. Olver and Rosenau [24] dis-
cussed this phenomenon in detail for systems of partial differential equations.
For ordinary differential equations, a reduction method which is based on
a generalization of lambda symmetries (Muriel and Romero [20]) was intro-
duced and analyzed in [6, 7] from different perspectives.
Likewise, it has been observed that a differential equation, even if not ad-
mitting a given group as symmetry group, may very well have particular
solutions which are invariant with respect to such a group. Among a large
number of relevant contributions, we mention the notion of conditional sym-
metry due to Bluman and Cole [2] (see also Fushchich and Tsyfra [10], and
Levi and Winternitz [18, 19] who outlined an algorithmic approach), and the
related notion of weak symmetry introduced by Pucci and Saccomandi [25].
These in turn were generalized to the notion of partial Lie point symmetry
in [5]. Olver and Rosenau [23] set all these observations in a general frame-
work (mostly for partial differential equations) by noting that the additional
conditions which determine possible particular solutions need not originate
from a group action, and that such side conditions may a priori be chosen
quite freely.
Herein lies the motivation for the present note: We will discuss the side
condition approach as set down in [23] for the class of ordinary differential
equations; moreover we will identify some settings and present some appli-
cations for which this heuristics seems promising.

The general framework is as follows. Let a first order autonomous ODE

(1) dx/dt = f(x)

be given on an open subset U of Kn, with K standing for R or C. All
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functions and vector fields are required to be smooth. The vector field as-
sociated to (1) will be denoted by Xf , and the local flow of (1), i.e. the
solution of the initial value problem for y at t = 0, will be called F (t, y).
For some results we will require analyticity of vector fields and functions,
and even further restrict to the local analytic case. In addition we will dis-
cuss some special results in the context of polynomial functions and vector
fields. Non-autonomous equations are, as usual, identified with orbit classes
of autonomous systems (see e.g. the remarks in [6]). Restricting attention
to open subsets of Kn (rather than manifolds) imposes no loss of generality
for local considerations.

The plan of the paper is as follows. We first introduce and discuss
the pertinent notions (in particular the notion of algebraic side condition),
derive necessary and sufficient conditions for admissibility of side condi-
tions, and give examples to illustrate the concepts. As should be expected,
these are rather straightforward and transparent for ordinary differential
equations. We proceed to investigate a particular class of side conditions
(which we call side conditions of LaSalle type) and characterize the invari-
ant sets they define. Next, we review and generalize the classical approach
by considering side conditions induced by local transformation groups (not
necessarily symmetry groups of (1)) and widen the perspective to include
partial local symmetries. As an application we discuss side conditions for
two-dimensional (in particular polynomial) systems. In the final section we
introduce side conditions for parameter-dependent systems, with special at-
tention to chemical reaction equations and quasi-steady state phenomena.
Examples indicate that this approach seems quite promising.

2 Side conditions

2.1 Basics

For starters we recall an invariance criterion; see e.g. [13], Lemma 3.1:

Remark 1. The common zero set of smooth functions ψ1, . . . , ψr on U is
invariant for (1) if there exist smooth functions νjk on U such that

Xf (ψj) =
∑
k

νjkψk, 1 ≤ j ≤ r.

�
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The basic specialization of the side condition approach to ordinary dif-
ferential equations is as follows.

Definition 1. Let smooth functions γ1, . . . , γs : U → K be given, with
common zero set W . We say that equation (1) admits the algebraic side
conditions γ1 = · · · = γs = 0 if there exists a solution trajectory of (1)
which is contained in W .

In other words, we look for solutions of (1) that are restricted to some
prescribed ”subvariety” (i.e., a subset defined by finitely many smooth equa-
tions). The definition implies that W is nonempty, but we do not require
the whole subset to be invariant for the system.

Proposition 1. Let smooth functions be given as in Definition 1.
(a) The differential equation (1) admits the algebraic side conditions γ1 =
· · · = γs = 0 only if the set of functions{
Xk
f (γj); k ≥ 0, 1 ≤ j ≤ s

}
=
{
γ1, . . . , γs, Xf (γ1), . . . , Xf (γs) , X

2
f (γ1), . . .

}
has a common zero.
(b) If f and all γi are analytic (or polynomial), the converse holds: When-

ever the common zero set W̃ of the Xk
f (γj) is not empty then it is invariant

for (1).

Proof. Consider the local flow F . The first assertion follows from the relation

dk

dtk
γj(F (t, y)) = Xk

f (γj)(F (t, y)).

The second assertion is a consequence of the Lie series formula (see e.g.
Groebner and Knapp [14])

γj(F (t, y)) =
∑
k≥0

tk

k!
Xk
f (γj)(y).

Remark 2. In the local analytic setting, finitely many of the Xk
f (γj) suffice

to determine W̃ , and the same statement applies to polynomial vector fields
and functions γi. In other words, the criterion from Remark 1 will hold
for a generating set consisting of finitely many Xk

f (γj). This is due to the
Noetherian property of the power series and polynomial rings in n variables
(see e.g. Ruiz [26] and Kunz [17]).

�
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Remark 3. The property of admitting a given side condition is not robust
with respect to small perturbations, as will be seen in the examples be-
low. The more appropriate question seems whether a perturbation of such
a (smooth or analytic) system will admit a suitably perturbed side condi-
tion. One result concerning this problem is given in Proposition 8 below.

