The MeatAxe

Max Neunhöffer

University of St Andrews

Kirchberg/Hunsrück, 8.-12.8.2011

Let \mathbb{F} be a field and $\mathbb{F}^{d \times d}$ the set of $d \times d$ -matrices.

Definition (\mathbb{F} -algebra, matrix algebra)

An \mathbb{F} -algebra is a ring \mathcal{A} with identity together with a ring homomorphism $\iota : \mathbb{F} \to C(\mathcal{A})$ into the centre of \mathcal{A} .

Let \mathbb{F} be a field and $\mathbb{F}^{d \times d}$ the set of $d \times d$ -matrices.

Definition (\mathbb{F} -algebra, matrix algebra)

An \mathbb{F} -algebra is a ring \mathcal{A} with identity together with a ring homomorphism $\iota : \mathbb{F} \to C(\mathcal{A})$ into the centre of \mathcal{A} . An \mathbb{F} -subspace \mathcal{A} of $\mathbb{F}^{d \times d}$ with $1 \in \mathcal{A}$ which is closed under matrix multiplication is called a matrix algebra.

Let \mathbb{F} be a field and $\mathbb{F}^{d \times d}$ the set of $d \times d$ -matrices.

Definition (\mathbb{F} -algebra, matrix algebra)

An \mathbb{F} -algebra is a ring \mathcal{A} with identity together with a ring homomorphism $\iota : \mathbb{F} \to C(\mathcal{A})$ into the centre of \mathcal{A} . An \mathbb{F} -subspace \mathcal{A} of $\mathbb{F}^{d \times d}$ with $1 \in \mathcal{A}$ which is closed under matrix multiplication is called a matrix algebra. For a subset $\mathcal{M} \subseteq \mathcal{A}$ we denote by $\langle \mathcal{M} \rangle_{Alg}$ the intersection of all subalgebras in \mathcal{A} containing \mathcal{M} , the algebra generated by \mathcal{M} .

Let \mathbb{F} be a field and $\mathbb{F}^{d \times d}$ the set of $d \times d$ -matrices.

Definition (\mathbb{F} -algebra, matrix algebra)

An \mathbb{F} -algebra is a ring \mathcal{A} with identity together with a ring homomorphism $\iota : \mathbb{F} \to C(\mathcal{A})$ into the centre of \mathcal{A} . An \mathbb{F} -subspace \mathcal{A} of $\mathbb{F}^{d \times d}$ with $1 \in \mathcal{A}$ which is closed under matrix multiplication is called a matrix algebra. For a subset $\mathcal{M} \subseteq \mathcal{A}$ we denote by $\langle \mathcal{M} \rangle_{Alg}$ the intersection of all subalgebras in \mathcal{A} containing \mathcal{M} , the algebra generated by \mathcal{M} .

Definition (Right *A*-module)

Let \mathcal{A} be an \mathbb{F} -algebra. An \mathbb{F} -vector space V with a bilinear map $\mu: V \times \mathcal{A} \to V$ is called a right \mathcal{A} -module, if

Let \mathbb{F} be a field and $\mathbb{F}^{d \times d}$ the set of $d \times d$ -matrices.

Definition (\mathbb{F} -algebra, matrix algebra)

An \mathbb{F} -algebra is a ring \mathcal{A} with identity together with a ring homomorphism $\iota : \mathbb{F} \to C(\mathcal{A})$ into the centre of \mathcal{A} . An \mathbb{F} -subspace \mathcal{A} of $\mathbb{F}^{d \times d}$ with $1 \in \mathcal{A}$ which is closed under matrix multiplication is called a matrix algebra. For a subset $\mathcal{M} \subseteq \mathcal{A}$ we denote by $\langle \mathcal{M} \rangle_{Alg}$ the intersection of all subalgebras in \mathcal{A} containing \mathcal{M} , the algebra generated by \mathcal{M} .

Definition (Right *A*-module)

Let \mathcal{A} be an \mathbb{F} -algebra. An \mathbb{F} -vector space V with a bilinear map $\mu: V \times \mathcal{A} \to V$ is called a right \mathcal{A} -module, if

•
$$\mu(v, 1_A) = v$$
 for all $v \in V$ and

Let \mathbb{F} be a field and $\mathbb{F}^{d \times d}$ the set of $d \times d$ -matrices.

