Max Neunhöffer

University of St Andrews

Kirchberg/Hunsrück, 8.-12.8.2011

Let $n \in \mathbb{N}$ and \mathbb{F}_q the field with $q = p^e$ elements. Let $V := \mathbb{F}_q^{1 \times n}$ be the \mathbb{F}_q -vector space of row vectors.

Let $n \in \mathbb{N}$ and \mathbb{F}_q the field with $q = p^e$ elements. Let $V := \mathbb{F}_q^{1 \times n}$ be the \mathbb{F}_q -vector space of row vectors.

Theorem (Aschbacher 1984)

Let $G \leq GL_n(\mathbb{F}_q)$ and $n \geq 2$. Then G lies in at least one of the classes C_1 to C_9 of subgroups of $GL_n(\mathbb{F}_q)$.

Let $n \in \mathbb{N}$ and \mathbb{F}_q the field with $q = p^e$ elements. Let $V := \mathbb{F}_q^{1 \times n}$ be the \mathbb{F}_q -vector space of row vectors.

Theorem (Aschbacher 1984)

Let $G \leq GL_n(\mathbb{F}_q)$ and $n \geq 2$. Then G lies in at least one of the classes \mathcal{C}_1 to \mathcal{C}_9 of subgroups of $GL_n(\mathbb{F}_q)$.

• I will not tell you on this slide what the classes C_1 to C_9 are.

Let $n \in \mathbb{N}$ and \mathbb{F}_q the field with $q = p^e$ elements. Let $V := \mathbb{F}_q^{1 \times n}$ be the \mathbb{F}_q -vector space of row vectors.

Theorem (Aschbacher 1984)

Let $G \leq GL_n(\mathbb{F}_q)$ and $n \geq 2$. Then G lies in at least one of the classes \mathcal{C}_1 to \mathcal{C}_9 of subgroups of $GL_n(\mathbb{F}_q)$.

- I will not tell you on this slide what the classes C_1 to C_9 are.
- I will show you a sketch of a proof of this statement.

Let $n \in \mathbb{N}$ and \mathbb{F}_q the field with $q = p^e$ elements. Let $V := \mathbb{F}_q^{1 \times n}$ be the \mathbb{F}_q -vector space of row vectors.

Theorem (Aschbacher 1984)

Let $G \leq GL_n(\mathbb{F}_q)$ and $n \geq 2$. Then G lies in at least one of the classes C_1 to C_9 of subgroups of $GL_n(\mathbb{F}_q)$.

- I will not tell you on this slide what the classes C_1 to C_9 are.
- I will show you a sketch of a proof of this statement.
- This is not the original formulation, which is more general.

Let $n \in \mathbb{N}$ and \mathbb{F}_q the field with $q = p^e$ elements. Let $V := \mathbb{F}_q^{1 \times n}$ be the \mathbb{F}_q -vector space of row vectors.

Theorem (Aschbacher 1984)

Let $G \leq GL_n(\mathbb{F}_q)$ and $n \geq 2$. Then G lies in at least one of the classes \mathcal{C}_1 to \mathcal{C}_9 of subgroups of $GL_n(\mathbb{F}_q)$.

- I will not tell you on this slide what the classes C_1 to C_9 are.
- I will show you a sketch of a proof of this statement.
- This is not the original formulation, which is more general.
- Alongside the sketch of the proof, we will
 - define c_1 to c_9 , and
 - keep an eye on how one can find reduction homomorphisms computationally.

First analyse the natural module

The natural module $V = \mathbb{F}_q^{1 \times n}$ could:

- have a G-invariant subspace (reducible),
- have a vector space structure over an extension field (semilinear),
- essentially have a vector space structure over a subfield (subfield).

Reducible: C₁

G could lie in \mathcal{C}_1 :

Definition of class C1: Reducible

 $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_1 if there is a subspace 0 < W < V with Wg = W for all $g \in G$.