�

At first sight, transferring Olver’s and Rosenau’s approach from [23] to
the setting of ordinary differential equations should involve more than just
algebraic side conditions. Rather it may seem appropriate to consider “(or-
dinary) differential side conditions”, i.e., to assume that (1) is augmented by
additional ordinary differential equations which lead to an overdetermined
system. But the existence of such differential side conditions is equivalent
to the existence of algebraic side conditions.

Proposition 2. Let φ1, . . . , φs and ρ1, . . . , ρs be smooth functions on U .
Assume that some solution z(t) of (1) satisfies additional differential con-
ditions of first order, of the type

(2)
d

dt
φj(z(t)) = ρj(z(t)) , 1 ≤ j ≤ s .

Then z(t) is contained in the common zero set of the functions

θj := Xf (φj)− ρj , 1 ≤ j ≤ s.

Conversely, if the common zero set of these θj contains a nonempty invariant
set of (1), then there exists a solution of (1) which satisfies the differential
side conditions (2).

Proof. This is a direct consequence of the relation

d

dt
φj(z(t)) = Xf (φj)(z(t))

for any solution z(t) of (1).

Remark 4. (a) Higher order ordinary differential side conditions may be
rewritten as systems of first order side conditions, as usual, hence as alge-
braic side conditions.
(b) More generally one could think of ”partial differential side conditions”,
thus regarding (1) as a degenerate partial differential equation system for
which only one independent variable t occurs explicitly. But by this ansatz
one would return to the general framework of [23]; we will not pursue it
further.

�
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2.2 Examples

We provide a few examples for algebraic and differential side conditions,
to illustrate the procedure, and to show that the heuristics will provide
nontrivial information only in special circumstances. Examples 3 and 4
involve differential side conditions.

Example 1. Consider (1) with

f(x) =

 x1 − x22 + x3
x3

x1 + x21 + 2x2x3

 .

To determine invariant sets contained in the zero set of γ(x) := x1, compute
Xf (γ) (x) = x1 − x22 + x3 and furthermore

X2
f (γ) (x) = (2 + x1)x1 − x22 + x3 = (1 + x1)γ(x) +Xf (γ)(x).

The last equality implies that the common zero set of all the Xk
f (γ), which

is invariant according to Proposition 1, is equal to the common zero set of
γ and Xf (γ). Thus the parabola, defined by x1 = x22 − x3 = 0, is invariant
for f .

Example 2. In the qualitative theory of ordinary differential equations
the setting of Proposition 1 occurs naturally: Assume that (1) admits a
Lyapunov function ψ on U . Then the LaSalle principle (see e.g. Hirsch,
Smale and Devaney [16], Ch. 9) states that any omega-limit set is contained
in the zero set of γ := Xf (ψ), thus all nonempty limit sets are obtained from
the side condition Xf (ψ).
As a specific example, consider the motion in an n-dimensional potential ψ
with generalized linear friction; i.e. the system

ẋ1 = x2
ẋ2 = −gradψ(x1)−Ax2

in R2n, with a matrix A whose symmetric part A+ Atr is positive definite.
For θ(x) = 〈x2, x2〉+2ψ(x1) one finds Xf (θ) = −

〈
(A+Atr)x2, x2

〉
, whence

θ is a Lyapunov function and any limit set is contained in the zero set of (all
components of) x2. By invariance of limit sets one arrives at the familiar
conclusion that any limit point of the system is stationary.

Example 3. Consider again (1) with f from Example 1. Assume that this
equation admits the differential side condition d

dt(z
2
1 + z2) = z3 . Using
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Proposition 2, φ := x21 + x2 and ρ := x3, one sees that z(t) lies in the zero
set of

γ := Xf (φ)− ρ = 2x21 − 2x1x
2
2 + 2x1x3 − x3 ,

and proceeding with straightforward computations (that are omitted here)
provides only the obvious invariant set {0}. The heuristics yields no inter-
esting information here. See, however, the following example.

Example 4. Given the two-dimensional system with

f(x) =

(
−x1 − x2 + x31 + x1x

2
2

(1 + β)x1 + x2 − x31 − x21x2 − x1x22 − x32

)
, β ∈ R

we search for a solution z(t) such that z̈1 = −z1. We transfer this side
condition to first order by setting φ1 := x1, φ2 := Xf (x1) = −x1−x2 +x31 +
x1x

2
2, hence we search for solutions contained in the common zero set of

γ1 : = Xf (φ1)− φ2
γ2 : = Xf (φ2) + φ1

(the differential side condition having been transformed to the algebraic
side condition γ2 = 0 via Proposition 2). Consider first the case β = 1.
Setting σ := x21 + x22− 1, a straightforward calculation shows that the circle
given by σ = 0 is a possible candidate (since σ is a factor in γ2), and
furthermore that z1(t) = cos t, z2(t) = sin t provides indeed a solution with
the desired properties. For β 6= 1, an equally straightforward (but more
tedious) calculation shows that the Xk

f (γj) have only 0 as common zero,
thus for β 6= 1 the only solution satisfying the differential side condition is
trivial.