Definition (\mathbb{F} -algebra, matrix algebra)

An \mathbb{F} -algebra is a ring \mathcal{A} with identity together with a ring homomorphism $\iota : \mathbb{F} \to C(\mathcal{A})$ into the centre of \mathcal{A} . An \mathbb{F} -subspace \mathcal{A} of $\mathbb{F}^{d \times d}$ with $1 \in \mathcal{A}$ which is closed under matrix multiplication is called a matrix algebra. For a subset $\mathcal{M} \subseteq \mathcal{A}$ we denote by $\langle \mathcal{M} \rangle_{Alg}$ the intersection of all subalgebras in \mathcal{A} containing \mathcal{M} , the algebra generated by \mathcal{M} .

Definition (Right *A*-module)

Let \mathcal{A} be an \mathbb{F} -algebra. An \mathbb{F} -vector space V with a bilinear map $\mu: V \times \mathcal{A} \to V$ is called a right \mathcal{A} -module, if

•
$$\mu(v, 1_A) = v$$
 for all $v \in V$ and

• $\mu(\mu(v, X), Y) = \mu(v, XY)$ for all $v \in V$ and $X, Y \in A$.

Example (Natural module)

If $\mathcal{A} < \mathbb{F}^{d \times d}$ is a matrix algebra, then $V := \mathbb{F}^{1 \times d}$ is a right \mathcal{A} -module with $\mu(\mathbf{v}, \mathbf{X}) := \mathbf{v} \cdot \mathbf{X}$. It is called the natural module.

Example (Natural module)

If $\mathcal{A} < \mathbb{F}^{d \times d}$ is a matrix algebra, then $V := \mathbb{F}^{1 \times d}$ is a right \mathcal{A} -module with $\mu(\mathbf{v}, \mathbf{X}) := \mathbf{v} \cdot \mathbf{X}$. It is called the natural module.

Definition (Submodules and quotient modules)

Let V be an A-module. An A-submodule is an A-invariant subspace W < V, that is, $W \mathcal{A} = W$.

Example (Natural module)

If $\mathcal{A} < \mathbb{F}^{d \times d}$ is a matrix algebra, then $V := \mathbb{F}^{1 \times d}$ is a right \mathcal{A} -module with $\mu(\mathbf{v}, \mathbf{X}) := \mathbf{v} \cdot \mathbf{X}$. It is called the natural module.

Definition (Submodules and quotient modules)

Let V be an A-module. An A-submodule is an A-invariant subspace W < V, that is, $W \mathcal{A} = W$.

If $W \leq V$ is a submodule, then the quotient space V/W is an A-module with (v + W)X := vX + W.

Example (Natural module)

If $\mathcal{A} < \mathbb{F}^{d \times d}$ is a matrix algebra, then $V := \mathbb{F}^{1 \times d}$ is a right \mathcal{A} -module with $\mu(v, X) := v \cdot X$. It is called the natural module.

Definition (Submodules and quotient modules)

Let V be an A-module. An A-submodule is an A-invariant subspace W < V, that is, $W \mathcal{A} = W$.

If W < V is a submodule, then the quotient space V/W is an A-module with (v + W)X := vX + W.

A module V is called irreducible if its only submodules are $\{0\}$ and V.

Example (Natural module)

If $\mathcal{A} < \mathbb{F}^{d \times d}$ is a matrix algebra, then $V := \mathbb{F}^{1 \times d}$ is a right \mathcal{A} -module with $\mu(v, X) := v \cdot X$. It is called the natural module.

Definition (Submodules and quotient modules)

Let V be an A-module. An A-submodule is an A-invariant subspace W < V, that is, $W \mathcal{A} = W$.

If W < V is a submodule, then the quotient space V/W is an A-module with (v + W)X := vX + W.

