The MeatAxe

Max Neunhöffer

University of St Andrews

Kirchberg/Hunsrück, 8.-12.8.2011

Let \mathbb{F} be a field and $\mathbb{F}^{d \times d}$ the set of $d \times d$-matrices.
Definition (\mathbb{F}-algebra, matrix algebra)
An \mathbb{F}-algebra is a ring \mathcal{A} with identity together with a ring homomorphism $\iota: \mathbb{F} \rightarrow C(\mathcal{A})$ into the centre of \mathcal{A}.

Let \mathbb{F} be a field and $\mathbb{F}^{d \times d}$ the set of $d \times d$-matrices.

Definition (\mathbb{F}-algebra, matrix algebra)

An \mathbb{F}-algebra is a ring \mathcal{A} with identity together with a ring homomorphism $\iota: \mathbb{F} \rightarrow C(\mathcal{A})$ into the centre of \mathcal{A}. An \mathbb{F}-subspace \mathcal{A} of $\mathbb{F}^{d \times d}$ with $1 \in \mathcal{A}$ which is closed under matrix multiplication is called a matrix algebra.

Let \mathbb{F} be a field and $\mathbb{F}^{d \times d}$ the set of $d \times d$-matrices.

Definition (\mathbb{F}-algebra, matrix algebra)

An \mathbb{F}-algebra is a ring \mathcal{A} with identity together with a ring homomorphism $\iota: \mathbb{F} \rightarrow C(\mathcal{A})$ into the centre of \mathcal{A}.
An \mathbb{F}-subspace \mathcal{A} of $\mathbb{F}^{d \times d}$ with $1 \in \mathcal{A}$ which is closed under matrix multiplication is called a matrix algebra.
For a subset $\mathcal{M} \subseteq \mathcal{A}$ we denote by $\langle\mathcal{M}\rangle_{\text {Alg }}$ the intersection of all subalgebras in \mathcal{A} containing \mathcal{M}, the algebra generated by \mathcal{M}.

Let \mathbb{F} be a field and $\mathbb{F}^{d \times d}$ the set of $d \times d$-matrices.

Definition (\mathbb{F}-algebra, matrix algebra)

An \mathbb{F}-algebra is a ring \mathcal{A} with identity together with a ring homomorphism $\iota: \mathbb{F} \rightarrow C(\mathcal{A})$ into the centre of \mathcal{A}.
An \mathbb{F}-subspace \mathcal{A} of $\mathbb{F}^{d \times d}$ with $1 \in \mathcal{A}$ which is closed under matrix multiplication is called a matrix algebra.
For a subset $\mathcal{M} \subseteq \mathcal{A}$ we denote by $\langle\mathcal{M}\rangle_{\text {Alg }}$ the intersection of all subalgebras in \mathcal{A} containing \mathcal{M}, the algebra generated by \mathcal{M}.

Definition (Right A-module)

Let \mathcal{A} be an \mathbb{F}-algebra. An \mathbb{F}-vector space V with a bilinear map $\mu: V \times \mathcal{A} \rightarrow V$ is called a right \mathcal{A}-module, if

Let \mathbb{F} be a field and $\mathbb{F}^{d \times d}$ the set of $d \times d$-matrices.

Definition (\mathbb{F}-algebra, matrix algebra)

An \mathbb{F}-algebra is a ring \mathcal{A} with identity together with a ring homomorphism $\iota: \mathbb{F} \rightarrow C(\mathcal{A})$ into the centre of \mathcal{A}.
An \mathbb{F}-subspace \mathcal{A} of $\mathbb{F}^{d \times d}$ with $1 \in \mathcal{A}$ which is closed under matrix multiplication is called a matrix algebra.
For a subset $\mathcal{M} \subseteq \mathcal{A}$ we denote by $\langle\mathcal{M}\rangle_{\text {Alg }}$ the intersection of all subalgebras in \mathcal{A} containing \mathcal{M}, the algebra generated by \mathcal{M}.

Definition (Right A-module)

Let \mathcal{A} be an \mathbb{F}-algebra. An \mathbb{F}-vector space V with a bilinear map $\mu: V \times \mathcal{A} \rightarrow V$ is called a right \mathcal{A}-module, if

- $\mu\left(v, 1_{\mathcal{A}}\right)=v$ for all $v \in V$ and

Let \mathbb{F} be a field and $\mathbb{F}^{d \times d}$ the set of $d \times d$-matrices.