Example 5. This example illustrates Remark 3. Consider the system

ẋ1 = x1 · φ(x1, x2) + εν(x2)
ẋ2 = ψ(x1, x2)

with smooth functions φ, ν, ψ of the indicated variables, and a parameter
ε ∈ R. For ε = 0 the zero set of x1 is invariant for the system, but for ε 6= 0
there exists an invariant set admitting the side condition x1 = 0 if and only
if ν and the function defined by x2 7→ ψ(0, x2) have a common zero. The
less restrictive question about the existence of an invariant set given by an
equation x1 + ερ(x, ε) = 0 certainly has an affirmative answer (locally, e.g.
near 0) whenever φ(0, 0) 6= 0 and ψ(0, 0) 6= 0; see Proposition 8 below.
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2.3 Side conditions of LaSalle type

As the examples indicate, a trial-and-error side condition ansatz will gen-
erally not yield any invariant sets. In other words, for a prescribed side
condition γ the common zero set of the Xk

f (γ) will generally be empty. But
Example 2 is different in this respect, because at least the stationary points
of f satisfy any side condition of this type. In view of Example 2 we state:

Definition 2. We call a side condition γ to be of LaSalle type if there is
some function θ such that γ = Xf (θ).

Side conditions of LaSalle type generalize a scenario which occurs in a
different – and quite familiar – context.

Remark 5. Let φ be a function of n variables. If the first order system (1)
has the form

f(x) =


x2
...
xn

φ(x1, . . . , xn)

 ,

thus corresponds to the nth order differential equation

x(n) = φ(x, ẋ, . . . , x(n−1))

then it admits the side condition γ = Xf (x1). The invariant set obtained
from this side condition is precisely the set of stationary points.

�

Invariant sets obtained from LaSalle type side conditions can be char-
acterized more precisely and, to some extent, obtained in an algorithmic
manner. In order for the hypotheses of the following Proposition to be sat-
isfied, one may have to pass from U to a suitable open subset (which is dense
in the analytic setting for connected U).

Proposition 3. Let θ : U → K, and let k be a positive integer such that{
θ, Xf (θ), . . . , Xk

f (θ)
}

are functionally independent but{
θ, Xf (θ), . . . , Xk

f (θ), Xk+1
f (θ)

}
are functionally dependent at all points of U . By the implicit function the-
orem there exists a function µ of k + 2 variables such that

(3) µ(θ, Xf (θ), . . . , Xk
f (θ), Xk+1

f (θ)) = 0 on U.
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Denoting by Di the partial derivative with respect to the ith variable, define

U∗ := {y ∈ U ; Dk+2 µ (θ(y), 0, . . . , 0) 6= 0} .

Then the subset

Z :=
{
z ∈ U∗; Xf (θ)(z) = · · · = Xk+1

f (θ)(z) = 0
}

is invariant for the restriction of (1) to U∗.

Proof. Taking the Lie derivative of the identity (3) one obtains

0 =
k+2∑
i=1

Diµ
(
θ, Xf (θ), . . . , Xk+1

f (θ)
)
·Xi

f (θ)

and invariance follows from Remark 1.

Remark 6. (a) The Proposition suggests the following trial-and-error ap-
proach: For a “test function” φ form Xf (φ), X2

f (φ) . . . and stop at the small-
est ` such that the functions

φ, Xf (φ), . . . , X`+1
f (φ)

are functionally dependent on U . Then check the common zero set of
Xf (φ), . . . , X`+1

f (φ) for invariance. Here, invariant sets of positive dimen-
sion are of particular interest.
(b) In the polynomial setting, it is known that µ may be chosen as a poly-
nomial (which is algorithmically accessible, see [8], Ch. 3), and relation (3)
will hold throughout Kn.

�

Example 6. Let

f(x) =

 x2 + x3 − x1x2 − x2x3 − x22x3
x2 − x22 + x2x3
x1 + x3 + x22


and

φ(x) = x1 + x2x3 .

One computes
Xf (φ) = x2 + x3
X2
f (φ) = x1 + x2 + x3 + x2x3

which shows that X2
f (φ) = Xf (φ)+φ, and by Proposition 3 the common zero

set Z of Xf (φ) and X2
f (φ) (which is a parabola in R3, defined by x1 = x23

and x2 = −x3) is invariant for the system.
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At this point, a few words on the practicality of the approach may be in
order. Example 6 was actually tailored to illustrate a nontrivial application
of Proposition 3 (i.e., yielding an invariant set of positive dimension), but
it should be noted that the trial-and-error approach can indeed be system-
atized for polynomial equations, using standard methods from algorithmic
algebra (for these see e.g. Cox, Little and O’Shea [8]). Given a polynomial
vector field f on Kn, one may start with a polynomial “test function” of fixed
degree, with undetermined coefficients (e.g. φ of degree one, with n unde-
temined coefficients of x1, . . . , xn) and evaluate the determinantal condition
for functional dependence of

φ, Xf (φ), . . . , Xk−1
f (φ), k ≤ n.

This in turn will provide conditions on the undetermined coefficients in the
test function. If a nontrivial test function remains, proceed to determine a
polynomial µ as in Remark 6 (see [8], Ch. 3 for this step) and apply the
Proposition. In this way one has an algorithmic approach to determine
invariant sets, which will indeeed work for the above example (starting with
undetermined test functions of degree 2). But, since polynomial vector fields
generally do not possess algebraic invariant sets of positive dimension, the
search may still yield only trivial results.
For a variant see also the final section if this paper. Similar observations
apply, in principle, to the local analytic case.

3 Side conditions which inherit properties of
symmetric systems

Classically, side conditions were (and are) constructed from local transfor-
mation groups and equations which determine group orbits; see Bluman and
Cole [2], Levi and Winternitz [18, 19] and Pucci and Saccomandi [25], to
name only a few references. In this section we follow the classical approach
by first exhibiting typical invariant sets of symmetric systems (1), which we
then take as a motivation for particular types of side conditions.

