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Abstract

There exists a systematic approach to asymptotic properties for quasi-

steady state phenomena via the classical theory of Tikhonov and Fenichel.

This observation allows, on the one hand, to settle convergence issues,

which are far from trivial in asymptotic expansions. On the other hand,

even if one takes convergence for granted, the approach yields a natural

way to compute a reduced system on the slow manifold, with a reduced

equation that is frequently simpler than the one obtained by the standard

ad hoc approach. In particular, the reduced system is always rational.

The paper includes a discussion of necessary and sufficient conditions for

applicability of Tikhonov’s and Fenichel’s theorems, computational issues

and a direct determination of the reduced system. The results are applied

to several relevant examples.

MSC (2010): 34E15, 92C45, 80A30

1 Introduction

The mathematical description and analysis of reacting systems in chemistry and
biochemistry frequently leads to a slow-fast separation for the associated differ-
ential equations. From a mathematical perspective, methods and results from
singular perturbation theory should provide a natural approach. But, quite
remarkably, these are rarely used in a systematic manner (albeit frequently in-
voked as a guiding principle) in the discussion of such differential equations. The
principal purpose of the present paper is to show that, and how, a systematic
employment of the standard theorems is possible in the context of chemistry and
biochemistry. In particular there is a straightforward procedure to compute the
reduced system corresponding to Tikhonov’s theorem [25]. The most important
basis for our results is Fenichel’s classical paper [6].

We will consider homogeneously mixed chemically reacting systems with
constant thermodynamic parameters, and will therefore discuss (parameter-
dependent) ordinary differential equation systems. We will assume these to be
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derived from mass action kinetics; thus we will deal with polynomial systems.
One may distinguish two common incarnations of slow-fast separation:
• Slow and fast reactions (or rather, pairs of forward-backward reactions);
• Slow and fast variables (QSS; quasi-steady state phenomena).

Informally speaking, one hopes for the fast reactions or variables to run their
course quickly, leaving a reduced system moving on some “slow” manifold. In
much of the chemistry literature (see e.g. Atkins [1] or Stryer [2]), for QSS the
following ad hoc reduction procedure is employed: Set the rates of change for
the quasistationary variables equal to zero (thus certain entries of the right-
hand side of the differential equation are set equal to zero), and use the ensuing
algebraic equations to obtain a system of smaller dimension.

From a mathematical perspective, such reductions pose a nontrivial task.
Singular perturbation theory, in particular Tikhonov’s [25] and Fenichel’s [6]
theorems (see the lecture notes by Jones in [10], Verhulst’s monograph [28],
and also Hoppensteadt’s extension [9] to infinite time intervals) is frequently
chosen as a framework. For instance, Kaper and Kaper [11] discuss various
reduction methods and asymptotic expansions in the light of Fenichel’s invariant
manifold theory. But a rigorous application of singular perturbation theory is
not commonly found when QSS or general slow-fast phenomena are discussed
for particular chemically reacting systems. There is a notable exception: For
the setting of slow and fast reactions, Schauer and Heinrich [20] provided a
systematic discussion, including a transfer to the setting of Tikhonov’s theorem,
based on Vasil’eva [27]. (Stiefenhofer [24] followed up on the work of Schauer and
Heinrich and considered a more general setting.) But in the QSS case it seems
that no systematic approach exists for a transformation to standard scenarios
of singular perturbation theory. Characteristically, Segel and Slemrod, in their
seminal paper [22] on the Michaelis-Menten reaction, included a convergence
proof but proceeded directly without reference to existing theory.

One may identify three problems concerning the reduction of equations for
reacting system, independent of the approach one chooses. To start with, one
frequently first needs to identify a small parameter from the system and perhaps
from additional hypotheses. This is straightforward for slow and fast reactions
(see Schauer and Heinrich [20]), but more delicate for slow and fast variables.
Segel and Slemrod [22] employed time scale arguments, as did many others (see
Borghans et al. [4], Murray [15], Schnell and Maini [21]). This first problem
is discussed in greater detail by the authors in [18], where a different heuristics
is proposed. The second problem concerns the range of validity of the asymp-
totic reduction and convergence questions. In particular, this problem is not
settled for the ad hoc reduction procedure used in chemistry. The third prob-
lem (assuming a positive resolution of the first two) is the computation of a
reduced equation. Except for relatively simple settings, the ad hoc approach
leads to complicated nonlinear and parameter-dependent systems of algebraic
equations, and the reduced equations may be rather unpleasant. As a remark
in Keener and Sneyd ([12], Section 1.2) indicates, reversible reactions are fre-
quently replaced by irreversible ones to simplify the analysis, although from a
physiological point of view such a simplification may not be justified. In par-
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ticular, reversible versions of the reductions for a number of standard reaction
equations lead to rather cumbersome equations, if they can be obtained at all.