Definition (\mathbb{F}-algebra, matrix algebra)

An \mathbb{F}-algebra is a ring \mathcal{A} with identity together with a ring homomorphism $\iota: \mathbb{F} \rightarrow C(\mathcal{A})$ into the centre of \mathcal{A}.
An \mathbb{F}-subspace \mathcal{A} of $\mathbb{F}^{d \times d}$ with $1 \in \mathcal{A}$ which is closed under matrix multiplication is called a matrix algebra.
For a subset $\mathcal{M} \subseteq \mathcal{A}$ we denote by $\langle\mathcal{M}\rangle_{\text {Alg }}$ the intersection of all subalgebras in \mathcal{A} containing \mathcal{M}, the algebra generated by \mathcal{M}.

Definition (Right A-module)

Let \mathcal{A} be an \mathbb{F}-algebra. An \mathbb{F}-vector space V with a bilinear map $\mu: V \times \mathcal{A} \rightarrow V$ is called a right \mathcal{A}-module, if

- $\mu\left(v, 1_{\mathcal{A}}\right)=v$ for all $v \in V$ and
- $\mu(\mu(v, X), Y)=\mu(v, X Y)$ for all $v \in V$ and $X, Y \in \mathcal{A}$.

Example (Natural module)

If $\mathcal{A} \leq \mathbb{F}^{d \times d}$ is a matrix algebra, then $V:=\mathbb{F}^{1 \times d}$ is a right \mathcal{A}-module with $\mu(v, X):=v \cdot X$. It is called the natural module.

Example (Natural module)

If $\mathcal{A} \leq \mathbb{F}^{d \times d}$ is a matrix algebra, then $V:=\mathbb{F}^{1 \times d}$ is a right \mathcal{A}-module with $\mu(v, X):=v \cdot X$. It is called the natural module.

Definition (Submodules and quotient modules)

Let V be an \mathcal{A}-module. An \mathcal{A}-submodule is an \mathcal{A}-invariant subspace $W \leq V$, that is, $W \mathscr{A}=W$.

Example (Natural module)

If $\mathcal{A} \leq \mathbb{F}^{d \times d}$ is a matrix algebra, then $V:=\mathbb{F}^{1 \times d}$ is a right \mathcal{A}-module with $\mu(v, X):=v \cdot X$. It is called the natural module.

Definition (Submodules and quotient modules)

Let V be an \mathcal{A}-module. An \mathcal{A}-submodule is an \mathcal{A}-invariant subspace $W \leq V$, that is, $W_{\mathcal{A}}=W$.
If $W \leq V$ is a submodule, then the quotient space V / W is an A-module with $(v+W) X:=v X+W$.

Example (Natural module)

If $\mathcal{A} \leq \mathbb{F}^{d \times d}$ is a matrix algebra, then $V:=\mathbb{F}^{1 \times d}$ is a right \mathcal{A}-module with $\mu(v, X):=v \cdot X$. It is called the natural module.

Definition (Submodules and quotient modules)

Let V be an \mathcal{A}-module. An \mathcal{A}-submodule is an \mathcal{A}-invariant subspace $W \leq V$, that is, $W_{\mathcal{A}}=W$.
If $W \leq V$ is a submodule, then the quotient space V / W is an A-module with $(v+W) X:=v X+W$.
A module V is called irreducible if its only submodules are $\{0\}$ and V.

Example (Natural module)

If $\mathcal{A} \leq \mathbb{F}^{d \times d}$ is a matrix algebra, then $V:=\mathbb{F}^{1 \times d}$ is a right \mathcal{A}-module with $\mu(v, X):=v \cdot X$. It is called the natural module.

Definition (Submodules and quotient modules)

Let V be an \mathcal{A}-module. An \mathcal{A}-submodule is an \mathcal{A}-invariant subspace $W \leq V$, that is, $W \mathcal{A}=W$.
If $W \leq V$ is a submodule, then the quotient space V / W is an A-module with $(v+W) X:=v X+W$.
A module V is called irreducible if its only submodules are $\{0\}$ and V.
A composition series for V is a chain of submodules

$$
\{0\}=V_{\ell+1}<V_{\ell}<V_{\ell-1}<\cdots<V_{1}=V
$$

such that all V_{i} / V_{i+1} are irreducible.