3.1 Invariant sets from symmetries

We first assume that (1) admits smooth orbital infinitesimal symmetries
g1, . . . , gr on U ; hence there exist smooth functions αi on U such that the
identities

(4) [gi, f ] = αif, 1 ≤ i ≤ r
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hold for the Lie brackets

[gi, f ] (x) = Df(x) gi(x)−Dgi(x) f(x)

throughout U . Let us recall some basic results on group-invariant solutions
and generalizations.

Proposition 4. (a) If (4) holds then the set

Y := {y ∈ U ; dimKn 〈f(y), g1(y), . . . , gr(y)〉 ≤ r}

is invariant for (1).
(b) If even all [gi, f ] = 0 then

Z := {y ∈ U ; dimKn 〈g1(y), . . . , gr(y)〉 ≤ r − 1}

is invariant for (1).

See for instance [29], Theorem 3.1. Note that no assumptions were made
about any relation among the gi.

Remark 7. There are different characterizations of the sets above.

(a) One has y ∈ Y if and only if ∆̃ (f(y), g1(y), . . . , gr(y)) = 0 for every
alternating (r + 1)-form ∆̃.
(b) One has y ∈ Z if and only if ∆ (g1(y), . . . , gr(y)) = 0 for every alternating
r-form ∆.

�

Remark 8. (a) If r = 1 then the infinitesimal symmetry g1 generates a lo-
cal one-parameter group, and Y is the union of group-invariant solutions (in
the sense of [22], Section 3.1) and stationary points of g1. For arbitrary r, if
the gi span a finite dimensional Lie algebra, one obtains the group-invariant
solutions by taking the intersection of all the sets defined by ∆̃(f, gi) = 0,
with every alternating 2-form ∆̃.
(b) In some settings, Proposition 4 provides all relevant invariant sets. For
instance, if the gi span the Lie algebra of a reductive linear algebraic group
then all common invariant sets of the differential equations admitting the in-
finitesimal symmetries g1, . . . , gr can be obtained from ∆(g∗1(y), . . . , g∗s(y)) =
0, with suitable linear combinations g∗j of the gi, and ∆ running through all
alternating s–forms, s ≤ r, and set-theoretic operations. See [13], Theorem
3.6.
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(c) If (4) holds and some αi 6= 0 then Z is not necessarily invariant for (1).
A simple example in K2 is

f(x) =

(
1
0

)
, g(x) =

(
x1
0

)
with [g, f ] = −f.

The set of all y with g(y) = 0 (in other words, y1 = 0) is clearly not invariant
for (1).

�

From a suitable relaxation of condition (4) one still obtains invariant sets
of (1). Assume that there are smooth functions αi, σij on U such that

(5) [gi, f ] = αif +
∑
j

σij gj , 1 ≤ i ≤ r.

If the gi are in involution then this condition characterizes local orbital
reducibility of (1) by the common invariants of (g1, . . . , gr); see [6, 7]. More-
over, if all the αi = 0 then one has local reducibility. (If the gi span a finite
dimensional Lie algebra then we have reduction of non-symmetric systems
by group invariants; cf. Olver and Rosenau [24], as well as [6].) But the
following statements hold true even when the gi do not form an involution
system.

Proposition 5. (a) Assume that (5) holds on U . Then the set Y , as defined
in Proposition 4, is invariant for (1).
(b) If, in addition, all αi = 0 then the set Z, as defined in Proposition 4, is
invariant for (1).

For a proof see [6], Corollary 2.9 and Theorem 2.19, with a slight mod-
ification of some arguments. Following the approach in Bluman and Cole
[2], Levi and Winternitz [18, 19], Pucci and Saccomandi [25], among others,
one will consider the sets defined by Proposition 4 ff. as candidates for side
conditions.
It may be appropriate to illustrate the various concepts and their interre-
lation, thus we give a small example. One may generalize the underlying
construction and the arguments to connected compact linear groups and
their Lie algebras; see [6], Lemma 2.25.

Example 7. Let α and β be smooth on R2 \ {0}, and

f(x) = α(x)

(
x1
x2

)
+ β(x)

(
−x2
x1

)
, g(x) =

(
−x2
x1

)
.
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(Note that every smooth vector field f in R2 admits such a representation
on R2 \ {0}.) Now g is an infinitesimal symmetry of f (in other words, the
differential equation is SO(2)-symmetric) if and only if both α and β are
functions of φ(x) = x21 + x22 only. The differential equation (1) is reducible
by the invariant φ of SO(2) if and only if α is a function of φ only; see
[6], Proposition 2.26. More generally, motivated by Proposition 4, one may
consider the side condition

γ(x) := det(f(x), g(x)) = α(x) · φ(x),

thus investigate the zero set Z of α for invariant subsets of (1) in R2 \ {0}.
Any nonstationary invariant subset Z̃ of Z contains an arc of a circle φ(x) =
const. 6= 0, since β(z) 6= 0 for z ∈ Z̃, hence the trajectory must be locally
invariant for g. In the analytic setting, this is equivalent to invariance of
the whole circle. Thus via the side condition γ one will obtain stationary
points and invariant circles centered at the origin. For a system admitting
an invariant circle, assuming certain genericity conditions, one finds via
the Poincaré map that small perturbations of f will still admit a closed
trajectory. Here we have another illustration of Remark 3.