Reducible: C₁

G could lie in \mathcal{C}_1 :

Definition of class C1: Reducible

 $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_1 if there is a subspace 0 < W < V with Wg = W for all $g \in G$.

We can decide computationally using the MeatAxe, whether such an invariant subspace W exists or not (see talk tomorrow).

Reducible: C₁

G could lie in \mathcal{C}_1 :

Definition of class C1: Reducible

 $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_1 if there is a subspace 0 < W < V with Wg = W for all $g \in G$.

We can decide computationally using the MeatAxe, whether such an invariant subspace W exists or not (see talk tomorrow).

Assumption

From now on we assume that G acts irreducibly on V.

G could act irreducibly but not absolutely irreducibly.

G could act irreducibly but not absolutely irreducibly.

(*G* acts absolutely irreducibly iff $C_{GL_n(\mathbb{F}_q)}(G) = \{c \cdot 1\}$.)

G could act irreducibly but not absolutely irreducibly.

(*G* acts absolutely irreducibly iff $C_{GL_n(\mathbb{F}_q)}(G) = \{c \cdot 1\}$.)

Lemma

If $G \leq GL_n(\mathbb{F}_q)$ acts irreducibly but not absolutely irreducibly on the natural module V, then G lies in \mathbb{C}_3 .

G could act irreducibly but not absolutely irreducibly.

(*G* acts absolutely irreducibly iff $C_{GL_n(\mathbb{F}_q)}(G) = \{c \cdot 1\}$.)

Lemma

If $G \leq GL_n(\mathbb{F}_q)$ acts irreducibly but not absolutely irreducibly on the natural module V, then G lies in \mathbb{C}_3 .

We can decide computationally using the MeatAxe, whether G acts absolutely irreducibly on V.

G could act irreducibly but not absolutely irreducibly.

(*G* acts absolutely irreducibly iff $C_{GL_n(\mathbb{F}_q)}(G) = \{c \cdot 1\}$.)

Lemma

If $G \leq GL_n(\mathbb{F}_q)$ acts irreducibly but not absolutely irreducibly on the natural module V, then G lies in \mathbb{C}_3 .

We can decide computationally using the MeatAxe, whether G acts absolutely irreducibly on V.

Assumption

From now on we assume that G acts absolutely irreducibly on V.

Semilinear: C₃

Definition of class C₃

- $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_3 if
 - the natural module V is irreducible and
 - there is a finite field 𝔽_{q^s}, for which we can extend the 𝔽_q-vector space structure of *V* to an 𝔽_{q^s}-vector space structure of dimension *n*/*s*, such that:

 $\forall g \in G \ \exists \alpha_g \in \operatorname{Aut}(\mathbb{F}_{q^s})$ with:

 $(\mathbf{v} + \lambda \mathbf{w}) \cdot \mathbf{g} = \mathbf{v} \cdot \mathbf{g} + \lambda^{\alpha g} \cdot \mathbf{w} \cdot \mathbf{g}$ for all $\mathbf{v}, \mathbf{w} \in \mathbf{V}$ and all $\lambda \in \mathbb{F}_{q^s}$.

(i.e. the action of *G* on *V* is \mathbb{F}_{q^s} -semilinear)

Semilinear: C₃

Definition of class \mathcal{C}_3

- $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_3 if
 - the natural module V is irreducible and
 - there is a finite field 𝔽_{q^s}, for which we can extend the 𝔽_q-vector space structure of *V* to an 𝔽_{q^s}-vector space structure of dimension *n*/*s*, such that:

 $\forall g \in G \ \exists \alpha_g \in \operatorname{Aut}(\mathbb{F}_{q^s})$ with:

 $(\mathbf{v} + \lambda \mathbf{w}) \cdot \mathbf{g} = \mathbf{v} \cdot \mathbf{g} + \lambda^{\alpha g} \cdot \mathbf{w} \cdot \mathbf{g}$ for all $\mathbf{v}, \mathbf{w} \in V$ and all $\lambda \in \mathbb{F}_{q^s}$.

