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Aschbacher’s Theorem Formulation of the Theorem

Aschbacher’s Theorem

Let n ∈ N and Fq the field with q = pe elements.
Let V := F1×n

q be the Fq-vector space of row vectors.

Theorem (Aschbacher 1984)
Let G ≤ GLn(Fq) and n ≥ 2. Then G lies in at least one of the classes
C1 to C9 of subgroups of GLn(Fq).

I will not tell you on this slide what the classes C1 to C9 are.
I will show you a sketch of a proof of this statement.
This is not the original formulation, which is more general.
Alongside the sketch of the proof, we will

define C1 to C9, and
keep an eye on how one can find reduction homomorphisms
computationally.
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Aschbacher’s Theorem The Proof: First analyse natural module

First analyse the natural module

The natural module V = F1×n
q could:

have a G-invariant subspace (reducible),

have a vector space structure over an extension field (semilinear),

essentially have a vector space structure over a subfield (subfield).
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Aschbacher’s Theorem The Proof: Reducible: C1

Reducible: C1

G could lie in C1:

Definition of class C1: Reducible
G ≤ GLn(Fq) lies in C1 if there is a subspace 0 < W < V with Wg =W
for all g ∈ G.

We can decide computationally using the MeatAxe, whether such an
invariant subspace W exists or not (see talk tomorrow).

Assumption
From now on we assume that G acts irreducibly on V .
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Aschbacher’s Theorem The Proof: Not absolutely irred.: C3

Not absolutely irreducible: C3

G could act irreducibly but not absolutely irreducibly.

(G acts absolutely irreducibly iff CGLn(Fq)(G) = {c · 1}.)

Lemma
If G ≤ GLn(Fq) acts irreducibly but not absolutely irreducibly on the
natural module V , then G lies in C3.

We can decide computationally using the MeatAxe, whether G acts
absolutely irreducibly on V .

Assumption
From now on we assume that G acts absolutely irreducibly on V .
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Aschbacher’s Theorem The Proof: Semilinear: C3

Semilinear: C3

Definition of class C3

G ≤ GLn(Fq) lies in C3 if
the natural module V is irreducible and
there is a finite field Fqs , for which we can extend the Fq-vector
space structure of V to an Fqs -vector space structure of dimension
n/s, such that:

∀g ∈ G ∃αg ∈ Aut(Fqs) with:

(v + λw) · g = v · g + λαg · w · g
for all v ,w ∈ V and all λ ∈ Fqs .

(i.e. the action of G on V is Fqs -semilinear)

Non-absolutely irred. case: all automorphisms are trivial!
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Aschbacher’s Theorem The Proof: Subfield: C5

Subfield: C5

G could lie in C5:

Definition of class C5

G ≤ GLn(Fq) lies in C5 if
the natural module V is absolutely irreducible and
there is a proper subfield Fq0 of Fq and T ∈ GLn(Fq) and (βg)g∈G

with βg ∈ Fq such that

βg · T−1gT ∈ GLn(Fq0) for all g ∈ G.

We can decide computationally whether G lies in C5

(see Glasby, Leedham-Green, and O’Brien (2006) and Carlson, N. and
Roney-Dougal (2009)).

Assumption
From now on we assume that G does not lie in C5.
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Aschbacher’s Theorem The Proof: Restrict to normal subgroup

Restrict to normal subgroup

Let N GG/Z be minimal normal and Z < N ≤ G so that N/Z = N.
(N = G is possible, but G = Z not, since that would be reducible.)

We then restrict the natural module V to N. The restriction V |N could:

1 have an irreducible but not absolutely irreducible submodule,

2 be a direct sum of absolutely irreducible N-modules, not all
isomorphic,

3 be a direct sum of ≥ 2 absolutely irreducible N-modules, that are
pairwise isomorphic,

4 absolutely irreducible.

(Clifford’s theorem shows that one of the above must hold.)
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Aschbacher’s Theorem The Proof: W < V |N irreducible but not absolutely irreducible

W not absolutely irreducible: C3

Remember: Z < N GG such that N/Z is minimal normal in G/Z .

Lemma
Let W be an irreducible submodule of V |N . If W is not absolutely
irreducible, then G lies in C3.

This is computationally under control, see “SMASH”: Holt,
Leedham-Green, O’Brien and Rees (1996) or Carlson, N.,
Roney-Dougal (2009).

Assumption
From now on we assume that W is absolutely irreducible.
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Aschbacher’s Theorem The Proof: Clifford theory

Clifford theory

Let now N be a minimal normal subgroup of G/Z and let Z < N GG be
the full preimage.

Theorem (Clifford)
The restriction V |N of the natural module to the normal subgroup N is
a direct sum

V |N =
k⊕

i=1

Wi

of irreducible N-modules Wi which are all G-conjugates of a single
submodule W ≤ V |N , i.e. Wi =Wgi for some gi ∈ G.

Now we distinguish cases for this decomposition.

