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Abstract

For a parameter-dependent system of ordinary differential equations
we present a systematic approach to the determination of parameter values
near which singular perturbation scenarios (in the sense of Tikhonov and
Fenichel) arise. We call these special values Tikhonov parameter values.
The principal application we intend is to equations that describe chemi-
cal reactions, in the context of quasi-steady state (or partial equilibrium)
settings. Such equations have rational (or even polynomial) right-hand
side. We determine the structure of the set of Tikhonov parameter val-
ues as a semi-algebraic set, and present an algorithmic approach to their
explicit determination, using Groebner bases. Examples and applications
(which include the irreversible and reversible Michaelis-Menten systems)
illustrate that the approach is rather easy to implement.

MSC (2010): 92C45, 34E15, 80A30, 13P10.

1 Introduction and overview

The present paper is motivated by parameter dependent ordinary differential
equations which model reaction networks in chemistry and biochemistry, the
parameters representing rate constants or initial concentrations. In particular
we are interested in the mathematical analysis of quasi-steady state (QSS) phe-
nomena, either for certain chemical species, or for certain reactions in the given
network (the latter case also is known as partial equilibrium approximation,
briefly PEA). According to established practice we discuss these phenomena
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within the mathematical framework of singular perturbation theory.
Given a quasi-steady state setting (or assumption), one will aim to reduce the
system, by an ad-hoc approach or (on more solid mathematical ground) with the
help of Tikhonov’s and Fenichel’s theorems, after identifying a suitable “small
parameter”. Thus, there are two issues when applying singular perturbation
theory to QSS scenarios: Prior to reduction, one needs to determine (ideally
all) parameter regions in which QSS phenomena occur. Most approaches to
this problem invoke expertise (e.g. experimental data or educated guesswork)
from chemistry, which then is transferred to workable mathematical conditions.
A prominent example is the technique of estimating fast and slow time scales,
which was initiated by Segel and Slemrod. But frequently, only relatively rough
estimates can thus be obtained, and the obtained heuristics will, in turn, require
further analysis. Time scale reasoning is also used in numerical schemes (even
when all parameters are assigned numerical values), e.g. by Lam and Goussis.
For parameter-dependent systems it seems that all the approaches in the liter-
ature require an initial assumption, or a guess, about the existence of certain
invariant sets, or about the magnitude of rate constants, or about time scales,
which refers to the model underlying the equation. In the present paper, which
is based on the first-named author’s doctoral dissertation [13], we propose a
different (and, to our knowledge, new) approach to finding “small parameters”.
This approach starts from the mathematical interpretation of QSS as a sin-
gular perturbation phenomenon, but within this framework we will present a
self-contained (and to some extent algorithmic) method to finding all “small
parameters” of a given system. The argument is rooted in ideas and approaches
from the literature, but it works excusively via mathematical reasoning. The
principle is to focus on those parameter tuples for which small perturbations
provide a scenario such that Tikhonov’s and Fenichel’s theorems are applicable.
The right-hand side of the differential equation features some degeneracy at such
parameters, and this degeneracy in turn provides a computational approach to
find them. This mathematical procedure seems simpler, both conceptually and
computationally, than existing approaches. While there are some technicalities,
examples show that the search for “small parameters” becomes less involved and
more straightforward, and in principle one can find all the relevant parameter
regions in this way.
We now give an overview of the contents. In Section 2 we provide a brief review
of the literature, examples and introduce some terminology. In Section 3 we
introduce – in the setting of smooth vector fields – the notion of a Tikhonov
parameter value (TPV); i.e., a parameter tuple such that every small deviation
will lead to a singular perturbation scenario for which Tikhonov’s and Fenichel’s
theorems are applicable. We discuss some properties of TPVs, relate them to
other concepts in the literature, and indicate why TPVs are accessible via com-
putations. In order to illustrate the inherent simplicity of the approach and
its implementation, we discuss a linear chain reaction and the familiar irre-
versible Michaelis-Menten system as first examples. In Section 4 we specialize
to systems with rational or polynomial right-hand side. In view of the intended
applications to (bio-) chemistry, with mass action kinetics, this specialization is
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not particularly restrictive. (To make the arguments and methods accessible to
non-specialized readers, we include an intoduction and overview of some alge-
braic concepts and facts.) From a structural perspective we obtain the following
characterization: If one considers the system on a semi-algebraic subset of phase
and parameter space (e.g. the positive orthant) then the TPVs themselves form
a semi-algebraic subset of parameter space, hence are determined by finitely
many polynomial equations and inequalities. Moreover we describe a computa-
tional approach to finding TPVs via elimination ideals, which also allows for the
use of algorithmic algebra techniques. Finally, in Section 5 we present several
applications. For some systems we determine all Tikhonov parameter values,
thus obtaining an exhaustive list of all quasi-steady state scenarios; in other
cases we provide – in view of space considerations or due to computational
complexity – partial lists, which include “small parameters” that seem to have
been unnoticed so far.

It should be emphasized that the applicability of our approach is not limited
to (bio–) chemistry and QSS. In particular the results of Section 3 are useful
whenever one is interested in parameters that lead to a reduction via Tikhonov’s
and Fenichel’s theorems.

2 Perspectives of QSS

We give a short summary of work on quasi-steady state (QSS) in the literature.
This summary is necessarily incomplete with respect to the cited references, but
– to the best of our knowledge – it includes all relevant approaches. From the
perspective of chemical reaction equations, quasi-steady state is being consid-
ered either for certain chemical species that change slowly in comparison to the
overall rate of change (QSS for species; cf. Atkins and de Paula [1], p. 812 ff.
for details), or for certain reactions which proceed slowly when compared to the
remaining ones (one also speaks of partial equilibrium approximation (PEA), or
rapid equilibrium approximation; cf. e.g. Goussis [18], Heinrich and Schuster
[22]). As an example to illustrate the notions and arguments, we take the stan-
dard Michaelis-Menten reaction: Substrate S and enzyme E reversibly combine
to a complex C, which in turn degrades – reversibly or irreversibly – to E and
product P ; thus one has the reaction scheme

E + S
k1


k−1

C
k2


k−2

E + P

By mass action kinetics one arrives at the differential system

(1)
ṡ = − k1e0s + (k1s+ k−1)c,
ċ = k1e0s − (k1s+ k−1 + k2)c+ k−2(e0 − c)(s0 − s− c),

for the concentrations, with initial values s(0) = s0 > 0 and c(0) = 0. Moreover
k−2 = 0 in the irreversible scenario, while k−2 > 0 in the reversible scenario; all
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other parameters are greater than zero.
The notion of quasi-steady state goes back to the beginning of the 20th cen-
tury. Henri [23] in 1903, Michaelis and Menten [30] in 1913, and Briggs and
Haldane [5] in 1925 heuristically introduced and discussed two types of quasi-
steady state for the irreversible reaction (1), and imposed conditions (on rate
constants and initial concentrations) for the occurrence of QSS. Michaelis and
Menten assumed instantaneous equilibrium between substrate and complex (in
other words, slow degradation of complex to product and enzyme) and obtained
the condition k2/k−1 � 1. Briggs and Haldane assumed QSS for complex and
found the condition e0/s0 � 1.
Heineken, Tsuchiya and Aris [19] were among the first to consider QSS (for
irreversible Michaelis-Menten) from the mathematical perspective of singular
perturbation theory. By scaling transformations and the (preset) “small pa-
rameter” εH = e0/s0, they obtained a reduced equation via Tikhonov’s the-
orem. The approach by Segel and Slemrod [36] (see also Segel [35]) included
a systematic determination of appropriate small parameters: They employed
time scale arguments, comparing estimates for the initial phase and the quasi-
stationary phase, to identify the “small parameter” εS = e0/(s0 + M), with
M := (k−1 + k2)/k1 for the irreversible system. Moreover they gave a direct
proof that solutions of this system converge to solutions of the reduced equation,
uniformly on any compact subinterval of (0, ∞). (Earlier, the “small parameter”
ε∗S = e0/M was introduced heuristically for the reversible system by Seshadri
and Fritzsch [37].) The time scale arguments introduced by Segel and Slemrod
triggered a large number of publications. For instance, Borghans, de Boer und
Segel [4] considered the irreversible Michaelis-Menten equation with a modified
QSS assumption they called total QSS (tQSS). They obtained the small param-
eter εB = k2e0/

(
k1(e0 + s0 +M)2

)
, which imposes less restrictive conditions

on the parameters (in the sense that εS → 0 implies εB → 0). Tzafriri and
Edelmann [40] discussed tQSS for the reversible Michaelis-Menten system, ob-
taining rather complicated estimates. A recent discussion of tQSS for reaction
networks, and its application to reduction, is given in Kumar and Josic [25].
All the above approaches are conducted with singular perturbation phenom-
ena in mind, but one should note that there exist alternative mathematical
interpretations of QSS. Heinrich and Schauer [20] (for the irreversible system)
focus on the approximate invariance of the set defined by ċ = 0 in equation
(1); this approach was formalized and extended in [33]. Thus the mathematical
interpretation of QSS as a singular perturbation phenomenon is not the only
possibility. However, we will restrict to the singular perturbation interpretation
in the present paper.