(i.e. the action of *G* on *V* is \mathbb{F}_{q^s} -semilinear)

Non-absolutely irred. case: all automorphisms are trivial!

Aschbacher's Theorem

Subfield: C₅

G could lie in c_5 :

Definition of class c_5

- $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_5 if
 - the natural module V is absolutely irreducible and
 - there is a proper subfield \mathbb{F}_{q_0} of \mathbb{F}_q and $T \in GL_n(\mathbb{F}_q)$ and $(\beta_g)_{g \in G}$ with $\beta_g \in \mathbb{F}_q$ such that

 $\beta_g \cdot T^{-1}gT \in \operatorname{GL}_n(\mathbb{F}_{q_0})$ for all $g \in G$.

Subfield: C₅

G could lie in c_5 :

Definition of class C₅

- $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_5 if
 - the natural module V is absolutely irreducible and
 - there is a proper subfield \mathbb{F}_{q_0} of \mathbb{F}_q and $T \in GL_n(\mathbb{F}_q)$ and $(\beta_g)_{g \in G}$ with $\beta_g \in \mathbb{F}_q$ such that

$\beta_g \cdot T^{-1}gT \in \operatorname{GL}_n(\mathbb{F}_{q_0})$ for all $g \in G$.

We can decide computationally whether G lies in C_5 (see Glasby, Leedham-Green, and O'Brien (2006) and Carlson, N. and Roney-Dougal (2009)).

Subfield: C₅

G could lie in c_5 :

Definition of class C₅

- $G \leq GL_n(\mathbb{F}_q)$ lies in \mathcal{C}_5 if
 - the natural module V is absolutely irreducible and
 - there is a proper subfield \mathbb{F}_{q_0} of \mathbb{F}_q and $T \in GL_n(\mathbb{F}_q)$ and $(\beta_g)_{g \in G}$ with $\beta_g \in \mathbb{F}_q$ such that

 $\beta_g \cdot T^{-1}gT \in \operatorname{GL}_n(\mathbb{F}_{q_0})$ for all $g \in G$.

We can decide computationally whether G lies in C_5 (see Glasby, Leedham-Green, and O'Brien (2006) and Carlson, N. and Roney-Dougal (2009)).

Assumption

From now on we assume that G does not lie in C_5 .

Max Neunhöffer (University of St Andrews)

Let $\overline{N} \triangleleft G/Z$ be minimal normal and $Z < N \leq G$ so that $N/Z = \overline{N}$.

(N = G is possible, but G = Z not, since that would be reducible.)

Let $\overline{N} \triangleleft G/Z$ be minimal normal and $Z < N \leq G$ so that $N/Z = \overline{N}$.

(N = G is possible, but G = Z not, since that would be reducible.)

Let $\overline{N} \triangleleft G/Z$ be minimal normal and $Z < N \leq G$ so that $N/Z = \overline{N}$.

(N = G is possible, but G = Z not, since that would be reducible.)

We then restrict the natural module V to N. The restriction $V|_N$ could:

have an irreducible but not absolutely irreducible submodule,

Let $\overline{N} \triangleleft G/Z$ be minimal normal and $Z < N \leq G$ so that $N/Z = \overline{N}$. (N = G is possible, but G = Z not, since that would be reducible.)

- have an irreducible but not absolutely irreducible submodule,
- e a direct sum of absolutely irreducible *N*-modules, not all isomorphic,

Let $\overline{N} \triangleleft G/Z$ be minimal normal and $Z < N \leq G$ so that $N/Z = \overline{N}$. (N = G is possible, but G = Z not, since that would be reducible.)

- have an irreducible but not absolutely irreducible submodule,
- be a direct sum of absolutely irreducible *N*-modules, not all isomorphic,
- Solution is a direct sum of ≥ 2 absolutely irreducible *N*-modules, that are pairwise isomorphic,

Let $\overline{N} \triangleleft G/Z$ be minimal normal and $Z < N \leq G$ so that $N/Z = \overline{N}$. (N = G is possible, but G = Z not, since that would be reducible.)