Let V be an \mathcal{A}-module for the \mathbb{F}-algebra

$$
\mathcal{A}=\left\langle A_{1}, \ldots, A_{k}\right\rangle_{\mathrm{Alg}} .
$$

Let V be an \mathcal{A}-module for the \mathbb{F}-algebra

$$
\mathcal{A}=\left\langle A_{1}, \ldots, A_{k}\right\rangle_{\mathrm{Alg}} .
$$

Then each generator A_{i} induces a linear map $A_{i}: V \rightarrow V$.

Let V be an \mathcal{A}-module for the \mathbb{F}-algebra

$$
\mathcal{A}=\left\langle A_{1}, \ldots, A_{k}\right\rangle_{\mathrm{Alg}} .
$$

Then each generator A_{i} induces a linear map $A_{i}: V \rightarrow V$.

Fact

To describe this situation to a computer, it is enough to choose an \mathbb{F}-basis $\left(v_{1}, \ldots, v_{d}\right)$ of V and store one $d \times d$-matrix for each A_{i}.

Let V be an \mathcal{A}-module for the \mathbb{F}-algebra

$$
\mathcal{A}=\left\langle A_{1}, \ldots, A_{k}\right\rangle_{\mathrm{Alg}} .
$$

Then each generator A_{i} induces a linear map $A_{i}: V \rightarrow V$.

Fact

To describe this situation to a computer, it is enough to choose an \mathbb{F}-basis $\left(v_{1}, \ldots, v_{d}\right)$ of V and store one $d \times d$-matrix for each A_{i}.

Fundamental Problem

Given an \mathfrak{A}-module on a computer, decide irreducibility and compute a composition series.

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.

Problem (Module generated by a vector)
Given $0 \neq v \in V$, find a basis for
$v \mathcal{A}:=\{v X \mid X \in \mathcal{A}\}$
$:=$ intersection of all \mathcal{A}-submodules containing v

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.

Problem (Module generated by a vector)
Given $0 \neq v \in V$, find a basis for

$$
v \mathcal{A}:=\{v X \mid X \in \mathcal{A}\}
$$

$:=$ intersection of all \mathfrak{A}-submodules containing v

Solution: the

(1) Initialise $\mathscr{B}:=[v]$ and $i:=1$

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.

Problem (Module generated by a vector)
Given $0 \neq v \in V$, find a basis for

$$
v \mathcal{A}:=\{v X \mid X \in \mathcal{A}\}
$$

$:=$ intersection of all \mathfrak{A}-submodules containing v

Solution: the

(1) Initialise $\mathscr{B}:=[v]$ and $i:=1$
(2) While $i \leq$ Length (\mathscr{B}) do

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.

Problem (Module generated by a vector)
Given $0 \neq v \in V$, find a basis for

$$
v \mathcal{A}:=\{v X \mid X \in \mathcal{A}\}
$$

$:=$ intersection of all \mathcal{A}-submodules containing v

Solution: the

(1) Initialise $\mathscr{B}:=[v]$ and $i:=1$
(2) While $i \leq \operatorname{Length}(\mathscr{B})$ do
(3) For j from 1 to k do

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.

Problem (Module generated by a vector)
Given $0 \neq v \in V$, find a basis for

$$
v \mathcal{A}:=\{v X \mid X \in \mathcal{A}\}
$$

$:=$ intersection of all \mathfrak{A}-submodules containing v

Solution: the

(1) Initialise $\mathcal{B}:=[v]$ and $i:=1$
(2) While $i \leq$ Length (\mathscr{B}) do
(3) For j from 1 to k do
(4)

$$
\text { If } y:=\mathscr{B}[i] \cdot A_{j} \notin\langle\mathscr{B}\rangle_{\mathbb{F}} \text { then }
$$

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.

Problem (Module generated by a vector)
Given $0 \neq v \in V$, find a basis for

$$
v \mathcal{A}:=\{v X \mid X \in \mathcal{A}\}
$$

$:=$ intersection of all \mathfrak{A}-submodules containing v

Solution: the

(1) Initialise $\mathscr{B}:=[v]$ and $i:=1$
(2) While $i \leq \operatorname{Length}(\mathscr{B})$ do
(3) For j from 1 to k do
(4)

$$
\text { If } y:=\mathscr{B}[i] \cdot A_{j} \notin\langle\mathcal{B}\rangle_{\mathbb{F}} \text { then }
$$

Append y to the end of \mathscr{B}

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.