When considering slow and fast chemical reactions, a singular perturbation
approach is the natural choice, and it has been employed and investigated in
various publications. We mention Heinrich and Schauer [21], as well as the more
recent work by Lee and Othmer [28] where also the initial phase is discussed
in detail, and the algorithmically oriented paper by Boulier et al. [3]. In the
setting of slow and fast reactions the “small parameters” will be rate constants
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of certain reactions (possibly pairs of forward and back reactions). Although
the singular perturbation approach is less straightforward when it comes to
QSS for chemical species, for many relevant reacting systems the hypotheses
of Tikhonov’s and Fenichel’s theorems are satisfied. (In such scenarios we will
briefly say that Tikhonov-Fenichel reduction is applicable.)

A different way to employ singular perturbation techniques, in the context
of numerical schemes, can be found in Lam and Goussis [27], or in Duchêne und
Rouchon [9]. In these works (where numerical values for the rate constants etc.
are known) there is no chemical a priori motivation for separation of the system
into fast and slow variables (or reactions). Instead the authors separate the lin-
earized system into a “slow” and “fast” part (e.g. by separating the eigenvalues
into “small” and “large” ones), and compute a reduced system (iteratively) by
approximating a slow manifold by the sum of eigenspaces for the “small” eigen-
values. The link to Tikhonov and Fenichel is provided by assuming a limiting
case with the “small” eigenvalues approaching zero. For the scenario to be dis-
cussed in the present paper (involving unknown parameters), this perspective
is of considerable interest as a motivation, because it provides a cue where to
search for singular perturbation settings.

3 Tikhonov parameter values

3.1 Background

Throughout this section we will consider a parameter-dependent ordinary dif-
ferential equation

(2) ẋ = h(x, π), x ∈ U ⊆ Rn, π ∈ Π ⊆ Rm

with U open and the right-hand side h smooth in the variable (x, π). (Most
results hold under less restrictive differentiability assumptions.) If one is aware
of (or suspects) a slow-fast separation of time scales within certain parameter
ranges, then one will aim to reduce the system via the theorems of Tikhonov
[39] and Fenichel [10]. The familiar approach is to first recast the system (e.g.
by scaling transformations) into a special form

(3) ẏ = g(y, ρ, ε), y ∈ Ũ ⊆ Rn, ρ ∈ Π̃ ⊆ Rp, ε ∈ [0, ε0)

with ε0 > 0, and then fix ρ = ρ∗ and let the “small parameter” ε→ 0. Whenever
the entries of y split into subsets of slow and fast variables, the standard version
of Tikhonov’s theorem (see e.g. Verhulst [41], Thm. 8.1) is directly applicable.
But explicit knowledge of slow and fast variables is neither necessary to verify
the existence of a Tihkonov-Fenichel reduction, nor is it necessary to compute a
reduced equation. Actually, the relevant points are as follows; see [15] and [16].

(i) There exists ρ∗ ∈ Π̃ such that the zero set of y 7→ g(y, ρ∗, 0) contains a
local submanifold W ⊆ U of dimension s, 0 < s < n.

5



(ii) For every z ∈ W , the partial derivative D1g(z, ρ∗, 0) with respect to the
first variable set determines a direct sum decomposition into kernel and
image:

Rn = KerD1g(z, ρ∗, 0)⊕ ImD1g(z, ρ∗, 0).

(Equivalently, the algebraic and the geometric multiplicity of the eigen-
value 0 of D1g(z, ρ∗, 0) coincide. The kernel then has dimension s.)

(iii) There exists a positive constant µ such that the nonzero eigenvalues of
D1g(z, ρ∗, 0), z ∈W , have real part ≤ −µ.

We will call W an asymptotic slow manifold (briefly, slow manifold) of the
system. Given these conditions, for sufficiently small ε there exists an attractive
local manifold of the system which is close to W . The reduced equation which
determines the asymptotic behavior on W can be computed explicitly according
to [15], Thm. 8.2 (see also Remark 1 below and [16]). We note that all the
necessary and sufficient conditions refer only to properties of the right-hand
side g at ε = 0.
Due to Fenichel [10], an asymptotic invariant manifold exists whenever the first
two conditions above are satisfied, and the nonzero eigenvalues have nonzero
real parts. The reduction formula in [15] is still applicable even when only (i)
and (ii) are satisfied; we will sometimes speak of formal reduction in this case.

For most applications of interest to us (e.g. chemical reaction equations
with mass-action kinetics) the right-hand side of (2) will actually be a rational
or polynomial function of (x, π). In particular the zeros of x 7→ h(x, π∗), with
π∗ ∈ Π fixed, form an algebraic subvariety of Rn. This observation indicates
that methods of commutative algebra and algebraic geometry will be relevant
for computations and for structural characterizations. We will return to this in
Section 4; presently we discuss the smooth setting.

3.2 Definition and basic properties

For system (3) one sees that “small parameters” ε are in fact distinguished
by properties at ε = 0. This observation suggests to focus on those parameter
tuples π ∈ Π in system (2) for which small deviations will give rise to a Tikhonov-
Fenichel reduction.

Definition 1. A parameter π∗ ∈ Π will be called a Tikhonov parameter value
(TPV) for dimension s ( 1 ≤ s ≤ n − 1) of system (2) whenever the following
hold:

(i) The zero set V(h(·, π∗)) of x 7→ h(x , π∗) contains a local submanifold Ỹ
of dimension s.

(ii) There is a point x0 ∈ Ỹ such that

Rn = Ker D1h(x, π∗)⊕ Im D1h(x, π∗), all x ∈ Ỹ near x0.

(iii) The nonzero eigenvalues of D1h(x0, π
∗) have real part < 0.
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If only conditions (i) and (ii) hold then we will call π∗ a weak Tikhonov param-
eter value for dimension s.

We first verify that this definition is in accordance with its motivation.

Proposition 1. Let π∗ ∈ Π be a Tikhonov parameter value for dimension s of
system (2), and let x0 ∈ V(h(·, π∗)) be such that the conditions in Definition
1 are satisfied. Then for any smooth curve γ : R → Π, δ 7→ γ(δ) in parameter
space with γ(0) = π∗, the system

(4) ẋ = h(x, γ(δ)) = h(x, π∗) + δ ·D2h(x, π∗)γ′(0) +O(δ2)

admits a Tikhonov-Fenichel reduction for δ → 0.

Proof. Consider the Taylor expansion of δ → h(x, γ(δ)) about 0. Then [15],
Thm. 8.1 shows that, up to a coordinate transformation, the hypotheses of
Tikhonov’s theorem (as stated in Verhulst [41], Thm. 8.1) are satisfied.

From this Proposition one sees that only the tangent direction of the curve γ
in δ = 0 matters; cf. also the following Remark. Frequently one will use straight
lines in applications.

Remark 1. For the reader’s convenience, and for later reference, we note some
facts concerning the reduction. A more extensive account can be found in [15],
Subsection 8.3 (see also [13], [16]).

(a) The reduced system corresponding to (4) is defined on a local submani-

fold Ỹ of the vanishing set V(h(·, π∗)), and is determined by projecting
D2h(x, π∗)γ′(0) onto the kernel along the image of D1h(x, π∗), for x near
x0. To find it explicitly, one uses a decomposition

h(x, π∗) = P (x, π∗)µ(x, π∗)

in some neighborhood of x0. Here P is an Rn×(n−s)-valued function of rank
n − s on Ỹ , and Ỹ equals the vanishing set of the R(n−s)-valued function
µ, and moreover A(x, π∗) := D1µ(x, π∗)P (x, π∗) is invertible on Ỹ . The
reduced system is given by

(5) ẋ = δ ·
(
In − P (x, π∗)A(x, π∗)−1D1µ(x, π∗)

)
D2h(x, π∗)γ′(0)

on the invariant manifold Ỹ . We call

Q(x, π∗) := In − P (x, π∗)A(x, π∗)−1D1µ(x, π∗)

the projection map corresponding to π∗ (and Ỹ ). For polynomial h all of
this is algorithmically accessible; see [15], [16].

(b) The convergence property can be stated as follows: There is Lπ∗ > 0 such
that for every 0 < dπ∗ < Lπ∗ the solutions of system (4) rewritten in slow
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time scale, i.e. for τ = δt, converge to solutions of the reduced system (5)
in slow time scale, viz.

dx

dτ
=
(
In − P (x, π∗)A(x, π∗)−1D1µ(x, π∗)

)
D2h(x, π∗)γ′(0)

as δ → 0, uniformly for τ ∈ [dπ∗ , Lπ∗ ]; see Verhulst [41], Thm. 8.1.

(c) Given a weak Tikhonov parameter value π∗ ∈ Π for dimension s, the
system ẋ = h(x, π∗) admits a formal Tikhonov-Fenichel reduction (5) to

an s-dimensional manifold Z̃ ⊂ V(h(·, π∗)). If the nonzero eigenvalues of
D1h(x, π∗) have nonzero real part then for small δ there will be an invariant

manifold close to Z̃, and the dynamics on this invariant manifold is approx-
imated by (5); see Fenichel [10]. For our purposes, weak TPVs will mostly
be an intermediate step toward finding TPVs.