A module V is called irreducible if its only submodules are $\{0\}$ and V. A composition series for V is a chain of submodules

$$\{0\} = V_{\ell+1} < V_{\ell} < V_{\ell-1} < \cdots < V_1 = V$$

such that all V_i/V_{i+1} are irreducible.

$$\mathcal{A} = \langle \mathcal{A}_1, \ldots, \mathcal{A}_k \rangle_{\mathsf{Alg}}.$$

$$\mathcal{A} = \langle \mathcal{A}_1, \ldots, \mathcal{A}_k \rangle_{\text{Alg}}.$$

Then each generator A_i induces a linear map $A_i : V \rightarrow V$.

$$\mathcal{A} = \langle \mathcal{A}_1, \ldots, \mathcal{A}_k \rangle_{\text{Alg}}.$$

Then each generator A_i induces a linear map $A_i : V \rightarrow V$.

Fact

To describe this situation to a computer, it is enough to choose an \mathbb{F} -basis (v_1, \ldots, v_d) of V and store one $d \times d$ -matrix for each A_i .

$$\mathcal{A} = \langle \mathcal{A}_1, \ldots, \mathcal{A}_k \rangle_{\text{Alg}}.$$

Then each generator A_i induces a linear map $A_i : V \rightarrow V$.

Fact

To describe this situation to a computer, it is enough to choose an \mathbb{F} -basis (v_1, \ldots, v_d) of V and store one $d \times d$ -matrix for each A_i .

Fundamental Problem

Given an *A*-module on a computer, decide irreducibility and compute a composition series.

Problem (Module generated by a vector)

Given $0 \neq v \in V$, find a basis for

$$v\mathcal{A} := \{vX \mid X \in \mathcal{A}\}$$

:= intersection of all *A*-submodules containing v

Problem (Module generated by a vector)

Given $0 \neq v \in V$, find a basis for

 $v\mathcal{A} := \{vX \mid X \in \mathcal{A}\}$

:= intersection of all A-submodules containing v

Solution: the spinning up procedure

```
1 Initialise \mathcal{B} := [v] and i := 1
```

Problem (Module generated by a vector)

Given $0 \neq v \in V$, find a basis for

$$v\mathcal{A} := \{vX \mid X \in \mathcal{A}\}$$

:= intersection of all A-submodules containing v

Solution: the spinning up procedure

Initialise
$$\mathcal{B} := [v]$$
 and $i := 1$

While $i \leq \text{Length}(\mathcal{B})$ do

Problem (Module generated by a vector)

Given $0 \neq v \in V$, find a basis for

$$v\mathcal{A} := \{vX \mid X \in \mathcal{A}\}$$

:= intersection of all A-submodules containing v

Solution: the spinning up procedure

Initialise
$$\mathcal{B} := [v]$$
 and $i := 1$

- **While** $i \leq \text{Length}(\mathcal{B})$ do
- For j from 1 to k do

Problem (Module generated by a vector)

Given $0 \neq v \in V$, find a basis for

$$v\mathcal{A} := \{vX \mid X \in \mathcal{A}\}$$

:= intersection of all A-submodules containing v

Solution: the spinning up procedure

Initialise
$$\mathcal{B} := [v]$$
 and $i := 1$

- **While** $i \leq \text{Length}(\mathcal{B})$ do
 - For *j* from 1 to k do

If
$$y := \mathscr{B}[i] \cdot A_j \notin \langle \mathscr{B} \rangle_{\mathbb{F}}$$
 then

3 4

Problem (Module generated by a vector)

Given $0 \neq v \in V$, find a basis for

$$v\mathcal{A} := \{vX \mid X \in \mathcal{A}\}$$

:= intersection of all A-submodules containing v

Solution: the spinning up procedure

Initialise
$$\mathcal{B} := [v]$$
 and $i := 1$

- **While** $i \leq \text{Length}(\mathcal{B})$ do
 - For *j* from 1 to k do

If
$$y := \mathscr{B}[i] \cdot A_j \notin \langle \mathscr{B} \rangle_{\mathbb{F}}$$
 then

Append y to the end of \mathcal{B}

3 4 5

Problem (Module generated by a vector)