Problem (Module generated by a vector)
Given $0 \neq v \in V$, find a basis for

$$
v \mathcal{A}:=\{v X \mid X \in \mathcal{A}\}
$$

$:=$ intersection of all \mathfrak{A}-submodules containing v

Solution: the

(1) Initialise $\mathscr{B}:=[v]$ and $i:=1$
(2) While $i \leq \operatorname{Length}(\mathscr{B})$ do
(3) For j from 1 to k do

$$
\text { If } y:=\mathscr{B}[i] \cdot A_{j} \notin\langle\mathscr{B}\rangle_{\mathbb{F}} \text { then }
$$

Append y to the end of \mathscr{B}
(6) Set $i:=i+1$

Let $\mathcal{A}=\left\langle A_{1}, \ldots, A_{k}\right\rangle_{\text {Alg }} \leq \mathbb{F}^{d \times d}$ be a matrix algebra and $B \in \mathcal{A}$ a singular element. Let $\mathscr{A}^{t}:=\left\langle A_{1}^{t}, \ldots, A_{k}^{t}\right\rangle_{\mathrm{Alg}}$.

Let $\mathcal{A}=\left\langle A_{1}, \ldots, A_{k}\right\rangle_{\text {Alg }} \leq \mathbb{F}^{d \times d}$ be a matrix algebra and $B \in \mathcal{A}$ a singular element. Let $\mathcal{A}^{t}:=\left\langle A_{1}^{t}, \ldots, A_{k}^{t}\right\rangle_{\text {Alg }}$.

Theorem (Norton)

At least one of the following holds:
(1) There is a $0 \neq v \in \operatorname{ker} B$ such that $v \mathcal{A} \neq V$.
(2) For all $v \in \operatorname{ker} B^{t}$ holds $v \mathcal{A}^{t} \neq V$.
(3) The natural module $V:=\mathbb{F}^{1 \times d}$ is irreducible.

Let $\mathcal{A}=\left\langle A_{1}, \ldots, A_{k}\right\rangle_{\text {Alg }} \leq \mathbb{F}^{d \times d}$ be a matrix algebra and $B \in \mathcal{A}$ a singular element. Let $A^{t}:=\left\langle A_{1}^{t}, \ldots, A_{k}^{t}\right\rangle_{\text {Alg }}$.

Theorem (Norton)

At least one of the following holds:
(1) There is a $0 \neq v \in \operatorname{ker} B$ such that $v \mathcal{A} \neq V$.
(2) For all $v \in \operatorname{ker} B^{t}$ holds $v A^{t} \neq V$.
(3) The natural module $V:=\mathbb{F}^{1 \times d}$ is irreducible.

Proof: Assume that (1) and (3) do not hold, so there is an invariant subspace $0<W<V$, say of dimension e.

Let $\mathcal{A}=\left\langle A_{1}, \ldots, A_{k}\right\rangle_{\text {Alg }} \leq \mathbb{F}^{d \times d}$ be a matrix algebra and $B \in \mathcal{A}$ a singular element. Let $\mathcal{A}^{t}:=\left\langle A_{1}^{t}, \ldots, A_{k}^{t}\right\rangle_{\text {Alg }}$.

Theorem (Norton)

At least one of the following holds:
(1) There is a $0 \neq v \in \operatorname{ker} B$ such that $v \mathcal{A} \neq V$.
(2) For all $v \in \operatorname{ker} B^{t}$ holds $v A^{t} \neq V$.
(3) The natural module $V:=\mathbb{F}^{1 \times d}$ is irreducible.

Proof: Assume that (1) and (3) do not hold, so there is an invariant subspace $0<W<V$, say of dimension e.
We can now choose a basis $\left(w_{1}, \ldots, w_{e}\right)$ of W and extend it to a basis $\left(w_{1}, \ldots, w_{e}, v_{1}, \ldots, v_{d-e}\right)$ of V and write all matrices with respect to this basis.

Let $\mathcal{A}=\left\langle A_{1}, \ldots, A_{k}\right\rangle_{\text {Alg }} \leq \mathbb{F}^{d \times d}$ be a matrix algebra and $B \in \mathcal{A}$ a singular element. Let $\mathcal{A}^{t}:=\left\langle A_{1}^{t}, \ldots, A_{k}^{t}\right\rangle_{\text {Alg }}$.