To emphasize the dependence on π∗ we will sometimes speak of the local
slow manifold of a (weak) Tikhonov parameter value.

Remark 2. Some authors prefer a different manner of writing down the reduced
system. Let π∗ a TPV of (2), with local slow manifold Ỹ , such that some
neighborhood of π∗ in Π is a submanifold of Rm. Given a smooth curve γ : R→
Π, δ 7→ γ(δ) with γ(0) = π∗, one may fix π := γ(δ) and replace (5) by

ẋ =
(
In − P (x, π∗)A(x, π∗)−1D1µ(x, π∗)

)
D2h(x, π∗)(π − π∗)

Since the right-hand sides of this equation and of (5) differ only by order δ2,
by familiar continuous dependence properties the convergence statement from
Remark 1 (b) still applies. But note that Tikhonov covers only the case of π
converging to π∗ along a fixed tangent direction; there seems to be no sensible
reduced system in slow time otherwise.

We give a first indication why TPVs are accessible via computations. The
underlying reason is that an overdetermined parameter-dependent system will
admit zeros only if the parameters satisfy certain conditions.
From now on, given system (2) and (x, π)T ∈ U ×Π, we denote by

(6) χ(τ) = χx,π(τ) := τn + σn−1(x, π)τn−1 + · · ·+ σ1(x, π)τ + σ0(x, π)

the characteristic polynomial of the Jacobian D1h(x, π), in the indeterminate
τ . The coefficients σi are smooth in x and π, and even rational (or polynomial)
whenever the right-hand side h has this property.

Proposition 2. If π∗ ∈ Π is a Tikhonov parameter value for dimension s
(with 1 ≤ s ≤ n− 1) for system (2) then there exists x0 ∈ Rn with the following
properties.

(i) h(x0, π
∗) = 0;

(ii) the Jacobian D1h(x0, π
∗) has rank ≤ n − s, thus for any k > n − s, all

k × k minors vanish;
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(iii) σs(x0, π
∗) 6= 0.

Proof. Let π∗ ∈ Π be a TPV for dimension s. According to Definition 1 there
exists an s-dimensional local submanifold Ỹ of V(h(·, π∗)) and an x0 ∈ Y such
that (i) is satisfied, and

Rn = Ker D1h(x, π∗)⊕ Im D1h(x, π∗) for all x ∈ Ỹ , x near x0.

The direct sum decomposition shows that geometric and algebraic multiplicity
for the eigenvalue 0 of D1h(x0, π

∗) coincide; denote this multiplicity by s̃. Then
n− s̃ is equal to the rank of D1h(x0, π

∗), which on the other hand equals n− s,
due to dim Ỹ = s. Thus s = s̃, and properties (ii) and (iii) follow by linear
algebra.

There is some redundancy in the statement of part (ii); it would suffice to
require the vanishing of all minors for k = n− s+ 1.
The notions and results provided so far already permit the discussion of relevant
examples. If the reader is so inclined, she or he may pass over the next subsection
in a first reading and proceed to these examples directly.

3.3 Technicalities

First, there remains to verify that the “small parameters” determined from the
standard approaches in the literature (as outlined in Subsection 3.1) can be
recovered by the TPV approach. To this end we state and prove a general
result on coordinate transformations. We require smoothness of all functions
and transformations involved, without explicitly saying so in every instance.

Proposition 3. Let the open sets U, V ⊂ Rn, Π ⊂ Rm1 and Σ ⊂ Rm2 be given.
In addition to system (2) on U ×Π, consider also a system

(7) ẏ = g(y, σ), y ∈ V, σ ∈ Σ,

and suppose that
Γ1 : U ×Π→ V, Γ2 : Π→ Σ

define a transformation Γ = (Γ1,Γ2)T which maps solutions of the extended
system

˙(x
π

)
=

(
h(x, π)

0

)
, (x, π)T ∈ U ×Π

to solutions of the extended system

˙(y
σ

)
=

(
g(y, σ)

0

)
, (y, σ)T ∈ V × Σ.

Moreover assume that for every π ∈ Π the map Γ1(·, π) : U → V locally has a
smooth inverse. Then the following hold.
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(a) Any TPV (or weak TPV) π∗ ∈ Π for dimension s of (2) is mapped to a
TPV (or weak TPV) σ∗ = Γ2(π∗) ∈ Σ for dimension s of (7).

(b) There is an invertible solution-preserving map between the reduced equations
corresponding to (2) for π∗ and to (7) for σ∗, respectively. In particular the
local slow manifold of (2) for π∗ is mapped to the local slow manifold of (7)
for σ∗.

Proof. We prove the statements simultaneously for TPVs and weak TPVs. Since
Γ maps solutions to solutions we have the identity(

g(Γ(x, π))
0

)
= DΓ(x, π)

(
h(x, π)

0

)
, (x, π) ∈ U ×Π,

and in particular

g(Γ(x, π)) = D1Γ1(x, π)h(x, π) for all (x, π) ∈ U ×Π.

Differentiating this identity, and letting x ∈ V(h(·, π)) one finds

D1g(Γ(x, π))D1Γ1(x, π) = D1Γ1(x, π)D1h(x, π).

Due to the invertibility of D1Γ1, the Jacobians with respect to the first variable
of g at Γ(x, π) and of h at x are conjugate.

Now let 1 ≤ s ≤ n− 1, and let π∗ ∈ Π be a (weak) TPV for dimension s of

(2). Then there exists an s-dimensional local submanifold Ỹ ⊆ V(h(·, π∗)) such
that

Rn = Ker D1h(x, π∗)⊕ Im D1h(x, π∗), x ∈ Ỹ .

We show that σ∗ = Γ2(π∗) is a TPV of (7) with slow manifold

Z̃ = Γ1(Ỹ , π∗) = {Γ1(x, π∗); x ∈ Ỹ }.

Γ maps solutions to solutions, therefore g ◦Γ vanishes at all (x, π∗), x ∈ Ỹ , and

thus Z̃ ⊂ V(g(·, σ∗)). Since the map Γ1(·, π∗) : U → V is a local diffeomorphism,

the dimensions of Z̃ and Ỹ are equal. From the direct sum decomposition
induced by D1h(x, π∗) one obtains

Rn = D1Γ1(x, π∗) ·Ker D1h(x, π∗)⊕D1Γ1(x, π∗) · Im D1h(x, π∗), x ∈ Ỹ ,

and by conjugacy of Jacobians one has the direct sum decomposition

Rn = Ker D1g(y, σ∗)⊕ Im D1g(y, σ∗), y ∈ Z̃.

Therefore σ∗ is a (weak) TPV for dimension s of (7). Moreover, the reduced
equation

(8) ẋ = h(x, π∗), x ∈ Ỹ ,
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corresponding to (2) is obtained from the kernel–image decomposition with

respect to D1h(x, π∗) for x ∈ Ỹ , while the reduced equation

(9) ẋ = g(x, σ∗), x ∈ Ỹ ,

corresponding to (7) is obtained from the kernel–image decomposition with

respect to D1g(x, σ∗) for x ∈ Z̃. The above identities and Remark 1 (a) show
that the projection map for g is conjugate by D1Γ1(x, π∗) to the projection map
for h. This in turn implies

D1Γ1(x, π∗)h(x, π∗) = g(Γ(x, π∗)) = g(Γ1(x), σ∗), x ∈ Ỹ .

Hence the invertible map Γ1 sends solutions of (8) to solutions of (9).

Remark 3. (a) Transformations from (2) to the special form (3) are included
in Proposition 3, with σ = (ρ, ε) and σ∗ = (ρ∗, 0). In addition, the TPV
property is stable with respect to (non-singular) scaling of time. Indeed,
given system (2) and a function κ : Π → R+ without zeros, consider the
parameter-dependent time scaling R → R, t 7→ κ(π) · t. In time scale
τ = κ(π) · t equation (2) is given by

x′ = κ(π)−1h(x, π),

with ′ denoting differentiation with respect to τ . Then π∗ ∈ Π is a TPV of
(2) if and only if it is a TPV of the scaled system. The proof is straightfor-
ward from the definitions.

(b) The familiar scaling transformations (of variables and time), as for instance
used in Heineken et al. [19], Segel and Slemrod [36], and frequently in Mur-
ray [31], are covered by Proposition 3. The reader may wonder why most
of our results (as well as examples below) are stated without invoking any
scaling. The principal reason is that in the present paper we focus mainly
on convergence, and convergence of some sequence or function to zero is
not influenced by multiplication with some positive constant. (Naturally in
applications, with given numerical values for rate constants and concentra-
tions, rates of convergence and estimates become important.)

(c) There is a secondary reason for omitting scalings here: They should be used
with caution. Some of the transformations employed in the literature (for
instance Goldbeter and Lefever [17]) involve singular Jacobians. Such trans-
formations are not within the scope of our results, since they make a general
application of singular perturbation theory impractical upon returning to
original coordinates. The validity of asymptotic approximations obtained
by such variants requires additional verification. One should also note that
passing from fast to slow time scale in singular perturbation scenarios is not
covered by the above results. But actually, zeros of κ should correspond to
a TPV to be sensible.
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We close this subsection with two more technical observations. The first
of these will allow us to rewrite some reduced systems in a less cumbersome
manner. Recall that the convergence statement in Remark 1 (b) is unaffected
by changing the right-hand side of equation (5) by a term of order δ2.