Fundamental results of singular perturbation theory, such as Tikhonov’s the-
orem, help settle the convergence problem if they are applicable. (We will always
refer to the version of Tikhonov’s theorem given in Verhulst [28], Thm. 8.1. We
will focus on the lowest-order approximation, including convergence questions;
higher-order expansions will not be discussed.) But there is a nontrivial obsta-
cle to the application of Tikhonov to parameter-dependent differential equations
for chemically reacting systems: Generally, the differential equation is not given
in the normal form required for straightforward application of this theorem,
and a priori it may be uncertain whether a transformation to such a normal
form exists. We will provide necessary, and locally sufficient, criteria for trans-
formability to “Tikhonov normal form”, thus taking a necessary step towards
application of the theory to specific problems. The crucial question is concerned
with the existence of first integrals for the degenerate system (at parameter value
zero). In this sense the approach via Tikhonov’s and Fenichel’s theory may be
more technically involved than other methods.

But on the other hand, and perhaps surprisingly, it is possible to directly
compute the reduced system corresponding to Tikhonov’s theorem, and this
computation involves only basic algebraic operations in the case of differential
equations with polynomial, or rational, right-hand side. (Essentially this ob-
servation is due to to Fenichel [6].) Thus, Tikhonov and Fenichel provide a
straightforward solution to the third problem noted above; this does not seem
to have been noticed widely.

We discuss a number of familiar examples for QSS, and derive reduced sys-
tems. While in some cases the reduction via the ad hoc procedure used in
chemistry leads to the same result as the procedure corresponding to Tikhonov,
the latter generally yields reduced systems that are different from (and actually
less cumbersome than) those obtained by the standard approach. Convergence
problems will also be settled for a number of these examples; this indicates
another advantage of our approach.

The article is based on the first author’s doctoral dissertation [16], and should
be seen as the second in a series beginning with [18].

2 Singular perturbation theory and QSS

Let us introduce the setting and notation first: A differential equation for a
chemically reacting system is given in the form

ẋ = h(x, ε), x ∈ U ⊂ R
n+m,(1)

with a small parameter ε ≥ 0. (Both n and m are positive integers.) We will
assume mass action kinetics; in particular h is analytic in x and ε. There may
be additional parameters that h depends on; these will usually be suppressed
in the notation. The subset U of R

n+m is assumed to have nonempty interior;
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frequently U will be a compact set, and h will be defined in some neighborhood
of U × [0, ε0], for some positive ε0.

2.1 Transformation to a normal form

A principal obstacle to the direct application of Tikhonov’s and Fenichel’s theory
lies in the fact that the main theorems are stated for systems in what we will
call Tikhonov normal form:

ẏ1 = εf(y1, y2, ε), y1(0) = y1,0 , y1 ∈ D ⊂ R
n,

ẏ2 = g(y1, y2, ε), y2(0) = y2,0 , y2 ∈ G ⊂ R
m.

(2)

One may also view this system in “slow time” by setting τ = ε · t. Then

y′1 = dy1

dτ = f(y1, y2, ε), y1(0) = y1,0,

εy′2 = εdy2

dτ = g(y1, y2, ε), y2(0) = y2,0.
(3)

In our setting f and g will be analytic. Given a system in Tikhonov normal
form, we impose an additional condition on the eigenvalues of the derivative of
g (see e.g. Fenichel [6]), viz.

Re Sp D2g(y1, y2, 0) ≤ −µ < 0 if g(y1, y2, 0) = 0,(4)

and we will assume that U contains points with the property g(y1, y2, 0) = 0.
The implicit function theorem then guarantees that g(y1, y2, 0) = 0 defines a
submanifold of (some neighborhood of) D×G, with dimension n. (This defines
the integer n in equation (2).) The reduced system in the limiting case ε → 0
may be represented as

y′1 = f(y1, y2, 0) and g(y1, y2, 0) = 0,(5)

up to a change in time scales.
The existence question for a transformation to Tikhonov normal form, and

the determination of such a transformation, is a central problem here. Fenichel
noted this, as well as the existence of obstacles; see [6], Lemma 5.1 ff. Thus
assume that for every small ε ≥ 0 there exists a system of the form (2) and a
continuously differentiable map Φ = Φ(x, ε) for x in some neighborhood of U ,
which is a diffeomorphism in x and sends the solutions of (1) to solutions of (2).
A necessary and locally sufficient condition for this property is the identity

DΦ(x, ε)h(x, ε) =

(
ε · f(Φ1(x, ε),Φ2(x, ε), ε)

g(Φ1(x, ε),Φ2(x, ε), ε)

)
.(6)

We abbreviate Ψ(x) := Φ(x, 0), and denote the inverse of Ψ by Γ. For ε = 0
equation (6) then reduces to

DΨ(x)h(x, 0) =

(
0

g(Ψ1(x),Ψ2(x), 0)

)
.(7)
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The existence of an invertible Ψ satisfying identity (7) is necessary and sufficient
for the existence of a transformation to a system as desired: Indeed, one may
define Φ(x, ε) := Ψ(x); then the higher order terms of f and g are uniquely
determined by h. In any case, the lowest-order terms εf(y1, y2, 0) and g(y1, y2, 0)
are determined by Φ(·, 0) and h alone. Choosing a transformation independent
of ε also brings the advantage that it works both for slow and fast time scales.

Proposition 1. Given system (1), there exists a solution-preserving map Φ to
(2) with the additional property (4) only if the following hold:

(a) DΨ1(x)h(x, 0) = 0; in particular ẋ = h(x, 0) admits n independent first
integrals on U .