Given $0 \neq v \in V$, find a basis for

$$v\mathcal{A} := \{vX \mid X \in \mathcal{A}\}$$

:= intersection of all A-submodules containing v

Solution: the spinning up procedure

Initialise
$$\mathcal{B} := [v]$$
 and $i := 1$

- **While** $i \leq \text{Length}(\mathcal{B})$ do
 - For j from 1 to k do

If
$$y := \mathcal{B}[i] \cdot A_j \notin \langle \mathcal{B} \rangle_{\mathbb{F}}$$
 then

Append y to the end of \mathcal{B}

Set *i* := *i* + 1

3 4 5

6

Theorem (Norton)

At least one of the following holds:

- There is a $0 \neq v \in \ker B$ such that $vA \neq V$.
- **2** For all $v \in \ker B^t$ holds $v \mathcal{A}^t \neq V$.
 - The natural module $V := \mathbb{F}^{1 \times d}$ is irreducible.

Theorem (Norton)

At least one of the following holds:

- There is a $0 \neq v \in \ker B$ such that $v \mathcal{A} \neq V$.
- **2** For all $v \in \ker B^t$ holds $v \mathcal{A}^t \neq V$.

③ The natural module $V := \mathbb{F}^{1 \times d}$ is irreducible.

Proof: Assume that () and () do not hold, so there is an invariant subspace 0 < W < V, say of dimension *e*.

Theorem (Norton)

At least one of the following holds:

- There is a $0 \neq v \in \ker B$ such that $v \mathcal{A} \neq V$.
- **2** For all $v \in \ker B^t$ holds $v \mathcal{A}^t \neq V$.

③ The natural module $V := \mathbb{F}^{1 \times d}$ is irreducible.

Proof: Assume that () and () do not hold, so there is an invariant subspace 0 < W < V, say of dimension *e*.

We can now choose a basis (w_1, \ldots, w_e) of W and extend it to a basis $(w_1, \ldots, w_e, v_1, \ldots, v_{d-e})$ of V and write all matrices with respect to this basis.

Theorem (Norton)

At least one of the following holds:

- There is a $0 \neq v \in \ker B$ such that $v \mathcal{A} \neq V$.
- **2** For all $v \in \ker B^t$ holds $v \mathcal{A}^t \neq V$.

(3) The natural module $V := \mathbb{F}^{1 \times d}$ is irreducible.

Proof: Assume that () and () do not hold, so there is an invariant subspace 0 < W < V, say of dimension *e*.

We can now choose a basis (w_1, \ldots, w_e) of W and extend it to a basis $(w_1, \ldots, w_e, v_1, \ldots, v_{d-e})$ of V and write all matrices with respect to this basis.

Let $T := (w_1, ..., w_e, v_1, ..., v_{d-e})$ and $B' := TBT^{-1}$.

At least one of the following holds:

• There is a $0 \neq v \in \ker B$ such that $v \mathcal{A} \neq V$.

$$earrow For all v \in \ker B^t holds v A^t \neq V.$$

(3) The natural module $V := \mathbb{F}^{1 \times d}$ is irreducible.

$$B' = \begin{bmatrix} M & 0 \\ * & N \end{bmatrix}$$
, where $M \in \mathbb{F}^{e \times e}$, $N \in \mathbb{F}^{(d-e) \times (d-e)}$.

At least one of the following holds:

• There is a $0 \neq v \in \ker B$ such that $v \not A \neq V$.

2 For all
$$v \in \ker B^t$$
 holds $v \mathcal{A}^t \neq V$.

• The natural module $V := \mathbb{F}^{1 \times d}$ is irreducible.

$$B' = \begin{bmatrix} M & 0 \\ * & N \end{bmatrix}, \text{ where } M \in \mathbb{F}^{e \times e}, N \in \mathbb{F}^{(d-e) \times (d-e)}.$$
Since (1) does not hold, ker $B \cap W = \{0\}.$

At least one of the following holds:

• There is a $0 \neq v \in \ker B$ such that $v \mathcal{A} \neq V$.

$$earrow For all v \in \ker B^t holds v \mathcal{A}^t \neq V.$$

• The natural module $V := \mathbb{F}^{1 \times d}$ is irreducible.

$$B' = \begin{bmatrix} M & 0 \\ * & N \end{bmatrix}, \text{ where } M \in \mathbb{F}^{e \times e}, N \in \mathbb{F}^{(d-e) \times (d-e)}.$$

Since **1** does not hold, ker $B \cap W = \{0\}.$
Thus *M* has full rank *e*.