Theorem (Norton)

At least one of the following holds:
(1) There is a $0 \neq v \in \operatorname{ker} B$ such that $v \mathcal{A} \neq V$.
(2) For all $v \in \operatorname{ker} B^{t}$ holds $v A^{t} \neq V$.
(3) The natural module $V:=\mathbb{F}^{1 \times d}$ is irreducible.

Proof: Assume that (1) and (3) do not hold, so there is an invariant subspace $0<W<V$, say of dimension e.
We can now choose a basis $\left(w_{1}, \ldots, w_{e}\right)$ of W and extend it to a basis $\left(w_{1}, \ldots, w_{e}, v_{1}, \ldots, v_{d-e}\right)$ of V and write all matrices with respect to this basis.
Let $T:=\left(w_{1}, \ldots, w_{e}, v_{1}, \ldots, v_{d-e}\right)$ and $B^{\prime}:=T B T^{-1}$.

Theorem (Norton)

At least one of the following holds:
(1) There is a $0 \neq v \in \operatorname{ker} B$ such that $v \mathcal{A} \neq V$.
(2) For all $v \in \operatorname{ker} B^{t}$ holds $v A^{t} \neq V$.
(3) The natural module $V:=\mathbb{F}^{1 \times d}$ is irreducible.

Proof cont'd: Now, $B^{\prime}=T B T^{-1}$ looks like this:

$$
B^{\prime}=\left[\begin{array}{cc}
M & 0 \\
* & N
\end{array}\right] \text {, where } M \in \mathbb{F}^{e \times e}, N \in \mathbb{F}^{(d-e) \times(d-e)} \text {. }
$$

Theorem (Norton)

At least one of the following holds:
(1) There is a $0 \neq v \in \operatorname{ker} B$ such that $v \mathcal{A} \neq V$.
(2) For all $v \in \operatorname{ker} B^{t}$ holds $v A^{t} \neq V$.
(3) The natural module $V:=\mathbb{F}^{1 \times d}$ is irreducible.

Proof cont'd: Now, $B^{\prime}=T B T^{-1}$ looks like this:

$$
B^{\prime}=\left[\begin{array}{cc}
M & 0 \\
* & N
\end{array}\right] \text {, where } M \in \mathbb{F}^{e \times e}, N \in \mathbb{F}^{(d-e) \times(d-e)} \text {. }
$$

Since (1) does not hold, ker $B \cap W=\{0\}$.

Theorem (Norton)

At least one of the following holds:
(1) There is a $0 \neq v \in \operatorname{ker} B$ such that $v \mathcal{A} \neq V$.
(2) For all $v \in \operatorname{ker} B^{t}$ holds $v A^{t} \neq V$.
(3) The natural module $V:=\mathbb{F}^{1 \times d}$ is irreducible.

Proof cont'd: Now, $B^{\prime}=T B T^{-1}$ looks like this:

$$
B^{\prime}=\left[\begin{array}{cc}
M & 0 \\
* & N
\end{array}\right] \text {, where } M \in \mathbb{F}^{e \times e}, N \in \mathbb{F}^{(d-e) \times(d-e)} \text {. }
$$

Since (1) does not hold, ker $B \cap W=\{0\}$.
Thus M has full rank e.

Theorem (Norton)

At least one of the following holds:
(1) There is a $0 \neq v \in \operatorname{ker} B$ such that $v \mathcal{A} \neq V$.
(2) For all $v \in \operatorname{ker} B^{t}$ holds $v A^{t} \neq V$.
(3) The natural module $V:=\mathbb{F}^{1 \times d}$ is irreducible.

Proof cont'd: Now, $B^{\prime}=T B T^{-1}$ looks like this:

$$
B^{\prime}=\left[\begin{array}{cc}
M & 0 \\
* & N
\end{array}\right] \text {, where } M \in \mathbb{F}^{e \times e}, N \in \mathbb{F}^{(d-e) \times(d-e)} \text {. }
$$

Since (1) does not hold, ker $B \cap W=\{0\}$.
Thus M has full rank e.
If rank $B^{\prime}=: r<d$, then rank $N=r-e<d-e$.

Theorem (Norton)

At least one of the following holds:
(1) There is a $0 \neq v \in \operatorname{ker} B$ such that $v \mathcal{A} \neq V$.
(2) For all $v \in \operatorname{ker} B^{t}$ holds $v A^{t} \neq V$.
(3) The natural module $V:=\mathbb{F}^{1 \times d}$ is irreducible.