3.2 Partial symmetries

Partial symmmetries of differential equation systems were introduced in [5],
as a generalization of notions such as conditional symmetry and weak sym-
metry. We will briefly (and in a simplified manner) review the concept for
first order ODEs, and discuss the connection to algebraic side conditions.
As in [5] we focus on a local one-parameter transformation group G(s, y)
(in particular G(0, y) = y) induced by a smooth vector field Xg on U . For
our purpose it is convenient to slightly adjust the wording in the definition:

Definition 3. (a) We say that g is an infinitesimal partial symmetry of
(1) if there exists a solution z(t) of ẋ = f(x) such that G(s, z(t)) is also a
solution for all s near 0.
(b) We say that g is an infinitesimal partial orbital symmetry of (1) if there
is a solution z(t) of ẋ = f(x) such that t 7→ G(s, z(t)) parameterizes a
solution orbit of (1) for all s near 0.

We recall the adjoint representation

ad g (f) := [g, f ]
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and the formula

(6)
∂

∂s
D2G(s, y)−1 f(G(s, y)) = ad g(f) (G(s, y))

where D2, as above, denotes the partial derivative with respect to the second
variable. (See e.g. Olver [22], Prop. 1.64.) The next result (essentially taken
from [5], Prop. 1) relates partial symmetries to side conditions.

Proposition 6. (a) The smooth vector field g is a partial symmetry of (1)
only if the sets

Wk :=
{
y ∈ U ; (ad g)k (f) (y) = 0

}
, k ≥ 1

have nonempty intersection.
(b) The smooth vector field g is a partial orbital symmetry of (1) only if the
sets

W̃k :=
{
y ∈ U ; dimKn

〈
f(y), (ad g)k (f) (y)

〉
≤ 1
}
, k ≥ 1

have nonempty intersection.

Proof. (a) Let G denote the flow of g, and let z(t) be a solution of (1) such
that G(s, z(t)) is also a solution for all s near 0. Then

f(z(t)) = D2G(s, z(t))−1 f(G(s, z(t)))

holds for all t and s near 0; and differentiation with respect to s yields, by
(6) and an obvious induction,

(7)
0 = ∂k

∂sk
D2G(s, z(t))−1 f(G(s, z(t)))

= D2G(s, z(t))−1ad gk(f)(G(s, z(t)).

The assertion follows.
The proof of part (b) involves a reparameterization of time; thus the argu-
ment starts from

ż(t) = µ(s, t) f(z(t))

with smooth µ and µ(0, t) = 1, but then works analogously.

Corollary 1. (a) In the analytic setting the vector field g is a partial sym-
metry of ẋ = f(x) if and only if the intersection of the Wk, k ≥ 1 contains
a nonempty invariant set of this equation.
(b) In the analytic setting the vector field g is a partial orbital symmetry of
ẋ = f(x) if and only if there is a nonempty invariant set of this equation

which is contained in the intersection of the W̃k, k ≥ 1.
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Proof. For analytic f and g, equation (7) implies the Lie series formula

(8) D2G(s, y)−1 f(G(s, y)) =
∑
k≥0

sk

k!
(ad g)k (f) (y),

from which in turn the assertions follow.

Remark 9. In any case, the existence of partial symmetries for f implies
the existence of particular side conditions. The simplest of these define W1

resp. W̃1, and are explicitly given by

(9) [g, f ] = 0, resp. ∆̃ ([g, f ] , f) = 0 for every alternating 2-form.

Note the contrast to the symmetry case, where one has g = 0 resp. ∆̃(g, f) =
0 as simplest possible side conditions.

�

Example 8. Let

g(x) :=

(
x1
−x2

)
, f(x) :=

(
x1 + x2 + x21x2
x2 + x1x

2
2

)
, [g, f ](x) =

(
−2x2

0

)
Since the zero set of the Lie bracket (given by ψ := x2 = 0) is indeed
invariant for f , we have a partial symmetry g as well as the side condition
ψ admitted by (1).

3.3 Side conditions in dimension two

We discuss side conditions motivated by Propositions 4, 5 and 6 for two-
dimensional vector fields, with an obvious focus on invariant sets of di-
mension one. We are interested in structural properties, in particular the
interplay between side conditions for (1) and the existence of vector fields
with certain properties of the Lie bracket. The following facts about two-
dimensional vector fields will be useful (see e.g. [30], Prop. 1.1 for a proof).

Lemma 1. Let f and g be smooth vector fields on the open set U ⊆ K2,
and assume that

θ(x) := det(f(x), g(x)) 6= 0 for x ∈ Ũ ⊆ U,

and Ũ 6= ∅. Then the identity

(10) [g, f ] = αf + βg

15



holds on Ũ with

α =

(
Xg(θ)

θ
− div g

)
, β = −

(
Xf (θ)

θ
− div f

)
.

One should not expect (10) to hold with smooth α and β at any point
where θ = 0. Actually, such an extension of β beyond Ũ is possible (roughly
speaking) if and only if the zero set of θ contains particular invariant sets for
f . We will prove a precise version of this statement for complex polynomial
vector fields, to keep technicalities to a minimum. (See e.g. Kunz [17] for
some notions of elementary algebraic geometry we will use below.)

Proposition 7. Let f and g be polynomial vector fields on C2, with α, β
and θ as in Lemma 1 (in particular these functions are rational). Let

det(f, g) = θ = σm1
1 · · ·σ

mr
r

be the prime factorization, with pairwise relatively prime σi, 1 ≤ i ≤ r,
and denote the zero set of σi by Yi. Then β is regular at some point of
Yj \

⋃
i 6=j Yi, j ∈ {1, . . . , r} if and only if Yj is invariant for (1).