- have an irreducible but not absolutely irreducible submodule,
- be a direct sum of absolutely irreducible *N*-modules, not all isomorphic,
- Solution is a direct sum of ≥ 2 absolutely irreducible *N*-modules, that are pairwise isomorphic,
- absolutely irreducible.

Let $\overline{N} \triangleleft G/Z$ be minimal normal and $Z < N \leq G$ so that $N/Z = \overline{N}$. (N = G is possible, but G = Z not, since that would be reducible.)

We then restrict the natural module V to N. The restriction $V|_N$ could:

- have an irreducible but not absolutely irreducible submodule,
- be a direct sum of absolutely irreducible *N*-modules, not all isomorphic,
- It is a direct sum of ≥ 2 absolutely irreducible *N*-modules, that are pairwise isomorphic,
- absolutely irreducible.

(Clifford's theorem shows that one of the above must hold.)

Remember: $Z < N \triangleleft G$ such that N/Z is minimal normal in G/Z.

Lemma

Let W be an irreducible submodule of $V|_N$. If W is not absolutely irreducible, then G lies in C_3 .

Remember: $Z < N \triangleleft G$ such that N/Z is minimal normal in G/Z.

Lemma

Let W be an irreducible submodule of $V|_N$. If W is not absolutely irreducible, then G lies in C_3 .

This is computationally under control, see "SMASH": Holt, Leedham-Green, O'Brien and Rees (1996) or Carlson, N., Roney-Dougal (2009).

Remember: $Z < N \triangleleft G$ such that N/Z is minimal normal in G/Z.

Lemma

Let W be an irreducible submodule of $V|_N$. If W is not absolutely irreducible, then G lies in C_3 .

This is computationally under control, see "SMASH": Holt, Leedham-Green, O'Brien and Rees (1996) or Carlson, N., Roney-Dougal (2009).

Assumption

From now on we assume that W is absolutely irreducible.

Clifford theory

Let now \overline{N} be a minimal normal subgroup of G/Z and let $Z < N \triangleleft G$ be the full preimage.

Clifford theory

Let now \overline{N} be a minimal normal subgroup of G/Z and let $Z < N \triangleleft G$ be the full preimage.

Theorem (Clifford)

The restriction $V|_N$ of the natural module to the normal subgroup N is a direct sum

$$V|_N = \bigoplus_{i=1}^{\kappa} W_i$$

of irreducible N-modules W_i which are all G-conjugates of a single submodule $W \leq V|_N$, i.e. $W_i = Wg_i$ for some $g_i \in G$.

Clifford theory

Let now \overline{N} be a minimal normal subgroup of G/Z and let $Z < N \triangleleft G$ be the full preimage.

Theorem (Clifford)

The restriction $V|_N$ of the natural module to the normal subgroup N is a direct sum

$$V|_N = \bigoplus_{i=1}^{\kappa} W_i$$

of irreducible N-modules W_i which are all G-conjugates of a single submodule $W \leq V|_N$, i.e. $W_i = Wg_i$ for some $g_i \in G$.

Now we distinguish cases for this decomposition.

Assume that not all W_i are isomorphic to W.

Assume that not all W_i are isomorphic to W.

Then G permutes the homogeneous components and lies in C_2 :

$$V|_N = \bigoplus_{i=1}^k W_i = \bigoplus_j \left(\bigoplus_a W_a^{(j)}\right)$$

where $W_a^{(j)} \cong W_b^{(\ell)}$ iff $j = \ell$.

Assume that not all W_i are isomorphic to W.

Then G permutes the homogeneous components and lies in C_2 :

$$V|_N = \bigoplus_{i=1}^k W_i = \bigoplus_j \left(\bigoplus_a W_a^{(j)}\right)$$

where $W_a^{(j)} \cong W_b^{(\ell)}$ iff $j = \ell$.