Remark 4. Let π∗ be a TPV of system (2), with local slow manifold Ỹ .

(a) If δ 7→ γ0(δ) is a smooth curve of TPVs with the same local slow manifold

Ỹ , and γ0(0) = π∗, then the projection maps Q(x, π∗) and Q(x, γ0(δ))
differ only by O(δ). To see this, one may refer to [34], Lemma 2.4 and Prop.
2.5, which show that the entries are rational (hence smooth) functions in
the coefficients of the characteristic polynomial (6) of D1h(x, γ0(δ)), which
in turn depend smoothly on the entries of D1h. Thus the right-hand side
of equation (5) with parameter π∗ and the right-hand side with parameter
γ0(δ) differ by O(δ2).

(b) By the same token, given a curve δ 7→ γ(δ) = γ0(δ)+γ1(δ), with γ0 as above
and γ1 smooth with γ1(0) = 0, one may replace Q(x, π∗) by Q(x, γ0(δ)),
with an error of order δ.

Finally we note that Tikhonov parameter values are not affected by aug-
menting a system with more “small parameters”, keeping the “fast” part of the
dynamics unchanged. This observation is of some interest for the determina-
tion of particular TPVs in reaction equations whenever a TPV for an equation
describing a subsystem of these reactions is known, and all the additional re-
actions are slow. One possible application is to reversible systems with (some)
slow reverse reactions. The proof is obvious.

Remark 5. Consider a system

(10) ẋ = h(x, π, ρ), x ∈ U ⊆ Rn, (π, ρ)T ∈ Π×R ⊂ Rm1+m2 ,

and a corresponding system with ”truncated parameters”, viz.

(11) ẋ = ĥ(x, π) := h(x, π, 0), x ∈ U, π ∈ Π.

Then (π∗, 0)T ∈ Π× R is a TPV for dimension s of (10) whenever π∗ ∈ Π is a
TPV for dimension s of system (11). The slow manifolds coincide.

3.4 Example: A linear decay chain

The ideas underlying the concept of Tikhonov parameter values are rather
straightforward, and so is their basic implementation in computations. We
briefly illustrate this statement by a very simple application, viz., a linear chain
reaction. The mathematical description of the decay chain is given by

ẋ = Mx,
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with the vector x = (x1, . . . , xn)T ∈ Rn of concentrations, the decay rates
λ = (λ1, . . . , λn)T ∈ Rn and the matrix

M =


−λ1
λ1 −λ2

. . .
. . .

λn−1 −λn

 .

The characteristic polynomial of M is equal to

χ(τ) =

n∏
i=1

(τ + λi) ,

and detM is (up to sign) the product of all λi. Thus, according to Proposition
2 and Definition 1, a parameter tuple 0 6= λ∗ = (λ∗1, . . . , λ

∗
n)T ∈ Rn is a weak

TPV if and only if λ∗i = 0 for at least one i, 1 ≤ i ≤ n, and a weak TPV for
dimension s if and only if exactly s of the λ∗i are equal to 0. (One has a TPV
if and only if all the remaining parameters are > 0.)

3.5 Example: Irreversible Michaelis-Menten

Turning to a more substantial illustration, we will discuss a familiar example,
viz. the irreversible Michaelis-Menten system

(12)
ṡ = − k1e0s + (k1s+ k−1)c
ċ = k1e0s − (k1s+ k−1 + k2)c

(with initial values s(0) = s0, c(0) = 0) from the TPV perspective. According to
the notation introduced in Subsection 3.2, we have the variable x = (s, c)T ∈ R2,
the parameter vector π = (e0, k1, k−1, k2)T ∈ Π ⊆ R4 and

h(x, π) =

(
−k1e0s+ (k1s+ k−1)c

k1e0s− (k1s+ k−1 + k2)c

)
.

We do not a priori restrict the variable or parameter regions. The key to de-
termining TPVs of this two-dimensional system (only dimension s = 1 is of
interest) lies in Proposition 2: We compute the Jacobian matrix

D1h(x, π) =

(
−k1e0 + k1c k1s+ k−1
k1e0 − k1c −k1s− k−1 − k2

)
and its determinant

d(x, π) = det D1h(x, π) = k1k2(e0 − c).

Then any TPV is a common zero of d and the entries of h. This overdetermined
system provides tight restrictions on the parameters.
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Proposition 4. A Tikhonov parameter value of the irreversible Michaelis-
Menten system (12) satisfies the condition

k1k2e0 = 0.

Thus, every TPV has the form

π∗ =


0
k∗1
k∗−1
k∗2

 ∈ Π, π∗ =


e∗0
0
k∗−1
k∗2

 ∈ Π, or π∗ =


e∗0
k∗1
k∗−1
0

 ∈ Π.

Proof. At a common zero of d, h1 and h2 one has h1(x, π)+h2(x, π) = k2c = 0. If
k2 6= 0 then the slow manifold is necessarily defined by c = 0. Using d(x, π) = 0
one finds the asserted relation.

We have found that (returning to common use of language) e0, k1 and k2
are the only possible “small parameters” for the irreversible Michaelis-Menten
system. There remain three cases, each of which is amenable to Tikhnonov-
Fenichel reduction, and admits a biochemical interpretation.

• The case e0 → 0 (corresponding to a TPV with e0 = 0) is most familiar,
corresponding to small initial concentration of enzyme. This was discussed
extensively; we mention the classical papers by Segel and Slemrod [36],
who – assuming quasi-steady state for the complex – via scaling arguments
obtained the small parameter εS and the earlier paper by Heineken et al.
[19], who in a straightforward scaling procedure arrived at εH (recall Sec-
tion 2). In these papers convergence to the solution of a reduced system
was shown as εS → 0 (with some restrictions), resp. εH → 0. (The reduc-
tion procedure along the lines of Remark 1 is outlined in [15], Example
8.5.)

• The case k2 → 0 corresponds to slow product formation (and fast for-
mation of complex); this was considered by Michaelis and Menten [30],
and also in Schauer and Heinrich [21]. The corresponding reduction was
discussed by Noethen [32], Subsection 5.2.4, Boulier et al. [3], Subsection
2.1, and in [15], Example 8.6.

• The case k1 → 0 admits a biochemical interpretation as well, viz., slow
formation of complex. It seems that this has not been discussed explicitly
in the literature. (While k1 → 0 is one of the cases corresponding to εS →
0 in Segel and Slemrod’s paper, and the hypotheses of the convergence
theorem in [36], Section 6 are satisfied, the form of εS given in [36] seems
to indicate that the authors did not consider the possibility of small k1.
Indeed, such behavior would be contrary to what is expected from the
action of an enzyme.)

It should be emphasized that we arrived at those three cases from just one un-
derlying assumption, i.e., the mathematical interpretation of QSS via Tikhonov
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and Fenichel. The rest of the argument leading to Proposition 4 amounts to
straightforward mathematics. Our approach recovers the familiar (and less fa-
miliar) QSS scenarios, as well as excluding the possibility of others.

Remark 6. The “small parameters” we obtained are not compatible with all
the results found in the literature. On the one hand this may be due to our
mathematical interpretation of QSS. But on the other hand, some of the heuris-
tics employed in the literature provide only candidates for quasi-steady state,
and additional verification is required. Moreover, when system parameters are
combined to form a “small parameter” (such as εS or εH above), it may be
necessary to define precisely the way in which the limit (such as εS → 0) is
attained. We take a look at some results.

(a) Heineken et al. [19] started from the irreversible Michaelis-Menten equation
and scaled the dependent variables via x := s/s0 and y := c/e0, which yields
the system

ẋ = − k1e0x + e0(k1s0x+ k−1)y
ẏ = k1s0x − (k1s0x+ k−1 + k2)y.

Passing to slow time with a (singular) scaling τ = k1e0t, they obtained a
system in standard form for Tikhonov’s theorem, with the small parameter
εH = e0/s0. One might infer from this that s0 →∞, which implies εH → 0,
will induce a reduction via singular perturbation theory. But the variable
transformation becomes singular in this limit, hence the results obtained via
Tikhonov are not directly transferrable to the original coordinates. More-
over, the initial value (s0, 0) of (12) leaves any bounded subset of the phase
plane as s0 → ∞; the limit blows up the domain of interest. Finally the
right-hand side of the reduced equation in [19] becomes trivial when s0 →∞
(see also [15], Subsection 8.4.2).

(b) Segel and Slemrod [36] used a different scaling for c (so there is no blow-
up of the relevant region in phase space when e0 → 0), and they did not
assert convergence for the case s0 →∞: Although εS → 0 is a consequence
of s0 → ∞ in their setting, the hypotheses of the convergence theorem in
[36], Section 6 are not satisfied, since the parameter σ is not bounded when
s0 →∞.