(b) There exists µ > 0 such that for every x0 in the zero set M0 of h(·, 0), the
derivative Dh(x0, 0) admits the eigenvalue 0 with geometric multiplicity n,
and the remaining eigenvalues have real part ≤ −µ. In particular M0 is an
n-dimensional submanifold.

Proof. To prove part (a), evaluate the identity (7). As for part (b), differentiate
this identity to see that the matrices Dh(x0, 0) and

(
0 0

D1g(Ψ(x0), 0) D2g(Ψ(x0), 0)

)

are conjugate when h(x0, 0) = 0. The implicit function theorem shows the
remaining assertion.

This result indicates how to determine a map Ψ such that (7) holds: Find n
independent first integrals for h(·, 0) and extend these to a local diffeomorphism.
From a computational point of view, finding first integrals explicitly may pose
a problem. Moreover, even local existence of nonconstant first integrals in a
neighborhood of a stationary point is, a priori, a nontrivial requirement. But
the existence problem can be settled.

Proposition 2. Assume that condition (b) in Proposition 1 is satisfied. Then
for every x0 ∈M0 there exists a neighborhood on which n independent analytic
first integrals of h(·, 0) are defined, and locally there exists an analytic diffeo-
morphism Ψ such that (6) is satisfied.

Proof. In this proof we require analyticity. By condition (b) in Proposition 1,
the Jacobian at a stationary point of h(·, 0) has eigenvalue 0 with multiplicity
n, and the remaining eigenvalues have negative real part. According to Bibikov
[3], Theorem 10.1 and Theorem 12.2 (and its proof) there exists an invertible
analytic transformation Ψ of the system to a quasi-normal form (QNF) of the
form

(8)
ẏ1 = 0
ẏ2 = ĝ(y1, y2)
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The crucial point in Bibikov’s argument is convergence of such a transformation:
Generally, for every degree ℓ there exists an analytic transformation to partial
quasi-normal form

ẏ1 = r1,ℓ(y1) + . . . ,

ẏ2 = r2,ℓ(y1, y2) + . . .

with the ri,ℓ of degree at most ℓ and . . . standing for terms of higher degree.
Because the system admits an n-dimensional manifold of stationary points, one
may conclude that all r1,ℓ = 0. This implies the existence of a formal transfor-
mation to a formal power series QNF of the form (8), and this, in turn, implies
the existence of a convergent transformation. System (8) obviously admits n
linear first integrals.

Fenichel also noticed this fact and sketched a proof of Proposition 2 using
a geometric version of the argument; see [6], Lemma 5.3. (There seems to be
no discussion of such matters in Stiefenhofer [24].) Variants of the proof given
above have been used before; see e.g. Theorem 1 in [5]. Bibikov’s approach also
provides an algorithmic method to determine power series expansions for the
first integrals, up to any desired degree. However, such approximations may be
of little interest for practical purposes.

Remark 1. In the setting of slow and fast reactions one may frequently find
sufficiently many linear first integrals for the degenerate system from stoichiom-
etry. This was - at least implicitly - noted and used by Schauer and Heinrich
[20]. Thus in the slow and fast reaction scenario an explicit transformation
to Tikhonov normal form may be easy to find. For the slow and fast variable
scenario the issue seems more complicated.

2.2 Reduction

There remains to determine a reduced system corresponding to (1). Given the
expansion

(9) h(x, ε) = h(0)(x) + ε · h(1)(x) + · · ·

one may use the condition h(0)(x) = 0 to obtain the “slow manifold”. But

ẋ = ε · h(1)(x); h(0)(x) = 0

is not the reduced differential equation: As noted by Stiefenhofer [24], one has to
modify this equation to achieve invariance of the zero set M0 of h(0). However,
there are many possible modifications. To determine the reduction based on
(2), assume that the transformation Φ = Ψ is independent of ε, and start with
system (5). While this system cannot be transported back directly, one can
embed the differential equation into a system on R

n+m such that g(y1, y2, 0) = 0
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defines an invariant set, and both systems are equivalent on the zero set of g(·, 0):
Consider

(
y′1
y′2

)
= p(y) :=

(
f(y1, y2, 0)

−D2g(y1, y2, 0)−1D1g(y1, y2, 0) · f(y1, y2, 0)

)
(10)

and g(y1, y2, 0) = 0. (Actually, the entries of g(·, ·, 0) are first integrals of this
system.)

Tikhonov’s convergence results remain valid - with obvious modifications
- for this reduced system: According to [28], Thm. 8.1 there exists t1 > 0
(independent of ε) such that on every interval [t0, t1] with t0 > 0 the solution
(z1,ε, z1,ε) of (3) converges to the solution (z1, z2) of (5) with corresponding
initial value for z1. Due to this differential equation, the invertibility condition
on D2g, and the implicit function theorem, (z1, z2) is differentiable, and solves
the first equation of (10) due to (5). The second equation of (10) follows from
differentiating g(z1, z2) = 0 with respect to τ .