At least one of the following holds:

• There is a $0 \neq v \in \ker B$ such that $v \not A \neq V$.

2 For all
$$v \in \ker B^t$$
 holds $v \mathcal{A}^t \neq V$.

• The natural module $V := \mathbb{F}^{1 \times d}$ is irreducible.

$$B' = \begin{bmatrix} M & 0 \\ * & N \end{bmatrix}, \text{ where } M \in \mathbb{F}^{e \times e}, N \in \mathbb{F}^{(d-e) \times (d-e)}.$$

Since **()** does not hold, ker $B \cap W = \{0\}.$
Thus *M* has full rank *e*.
If rank $B' =: r < d$, then rank $N = r - e < d - e$.

At least one of the following holds:

• There is a $0 \neq v \in \ker B$ such that $v \not A \neq V$.

3 For all
$$v \in \ker B^t$$
 holds $v \mathcal{A}^t \neq V$.

• The natural module $V := \mathbb{F}^{1 \times d}$ is irreducible.

$$B' = \begin{bmatrix} M & 0 \\ * & N \end{bmatrix}, \text{ where } M \in \mathbb{F}^{e \times e}, N \in \mathbb{F}^{(d-e) \times (d-e)}.$$

Since **1** does not hold, ker $B \cap W = \{0\}.$
Thus *M* has full rank *e*.
f rank $B' =: r < d$, then rank $N = r - e < d - e$.
Thus $\dim_{\mathbb{F}}(\ker N) = d - r = d - e - \operatorname{rank} N.$

At least one of the following holds:

• There is a $0 \neq v \in \ker B$ such that $v \mathcal{A} \neq V$.

$$earrow For all v \in \ker B^t holds v \mathcal{A}^t \neq V.$$

• The natural module $V := \mathbb{F}^{1 \times d}$ is irreducible.

$$B' = \begin{bmatrix} M & 0 \\ * & N \end{bmatrix}, \text{ where } M \in \mathbb{F}^{e \times e}, N \in \mathbb{F}^{(d-e) \times (d-e)}$$

Since ① does not hold, ker $B \cap W = \{0\}$.
Thus M has full rank e .
If rank $B' =: r < d$, then rank $N = r - e < d - e$.
Thus $\dim_{\mathbb{F}}(\ker N) = d - r = d - e - \operatorname{rank} N$.
Now consider $B'^t = (T^t)^{-1}B^tT^t = (TBT^{-1})^t$:
ker B'^t is contained in an $(T \mathcal{A} T^{-1})^t$ -invariant subspace.

At least one of the following holds:

• There is a $0 \neq v \in \ker B$ such that $v \not A \neq V$.

$$earrow For all v \in \ker B^t holds v A^t \neq V.$$

(3) The natural module $V := \mathbb{F}^{1 \times d}$ is irreducible.

$$B' = \begin{bmatrix} M & 0 \\ * & N \end{bmatrix}, \text{ where } M \in \mathbb{F}^{e \times e}, N \in \mathbb{F}^{(d-e) \times (d-e)}$$

Since (a) does not hold, ker $B \cap W = \{0\}$.
Thus M has full rank e .
If rank $B' =: r < d$, then rank $N = r - e < d - e$.
Thus $\dim_{\mathbb{F}}(\ker N) = d - r = d - e - \operatorname{rank} N$.
Now consider $B'^t = (T^t)^{-1}B^tT^t = (TBT^{-1})^t$:
ker B'^t is contained in an $(T \mathcal{A} T^{-1})^t$ -invariant subspace.
Thus ker B^t is contained in an \mathcal{A}^t -invariant subspace.

Assume we are given an *A*-module $V = \mathbb{F}^{1 \times d}$ by matrices $A_1, \ldots, A_k \in \mathbb{F}^{d \times d}$. "Chopping" means computing a composition series.