(c) One example for an insufficient QSS condition obtained by time scale heuris-
tics is the condition k−1/(e0k1)→ 0, specifically k−1 → 0, for reverse QSS
in Segel and Slemrod [36], and as a consequence some conditions on total
QSS in Borghans et al. [4] should be considered with care. As indicated by
a numerical example in [14], Section 4, there is no sensible QSS reduction
in the limit k−1 → 0 whenever the other parameters remain in a compact
subset of the open positive orthant.

Of course QSS phenomena may occur outside the framework we are dis-
cussing (e.g. when certain parameters approach infinity), but these require a
separate analysis.
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Continuing the discussion of TPVs for irreversible Michaelis-Menten, we re-
strict to Π = R4

+ from here on, and consider only nonnegative solutions of the
system. We will discuss the second and third of the TPV candidates found in
Proposition 4, and the corresponding reduced equations. It should be empha-
sized that the reduction procedure outlined in Remark 1 is quite sensitive to the
choice of “small parameters” (which determines the projection map), hence a
case-by-case analysis is in order. Generally a TPV π∗ = (e∗0, k

∗
1 , k
∗
−1, k

∗
2)T ∈ Π

induces a fast-slow decomposition

˙(s
c

)
=

(
−k∗1e∗0s+ (k∗1s+ k∗−1)c

k∗1e
∗
0s− (k∗1s+ k∗−1 + k∗2)c

)
+
(
−k∗1s −(e

∗
0−c)s c 0

k∗1s (e∗0−c)s −c −c

) e0−e∗0
k1−k∗1
k−1−k∗−1

k2−k∗2


with  e0−e∗0

k1−k∗1
k−1−k∗−1

k2−k∗2

 = δ ·
( ε0

κ1
κ−1
κ2

)
.

(Thus we let the curve γ in Proposition 1 be a straight line.)

1. Consider π∗ := (e∗0, 0, k
∗
−1, k

∗
2)T . Since

D1h(x, π∗) =

(
0 k∗−1
0 −(k∗−1 + k∗2)

)
we have the necessary and sufficient condition k∗−1 + k∗2 > 0 for π∗ to be a
TPV for dimension one (ensuring the kernel–image decomposition), and
the slow manifold is given by c = 0 in any case. For the curve

γ(δ) =


e∗0
0
k∗−1
k∗2

+ δ


ε0
κ1
κ−1
κ2


in parameter space, a straightforward computation, as outlined in Remark
1, yields the reduced equation

ṡ = −δκ1e
∗
0k
∗
2s

k∗−1 + k∗2
; c = 0.

With Remark 4 we may rewrite this in the more convenient form

ṡ = − k1e0k2s

k−1 + k2
; c = 0

up to an error of order δ2, because k1 = δκ1 and

γ0(δ) =


e∗0
0
k∗−1
k∗2

+ δ


ε0
0
κ−1
κ2


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is a TPV with slow manifold c = 0, for every δ.
The degenerate case e∗0 = 0 still yields a TPV, but the right-hand side of
the reduced equation is of order δ2.

2. Now consider π∗ := (e∗0, k
∗
1 , k
∗
−1, 0)T ∈ Π; here

D1h(x, π∗) =

(
−k∗1(e0 − c) k∗1s+ k∗−1
k∗1(e0 − c) −(k∗1s+ k∗−1)

)
and we find the necessary and sufficient condition k∗1 + k∗−1 > 0 for π∗ to
be a TPV. The slow manifold is given by c = k∗1e

∗
0s/(k

∗
1s+k∗−1). To avoid

notational expenditure, we just consider the special curve

γ(δ) =


e∗0
k∗1
k∗−1
0

+ δ


0
0
0
κ2


in parameter space, with the reduced equation

ṡ = − k2e0k1s(k1s+ k−1)

k1e0k−1 + (k1s+ k−1)2
, s ∈ R+, c =

k1e0s

k1s+ k−1
.

Again degenerate cases occur, e.g. for k1 = 0, which lead to right-hand
side O(δ2).

An extensive discussion of all Tikhonov parameter values and reductions for the
irreversible Michaelis-Menten system is given in [13], Subsection 8.4.2.

At the end of this subsection, we use Tikhonov parameter values of the
irreversible system to obtain some TPVs of the reversible system (1) by way of
Remark 5. Thus we include a reaction of enzyme and product to complex, but
with a small rate constant.

Example. Consider again system (1), i.e.,

ẋ = h(x, π, ρ) :=

(
−k1se0 + (k1s+ k−1)c

k1se0 − (k1s+ k−1 + k2)c+ k−2(e0 − c)(s0 − s− c)

)
in the variable x = (s, c)T , with parameters

π = (e0, k1, k−1, k2, s0)T ∈ R5, ρ = k−2 ∈ R.

The corresponding system with “truncated parameters”, viz.

ẋ = ĥ(x, π) := h(x, π, 0),

is just the irreversible Michaelis-Menten equation (12). (Note that the term con-
taining s0 vanishes when k−2 = 0, and we may therefore introduce a “dummy pa-
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rameter” s0.) We obtain the following TPV candidates for reversible Michaelis-
Menten: 

0
k∗1
k∗−1
k∗2
s∗0
0

 ,


e∗0
0
k∗−1
k∗2
s∗0
0

 ,


e∗0
k∗1
k∗−1
0
s∗0
0

 .

The restrictions found in the the above discussions (e.g. k∗−1 + k∗2 > 0 for the
second candidate) are necessary and sufficient to yield TPVs. We will discuss the
reversible Michaelis-Menten system in Section 5 below; the partial information
obtained here will then be quite useful.

4 Structure and computation of TPVs

In this section we will specialize to systems (2) with polynomial or rational
right-hand side, in view of our focus on reaction equations. Then the natural
domain of definition for h is a Zariski-open (hence dense) subset of Rn × Rm.
We will characterize the set of TPVs, and from an algorithmic point of view we
will describe a natural approach to their computation with the help of Groebner
bases.

4.1 Special properties of rational systems

We will freely use some properties of affine algebraic varieties and some results
from classical commutative algebra and algebraic geometry in this section. A
rather concise introduction to the relevant notions and facts can be found in
the first chapter of Kunz [26]. For local properties we refer to Shafarevich [38],
Ch. II, and for computational issues (in particular, Groebner bases) to Cox,
Little and O’Shea [7] as well as the implementation in the algorithmic algebra
system Singular; see [8]. The following account may serve as a short overview.
Given that the right-hand side of (2) is rational or polynomial, the differential
equation is defined on a Zariski-open subset of Rm × Rn; i.e., the complement
of the common zero set of some polynomials (actually, of one polynomial in this
case). Moreover the set of stationary points is given by zeros of polynomials,
thus is an (affine) algebraic variety. An algebraic variety is generally not a sub-
manifold, but it is a finite union of submanifolds. (Examples of relevance here
include the slow manifolds in reduction scenarios according to Section 3.) More
precisely, a variety is a union of finitely many irreducible components, and the
simple (or regular) points of each component (characterized by minimal dimen-
sion of the tangent space) form a Zariski-open and dense subset which is also a
submanifold. For the discussion of zeros of polynomials, ideals are the natural
objects. Thus given finitely many polynomials q1, . . . , qm ∈ R[x1, . . . , xn], their
common zero set V(q1, . . . , qm) coincides with the common zero set of the ideal

〈q1, . . . , qm〉 := q1R[x1, . . . , xn] + · · ·+ qmR[x1, . . . , xn].
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This observation will be used frequently. More facts on varieties and ideals will
be recalled below, whenever needed in proofs.

4.2 Structure of the TPV set

For the remainder of this section we will, in addition, assume that the domain
under consideration in Rn+m, which we call ∆, is a semi-algebraic subset of a
Zariski-open set, thus defined by finitely many polynomial equations and poly-
nomial inequalities. This further specialization is natural for applications to
reaction equations, due to positivity of rate constants and initial concentra-
tions. We will clarify structural properties of the set of Tikhonov parameter
values. Our first observation is a consequence of Proposition 2.

Lemma 1. Let (x0, π
∗) ∈ ∆ be such that h(x0, π

∗) = 0, and let the charac-
teristic polynomial of D1h(x0, π

∗) be given by (6). Then π∗ ∈ Π is a Tikhonov
parameter value for dimension s, and x0 lies in the local slow manifold of π∗,
only if the following hold.

(i) One has σ0(x0, π
∗) = · · · = σs−1(x0, π

∗) = 0.

(ii) The polynomial

χ̃(τ) = τn−s + σn−1(x0, π
∗)τn−s−1 + · · ·+ σs(x0, π

∗)

has only zeros with negative real part.

The points of ∆ satisfying (i) and (ii) are defined by polynomial equations and
inequalities (Routh-Hurwitz conditions for χ̃; cf. Gantmacher [12], Ch. V, §6).
In particular they form a semi-algebraic subset of ∆.

The conditions in this Lemma are not sufficient for a TPV, as shown by the
following example.

Example. Consider the parameter-dependent equation

ẋ = h(x, α) :=

(
αx1

x21 − x22

)
on R2

with α ∈ R. Then for any α < 0 and x0 = 0 the conditions of Lemma 1 are
satisfied, but α is not a TPV for dimension 1, since the only stationary point 0
is isolated.

However, additional conditions ensure sufficiency; see [34], Prop. 2.2 or [29],
Thm. 15 and Cor. 16 for proofs.