Proof. The zero set of θ is the union of the zero sets of the σi, all of which
are non-empty due to the Hilbert Nullstellensatz. Also by virtue of the
Nullstellensatz, Yj will be invariant if and only if σj divides Xf (σj) (see
e.g. [30] for a proof). This proves one direction of the equivalence. For the
reverse direction assume that β is regular at some z ∈ Yj \

⋃
i 6=j Yi and use

Xf (θ)/θ =
∑

miXf (σi)/σi

to see that Xf (σj)/σj must be regular in z. This forces Xf (σj)/σj to be
polynomial.

Corollary 2. Let the situation and notation of Proposition 7 be given. Then
the following are equivalent:
(i) The vector fields f and g are in involution on U ; i.e., identity (10) holds
with polynomial functions α and β on U .
(ii) The zero set of θ is invariant for both f and g.

Remark 10. One may obtain every algebraic invariant set of a polynomial
equation from “partial involution” with some polynomial vector field, in the
following sense. Let a polynomial system (1) be given on C2 and let σ be a
polynomial such that its zero set Y is invariant, but σ is not a first integral
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of f . (Thus σ is a proper conditional invariant, or semi-invariant, of (1).)
Choose the Hamiltonian vector field

g := hσ =

(
−∂σ/∂x2
∂σ/∂x1

)
,

then the function β in relation (10) is regular on a Zariski-open subset of Y .
To see this, recall that there is a nonzero polynomial λ such thatXf (σ) = λσ,
due to invariance and the Nullstellensatz. By construction

θ = det(f, g) = Xf (σ) = λσ ; Xf (θ)/θ = Xf (λ)/λ+ λ.

�

The results above can be easily transferred to the local analytic setting,
with analogous proofs. Further extension to the global analytic case (on an
open and connected set U) requires a restatement in weaker form, since the
Noetherian and unique factorization properties will be lost. For the smooth
case one essentially obtains results on invariant local submanifolds, and one
may have to deal with degenerate cases such as θ being identically zero on
some open subset.

4 An application to reaction equations

In this final section we show that side conditions appear naturally in the
context of some applied problems, viz., for quasi-steady state (QSS) in
chemistry and biochemistry. Side conditions are the mathematical incar-
nation of quasi-steady state assumptions for chemical species, and provide
a computational approach to the detection of parameter regions where QSS
phenomena arise.

4.1 Background and motivation

For some chemical reaction equations, in particular in biochemistry, one
is interested in conditions that cause certain components of a solution to
change slowly when compared to the overall rate of change. One speaks of
quasi-steady state (resp. a quasi-steady state assumption) in this case; see
Atkins and de Paula [1], p. 812 ff. on the chemistry involved here. Typi-
cally, the differential equation modelling the reaction depends on parameters
(such as initial concentrations and rate constants), and one asks for condi-
tions on these parameters which guarantee quasi-steady state. To illustrate
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the concept we consider the Michaelis-Menten system (for details see the
extensive discussion in Segel and Slemrod [27]). In this fundamental model
for an enzyme-catalyzed reaction, enzyme (E) and substrate (S) combine
reversibly to a complex (C) which in turn degrades to enzyme and product
(P). Symbolically we have

E + S 
 C ⇀ E + P.

Denoting the concentrations by the corresponding lower-case letters, mass
action kinetics and stoichiometry lead to the system

(11)
ṡ = − k1e0s + (k1s+ k−1)c
ċ = k1e0s − (k1s+ k−1 + k2)c

with relevant initial values s(0) = s0 > 0, c(0) = 0, and nonnegative rate
constants k1, k−1 and k2. Particular interest lies in QSS for the complex
concentration c. The standard translation of QSS to mathematical terms
works via interpretation as a singular perturbation problem; see Segel and
Slemrod [27] for a thorough discussion, and also the overview in [11], subsec-
tion 8.2. In the present paper we will pursue a more general and at the same
time more straightforward approach. This essentially goes back to Heinrich
and Schauer [15], and is based on a different aspect, viz. the existence of
certain invariant sets.
For motivation, note that QSS for c should imply

k1e0s− (k1s+ k−1 + k2)c ≈ 0.

In practice, the stronger assumption

φ(s, c) := k1e0s− (k1s+ k−1 + k2)c = 0

is used to express c as a function of s, obtaining (upon substitution in the
first equation) a one-dimensional differential equation for s. From a math-
ematical perspective this procedure is consistent only if the zero set of φ is
actually invariant for (11). Heinrich and Schauer [15] relaxed the invariance
requirement by stipulating that the actual trajectory remain close to the
zero set of φ (for the time period of interest). The Heinrich-Schauer con-
dition (which was put in broader context in [21]) involves rather intricate
estimates and therefore is cumbersome to implement, but the sharper in-
variance requirement naturally leads to LaSalle type side conditions, and a
computationally feasible approach. Thus we augment the reasoning in [15]
with the following observation: Assume that for some

p∗ := (e∗0, k
∗
1, k

∗
−1, k

∗
2) ∈ R4

+
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the zero set of φ is actually invariant for system (11). It is reasonable to
suspect that the Heinrich-Schauer condition should be satisfied for small
perturbations of this parameter set, and we will verify this in the next sub-
section.