Definition of class C_2

 $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_2 if

- the natural module V is absolutely irreducible and
- *V* has a vector space direct sum decomposition $V = \bigoplus_{j=1}^{m} V_j$ with $m \ge 2$ such that for all $g \in G$ there is a permutation π_g in S_m with $V_j g = V_{\pi_g(j)}$ for all *j*.

Assume that not all W_i are isomorphic to W.

Then G permutes the homogeneous components and lies in C_2 :

$$V|_N = \bigoplus_{i=1}^k W_i = \bigoplus_j \left(\bigoplus_a W_a^{(j)}\right)$$

where $W_a^{(j)} \cong W_b^{(\ell)}$ iff $j = \ell$.

Definition of class C_2

 $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_2 if

- the natural module V is absolutely irreducible and
- *V* has a vector space direct sum decomposition $V = \bigoplus_{j=1}^{m} V_j$ with $m \ge 2$ such that for all $g \in G$ there is a permutation π_g in S_m with $V_jg = V_{\pi_g(j)}$ for all *j*.

Given the decomposition, we can compute the homomorphism $G \rightarrow S_m$.

Assume that all W_i are isomorphic to W and k > 1.

Assume that all W_i are isomorphic to W and k > 1. If dim_{\mathbb{F}_a}(W) = 1 then N would be scalar.

$V|_N$ homogeneous: \mathcal{C}_4

Assume that all W_i are isomorphic to W and k > 1.

If dim_{\mathbb{F}_q}(*W*) = 1 then *N* would be scalar.

Theorem

If all W_i are isomorphic to an absolutely irreducible W, then G lies in class C_4 .

Assume that all W_i are isomorphic to W and k > 1.

If dim_{\mathbb{F}_q}(*W*) = 1 then *N* would be scalar.

Theorem

If all W_i are isomorphic to an absolutely irreducible W, then G lies in class C_4 .

Definition of class C₄

- $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in class \mathfrak{C}_4 if
 - the natural module V is absolutely irreducible and
 - $V \cong X \otimes Y$ as projective *G*-modules with $1 < \dim_{\mathbb{F}_q}(X) < n$.

Assume that all W_i are isomorphic to W and k > 1.

If dim_{\mathbb{F}_q}(*W*) = 1 then *N* would be scalar.

Theorem

If all W_i are isomorphic to an absolutely irreducible W, then G lies in class C_4 .

Definition of class C₄

- $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in class \mathfrak{C}_4 if
 - the natural module V is absolutely irreducible and
 - $V \cong X \otimes Y$ as projective *G*-modules with $1 < \dim_{\mathbb{F}_q}(X) < n$.

Assumption

We assume from now on that $W = V|_N$ is absolutely irreducible.

Max Neunhöffer (University of St Andrews)

Analyse structure of minimal normal subgroup N/Z

Lemma (Minimal normal subgroups)

Let $1 < K \triangleleft H$ be a minimal normal subgroup. Then

$$K \cong T_1 \times T_2 \times \cdots \times T_k$$

and the T_i are copies of a simple group that are all conjugate under H.

Analyse structure of minimal normal subgroup N/Z

Lemma (Minimal normal subgroups)

Let $1 < K \triangleleft H$ be a minimal normal subgroup. Then

$$K \cong T_1 \times T_2 \times \cdots \times T_k$$

and the T_i are copies of a simple group that are all conjugate under H.

Therefore,

$$N/Z \cong T_1 \times T_2 \times \cdots \times T_k,$$

the T_i are pairwise isomorphic simple groups which are all conjugate under G/Z and thus G.

Analyse structure of minimal normal subgroup N/Z

Lemma (Minimal normal subgroups)

Let $1 < K \triangleleft H$ be a minimal normal subgroup. Then

$$K \cong T_1 \times T_2 \times \cdots \times T_k$$

and the T_i are copies of a simple group that are all conjugate under H.