Lemma 2. Let (x0, π
∗) ∈ ∆ satisfy the conditions in Lemma 1. Then π∗ is

a TPV for dimension s, and x0 in the local slow manifold of π∗, if and only if
the system ẋ = h(x, π∗) admits s functionally independent analytic (or formal)
first integrals in a neighborhood of x0. The lowest-degree terms of these first
integrals may be chosen as (linearly independent) linear forms in x− x0.
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Assuming h(x0, π
∗) = 0 we have a Taylor expansion with respect to y :=

x− x0:

(13) h(x, π∗) =
∑
k≥1

hk(x0, π
∗, y),

with hk homogeneous of degree k in y, and in particular h1(x0, π
∗, y) = Dh(x0, π

∗)y.
Every hk is rational in (x0, π

∗), since h is rational. A (formal) power series

ψ(y) =
∑
j≥0

ψj(y), ψj homogeneous of degree j

is a first integral of h near y = 0 if and only if

Lh(ψ)(y) := Dψ(y)h(x0, π
∗, y) = 0,

equivalently if
k∑
j=1

Lhj (ψk−j) = 0 for all k,

as follows from considering homogeneous parts with respect to y.

Definition 2. Let h be rational, (x0, π
∗) ∈ V(h), and d ≥ 1. Denote by Sk the

space of homogeneous polynomials of degree k in y, and define the linear map

L
(d)
h : S1 + · · ·+ Sd → S1 + · · ·+ Sd

by sending ψ = ψ1 + · · ·+ ψd to the truncation of Lh(ψ) at degree d.

Proposition 5. Let (x0, π
∗) ∈ ∆ satisfy the conditions in Lemma 1.

(a) The kernel of L
(d)
h has dimension at most equal to

ϑs,d :=

d∑
j=1

(
s+ j − 1

j

)

(b) There exist s independent first integrals for ẋ = h(x, π∗) near x0 if and only
if

dim KerL
(d)
h = ϑs,d for all d ≥ 1.

Proof. We abbreviate B := D1h(x0, π
∗). Analogously to Definition 2 we also

have maps

L
(d)
B : S1 + · · ·+ Sd → S1 + · · ·+ Sd.

Let λ1 = · · · = λs = 0, λs+1, . . . , λn be the eigenvalues of B (in the complex-
ification), counted according to their algebraic multiplicity. Let ω1, . . . , ωn be

linearly independent linear forms such that the matrix of L
(1)
B with respect to
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this basis is in Jordan canonical form, with λ1, . . . , λn on the diagonal. Then
the monomials

ωm1
1 · · ·ωmn

n ; m1, . . . ,mn ∈ Z≥0 and 0 <
∑

mi ≤ d

form a basis of S1 + · · ·+ Sd, and with a suitable ordering (which in particular

respects the degree), the matrix of L
(d)
B with respect to this basis is in triangular

form. (See, for instance, the argument in Bruno [6], Ch. III, 1.3.) Now Lhk
,

with k > 1, maps Sj to Sj+k−1, therefore the matrix of L
(d)
h with respect to the

given basis and ordering is also triangular, and its eigenvalues (counted with
multiplicity) are

m1λ1 + · · ·+mnλn,

with (m1, . . . , mn) running through all tuples of nonnegative integers with 0 <∑
mi ≤ d. Since the λi with i > s have real part < 0, we have

ms+1λs+1 + · · ·+mnλn 6= 0 whenever ms+1 + · · ·+mn > 0.

Thus only tuples of the form (m1, . . . , ms, 0, . . . , 0) correspond to eigenvalue

zero for L
(d)
h , hence its algebraic multiplicity is less than or equal to ϑs,d. This

proves part (a). As for part (b), first let ẋ = h(x, π∗) admit s independent
first integrals φ1, . . . , φs. We may assume that φj = ωj + · · · , with linearly
independent ω1, . . . , ωs. Then for every tuple (m1, . . . , ms),

φm1
1 · · ·φms

s = ωm1
1 · · ·ωms

s + · · ·

is a first integral of ẋ = h(x, π∗), and its truncation at degree d lies in the kernel

of L
(d)
h . Therefore the dimension of the kernel equals ϑs,d. Conversely, assume

that dim KerL
(d)
h = ϑs,d for all d. Then for every d there exist

φ
(d)
1 = ω1 + · · · ∈ KerL

(d)
h , . . . , φ(d)s = ωs + · · · ∈ KerL

(d)
h ,

and one may choose every φ
(d)
j as truncation of φ

(d+1)
j . This implies the existence

of formal first integrals with initial terms ω1, . . . , ωs, respectively.

Theorem 1. Let (x0, π
∗) ∈ ∆ satisfy the conditions in Lemma 1.

(a) There exist finitely many polynomials in (x, π) with the following property:
The parameter value π∗ is a TPV of system (2) for dimension s, with x0
in the local slow manifold of π∗, if and only if these polynomials vanish at
(x0, π

∗). In particular, all such (x0, π
∗) form a semialgebraic subset of ∆.

(b) The Tikhonov parameter values of (2) for dimension s form a semialgebraic
subset of Rm.
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Proof. Choose the basis of S1 + · · · + Sd which consists of monomials in the

yj . The matrix of L
(d)
h with respect to this basis has entries which are rational

functions of (x0, π
∗) and is of size

ϑn,d =

d∑
j=1

(
n+ j − 1

j

)
.

The dimension of its kernel equals ϑs,d if and only if all minors of size ϑn,d − `,
0 ≤ ` < ϑs,d vanish. These conditions provide finitely many polynomials in
(x, π) that must vanish at (x0, π

∗). Running through all d will provide necessary
and sufficient conditions in view of Proposition 5, and finitely many of these
polynomial conditions suffice, due to Hilbert’s Basissatz (cf. Kunz [26]). In
conjunction with Lemma 1, this argument proves part (a). Part (b) is a direct
consequence of the Tarski-Seidenberg theorem (cf. e.g. Bierstone and Pierre [2],
Thm. 1.5), which in particular states that the projection from Rn × Rm to the
second component sends semialgebraic sets to semialgebraic sets.

4.3 An algorithmic approach

In this subsection we further restrict attention to systems (2) with polynomial
right-hand side. An extension to rational right-hand side is straightforward,
but for the present account the extra expenditure (regarding notation and some
case-by-case analysis) would seem too high.
A systematic determination of Tikhonov parameter values is obtained by em-
ploying some commutative algebra. Recall that we are interested in the zeros of
h(x, π), possibly augmented by some minors of D1h(x, π); thus we consider the
ideal generated by these polynomials. The following observation is our starting
point; see Cox, Little, O’Shea [7], pp. 24–26 for a proof. (A Groebner basis of
an ideal – with respect to a chosen monomial term order – is a special set of
generators; see [7]. For the purpose of the following the relevant fact is that
a Groebner basis can be determined algorithmically from any finite generator
set. All computations in the following examples were performed with the help
of Singular.)

Lemma 3. Consider a polynomial map

Q : Rn × Rm → Rp, (x, π) 7→

q1(x, π)
...

qp(x, π)

 .

and the ideal I generated by the qi in R[x, π].

(a) If (x0, π
∗) is a zero of Q (equivalently, of I) then π∗ is a zero of the elimi-

nation ideal I ∩ R[π].

(b) Given the lexicographic order on the variables (x1, . . . , xn, π1, . . . , πm), a
Groebner basis of I ∩R[π] is obtained by intersecting R[π] with a Groebner
basis of I.
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We note a direct consequence of this Lemma and Proposition 2.

Proposition 6. Let π∗ ∈ Π be a TPV of the polynomial system (2) for dimen-
sion s, 1 ≤ s ≤ n − 1. Let γ1, . . . , γ`s ∈ R[x, π] denote all the k × k minors of
D1h(x, π), n ≥ k > n− s, and let

I = 〈h1, . . . , hn, γ1, . . . , γ`s〉 ⊆ R[x, π].

Then π∗ is a zero of the elimination ideal Iπ = I ∩ R[π].

As noted earlier, it would suffice to include only the minors of size n−s+1 in
the generator set, but using redundant information is sometimes helpful. Thus
one may obtain weaker (but possibly more accessible) conditions by considering
ideals that are generated by subsets of h1, . . . , hn, γ1, . . . , γ`s ; for instance:

Corollary. Let the polynomial system (2) be given, and denote by

J = 〈h1, . . . , hn,det D1h(x, π)〉

the ideal generated by the entries of h and its Jacobian determinant. Then for
every s ≥ 1, a TPV π∗ of system (2) for dimension s is a zero of Jπ := J ∩R[π].

The above results yield necessary criteria for TPVs, which may be taken as
a vantage point for further analysis. To illustrate the approach, we revisit the
irreversible Michaelis-Menten system from an algorithmic perspective.

Example. Consider the irreversible Michaelis-Menten equation (12). The com-
ponents h1 and h2 of h and their Jacobian determinant d generate the ideal

I = 〈h1, h2, d〉,

in R[x, π]. With respect to lexicographic order, Singular will find the reduced
Groebner basis

g1(x, π) = e0k1k2,
g2(x, π) = k2c,
g3(x, π) = −k1se0 + (k1s+ k−1)c,

with the elimination ideal Iπ = I∩R[π] generated by g1. We thus have recovered
Proposition 4, with a straightforward algorithmic proof.