Max Neunhöffer (University of St Andrews)

Assume we are given an *A*-module $V = \mathbb{F}^{1 \times d}$ by matrices $A_1, \ldots, A_k \in \mathbb{F}^{d \times d}$. "Chopping" means computing a composition series.

The MeatAxe basically does the following:

A basic step of "Chop"

• Find an element $B \in A$ with small, non-trivial kernel

- Find an element $B \in A$ with small, non-trivial kernel
- Compute ker B

- Find an element $B \in \mathcal{A}$ with small, non-trivial kernel
- Compute ker B
- Spinup all $0 \neq v \in \ker B$

- Find an element $B \in \mathcal{A}$ with small, non-trivial kernel
- Compute ker B
- Spinup all $0 \neq v \in \ker B$
- If some $v \mathcal{A} < V$, we found a submodule, goto 🥥

- Find an element $B \in \mathcal{A}$ with small, non-trivial kernel
- Compute ker B
- 3 Spinup all $0 \neq v \in \ker B$
- If some vA < V, we found a submodule, goto **(2)**
- Otherwise spinup one $0 \neq v \in \ker B^t$ under A^t

- Find an element $B \in A$ with small, non-trivial kernel
- Compute ker B
- 3 Spinup all $0 \neq v \in \ker B$
- If some vA < V, we found a submodule, goto
- Otherwise spinup one $0 \neq v \in \ker B^t$ under A^t
- If $v \mathcal{A}^t = V$, we have proved V to be irreducible, stop

- Find an element $B \in A$ with small, non-trivial kernel
- Compute ker B
- 3 Spinup all $0 \neq v \in \ker B$
- If some vA < V, we found a submodule, goto
- Otherwise spinup one $0 \neq v \in \ker B^t$ under A^t
- If $v \mathcal{A}^t = V$, we have proved V to be irreducible, stop
- If 0 < W < V is invariant, compute action on W and V/W and recurse (with smaller dimensions!)

The result of "Chop" is a composition series

$$\{0\} = V_{\ell+1} < V_{\ell} < V_{\ell-1} < \cdots < V_1 = V$$

such that all V_j / V_{j+1} are irreducible.

Chopping modules II

The result of "Chop" is a composition series

$$\{0\} = V_{\ell+1} < V_{\ell} < V_{\ell-1} < \cdots < V_1 = V$$

such that all V_i/V_{i+1} are irreducible.

Actually, we find a base change $T \in \mathbb{F}^{d \times d}$, such that all matrices $TA_i T^{-1}$ for 1 < i < k look like this:

$$TA_{i}T^{-1} = \begin{bmatrix} M_{\ell}^{(i)} & 0 & \cdots & 0 \\ * & M_{\ell-1}^{(i)} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ * & \cdots & * & M_{1}^{(i)} \end{bmatrix}$$

and the matrices $M_i^{(i)}$ describe the action of \mathcal{A} on V_i/V_{i+1} .

Chopping modules II

The result of "Chop" is a composition series

$$\{0\} = V_{\ell+1} < V_{\ell} < V_{\ell-1} < \cdots < V_1 = V$$

such that all V_i/V_{i+1} are irreducible.

Actually, we find a base change $T \in \mathbb{F}^{d \times d}$, such that all matrices $TA_i T^{-1}$ for 1 < i < k look like this:

$$TA_{i}T^{-1} = \begin{bmatrix} M_{\ell}^{(i)} & 0 & \cdots & 0 \\ * & M_{\ell-1}^{(i)} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ * & \cdots & * & M_{1}^{(i)} \end{bmatrix}$$

and the matrices $M_i^{(i)}$ describe the action of \mathcal{A} on V_i/V_{i+1} . A more detailed analysis shows that the MeatAxe can identify isomorphism types of irreducible modules.

The MeatAxe can do the following for you:

The MeatAxe can do the following for you:

• Compute a composition series.

- Compute a composition series.
- Find homomorphism spaces from an irreducible module to another one.

- Compute a composition series.
- Find homomorphism spaces from an irreducible module to another one.
- Identify the isomorphism type of irreducible modules.