Proposition 3. A reduced system for (1) corresponding to Tikhonov’s theorem
is given by

(11) x′ = q(x) := DΨ(x)−1p(Ψ(x)) and h(x, 0) = 0,

with p from equation (10), up to rescaling time. More precisely, this means that
the zero set M0 of g(·, ·, 0) is an invariant set for x′ = q(x) and that there exists
t1 > 0 such that for each 0 < t0 < t1, every solution of the time scaled version
of (1) starting in a suitable neighborhood of M0 converges to a solution of (11)
for τ ∈ [t0, t1] as ε→ 0.

Proof. By construction, Γ sends solutions of y′ = p(y) to solutions of x′ = q(x),
and solutions of (2) to solutions of (1).

From Fenichel [6], Lemma 5.4 and the arguments in its proof, one may
obtain a direct way to compute a reduced system. Fenichel’s argument starts
from the observation that, for every x ∈ M0, R

n+m is the direct sum of the
kernel and the image of Dh(0)(x), because algebraic and geometric multiplicity
of the eigenvalue 0 coincide. We will take a different path to determine this
decomposition; the proof provides a constructive approach.

Lemma 1. Assume that condition (b) in Proposition 1 is satisfied for every
zero of h(0). Then for each x ∈ M0 there exists a polynomial σx(τ) in the
indeterminate τ such that σx(0) 6= 0 and that τ · σx(τ) annihilates the linear
map Dh(0)(x). Moreover there exists a polynomial αx such that

αx(τ) · τ + σx(0)−1 · σx(τ) = 1.

For every v ∈ R
n+m the projection onto the kernel of Dh(0)(x) which corre-

sponds to the image-kernel direct sum decomposition of R
n+m is given by

π(v) = σx(0)−1σx(Dh(0)(x))v.
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Proof. We use some standard (linear) algebra; see for instance Lang [13], Ch. XV.
The characteristic polynomial of T := Dh(0)(x) is of the form (suppressing the
subscripts x)

χ(τ) = τn · σ(τ)

with σ(0) 6= 0. By the Hamilton-Cayley theorem, and because algebraic and
geometric multiplicity of the eigenvalue 0 coincide, the minimum polynomial of
T divides τ · σ(τ). There exists a polynomial α such that

α(τ) · τ + σ(0)−1 · σ(τ) = 1

(in the present case this is obvious), and for every v ∈ R
n+m the decomposition

v = α(T ) · Tv + σ(0)−1 · σ(T )v

corresponds to the image-kernel direct sum decomposition of R
n+m with respect

to T .

Proposition 4. Assume that condition (b) in Proposition 1 is satisfied for every
zero of h(0). For each x ∈M0 let the polynomial σx(τ) be as defined in Lemma
1. Then a reduced system corresponding to Tikhonov’s theorem is given by

(12) x′ = σx(0)−1σx

(
Dh(0)(x)

)
· h(1)(x).

Proof. Let Ψ denote a local transformation of h to Tikhonov normal form. As
in the proof of Proposition 1, one has that for every x0 ∈ M0 the matrices
Dh(0)(x0) and

T̂ :=

(
0 0

D1g(Ψ(x0), 0) D2g(Ψ(x0), 0)

)

are conjugate by DΨ(x0). For this system in Tikhonov normal form a reduced
equation is given by (10).

One may see this from a different perspective: Letting

f = εf (1)+ ε2f (2) + · · ·

g = g(0)+ εg(1)+ ε2 · · · ,

the reduced equation from (10) corresponds precisely to the projection of

(
f (1)

g(1)

)

onto the kernel of T̂ with respect to the image-kernel decomposition. The general
assertion now follows from properties of solution-preserving maps and the fact
that conjugation of linear maps carries over to the kernel-image decomposition.
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We emphasize that this result is basically due to Fenichel; the crucial argu-
ment can be found in [6], Section V. Our approach to compute the projection
works in more general settings than Fenichel’s Lemma 5.4 which, like Stiefen-
hofer’s [24] expression for the reduced equation, requires an explicit equation
for the slow manifold. If one starts with a vector field h that is polynomial or
rational in x then, remarkably, the reduced system (12) will always be rational.
The algebraic variety M0 will automatically be invariant for this system.

2.3 Determining transformations in practice

From a practical perspective, one needs to explore to what extent explicit knowl-
edge of the maps Ψ and Γ is necessary. Again we refer to the version of
Tikhonov’s theorem given in Verhulst [28]. One has to check whether there
exists a transformation to Tikhonov normal form and whether conditions (a),
(b) and (c) in [28], Thm. 8.1 are satisfied.

Thus assume that we are given system (1), and that condition (b) in Propo-
sition 1 is satisfied for each zero x0 of h(·, 0). (The latter can be verified algo-
rithmically, due to the Hurwitz-Routh criterion.) Then Proposition 2 shows the
local existence of a transformation to Tikhonov normal form, and furthermore
conditions (a) and (b) in [28], Thm. 8.1 are satisfied. Moreover, one need not
know Ψ or Γ explicitly to find M0, or to find the reduced system via Proposition
4.

Condition (c), on the other hand, may restrict the position of the initial
value. This initial value is often fixed by the experimental setting, hence local
properties may not suffice, and explicit knowledge of Ψ and its inverse Γ may
become necessary. Moreover, in order to verify Hoppensteadt’s [9] conditions
for the extension of Proposition 3 to infinite time intervals, knowledge of the
Tikhonov normal form, and thus of Ψ and Γ, seems to be necessary.