Remark 7. One may use a variant of Proposition 6 for the matrix represen-

tations of L
(d)
h (see Definition 2 and Proposition 5) to obtain necessary and

sufficient conditions for TPVs, at least in principle. Indeed, assuming the con-
ditions in Lemma 1, the kernel dimension equals ϑs,d if and only if certain
determinants vanish. By Lemma 2, Proposition 5 and Hilbert’s Basissatz, there
is a finite (albeit a priori unknown) d∗ so that the determinant conditions for
d = d∗ imply the determinant conditions for all d, hence necessary and sufficient
conditions for a TPV. (We will not discuss feasibility here.) Thus the procedure
may be called pseudo-algorithmic: It terminates but there is no criterion at
which point termination takes place.
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To close this section, we note that the approach outlined in Proposition 6
ff. should not be seen as an exclusive path. For instance some combination of
variables and parameters may be eliminated, thus providing partial information
on the slow manifold. As a case in point we refer to the proof of Proposition 4,
which actually starts by eliminating e0, k1, k−1 and s. Similar arguments will
be used below.

5 Applications

The following applications both illustrate the efficiency (and feasibility) of our
approach and provide relevant information about the reaction networks under
consideration. When determining Tikhonov parameter values we will mostly
use partial information obtained by methods from the previous section to obtain
candidates, and then directly verify the TPV property.

5.1 Reversible Michaelis-Menten

We return to the reversible Michaelis-Menten system (1), and will determine all
TPVs for this equation. Some information from Subsection 3.5 (in particular
the last example) will be used. The entries of the right-hand side of (1) and the
Jacobian determinant are given by

h1(x, π) = −k1e0s+ (k1s+ k−1)c,
h2(x, π) = k1e0s− (k1s+ k−1 + k2)c+ k−2(e0 − c)(s0 − s− c),
d(x, π) = (e0 − c)(k1k−2(2c− e0 − s0)− k1k2 − k−1k−2),

with parameter tuple (e0, k1, k−1, k2, s0, k−2)T ∈ R6
+. We restrict attention

to nonnegative parameters. The determinant factorizes, and this observation,
together with positivity arguments, is the key to proving the following result.

Proposition 7. Every Tikhonov parameter value of system (1) belongs to one
of the following types:

0
k∗1
k∗−1
k∗2
s∗0
k∗−2

 ,


e∗0
k∗1
0
0
s∗0
k∗−2

 ,


e∗0
0
0
k∗2
s∗0
k∗−2

 ,


e∗0
0
k∗−1
k∗2
s∗0
0

 ,


e∗0
k∗1
k∗−1
0
s∗0
0

 .

Proof. The Jacobian determinant is a product of two terms.

(i) If e0 − c = 0 then h2 = −(k−1 + k2)e0, thus h2 = 0 forces either e0 = 0 or
k−1 = k2 = 0. This corresponds to the first two parameter tuples in the
list.
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(ii) An auxiliary result: The four-dimensional system corresponding to the
reversible Michaelis-Menten reaction scheme (for concentrations s, c, e and
p) admits the linear first integrals e+ c and s+ c+p. In view of the initial
values one sees e+c = e0 and s+c+p = s0, and with positivity this yields
a forward invariant set defined by 0 ≤ c ≤ e0, c ≤ s0, which contains the
semi-trajectories of interest to us. Within this set one has

2c− e0 − s0 ≤ 0,

whence every summand in the second factor of d(x, π) is ≤ 0. Thus the
second factor vanishes if and only if every summand vanishes.

(iii) From 2c− e0− s0 = 0 one obtains c = e0 in particular, and we are back at
case (i). Otherwise, one has k1k−2 = 0, and taking the second and third
summand into account one obtains the cases

k1 = 0 and k−1 = 0;
k1 = 0 and k−2 = 0;
k−2 = 0 and k2 = 0.

These correspond to the remaining tuples listed.

The Proposition provides only necessary conditions, but one can verify that
each “generic” parameter tuple listed (i.e. all entries are > 0 unless explicitly
set = 0) is in fact a TPV of the system. For the last two tuples this is a direct
consequence of Subsection 3.5. Moreover, all these parameter values admit a
biochemical interpretation (of varying relevance in applications).

(i) The case e0 → 0 (corresponding to a TPV with e0 = 0) represents small
initial concentration of enzyme.

(ii) The case k−1 → 0, k2 → 0 corresponds to slow degradation of complex, in
both directions.

(iii) The case k1 → 0, k−1 → 0 represents slow formation of complex from
enzyme and substrate, as well as slow degradation of complex to enzyme
and substrate.

(iv) The case k1 → 0, k−2 → 0 corresponds to slow formation of complex, from
both directions.

(v) The case k2 → 0, k−2 → 0 represents slow formation of complex from
enzyme and product, as well as slow degradation of complex to enzyme
and product.

We discuss the reduction procedure for case (iv) in this list.
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Example. Consider the curve

γ(δ) =


e∗0
0
k∗−1
k∗2
0
s∗0

+ δ ·


0
κ1
0
0
κ−2

0


in parameter space, with all parameters > 0 unless explicitly set = 0. Then

h(x, γ(δ)) =

(
k−1c

−(k−1 + k2)c

)
+ δ ·

(
−κ1(e0 − c)s

κ1(e0 − c)s+ κ−2(e0 − c)(s0 − s− c)

)
.

A decomposition according to Remark 1 is given by

h(x, γ(0)) =

(
k−1

−(k−1 + k2)

)
· c,

with the slow manifold determined by c = 0. A straighforward calculation,
using (5), yields the reduced equation

ṡ = δ
e∗0s

k∗−1 + k∗2
·
(
−κ1k∗2s+ κ−2k

∗
−1(s0 − s)

)
(and ċ = 0).

5.2 Competitive inhibition

The reaction scheme of competitive inhibition augments the irreversible Michaelis-
Menten reaction (enzyme-substrate complex C1) with a reversible formation of
enzyme-inhibitor complex C2; see for instance Keener and Sneyd [24]. Thus

E + S 
 C1 ⇀ E + P,
E + I 
 C2.

Mass action kinetics and stoichiometry lead to a differential equation with vari-
ables x = (s, c1, c2)T ∈ R3 and parameters

π = (e0, k1, k−1, k2, k3, k−3, i0)T ∈ R7;

the entries of the right-hand side are

(14)
h1(x, π) = k−1c1 − k1s(e0 − c1 − c2),
h2(x, π) = k1s(e0 − c1 − c2)− (k−1 + k2)c1,
h3(x, π) = k3(e0 − c1 − c2)(i0 − c2)− k−3c2,

with Jacobian

d(x, π) = −k1k2(e0 − c1 + c2)(k−3 + k3(i0 + e0)− k3(2c2 − c1)).

The hk and d generate an ideal I in R[x, π]. We proceed according to Proposition
6 and its Corollary.
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Proposition 8. For system (14), with nonnegative parameter values, every
Tikhonov parameter value belongs to one of the following classes.

π∗1 =



0
k∗1
k∗−1
k∗2
k∗3
k∗−3
i∗0


, π∗2 =



e∗0
0
k∗−1
k∗2
k∗3
k∗−3
i∗0


, π∗3 =



e∗0
k∗1
k∗−1
0
k∗3
k∗−3
i∗0


, π∗4 =



e∗0
k∗1
k∗−1
k∗2
k∗3
0
i∗0


∈ R7

+.

For each of the tuples listed, some parameter ranges represent a TPV.

Proof. Elimination of the variables x in a Groebner basis of I yields the ideal
Iπ with a single generator, viz.,

Iπ = 〈e0k1k2k−3(k23(e0 − i0)2 + k−3(k−3 + 2k3(e0 + i0))〉.

For a TPV π∗ one factor of the generator must vanish. The first four factors
provide the candidates listed in the statement above. The last factor (due
to nonnegativity) vanishes only when k−3 = 0, and this case is included in
the previous ones. Inspection of the zero sets of h(x, π∗) and of the matrices
D1h(x, π∗) shows the last assertion.

The reduction for the TPV π∗1 was given in [14], including the reversible
case.

Remark 8. The conditions in the Proposition must be satisfied for any TPV;
generically they describe TPVs for dimension s = 1. The additional conditions
for s = 2 (involving all 2× 2-minors) are as follows.

θ1 = k1k2(e0 − c1 − c2),
θ2 = k1k2s,
θ3 = k1k3(e0 − c1 − c2),
θ4 = k1(e0 − c1 − c2)(k3(e0 + i0 − c1 − 2c2) + k−3),
θ5 = k2(k3(e0 + i0 − c1 − 2c2) + k−3),
θ6 = (k1s+ k−1)(k3(e0 + i0 − c1 − 2c2) + k−3) + k1k3s.

All the conditions in the Proposition admit a natural biochemical interpre-
tation. We will look at two scenarios in some detail.