- Compute a composition series.
- Find homomorphism spaces from an irreducible module to another one.
- Identify the isomorphism type of irreducible modules.
- Compute the socle and radical series.

- Compute a composition series.
- Find homomorphism spaces from an irreducible module to another one.
- Identify the isomorphism type of irreducible modules.
- Compute the socle and radical series.
- Compute the submodule lattice.

- Compute a composition series.
- Find homomorphism spaces from an irreducible module to another one.
- Identify the isomorphism type of irreducible modules.
- Compute the socle and radical series.
- Compute the submodule lattice.
- Compute homomorphism spaces between arbitrary modules.

- Compute a composition series.
- Find homomorphism spaces from an irreducible module to another one.
- Identify the isomorphism type of irreducible modules.
- Compute the socle and radical series.
- Compute the submodule lattice.
- Compute homomorphism spaces between arbitrary modules.
- Compute cohomology groups.

- Compute a composition series.
- Find homomorphism spaces from an irreducible module to another one.
- Identify the isomorphism type of irreducible modules.
- Compute the socle and radical series.
- Compute the submodule lattice.
- Compute homomorphism spaces between arbitrary modules.
- Compute cohomology groups.
- Compute condensed modules.

Definition of class c_5

 $G \leq \operatorname{GL}_d(\mathbb{F}_q)$ lies in \mathcal{C}_5 if

- the natural module V is absolutely irreducible and
- there is a proper subfield \mathbb{F}_{q_0} of \mathbb{F}_q and $T \in GL_d(\mathbb{F}_q)$ and $(\beta_g)_{g \in G}$ with $\beta_g \in \mathbb{F}_q$ such that

 $\beta_g \cdot T^{-1}gT \in \operatorname{GL}_d(\mathbb{F}_{q_0})$ for all $g \in G$.

Let $G := \langle g_1, \ldots, g_m \rangle \leq \operatorname{GL}_d(\mathbb{F}_q)$ with $q = p^f$, assume that the natural module *V* is irreducible and let $e = \dim_{\mathbb{F}_q}(\operatorname{End}_{\mathbb{F}_qG}(V))$ (degree of splitting field).

Let $G := \langle g_1, \ldots, g_m \rangle \leq \operatorname{GL}_d(\mathbb{F}_q)$ with $q = p^f$, assume that the natural module *V* is irreducible and let $e = \dim_{\mathbb{F}_q}(\operatorname{End}_{\mathbb{F}_qG}(V))$ (degree of splitting field).

Algorithm to decide $tGt^{-1} \leq GL_d(\mathbb{F}_{q_0})$ for some $t \in GL_d(\mathbb{F}_q)$ and a subfield \mathbb{F}_{q_0} of \mathbb{F}_q :

- Choose a uniformly distributed random element c ∈ F_pG in its action on V and compute ker_V(c). Repeat this until dim_{F_q}(ker_V(c)) = e or fail after O(log δ⁻¹) tries.
- **2** Take $0 \neq w \in \ker_V(c)$ and spin up w with the generators g_1, \ldots, g_m using \mathbb{F}_q -linear independence to a basis \mathcal{B} .
- Set t ∈ GL(d, F_q) have the vectors in ℬ as rows, and find the smallest subfield of F_q containing all entries of all tg_it⁻¹. If this is F_q then output "No". Otherwise return that field and t.

Jon F. Carlson, Max Neunhöffer, and Colva M. Roney-Dougal. A polynomial-time reduction algorithm for groups of semilinear or subfield class.

J. Algebra, 322(3):613-637, 2009.

- S. P. Glasby, C. R. Leedham-Green, and E. A. O'Brien.
 Writing projective representations over subfields.
 J. Algebra, 295(1):51–61, 2006.
 - Derek F. Holt and Sarah Rees. Testing modules for irreducibility. J. Austral. Math. Soc. Ser. A, 57(1):1–16, 1994.

R. A. Parker.

The computer calculation of modular characters (the meat-axe). In *Computational group theory (Durham, 1982)*, pages 267–274. Academic Press, London, 1984.