Max Neunhöffer (University of St Andrews) Aschbacher’s Theorem 8.–12.8.2011 10 / 18



Aschbacher’s Theorem The Proof: Clifford theory

Clifford theory

Let now N be a minimal normal subgroup of G/Z and let Z < N GG be
the full preimage.

Theorem (Clifford)
The restriction V |N of the natural module to the normal subgroup N is
a direct sum

V |N =
k⊕

i=1

Wi

of irreducible N-modules Wi which are all G-conjugates of a single
submodule W ≤ V |N , i.e. Wi =Wgi for some gi ∈ G.

Now we distinguish cases for this decomposition.

Max Neunhöffer (University of St Andrews) Aschbacher’s Theorem 8.–12.8.2011 10 / 18



Aschbacher’s Theorem The Proof: Clifford theory

Clifford theory

Let now N be a minimal normal subgroup of G/Z and let Z < N GG be
the full preimage.

Theorem (Clifford)
The restriction V |N of the natural module to the normal subgroup N is
a direct sum

V |N =
k⊕

i=1

Wi

of irreducible N-modules Wi which are all G-conjugates of a single
submodule W ≤ V |N , i.e. Wi =Wgi for some gi ∈ G.

Now we distinguish cases for this decomposition.

Max Neunhöffer (University of St Andrews) Aschbacher’s Theorem 8.–12.8.2011 10 / 18



Aschbacher’s Theorem The Proof: V |N not homogeneous: C2

V |N not homogeneous: C2

Assume that not all Wi are isomorphic to W .

Then G permutes the homogeneous components and lies in C2:

V |N =
k⊕

i=1

Wi =
⊕

j

(⊕
a

W (j)
a

)

where W (j)
a
∼=W (`)

b iff j = `.

Definition of class C2

G ≤ GLn(Fq) lies in C2 if
the natural module V is absolutely irreducible and
V has a vector space direct sum decomposition V =

⊕m
j=1 Vj with

m ≥ 2 such that for all g ∈ G there is a permutation πg in Sm with
Vjg = Vπg(j) for all j .

Given the decomposition, we can compute the homomorphism G→ Sm.
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Aschbacher’s Theorem The Proof: V |N homogeneous: C4

V |N homogeneous: C4

Assume that all Wi are isomorphic to W and k > 1.

If dimFq (W ) = 1 then N would be scalar.

Theorem
If all Wi are isomorphic to an absolutely irreducible W, then G lies in
class C4.

Definition of class C4

G ≤ GLn(Fq) lies in class C4 if
the natural module V is absolutely irreducible and
V ∼= X ⊗ Y as projective G-modules with 1 < dimFq (X ) < n.

Assumption
We assume from now on that W = V |N is absolutely irreducible.

Max Neunhöffer (University of St Andrews) Aschbacher’s Theorem 8.–12.8.2011 12 / 18



Aschbacher’s Theorem The Proof: V |N homogeneous: C4

V |N homogeneous: C4

Assume that all Wi are isomorphic to W and k > 1.
If dimFq (W ) = 1 then N would be scalar.

Theorem
If all Wi are isomorphic to an absolutely irreducible W, then G lies in
class C4.

Definition of class C4

G ≤ GLn(Fq) lies in class C4 if
the natural module V is absolutely irreducible and
V ∼= X ⊗ Y as projective G-modules with 1 < dimFq (X ) < n.

Assumption
We assume from now on that W = V |N is absolutely irreducible.

Max Neunhöffer (University of St Andrews) Aschbacher’s Theorem 8.–12.8.2011 12 / 18



Aschbacher’s Theorem The Proof: V |N homogeneous: C4

V |N homogeneous: C4

Assume that all Wi are isomorphic to W and k > 1.
If dimFq (W ) = 1 then N would be scalar.

Theorem
If all Wi are isomorphic to an absolutely irreducible W, then G lies in
class C4.

Definition of class C4

G ≤ GLn(Fq) lies in class C4 if
the natural module V is absolutely irreducible and
V ∼= X ⊗ Y as projective G-modules with 1 < dimFq (X ) < n.

Assumption
We assume from now on that W = V |N is absolutely irreducible.

Max Neunhöffer (University of St Andrews) Aschbacher’s Theorem 8.–12.8.2011 12 / 18



Aschbacher’s Theorem The Proof: V |N homogeneous: C4

V |N homogeneous: C4

Assume that all Wi are isomorphic to W and k > 1.
If dimFq (W ) = 1 then N would be scalar.

Theorem
If all Wi are isomorphic to an absolutely irreducible W, then G lies in
class C4.

Definition of class C4

G ≤ GLn(Fq) lies in class C4 if
the natural module V is absolutely irreducible and
V ∼= X ⊗ Y as projective G-modules with 1 < dimFq (X ) < n.

Assumption
We assume from now on that W = V |N is absolutely irreducible.

Max Neunhöffer (University of St Andrews) Aschbacher’s Theorem 8.–12.8.2011 12 / 18



Aschbacher’s Theorem The Proof: V |N homogeneous: C4

V |N homogeneous: C4

Assume that all Wi are isomorphic to W and k > 1.
If dimFq (W ) = 1 then N would be scalar.