Proof cont'd: Now, $B^{\prime}=T B T^{-1}$ looks like this:

$$
B^{\prime}=\left[\begin{array}{cc}
M & 0 \\
* & N
\end{array}\right] \text {, where } M \in \mathbb{F}^{e \times e}, N \in \mathbb{F}^{(d-e) \times(d-e)} \text {. }
$$

Since (1) does not hold, ker $B \cap W=\{0\}$.
Thus M has full rank e.
If rank $B^{\prime}=: r<d$, then rank $N=r-e<d-e$.
Thus $\operatorname{dim}_{\mathbb{F}}(\operatorname{ker} N)=d-r=d-e-\operatorname{rank} N$.

Theorem (Norton)

At least one of the following holds:
(1) There is a $0 \neq v \in \operatorname{ker} B$ such that $v \mathcal{A} \neq V$.
(2) For all $v \in \operatorname{ker} B^{t}$ holds $v A^{t} \neq V$.
(3) The natural module $V:=\mathbb{F}^{1 \times d}$ is irreducible.

Proof cont'd: Now, $B^{\prime}=T B T^{-1}$ looks like this:

$$
B^{\prime}=\left[\begin{array}{cc}
M & 0 \\
* & N
\end{array}\right] \text {, where } M \in \mathbb{F}^{e \times e}, N \in \mathbb{F}^{(d-e) \times(d-e)} \text {. }
$$

Since (1) does not hold, ker $B \cap W=\{0\}$.
Thus M has full rank e.
If rank $B^{\prime}=: r<d$, then rank $N=r-e<d-e$.
Thus $\operatorname{dim}_{\mathbb{F}}(\operatorname{ker} N)=d-r=d-e-\operatorname{rank} N$.
Now consider $B^{\prime t}=\left(T^{t}\right)^{-1} B^{t} T^{t}=\left(T B T^{-1}\right)^{t}$:
ker $B^{\prime t}$ is contained in an $\left(T_{\mathcal{A}} T^{-1}\right)^{t}$-invariant subspace.

Theorem (Norton)

At least one of the following holds:
(1) There is a $0 \neq v \in \operatorname{ker} B$ such that $v \mathcal{A} \neq V$.
(2) For all $v \in \operatorname{ker} B^{t}$ holds $v A^{t} \neq V$.
(3) The natural module $V:=\mathbb{F}^{1 \times d}$ is irreducible.

Proof cont'd: Now, $B^{\prime}=T B T^{-1}$ looks like this:

$$
B^{\prime}=\left[\begin{array}{cc}
M & 0 \\
* & N
\end{array}\right] \text {, where } M \in \mathbb{F}^{e \times e}, N \in \mathbb{F}^{(d-e) \times(d-e)} \text {. }
$$

Since (1) does not hold, ker $B \cap W=\{0\}$.
Thus M has full rank e.
If rank $B^{\prime}=: r<d$, then rank $N=r-e<d-e$.
Thus $\operatorname{dim}_{\mathbb{F}}(\operatorname{ker} N)=d-r=d-e-\operatorname{rank} N$.
Now consider $B^{\prime t}=\left(T^{t}\right)^{-1} B^{t} T^{t}=\left(T B T^{-1}\right)^{t}$:
ker $B^{\prime t}$ is contained in an $\left(T_{\mathcal{A}} T^{-1}\right)^{t}$-invariant subspace.
Thus ker B^{t} is contained in an \mathcal{A}^{t}-invariant subspace.

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.
"Chopping" means computing a composition series.

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.
"Chopping" means computing a composition series. The MeatAxe basically does the following:

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.
"Chopping" means computing a composition series.
The MeatAxe basically does the following:

A basic step of "Chop"

(1) Find an element $B \in \mathcal{A}$ with small, non-trivial kernel

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.
"Chopping" means computing a composition series.
The MeatAxe basically does the following:

A basic step of "Chop"

(1) Find an element $B \in \mathcal{A}$ with small, non-trivial kernel
(2) Compute ker B

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.
"Chopping" means computing a composition series.
The MeatAxe basically does the following:

A basic step of "Chop"

(1) Find an element $B \in \mathcal{A}$ with small, non-trivial kernel
(2) Compute ker B
(3) Spinup all $0 \neq v \in \operatorname{ker} B$

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.
"Chopping" means computing a composition series.
The MeatAxe basically does the following:

A basic step of "Chop"

(1) Find an element $B \in \mathcal{A}$ with small, non-trivial kernel
(2) Compute ker B
(3) Spinup all $0 \neq v \in \operatorname{ker} B$
(4) If some $v \mathcal{A}<V$, we found a submodule, goto (?)