4.2 Side conditions for parameter-dependent systems

First we need to specify the somewhat loose statement just given. Thus we
present and prove a general formulation which is applicable beyond the QSS
scenario. Consider a parameter-dependent system

(12) ẋ = f(x; p), (x, p) ∈ Rn × Rm

with the right-hand side smooth on an open subset D of Rn × Rm. (Less
restrictive asumptions would suffice for the purpose of this subsection.) We
denote the local flow by F (t, y; p). Moreover consider smooth functions

(13) φ1, . . . , φr : D → R.

In practice, these functions come from chemical intuition, or from educated
guesses (such as QSS assumptions for certain chemical species), and the
common zero set of these functions is conjectured to be close to an invariant
set. The following proposition yields criteria to verify such a conjecture.

Proposition 8. Let p∗ ∈ Rm such that the equations

φ1(x, p
∗) = · · · = φr(x, p

∗) = 0

define a local s-dimensional submanifold Yp∗ of Rn which is invariant for
the system (12), and let y∗ ∈ Yp∗. Then the following hold.
(a) There is a compact neighborhood K of y∗ and a neighborhood V of p∗

such that Yp∗ ∩ K is compact, and that for every p ∈ V the set defined by
the equations

φ1(x, p) = · · · = φr(x, p) = 0

contains an s-dimensional local submanifold Yp which has nonempty compact
intersection with K. Moreover, for every ε > 0 there is a δ > 0 such that

dist (y, Yp∗) < ε for all y ∈ Yp whenever ‖p− p∗‖ < δ.

(b) Let T > 0 such that F (t, y; p∗) exists on the interval [0, T ] for all y ∈
Yp∗ ∩K. Then for each ρ > 0 there exists θ > 0 with the following property:
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For every p ∈ V with ‖p − p∗‖ < θ and every z ∈ Yp the solution F (t, z; p)
exists on the interval [0, T ], and

dist (F (t, z; p), Yp) < ρ for all t ∈ [0, T ].

(c) Given p sufficiently close to p∗, assume (with no loss of generality) that
x1, . . . , xn−s are local coordinates on Yp, and

xk = ηk(x1, . . . , xn−s; p), n− s+ 1 ≤ k ≤ n, on Yp ∩K.

Then the solution of

ẋi = fi(x1, . . . , xn−s, ηn−s+1, . . . , ηn; p), 1 ≤ i ≤ n− s,

combined with xk = ηk(x1, . . . , xn−s; p) for k > n − s, converges on [0, T ]
to the solution of (12) as p→ p∗.

Proof. Part (a) is a consequence of the implicit function theorem and a
compactness argument, while parts (b) and (c) follow from (a) and standard
dependence theorems.

Remark 11. (a) A more comprehensive generalization of Heinrich and
Schauer’s concept [15], called near-invariance, was introduced and discussed
in [21]. One consequence of Proposition 8 is that for every σ > 0 there exists
η > 0 such that Yp ∩K is σ-nearly invariant whenever ‖p − p∗‖ < η. (The
stronger property that σ may be chosen arbitrarily small is not required
in the more general notion from [21].) As shown by the examples in [21],
finding (sharp) estimates for near-invariance may be quite involved.
(b) One may encounter the degenerate case that Yp∗ consists of stationary
points only. Then the statement of Proposition 8 is correct but not partic-
ularly strong. On the other hand, this degenerate scenario is actually one
prerequisite for application of the classical singular perturbation results by
Tikhonov [28] and Fenichel [9]; see [11], Thm. 8.1. If the additional hypothe-
ses for Tikhonov’s theorem are fulfilled then one obtains a sharper result (on
the slow time scale) in lieu of the Proposition above. There exists a more
systematic (and more intricate) approach to finding “small parameters” for
singular perturbation scenarios (as elaborated in the recent dissertation [12]
by Goeke), but side conditions still provide an easy-to-use tool for detection.

�
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4.3 Some applications

We discuss two reaction equations of practical relevance. Since we are in-
terested in QSS for some species, we have LaSalle type side conditions.

4.3.1 Michaelis-Menten

The Michaelis-Menten system is probably the most famous among the sys-
tems exhibiting QSS. We will abbreviate (11) as ẋ = f(x, p), with x = (s, c).
Three types of QSS assumption have been discussed in the literature:

• QSS for complex: φ = ψ1 := Xf (c) = k1e0s− (k1s + k−1 + k2)c (also
known as standard QSS).

• QSS for substrate: φ = ψ2 := Xf (s) = −k1e0s+ (k1s+ k−1)c. This is
also known as reverse QSS; see Segel and Slemrod [27].

• QSS for total substrate: φ = ψ3 := Xf (s + c) = −k2c. This is also
known as total QSS; see Borghans et al. [3].

We determine parameter combinations which yield invariance, and thus al-
low the application of Proposition 8.

Proposition 9. Consider the Michaelis-Menten system with nonnegative
parameters e0 and ki. Then:

• The submanifold defined by c = 0 is invariant for system (11) if and
only if e0 = 0 or k1 = 0.

• The zero set of ψ1 contains a one-dimensional invariant submanifold
of system (11) if and only if any one of the following holds:
(i) e0 = 0; (ii) k1 = 0; (iii) k2 = 0.
In the first two cases, the invariant manifold is given by c = 0; in the
third case it has the representation c = k1e0s/(k1s+k−1) (in particular
c = e0 if k−1 = 0). In all cases the invariant manifold consists of
stationary points only.