Therefore,

$$N/Z \cong T_1 \times T_2 \times \cdots \times T_k,$$

the T_i are pairwise isomorphic simple groups which are all conjugate under G/Z and thus G.

We distinguish 3 cases:

- the *T_i* are cyclic groups of prime order *r* (extraspecial)
- **2** the T_i are non-abelian simple and $k \ge 2$ (tensor-induced)
- k = 1 and T_1 is non-abelian simple (almost simple)

Max Neunhöffer (University of St Andrews)

Aschbacher's Theorem

If N/Z is a direct product of cyclic groups of order *r*, then *G* is in C_6 :

Definition of class C₆

- $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_6 if
 - the natural module V is absolutely irreducible,

If N/Z is a direct product of cyclic groups of order *r*, then *G* is in C_6 :

Definition of class \mathcal{C}_6

- $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_6 if
 - the natural module V is absolutely irreducible,
 - $n = r^m$ for a prime r and

If N/Z is a direct product of cyclic groups of order *r*, then *G* is in C_6 :

Definition of class C₆

- $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_6 if
 - the natural module V is absolutely irreducible,
 - $n = r^m$ for a prime r and
 - either r is odd and G has a normal subgroup E that is an extraspecial r-group of order r^{1+2m} and exponent r,
 - or r = 2 and *G* has a normal subgroup *E* that is either extraspecial of order 2^{1+2m} or a central product of a cyclic group of order 4 with an extraspecial group of order 2^{1+2m} ,

If N/Z is a direct product of cyclic groups of order *r*, then *G* is in C_6 :

Definition of class C₆

- $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_6 if
 - the natural module V is absolutely irreducible,
 - $n = r^m$ for a prime r and
 - either r is odd and G has a normal subgroup E that is an extraspecial r-group of order r^{1+2m} and exponent r,
 - or r = 2 and *G* has a normal subgroup *E* that is either extraspecial of order 2^{1+2m} or a central product of a cyclic group of order 4 with an extraspecial group of order 2^{1+2m} ,
 - and in both cases the linear action of *G* on the \mathbb{F}_r -vector space E/Z(E) of dimension 2m is irreducible.

If N/Z is a direct product of cyclic groups of order *r*, then *G* is in C_6 :

Definition of class C₆

- $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_6 if
 - the natural module V is absolutely irreducible,
 - $n = r^m$ for a prime r and
 - either r is odd and G has a normal subgroup E that is an extraspecial r-group of order r^{1+2m} and exponent r,
 - or r = 2 and *G* has a normal subgroup *E* that is either extraspecial of order 2^{1+2m} or a central product of a cyclic group of order 4 with an extraspecial group of order 2^{1+2m} ,
 - and in both cases the linear action of *G* on the \mathbb{F}_r -vector space E/Z(E) of dimension 2m is irreducible.

This class is in practice computationally under control.

Max Neunhöffer (University of St Andrews)

Aschbacher's Theorem

If N/Z is a direct product of non-abelian simple groups, then G is in C_7 :

Definition of class C₇

- $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_7 if
 - the natural module V is absolutely irreducible and,

If N/Z is a direct product of non-abelian simple groups, then G is in \mathcal{C}_7 :

Definition of class C₇

 $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_7 if

- the natural module V is absolutely irreducible and,
- there is $Z < N \triangleleft G$ such that for some k > 1,

$$N \cong \underbrace{\mathcal{T} \circ \cdots \circ \mathcal{T}}_{k \text{ factors}} \quad \text{(central product)},$$

where T/Z is a non-abelian simple group, such that:

If N/Z is a direct product of non-abelian simple groups, then G is in \mathcal{C}_7 :

Definition of class C₇

 $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_7 if

- the natural module V is absolutely irreducible and,
- there is $Z < N \triangleleft G$ such that for some k > 1,

$$N \cong \underbrace{\mathcal{T} \circ \cdots \circ \mathcal{T}}_{k \text{ factors}} \quad \text{(central product)},$$

where T/Z is a non-abelian simple group, such that:

• $V|_N \cong W_1 \otimes_{\mathbb{F}_q} \cdots \otimes_{\mathbb{F}_q} W_k$ where the W_i are absolutely irreducible $\mathbb{F}_q T$ -modules of the same dimension on which Z acts as scalars,

If N/Z is a direct product of non-abelian simple groups, then G is in \mathcal{C}_7 :

Definition of class C₇

 $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_7 if

- the natural module V is absolutely irreducible and,
- there is $Z < N \triangleleft G$ such that for some k > 1,

$$N \cong \underbrace{\mathcal{T} \circ \cdots \circ \mathcal{T}}_{k \text{ factors}} \quad \text{(central product)},$$

where T/Z is a non-abelian simple group, such that:

- $V|_N \cong W_1 \otimes_{\mathbb{F}_q} \cdots \otimes_{\mathbb{F}_q} W_k$ where the W_i are absolutely irreducible $\mathbb{F}_q T$ -modules of the same dimension on which Z acts as scalars,
- and *G*/*N* permutes the tensor factors transitively.

By now we have established that N/Z is a non-abelian simple group.

By now we have established that N/Z is a non-abelian simple group.

G acts by conjugation on N/Z.

By now we have established that N/Z is a non-abelian simple group.

G acts by conjugation on N/Z.

Since $V|_N$ is absolutely irreducible, the kernel of this action is Z.

Thus G/Z acts faithfully on N/Z and G/Z is almost simple.

Definition (Almost simple group)

A group *G* is called almost simple, if it has a simple normal subgroup *S* with $S \le G \le Aut(S)$.

By now we have established that N/Z is a non-abelian simple group.

G acts by conjugation on N/Z.

Since $V|_N$ is absolutely irreducible, the kernel of this action is Z.

Thus G/Z acts faithfully on N/Z and G/Z is almost simple.

Definition (Almost simple group)

A group *G* is called almost simple, if it has a simple normal subgroup *S* with $S \le G \le Aut(S)$.

We distinguish two cases:

- \mathcal{C}_8 (classical group in natural representation) and
- C₉ (almost simple plus properties "all that is left")

Definition of class C₈

$G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_8 if G/Z contains a classical simple group in its natural representation

Max Neunhöffer (University of St Andrews)

Definition of class C_8

 $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_8 if G/Z contains a classical simple group in its natural representation in one of the following ways:

- G/Z contains $PSL_n(\mathbb{F}_q)$ and $(n, q) \notin \{(2, 2), (2, 3)\},\$
- *n* is even, *G* is contained in N_{GL_n(𝔽_q)}(Sp_n(𝔽_q)) for some non-singular symplectic form, *G*/*Z* contains PSp_n(𝔽_q) and (*n*, *q*) ∉ {(2, 2), (2, 3), (4, 2)},
- q is a square, G is contained in $N_{\operatorname{GL}_n(\mathbb{F}_q)}(\operatorname{SU}_n(\mathbb{F}_{q^{1/2}}))$ for some non-singular Hermitian form, G/Z contains $\operatorname{PSU}_n(\mathbb{F}_{q^{1/2}})$ and $(n, q^{1/2}) \notin \{(2, 2), (2, 3), (3, 2)\},$
- G is contained in N_{GL_n(F_q)}(Ω^ε_n(F_q)), the corresponding PΩ^ε_n(F_q) is simple and contained in G/Z.