This poses the question of explicitly determining first integrals for the de-
generate system in the QSS scenario. We cannot to provide a general solution,
but the following observation is of some use.

Lemma 2. If the reacting system described by (1) consists only of first and
second order reactions, with mass action kinetics, and one has m = 1, then
the first integrals of ẋ = h(x, 0) can be determined from first integrals of a
differential equation with right hand side at most linear.

Proof. In this case the polynomial system ẋ = h(x, 0) is quadratic and there
exists a one-codimensional submanifold of zeros of h(·, 0). Hence there exist a
scalar polynomial function ρ and a polynomial vector field h∗ of degree < 2 such
that h(·, 0) = ρ · h∗. The first integrals of h∗ are first integrals of h(·, 0), and
vice versa.
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3 Application: The Michaelis-Menten system

In this section we apply our results to the well-known Michaelis-Menten system,
see [14]. This system models an enzyme-catalyzed reaction where substrate S
and enzyme E combine to form a complex C, which degrades back to substrate
and enzyme, or to product P and enzyme. Initially, no complex or product are
present. The four-dimensional differential equation for the concentrations ad-
mits two linear first integrals and therefore a two-dimensional problem remains.
As in any QSS scenario, one first has to identify a suitable “small parameter”,
but this was taken care of by Segel and Slemrod [22], and in [17]; see also the
general heuristics to determine “small parameters” proposed by the authors in
[18]. The reader may notice that the particular choice of an “appropriate small
parameter” ε seems not very important in the following examples, and that re-
placing it by C · ε for some positive constant C does not affect the procedure.
This is due to the fact that only the limit ε → 0 is being considered here. But
the quality of the approximation, and the range where the approximation works,
will strongly depend on a good parameter choice.

We will first discuss the reversible Michaelis-Menten reaction with QSS as-
sumption for complex. While the irreversible system is covered in almost any
introductory biochemistry text, the reversible system is not discussed as exten-
sively in the literature. Moreover we will consider the reverse QSS assumption
for substrate, in the case of irreversible product formation. For both settings it
turns out that the ad hoc procedure used in the chemistry literature does not
lead to the reduced system found via singular perturbation theory, and that the
latter actually are less complicated.

In the examples the variables are chosen and ordered to make the transfer
to Tikhonov normal form as convenient as possible. To make the procedure
more accessible to less theory-inclined readers, some requisite computations are
presented in a relatively detailed manner.

3.1 The reversible system

We first discuss the Michaelis-Menten reaction with reversible product forma-
tion, given the classical quasi-steady state assumption for the complex. A con-
venient version of the differential equation is

ċ = k1e0s − (k1s+ k−1 + k2)c+ k−2(e0 − c)(s0 − s− c),
ṡ = − k1e0s + (k1s+ k−1)c,

(13)

with initial values c(0) = 0 and s(0) = s0. The ki are rate constants, all of
which will be assumed > 0, and s0 resp. e0 denote initial concentrations for
substrate, resp. enzyme. If one considers QSS for the complex C then the small
parameter determined by Segel and Slemrod [22] is given by

ε =
e0

s0 +M
with M =

k−1 + k2

k1
.
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The discussion in [18] confirms that this is an appropriate choice when k−2 is
small. Using the abbreviations

α1(c, s) := k−2c+ (k−2 − k1)s− (k−2s0 + k−1 + k2),
α2(c, s) := k1s+ k−1,

one obtains the equivalent version

(
ċ
ṡ

)
= h(0)(c, s) + εh(1)(c, s)

with

h(0) =

(
α1(c, s) · c
α2(c, s) · c

)
, h(1) = (s0 +M)

(
−k−2c− (k−2 − k1)s+ k−2s0

−k1s

)
.

The nonzero eigenvalue of Dh(0)(0, s) is equal to

−k−2(s0 − s) − (k1s+ k−1 + k2) ≤ −(k−1 + k2) < 0,

due to 0 ≤ s ≤ s0, and therefore Tikhonov is applicable. To determine a first
integral for the system with ε = 0, one only needs to consider the linear system

ċ = α1(c, s),
ṡ = α2(c, s).

We follow the procedure outlined in Gröbner and Knapp [8], Ch. III, Section
2. A preliminary step is to transform to a homogeneous linear system. The
stationary point is given by

(ĉ, ŝ) =

(
s0 +

k−1

k1
+

k2

k−2
, −

k−1

k1

)
.(14)

For c∗ := c− ĉ and s∗ := s− ŝ, one obtains

(
ċ∗

ṡ∗

)
=

(
k−2 k−2 − k1

0 k1

)
·

(
c∗

s∗

)
:= A ·

(
c∗

s∗

)
.

From the obvious identities

LA(c∗ + s∗) = k−2(c
∗ + s∗),

LA(s∗) = k1s
∗,

one obtains a first integral

ψ1 = s∗−k
−2(c∗ + s∗)k1 .

Choosing ψ2 := s∗ and returning to the original coordinates one has the trans-
formation

Ψ(c, s) =

(
(s− ŝ)−k

−2(c− ĉ+ s− ŝ)k1

(s− ŝ)

)
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with inverse

Γ(y1, y2) =

(
−y2 + y

1/k1

1 y
k
−2/k1

2 + ĉ
y2 + ŝ

)
.