• The zero set of ψ2 contains a one-dimensional invariant submanifold
of system (11) which is not among those previously discussed if and
only if k−1 = 0. In this case the manifold is given by s = 0.

• All the one-dimensional invariant manifolds contained in the zero set
of ψ3 are among those of the standard QSS case.
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Proof. Since
Xf (c) = −k1e0s+ (· · · ) · c

(with (· · · ) standing for some polynomial whose explicit form is of no rel-
evance here), the common zero set of c and Xf (c) contains just the point
0 whenver k1e0 6= 0. On the other hand, k1e0 = 0 implies invariance by
Remark 1. This proves the first assertion. For the following we note that
Xf (s) +Xf (c) = −k2c.
A straightforward computation shows

Xf (ψ1) = X2
f (c) = k1(e0 − c)Xf (s)− (k1s+ k−1 + k2)Xf (c)

= −k1(e0 − c) · k2c+ (· · · ) · ψ1.

Thus the zero set Y of ψ1 is invariant, by Remark 1, in case k1 = 0 or k2 = 0.
If k1k2 6= 0 then Y must either contain the zero set of c as an invariant set
(which was discussed above), or the zero set of e0 − c. Since

Xf (e0 − c) = (· · · ) · (e0 − c) + (k−1 + k2) · c

and k2 > 0, common zeros of e0 − c and Xf (e0 − c) exist only when c = 0.
A similar computation yields

Xf (ψ2) = (· · · ) · ψ2 − (k1s+ k−1) · k2c.

Assume that k1 6= 0. Then k−1 = 0 implies ψ2 = −k1(e0 − c)s, and from
previous arguments it is known that invariance of the line e0− c = 0 implies
e0 = 0. Thus only the case s = 0 yields a new invariant set. Moreover,
the set defined by k1s+ k−1 = 0 is invariant only when k−1 = 0, in view of
Xf (s) = −k1e0s+ (k1s+ k−1) · (· · · ).
The final assertion follows directly from previous arguments.

By Proposition 8, for small e0 one will have an invariant manifold close
to c = 0, for small k2 one will have an invariant manifold close to the curve
c = k1e0s/(k1s + k−1) , and so on. We provide more details for two cases,
with the results stated somewhat informally.

• For sufficiently small e0 (the other parameters being fixed and > 0),
solutions starting close to the set defined by ψ1 = 0, i.e.

c =
k1e0s

k1s+ k−1 + k2
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will remain close for an extended duration of time, and the solution
will be close to a solution of the familiar reduced equation

ṡ =
−k1e0s

k1s+ k−1 + k2
.

An analysis via singular perturbation theory yields the same reduced
equation; see Segel and Slemrod [27].

• For sufficiently small k−1 (the other parameters being fixed and > 0),
solutions starting in the set defined by ψ2 = 0, i.e.

s =
k−1c

k1(e0 − c)

will remain close to this set for an extended duration of time, and the
solution will be close to a solution of the reduced equation

ċ = −k2c.

The second scenario does not represent a standard singular perturbation
problem with small parameter k−1, since the zero set of ψ2 contains non-
stationary points when k−1 = 0. Thus the method outlined in Proposition 8
also yields (asymptotic) invariant sets that one cannot trace back to singular
perturbation phenomena.

4.3.2 Lindemann-Hinsley

The Lindemann-Hinsley system

(14)
ȧ = −k1a2 + k−1ab

ḃ = k1a
2 − k−1ab− k2b

models a two-stage degradation process of a chemical species A, with ac-
tivated stage B. More background and a phase plane analysis are given in
Calder and Siegel [4]. Again the right-hand side will be abbreviated by
f(x, p), with obvious variables and parameters. We are interested in QSS
for the concentration b of activated molecules, thus we have

φ = Xf (b) = k1a
2 − k−1ab− k2b.

Proposition 10. The zero set of φ contains a one-dimensional invariant
submanifold of system (14) (with nonnegative parameters) if and only if (i)
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k1 = 0 or (ii) k2 = 0. In the first case the invariant set is given by b = 0. In
the second case there exist two invariant manifolds, given by a = 0, resp. by
k1a − k−1b = 0. (In any case the invariant sets are made up of stationary
points only.)

Proof. One finds

Xf (φ) = X2
f (b) = −k2b · (2k1a− k−1b) + (· · · ) · φ.

If k2 = 0 then the remaining assertions are immediate. If k2 6= 0 then the
zero set of φ must either contain the zero set of b, which forces k1 = 0, or
the set given by 2k1a − k−1b = 0. The latter leads to the contradiction
k2 = 0.

By Proposition 8 we see, for instance, that for k2 → 0 (and the other
parameters constants > 0) any solution starting close to the line given by
k1a− k−1b = 0 will remain close for an extended duration of time, and the
solution of (14) is approximated by the reduced equation

ḃ = −k2b.

A singular perturbation analysis yields the same reduced equation with a
stronger justification; see Calder and Siegel [4], and Goeke [12].

Remark 12. The main purpose of this final section was to present a nat-
ural application of side conditions in a different – and perhaps unexpected
– field, and to show by (simple but relevant) examples that the side condi-
tion approach provides a conceptually straightforward and computationally
feasible way to determine QSS conditions for prescribed variables. More-
over, the usual types of reaction equations (polynomial, due to mass action
kinetics) are accessible by methods of algorithmic algebra. This will be the
subject of forthcoming work.

�
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