Definition of class c_8

 $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_8 if G/Z contains a classical simple group in its natural representation in one of the following ways:

- G/Z contains $PSL_n(\mathbb{F}_q)$ and $(n, q) \notin \{(2, 2), (2, 3)\},\$
- *n* is even, *G* is contained in N_{GL_n(𝔽_q)}(Sp_n(𝔽_q)) for some non-singular symplectic form, *G*/*Z* contains PSp_n(𝔽_q) and (*n*, *q*) ∉ {(2, 2), (2, 3), (4, 2)},
- q is a square, G is contained in $N_{\operatorname{GL}_n(\mathbb{F}_q)}(\operatorname{SU}_n(\mathbb{F}_{q^{1/2}}))$ for some non-singular Hermitian form, G/Z contains $\operatorname{PSU}_n(\mathbb{F}_{q^{1/2}})$ and $(n, q^{1/2}) \notin \{(2, 2), (2, 3), (3, 2)\},\$
- G is contained in N_{GL_n(𝔽_q)}(Ω^ϵ_n(𝔽_q)), the corresponding PΩ^ϵ_n(𝔽_q) is simple and contained in G/Z. The group PΩ^ϵ_n(𝔽_q) is simple if and only if
 - * $n \geq 3$, and
 - * q is odd if n is odd, and
 - * ϵ is if n = 4, and
 - * $(n, q) \notin \{(3, 3), (4, 2)\}.$

Definition of class C₉

- $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_9 , if
 - it is not in C₈ and

Definition of class C₉

- $G \leq GL_n(\mathbb{F}_q)$ lies in \mathcal{C}_9 , if
 - it is not in C₈ and

• there is a non-abelian simple group \overline{N} and a group T with $\overline{N} \leq T \leq \operatorname{Aut}(\overline{N})$ such that

•
$$G/Z \cong T$$
 and

Definition of class C₉

- $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_9 , if
 - it is not in C₈ and
 - there is a non-abelian simple group \overline{N} and a group T with $\overline{N} \leq T \leq \operatorname{Aut}(\overline{N})$ such that
 - $G/Z \cong T$ and
 - V is an absolutely irreducible projective representation for T,

Definition of class C₉

- $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_9 , if
 - it is not in C₈ and
 - there is a non-abelian simple group \overline{N} and a group T with $\overline{N} \leq T \leq \operatorname{Aut}(\overline{N})$ such that
 - $G/Z \cong T$ and
 - V is an absolutely irreducible projective representation for T, which is not realisable over a proper subfield of F_q.

Definition of class C₉

- $G \leq \operatorname{GL}_n(\mathbb{F}_q)$ lies in \mathcal{C}_9 , if
 - it is not in C₈ and
 - there is a non-abelian simple group \overline{N} and a group T with $\overline{N} \leq T \leq \operatorname{Aut}(\overline{N})$ such that
 - $G/Z \cong T$ and
 - V is an absolutely irreducible projective representation for T, which is not realisable over a proper subfield of F_q.

This completes our proof of Aschbacher's Theorem.

Definition of class C₉

- $G \leq GL_n(\mathbb{F}_q)$ lies in \mathcal{C}_9 , if
 - it is not in C₈ and
 - there is a non-abelian simple group \overline{N} and a group T with $\overline{N} \le T \le \operatorname{Aut}(\overline{N})$ such that
 - $G/Z \cong T$ and
 - V is an absolutely irreducible projective representation for T, which is not realisable over a proper subfield of F_q.

This completes our proof of Aschbacher's Theorem.

The groups in classes C_8 and C_9 offer no opportunity to use geometric properties to find reduction homomorphisms.

G/Z almost simple: \mathcal{C}_9

Definition of class C₉

- $G \leq GL_n(\mathbb{F}_q)$ lies in \mathcal{C}_9 , if
 - it is not in C₈ and
 - there is a non-abelian simple group \overline{N} and a group T with $\overline{N} \leq T \leq \operatorname{Aut}(\overline{N})$ such that
 - $G/Z \cong T$ and
 - V is an absolutely irreducible projective representation for T, which is not realisable over a proper subfield of F_q.

This completes our proof of Aschbacher's Theorem.

The groups in classes C_8 and C_9 offer no opportunity to use geometric properties to find reduction homomorphisms.

They will have to be dealt with directly in constructive recognition.