We next determine g in the Tikhonov normal form (2). One computes

DΨ(c, s)

(
c · α1(c, s)
c · α2(c, s)

)
=

(
0

c · α2(c, s)

)
,

where the first entry is equal to zero by construction, and the second is obvious.
Expressing s and s via Γ, one finds

g(y1, y2, 0) =
(
ĉ− y2 + y

1/k1

1 y
k
−2/k1

2

)
· (k1(y2 + ŝ) + k−1) .

To verify the conditions for Tikhonov’s theorem, consider g as a function of y2
with parameter y1. The only zero of g in the interesting interval y2 + ŝ > 0
(which is the only relevant stationary point for ẏ2 = g(y1, y2, 0)) is given by
the unique root of the first factor. Since the nonzero eigenvalue of Dh(0)(0, s)
is ≤ −(k−1 + k2), this stationary point is linearly asymptotically stable, which
implies global asymptotic stability in dimension one. To summarize, Tikhonov’s
theorem as given in [28] is applicable.

To compute the reduced system, we use Proposition 4. The stationary points
of h(0) in the positive orthant are given by c = 0, and one has

T := Dh(0)(0, s) =

(
−k−2(s0 − s) − (k1s+ k−1 + k2) 0

k1s+ k−1 0

)
.

The polynomial σ according to Lemma 1 is obviously given by

σ(τ) = τ + (k−2(s0 − s) + (k1s+ k−1 + k2)) ;
σ(0) = k−2(s0 − s) + (k1s+ k−1 + k2).

It is straightforward to find the reduced system on the invariant set given by
c = 0: In addition to ċ = 0, one obtains

(15) ṡ = −e0 ·
s(k1k2 + k−1k−2) − k−1k−2s0
k1s+ k−1 + k2 + k−2(s0 − s)

This version is different from (and actually less complicated than) the one from
the ad hoc reduction procedure. Indeed the ad hoc method, starting from
“ċ = 0”, or rather from

k1e0s− (k1s+ k−1 + k2)c+ k−2(e0 − c)(s0 − s− c) = 0

yields a quadratic equation for c as a function of s, and a rather cumbersome
reduced differential equation for s(t) for which, in turn, various simplifications
have been suggested; see Fraser and Roussel [7], Schauer and Heinrich [19],
Seshadri and Fritzsch [23], Tzafriri and Edelman [26]. The approach taken here
provides more satisfactory results.
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Determining the reduced system via the Tikhonov normal form and Propo-
sition 3 will yield the same result, with a higher computational effort. But
this extra effort provides an additional benefit: One can verify Hoppensteadt’s
convergence conditions for the transformed system, although working out the
details requires some tenacity. (The crucial point which facilitates the analy-
sis is that the normalization following Hoppensteadt’s Condition (III) is almost
automatic.) Therefore we have convergence on every time interval [t0,∞) with
t0 > 0.

As for the classical Michaelis-Menten system with irreversible product forma-
tion, thus k−2 = 0, a variant is convenient. The system for complex and sub-
strate can be written as follows:

(
ċ
ṡ

)
= h(c, s, ε),

with

h(0)(c, s) = c ·

(
−(k1s+ k−1 + k2)

k1s+ k−1

)
.

The orbit equation
dc

ds
= −1 −

k2

k1s+ k−1

here yields the first integral

ψ1(c, s) = s+ c+
k2

k1
ln

(
s+

k−1

k1

)

for h(0). With ψ2(c, s) := s one obtains a transformation Ψ. From this point on
the procedure runs analogous to the reversible case. One obtains the classical
reduced system, which is just (15) with k−2 = 0.

This seems to be the first instance that the approach via Tikhonov has been
employed for the asymptotic reduction of the Michaelis-Menten system with
quasi-stationary complex.

3.2 Reverse QSS

The reverse QSS assumption (RQSSA) for the irreversible Michaelis-Menten
reaction was discussed briefly by Segel and Slemrod [22], and more extensively
by Borghans et al. [4]. In this variant, substrate S is assumed to be in quasi-
steady state. A convenient version of the Michaelis-Menten equations for further
discussion is given by:

ṗ = k2(s0 − (s+ p)),
ṡ = − k1e0s+ (k1s+ k−1)(s0 − (s+ p)),

(16)

with p(0) = 0 and s(0) = s0. Segel and Slemrod [22] proposed the small
parameter

ε∗ :=
k−1

k1e0
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to ensure validity of RQSSA. One sees that setting k−1 = 0 in (16) yields
a system with only one stationary point, hence Tikhonov cannot be applied.
In this case the appropriate choice and interpretation of a small parameter is
relevant: From the experimental perspective ε→ 0 corresponds to very high e0
in the reactor. This observation and the arguments in Borghans et al. [4], as
well as those in [17], suggest the choice

ε :=
k−1

k1e0
+
s0
e0
.