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.
"Chopping" means computing a composition series.
The MeatAxe basically does the following:
A basic step of "Chop"
(1) Find an element $B \in \mathcal{A}$ with small, non-trivial kernel
(2) Compute ker B
(3) Spinup all $0 \neq v \in \operatorname{ker} B$
(4) If some $v \mathcal{A}<V$, we found a submodule, goto (7)
(5) Otherwise spinup one $0 \neq v \in \operatorname{ker} B^{t}$ under \mathcal{A}^{t}

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.
"Chopping" means computing a composition series.
The MeatAxe basically does the following:
A basic step of "Chop"
(1) Find an element $B \in \mathcal{A}$ with small, non-trivial kernel
(2) Compute ker B
(3) Spinup all $0 \neq v \in \operatorname{ker} B$
(4) If some $v \mathcal{A}<V$, we found a submodule, goto (?)
(5) Otherwise spinup one $0 \neq v \in \operatorname{ker} B^{t}$ under \mathcal{A}^{t}
(6) If $v \mathcal{A}^{t}=V$, we have proved V to be irreducible, stop

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.
"Chopping" means computing a composition series.
The MeatAxe basically does the following:
A basic step of "Chop"
(1) Find an element $B \in \mathcal{A}$ with small, non-trivial kernel
(2) Compute ker B
(3) Spinup all $0 \neq v \in \operatorname{ker} B$
(4) If some $v \mathcal{A}<V$, we found a submodule, goto (?)
(5) Otherwise spinup one $0 \neq v \in \operatorname{ker} B^{t}$ under \mathcal{A}^{t}
(6) If $v \mathcal{A}^{t}=V$, we have proved V to be irreducible, stop
(7) If $0<W<V$ is invariant, compute action on W and V / W and recurse (with smaller dimensions!)

The result of "Chop" is a composition series

$$
\{0\}=V_{\ell+1}<V_{\ell}<V_{\ell-1}<\cdots<V_{1}=V
$$

such that all V_{j} / V_{j+1} are irreducible.

The result of "Chop" is a composition series

$$
\{0\}=V_{\ell+1}<V_{\ell}<V_{\ell-1}<\cdots<V_{1}=V
$$

such that all V_{j} / V_{j+1} are irreducible.
Actually, we find a base change $T \in \mathbb{F}^{d \times d}$, such that all matrices $T A_{i} T^{-1}$ for $1 \leq i \leq k$ look like this:

$$
T A_{i} T^{-1}=\left[\begin{array}{cccc}
M_{\ell}^{(i)} & 0 & \cdots & 0 \\
* & M_{\ell-1}^{(i)} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
* & \cdots & * & M_{1}^{(i)}
\end{array}\right]
$$

and the matrices $M_{j}^{(i)}$ describe the action of \mathscr{A} on V_{j} / V_{j+1}.

The result of "Chop" is a composition series

$$
\{0\}=V_{\ell+1}<V_{\ell}<V_{\ell-1}<\cdots<V_{1}=V
$$

such that all V_{j} / V_{j+1} are irreducible.
Actually, we find a base change $T \in \mathbb{F}^{d \times d}$, such that all matrices $T A_{i} T^{-1}$ for $1 \leq i \leq k$ look like this:

$$
T A_{i} T^{-1}=\left[\begin{array}{cccc}
M_{\ell}^{(i)} & 0 & \cdots & 0 \\
* & M_{\ell-1}^{(i)} & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
* & \cdots & * & M_{1}^{(i)}
\end{array}\right]
$$

and the matrices $M_{j}^{(i)}$ describe the action of \mathscr{A} on V_{j} / V_{j+1}.
A more detailed analysis shows that the MeatAxe can identify isomorphism types of irreducible modules.

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.
The MeatAxe can do the following for you:

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.
The MeatAxe can do the following for you:

- Compute a composition series.

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.
The MeatAxe can do the following for you:

- Compute a composition series.
- Find homomorphism spaces from an irreducible module to another one.