Theorem
If all Wi are isomorphic to an absolutely irreducible W, then G lies in
class C4.

Definition of class C4

G ≤ GLn(Fq) lies in class C4 if
the natural module V is absolutely irreducible and
V ∼= X ⊗ Y as projective G-modules with 1 < dimFq (X ) < n.

Assumption
We assume from now on that W = V |N is absolutely irreducible.

Max Neunhöffer (University of St Andrews) Aschbacher’s Theorem 8.–12.8.2011 12 / 18



Aschbacher’s Theorem The Proof: Analyse structure of the minimal normal subgroup

Analyse structure of minimal normal subgroup N/Z

Lemma (Minimal normal subgroups)
Let 1 < K G H be a minimal normal subgroup. Then

K ∼= T1 × T2 × · · · × Tk

and the Ti are copies of a simple group that are all conjugate under H.

Therefore,
N/Z ∼= T1 × T2 × · · · × Tk ,

the Ti are pairwise isomorphic simple groups which are all conjugate
under G/Z and thus G.
We distinguish 3 cases:

1 the Ti are cyclic groups of prime order r (extraspecial)
2 the Ti are non-abelian simple and k ≥ 2 (tensor-induced)
3 k = 1 and T1 is non-abelian simple (almost simple)
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Aschbacher’s Theorem The Proof: Extraspecial: C6

Extraspecial: C6

If N/Z is a direct product of cyclic groups of order r , then G is in C6:

Definition of class C6

G ≤ GLn(Fq) lies in C6 if
the natural module V is absolutely irreducible,

n = rm for a prime r and
either r is odd and G has a normal subgroup E that is an
extraspecial r -group of order r1+2m and exponent r ,
or r = 2 and G has a normal subgroup E that is either extraspecial
of order 21+2m or a central product of a cyclic group of order 4 with
an extraspecial group of order 21+2m,

and in both cases the linear action of G on the Fr -vector space
E/Z (E) of dimension 2m is irreducible.

This class is in practice computationally under control.
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Aschbacher’s Theorem The Proof: Tensor-induced

The Proof: Tensor-induced: C7

If N/Z is a direct product of non-abelian simple groups, then G is in C7:

Definition of class C7

G ≤ GLn(Fq) lies in C7 if
the natural module V is absolutely irreducible and,

there is Z < N GG such that for some k > 1,

N ∼= T ◦ · · · ◦ T︸ ︷︷ ︸
k factors

(central product),

where T/Z is a non-abelian simple group, such that:
V |N ∼=W1 ⊗Fq · · · ⊗Fq Wk where the Wi are absolutely irreducible
FqT -modules of the same dimension on which Z acts as scalars,
and G/N permutes the tensor factors transitively.
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Aschbacher’s Theorem The Proof: Almost simple

The Proof: The almost simple case

By now we have established that N/Z is a non-abelian simple group.

G acts by conjugation on N/Z .

Since V |N is absolutely irreducible, the kernel of this action is Z .

Thus G/Z acts faithfully on N/Z and G/Z is almost simple.

Definition (Almost simple group)

A group G is called almost simple, if it has a simple normal subgroup S
with S ≤ G ≤ Aut(S).

We distinguish two cases:
C8 (classical group in natural representation) and
C9 (almost simple plus properties — “all that is left”)
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Aschbacher’s Theorem The Proof: Classical in natural representation

Definition of class C8

G ≤ GLn(Fq) lies in C8 if G/Z contains a classical simple group in its
natural representation

in one of the following ways:
G/Z contains PSLn(Fq) and (n,q) /∈ {(2,2), (2,3)},
n is even, G is contained in NGLn(Fq)(Spn(Fq)) for some
non-singular symplectic form, G/Z contains PSpn(Fq) and
(n,q) /∈ {(2,2), (2,3), (4,2)},
q is a square, G is contained in NGLn(Fq)(SUn(Fq1/2)) for some
non-singular Hermitian form, G/Z contains PSUn(Fq1/2) and
(n,q1/2) /∈ {(2,2), (2,3), (3,2)},
G is contained in NGLn(Fq)(�

ε
n(Fq)), the corresponding P�εn(Fq) is

simple and contained in G/Z . The group P�εn(Fq) is simple if and
only if

* n ≥ 3, and
* q is odd if n is odd, and
* ε is – if n = 4, and
* (n,q) /∈ {(3,3), (4,2)}.
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Aschbacher’s Theorem The Proof: Almost simple

G/Z almost simple: C9

Definition of class C9

G ≤ GLn(Fq) lies in C9, if
it is not in C8 and

there is a non-abelian simple group N and a group T with
N ≤ T ≤ Aut(N) such that

G/Z ∼= T and
V is an absolutely irreducible projective representation for T ,
which is not realisable over a proper subfield of Fq .

This completes our proof of Aschbacher’s Theorem. �

The groups in classes C8 and C9 offer no opportunity to use geometric
properties to find reduction homomorphisms.

They will have to be dealt with directly in constructive recognition.
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