A preliminary scaling seems appropriate to avoid “infinitely large” terms on the
right hand side of the equation. Setting

t = εT

one obtains

dp
dT = εk2(s0 − s− p)
ds
dT = −(k1s0 + k−1)s+ ε(k1s+ k−1)(s0 − s− p)

(17)

This system is already in Tikhonov normal form, with

g(p, s, 0) = −(k1s0 + k−1)s.

Viewing p as a parameter, the differential equation ds
dT = g(p, s, 0) admits the

unique stationary point s = 0, which is globally asymptotically stable, with
eigenvalue −(k1s0 + k−1) for the linearization. The reduced system (in fast
time) is therefore given by

dp

dT
= εk2(s0 − p)

or, returning to the original time scale,

ṗ = k2(s0 − p).

The ad hoc reduction method used in chemistry would lead to a different reduced
equation (with no a priori guarantee of convergence): Setting the right hand side
of the second entry in (16) equal to zero, solving the ensuing quadratic equation
for s and substituting in the first line yields a one-dimensional equation with a
more complicated right-hand side. See the discussion in Schnell and Maini [21].

For reverse QSS it is straightforward to verify the conditions given by Hop-
pensteadt in [9], pp. 522 - 523: The constant solution (s0, 0) of (17) guarantees
that Hoppensteadt’s condition (I) holds. Condition (II) is unproblematic, and
condition (III), as well as the normalization that g = 0 when ε = 0 and s = 0,
hold automatically. The continuity and boundedness conditions (IV) and (V)
are unproblematic, and the crucial conditions (VI) and (VII) pertain to uniform
asymptotic stability of the degenerate system

dp

dτ
= k2(s0 − p)
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and of the boundary layer system

ds

dT
= −(k1s0 + k−1)s,

which are both obvious. Therefore one has convergence on every interval [t0,∞)
with t0 > 0.

The discrepancy between our reduced system and the one found by the
standard procedure is of order o(ε), and in this particular case one can show
convergence for the standard reduction by invoking our convergence result and
direct estimates. But the point is that a convergence proof is built in for the
Tikhonov approach.

4 A cooperative system

In this section we will discuss a well-known three-dimensional system which
models a cooperative enzyme reaction, taken from Keener and Sneyd [12]. No
explicit first integrals seem to be available here for the system at ε = 0, therefore
our results are only local. Within this limitation the theory is readily applicable.

The cooperative reaction (see [12], Subsection 1.2.4) involves enzyme, sub-
strate, product and two complexes C1 and C2. As in the Michaelis-Menten
reaction, substrate and enzyme combine reversibly to C1, which may degrade
irreversibly to enzyme and product. Moreover C1 and substrate may combine
to a second complex C2, which in turn may degrade irreversibly to product and
C1. Taking stoichiometry into account, the following three-dimensional system
describes this cooperative enzyme-catalyzed reaction:

ṡ = − k1e0s + (k−1 + k1 · s− k3 · s)c1
+ (k1 · s+ k−3)c2,

ċ1 = k1e0s − (k−1 + k2 + k1 · s+ k3 · s)c1
+ (k−3 + k4 − k1 · s)c2,

ċ2 = k3sc1 − (k−3 + k4)c2

(18)

The relevant initial conditions are

s(0) = s0 > 0, c1(0) = c2(0) = 0.

The standard choice for the small parameter used by Keener and Sneyd [12]
and also by Murray, [15], Section 5.3, is

ε =
e0
K
, with K := s0.

According to the arguments in [18], when one is interested in QSS over the full
course of the reaction then

K =
k−1 + k2

k1
+
k−3 + k4

k3
·
k1 + k3

k3
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will be a more appropriate choice. For the consideration of the limit ǫ→ 0 this
will not make a difference. Rewriting the system with ε = e0/K yields:

ṡ = h1(s, c1, c2, ε) := − εk1Ks + (k−1 + k1 · s− k3 · s)c1
+ (k1 · s+ k−3)c2,

ċ1 = h2(s, c1, c2, ε) := εk1Ks − (k−1 + k2 + k1 · s+ k3 · s)c1
+ (k−3 + k4 − k1 · s)c2,

ċ2 = h3(s, c1, c2, ε) := k3sc1 − (k−3 + k4)c2.

(19)

Thus

h(0)(s, c1, c2) =




(k−1 + k1 · s− k3 · s)c1 + (k1 · s+ k−3)c2

−(k−1 + k2 + k1 · s+ k3 · s)c1 + (k−3 + k4 − k1 · s)c2
k3sc1 − (k−3 + k4)c2





and on the positive orthant we have

h(0)(s, c1, c2) = 0 ⇔ c1 = c2 = 0.

Moreover, from

T := Dh(0)(s, 0, 0) =




0 k−1 + k1s− k3s k1s+ k−3

0 −(k−1 + k2 + k1s+ k3s) −k1s+ k−3 + k4

0 k3s −(k−3 + k4)





one sees that

σ(τ) = (τ + k−1 + k2 + k1s+ k3s) (τ + k−3 + k4) − k3s(k−3 + k4 − k1s),
σ(0) = k1k3s

2 + k1(k−3 + k4)s+ (k−1 + k2)(k−3 + k4).