Example. The case k−3 → 0 corresponds to slow degradation of the enzyme-
inhibitor complex. We will also assume that i∗0 > e∗0 (the case i∗0 < e∗0 yields a
weak TPV but not a TPV). The slow manifold W is determined by c1 = 0 and
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c2 = e∗0; see the conditions for h3 = 0. We consider the curve

e∗0
k∗1
k∗−1
k∗2
k∗3
0
i∗0


+ δ ·



0
0
0
0
0
κ−3

0


in parameter space, with all parameter values assumed > 0 unless explicitly set
= 0. At π = π∗ we have a decomposition

h = P · µ; P =

 k∗−1 −k∗1s
−(k∗−1 + k∗2) k∗1s

0 k∗3(i∗0 − c2)

 , µ =

(
c1

e∗0 − c1 − c2

)

Furthermore, on the slow manifold W routine calculations show that

Dµ · P =

(
−(k∗−1 + k∗2) k∗1s
k∗−1 + k∗2 −k∗1s− k∗3(i∗0 − e∗0)

)
with determinant

ρ = (k∗−1 + k∗2)k∗3(i∗0 − e∗0),

and projection matrix

I3 − P · (Dµ · P )−1 ·Dµ =

1 −k∗1k∗3(i∗0 − e∗0)/ρ −k∗1k∗2s/ρ
0 0 0
0 0 0


To obtain the reduced system, this projection matrix is applied to

δ ·

 0
0

κ−3e
∗
0


and thus (replacing δκ−3 by k−3, k∗1 by k1 and so on, for notational convenience)
one arrives at the reduced equation

ṡ = − k1k2k−3e0s

(k−1 + k2)k3(i0 − e0)

(together with ċ1 = ċ2 = 0) on W .

Example. We discuss a TPV for dimension s = 2, viz.,

π∗ = (e∗0, 0, 0, 0, k
∗
3 , k
∗
−3, i

∗
0)T ∈ R7

+.
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In other words, we have k1 = k−1 = k2 = 0; the biochemical interpretation is
that all reactions in the Michaelis-Menten subnetwork are slow. At π∗ one has
h1 = h2 = 0, and

h3 = σ := k∗3(e∗0 − c1 − c2)(i∗0 − c2)− k∗−3c2.

The slow manifold is a parabolic cylinder given by σ = 0; one may rewrite this
as

c1 = e∗0 − c2 −
k∗−3c2

k∗3(i∗0 − c2)
.

Choosing a straight line

γ(δ) =



e∗0
0
0
0
k∗3
k∗−3
i∗0


+ δ ·



0
κ1
κ−1
κ2
0
0
0


in parameter space, one has

h =

0
0
σ

+ δ ·

 κ−1c1 − κ1s(e∗0 − c1 − c2)
−(κ−1 + κ2)c1 + κ1s(e

∗
0 − c1 − c2)

0

 ,

and at π = π∗ there is a decomposition

h = P · µ, with P =

0
0
1

 , µ = σ.

Straightforward computations yield

Dµ · P = −ρ := −
(
k∗3(e∗0 + i∗0 − c1 − 2c2) + k∗−3

)
and the projection matrix

I3 − P · (Dµ · P )−1 ·Dµ =

1 0 0
0 1 0
0 −k∗3(i∗0 − c2)/ρ 0


which in turn yields the reduced system ṡ

ċ1
ċ2

 = δ ·

 κ−1c1 − κ1s(e∗0 − c1 − c2)
−(κ−1 + κ2)c1 + κ1s(e

∗
0 − c1 − c2)

(k∗3(i∗0 − c2)/ρ) · ((κ−1 + κ2)c1 − κ1s(e∗0 − c1 − c2))


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on W . Substituting the expression for c1 from σ = 0, one finds the following
planar system for s and c2. (For notational convenience, we omit the asterisks
and set k1 = δκ1, etc.)

ṡ = k−1(e0 − c2)− (k1s+ k−1) k−3c2
k3(i0−c2)

ċ2 = θ ·
(

(k−1 + k2)(e0 − c2)− (k1s+ k−1 + k2) k−3c2
k3(i0−c2)

)
with

θ =
k3(i0 − c2)2

k3(i0 − c2)2 + k−3i0
.

A straightforward discussion of this system shows the following. With c∗2 the
smaller root of

τ(c2) = k3(e0 − c2)(i0 − c2)− k−3c2,
the subset of the phase plane defined by s ≥ 0, 0 ≤ c2 ≤ c∗2 is forward invari-
ant for the system, and every solution in this set converges to the stationary
point (0, c∗2)T . Thus, for instance c∗2 indicates the amount of enzyme bound to
inhibitor in equilibrium, and the degradation rate for s is eventually given by
k1k−3c

∗
2/(k3(i0 − c∗2)).

5.3 A Field-Noyes model

Finally we consider a Field-Noyes model [11] as discussed in Murray [31], Ch. 8.
The reaction scheme is

A+ Y ⇀ X + P, X + Y ⇀ 2P,
A+X ⇀ 2X + 2Z, 2X ⇀ A+ P, Z ⇀ fY

for some f ≥ 0. (This is to be understood as compounding a larger set of
elementary reactions.) The usual procedure, together with the additional as-
sumption that a is constant ([31], p. 260) yields a three-dimensional differential
equation

(15)
ẋ = k1ay − k2xy + k3ax− k4x2
ẏ = −k1ay − k2xy + fk5z
ż = 2k3ax− k5z

(omitting the equation for p).

Proposition 9. For system (15), with nonnegative parameters

π = (k1, k2, k3, k4, k5, a, f)
T
,

every Tikhonov parameter value belongs to one of the following classes.

π∗1 =



0
k∗2
k∗3
k∗4
k∗5
a∗

f∗


, π∗2 =



k∗1
k∗2
0
k∗4
k∗5
a∗

f∗


, π∗3 =



k∗1
k∗2
k∗3
k∗4
0
a∗

f∗


, π∗4 =



k∗1
k∗2
k∗3
k∗4
k∗5
0
f∗


, π∗5 =



k∗1
0
k∗3
0
k∗5
a∗

f∗


.
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Proof. Eliminating the variables x in a Groebner basis of the ideal I (generated
by the entries of (15) and their Jacobian determinant) yields the ideal Iπ with
a single generator

k1k
2
3k5a

3
(
k21k

2
4 + (2 + 12f)k1k2k3k4 + k22k

2
3(2f − 1)2

)
(2f + 1)2.

For a TPV π∗ one of the factors must vanish. The first four factors provide
the first four candidates listed above. Due to nonnegativity of parameters, the
last factor is always > 0, while the fifth term is equal to zero only if all three
summands equal zero. The only two cases not included in previous ones are
characterized by k2 = k4 = 0 (which yields π∗5), or by k4 = 2f − 1 = 0. Direct
inspection of (15) in the latter case shows that the system admits non-isolated
stationary points only if k1k3k5a = 0.

Not all the candidates listed in the Proposition correspond to TPVs; for
instance π∗1 is a weak TPV but not a TPV, and π∗2 is not a TPV (or weak TPV)
when all entries except the third are > 0, but k∗4 = 0 will yield a TPV, with
slow manifold given by y = z = 0. We will refrain from an exhaustive analysis
here, and just discuss one case.

Example. Let π∗ = (k∗1 , 0, k
∗
3 , 0, k

∗
5 , 0, f

∗)
T

. This is a TPV with slow manifold
given by z = 0. One may interpret this scenario as a strong version of QSS for
the variable x (with x being a first integral of the system at π∗). The right-hand
side of (15) reduces to  0

f∗k5z
−k∗5z

 =

 0
f∗k5
−k∗5

 · z,
with projection matrix

Q =

1 0 0
0 1 f
0 0 0

 .

Letting
γ(δ) = π∗ + δ (0, κ2, 0, κ4, 0, α, 0)

T

and abbreviating k1 := k∗1 , k2 := δκ2 etc., one arrives at the two-dimensional
differential equation

ẋ = k3ax +k1ay −k2xy −k4x2
ẏ = 2fk3ax −k1ay −k2xy

This system admits a discussion by standard phase plane techniques. Assuming
that all parameters are > 0, and letting

x∗ := max

{
k3
k4
,
k1
k2

}
· a, y∗ :=

2fk3
k1

x∗,

one verifies that the compact set defined by

0 ≤ x ≤ x∗, 0 ≤ y ≤ y∗
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is positively invariant for the system (and attracts all solutions starting in the
positive quadrant). There is always exactly one stationary point in the positive
quadrant, in addition to the unstable stationary point 0. This interior stationary
point is always linearly asymptotically stable. In case k1 ≥ k3, the trace

(k3 − k1)a− (k1 + 2k4)x− k2y

of the Jacobian is always negative, hence there can be no limit cycle due to
Bendixson’s criterion, and the positive stationary point is a global attractor.
With more effort, this can also be shown for the remaining case.
(The discussion in Murray [31], Sections 8.4 and 8.5 covers a different parameter
range; so no compatibility should be expected.)

To summarize, the examples discussed here are quite amenable to the meth-
ods developed in the previous section, and computations take little effort. Nat-
urally, for systems with a higher number of variables or parameters, the analysis
will become more cumbersome. But still, the method introduced in the present
paper seems considerably less involved than the established approaches in the
literature.
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