The conditions for Propositions 2 and 4 are satisfied. To see this, note that
σ(0) > 0, and that the minimum of σ is located at

k∗ := −(k−1 + k2 + k1s+ k3s+ k−3 + k4)/2 < 0

(thus, in any case, the real parts of the roots are negative), and that s ranges
in the compact interval [0, s0]. According to Lemma 1 one has to determine

σ(T ) = (T +(k−1 +k2 +k1s+k3s)E)(T +(k−3 +k4)E)−k3s(k−3 +k4−k1s)E,

and a straightforward computation yields the result

σ(T ) =




α11 α12 α13

0 0 0
0 0 0





with

α11 = (k−1 + k2 + k1s)(k−3 + k4) + k1k3s
2,

α12 = k−1(k−3 + k4) + (k1(k−3 + k4) − k3k4)s+ k1k3s
2.
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Employing

h(1) =




−k1Ks
k1Ks

0





one computes the reduced system, according to Proposition 4:




s′

c′1
c′2



 = −
k1Ks (k3k4s+ k2(k−3 + k4)

k1k3s2 + k1(k−3 + k4)s+ (k−1 + k2)(k−3 + k4)
·




1
0
0



 .

Changing time scales, one finds the reduced equation:

ṡ = −
e0s (k4s+ k2(k−3 + k4)/k3)

s2 + s(k−3 + k4)/k3 + (k−1 + k2)/k1 · (k−3 + k4)/k3

This result is the same as found by the ad hoc procedure, see Keener and Sneyd
[12], Eq. (1.42).

But matters are different when one considers reversible product formation;
thus product and enzyme may react to form complex C1 with rate constant k−2,
and product and C1 may react to form complex C2 with rate constant k−4.

ṡ = −k1e0s+ (k−1 + k1s− k3s)c1 + (k1s+ k−3)c2,
ċ1 = k1(e0 − c1 − c2)s− (k−1 + k2)c1 + k2(e0 − c1 − c2)((s0 − s− c1 − 2c2)

−k3c1s+ (k−3 + k4)c2 − k−4c1(s0 − s− c1 − 2c2),
ċ2 = k3c1s− (k−3 + k4)c2 + k−4c1(s0 − s− c1 − 2c2)

In this fully reversible setting the ad hoc approach (solve ċ1 = 0 and ċ2 = 0 for c1
and c2 as functions of s) leads to a system of two coupled parameter-dependent
quadratic equations for c1 and c2. Using standard algorithmic methods (e.g.
Groebner bases), this system will provide a quartic parameter-dependent equa-
tion for each of the unknowns c1 and c2. While in principle there still exist
the Cardano formulas to solve these equations, the resulting one-dimensional
differential equation becomes practically untractable.

The approach via Proposition 4, on the other hand, involves larger expres-
sions compared to the irreversible setting, but they are rational. The basic
procedure remains the same as in the irreversible case, with straightforward
computations, albeit writing them all down would amount to a serious waste
of space, and using a (standard) computer algebra system is convenient. The
reduced equation turns out to be

ṡ = −e0p̃(s)/q̃(s)

with

p̃(s) = s2 (k−3k−4 + k3k4)(k1 − k−2)
+ s ((k1k2 + k−1k−2)(k−3 + k4) + k−3k−4(2k−2 − k1)s0 + k−2k3k4s0)
− k−1k−2(k−3 + k4)s0 − k−2k−3k−4s

2
0
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and

q̃(s) = s2 ((k1 − k−2)(k3 − k−4))
+ s ((k1 − k−2)(k−3 + k4) + (k1k−4 + k3k−2 − 2k−2k−4)s0)
+ (k−1 + k2)(k−3 + k4) + k−2(k−3 + k4)s0 + k−2k4s

2
0

This opens a path to discussing the effects of reversible product formation in this
cooperative system, with the help of a relatively simple differential equation. If
k1 > k−2 and k3 > k−4 then the polynomial q̃ will attain only positive values
for s ≥ 0, while p̃ will have exactly one positive root, corresponding to an
asymptotically stable equilibrium. As one would hope, this reduced system
turns into the one found for the irreversible case when one sets k−2 = k−4 = 0.

5 Concluding remarks

The principal purpose of this paper is to present a systematic approach to the
mathematical analysis of QSS via Tikhonov’s and Fenichel’s theory. To a consid-
erable extent the problem can be reduced to computational issues: Propositions
1 and 2 provide necessary and locally sufficient criteria, and the computation of
the reduced system from Proposition 4 leaves only algebraic problems.

The examples in sections 3 and 4 were chosen in view of their relevance, and
of the necessity to discuss the new approach for some benchmark problems. The
examples may be somewhat misleading in one respect: Generally the zero set of
h(0) will form an algebraic variety more complicated than a linear subspace, and
the algebra becomes more involved. But this observation, in conjunction with
Proposition 4, opens up an interesting and relevant field for applied algorithmic
algebra. In future papers we will present and discuss reductions of a number of
reaction equations, including reversible versions of several standard systems.

The examples do point toward problems posed by global issues; the main fo-
cus here is on the explicit determination of first integrals for degenerate systems.
There may exist some theoretical basis for the explicit computation of such first
integrals, since the degenerate systems are not arbitrary but are derived from
a full system for chemical reactions by a well-defined procedure. The problem
remains unresolved here, but it will be interesting to pursue it further.
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