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.
The MeatAxe can do the following for you:

- Compute a composition series.
- Find homomorphism spaces from an irreducible module to another one.
- Identify the isomorphism type of irreducible modules.

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.
The MeatAxe can do the following for you:

- Compute a composition series.
- Find homomorphism spaces from an irreducible module to another one.
- Identify the isomorphism type of irreducible modules.
- Compute the socle and radical series.

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.
The MeatAxe can do the following for you:

- Compute a composition series.
- Find homomorphism spaces from an irreducible module to another one.
- Identify the isomorphism type of irreducible modules.
- Compute the socle and radical series.
- Compute the submodule lattice.

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.
The MeatAxe can do the following for you:

- Compute a composition series.
- Find homomorphism spaces from an irreducible module to another one.
- Identify the isomorphism type of irreducible modules.
- Compute the socle and radical series.
- Compute the submodule lattice.
- Compute homomorphism spaces between arbitrary modules.

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.
The MeatAxe can do the following for you:

- Compute a composition series.
- Find homomorphism spaces from an irreducible module to another one.
- Identify the isomorphism type of irreducible modules.
- Compute the socle and radical series.
- Compute the submodule lattice.
- Compute homomorphism spaces between arbitrary modules.
- Compute cohomology groups.

Assume we are given an \mathcal{A}-module $V=\mathbb{F}^{1 \times d}$ by matrices $A_{1}, \ldots, A_{k} \in \mathbb{F}^{d \times d}$.
The MeatAxe can do the following for you:

- Compute a composition series.
- Find homomorphism spaces from an irreducible module to another one.
- Identify the isomorphism type of irreducible modules.
- Compute the socle and radical series.
- Compute the submodule lattice.
- Compute homomorphism spaces between arbitrary modules.
- Compute cohomology groups.
- Compute condensed modules.

Definition of class \mathcal{C}_{5}

$G \leq \mathrm{GL}_{d}\left(\mathbb{F}_{q}\right)$ lies in C_{5} if

- the natural module V is absolutely irreducible and
- there is a proper subfield $\mathbb{F}_{q_{0}}$ of \mathbb{F}_{q} and $T \in \mathrm{GL}_{d}\left(\mathbb{F}_{q}\right)$ and $\left(\beta_{g}\right)_{g \in G}$ with $\beta_{g} \in \mathbb{F}_{q}$ such that

$$
\beta_{g} \cdot T^{-1} g T \in \mathrm{GL}_{d}\left(\mathbb{F}_{q_{0}}\right) \text { for all } g \in G .
$$

Let $G:=\left\langle g_{1}, \ldots, g_{m}\right\rangle \leq \mathrm{GL}_{d}\left(\mathbb{F}_{q}\right)$ with $q=p^{f}$, assume that the natural module V is irreducible and let $e=\operatorname{dim}_{\mathbb{F}_{q}}\left(\operatorname{End}_{\mathbb{F}_{q} G}(V)\right.$) (degree of splitting field).

Let $G:=\left\langle g_{1}, \ldots, g_{m}\right\rangle \leq \mathrm{GL}_{d}\left(\mathbb{F}_{q}\right)$ with $q=p^{f}$, assume that the natural module V is irreducible and let $e=\operatorname{dim}_{\mathbb{F}_{q}}\left(\operatorname{End}_{\mathbb{F}_{q} G}(V)\right.$) (degree of splitting field).

Algorithm to decide $t G t^{-1} \leq \mathrm{GL}_{d}\left(\mathbb{F}_{q_{0}}\right)$ for some $t \in \mathrm{GL}_{d}\left(\mathbb{F}_{q}\right)$ and a subfield $\mathbb{F}_{q_{0}}$ of \mathbb{F}_{q} :
(1) Choose a uniformly distributed random element $c \in \mathbb{F}_{p} G$ in its action on V and compute $\operatorname{ker}_{V}(c)$. Repeat this until $\operatorname{dim}_{\mathbb{F}_{q}}\left(\operatorname{ker}_{V}(c)\right)=e$ or fail after $O\left(\log \delta^{-1}\right)$ tries.
(2) Take $0 \neq w \in \operatorname{ker}_{v}(c)$ and spin up w with the generators g_{1}, \ldots, g_{m} using \mathbb{F}_{q}-linear independence to a basis \mathscr{B}.
(3) Let $t \in \operatorname{GL}\left(d, \mathbb{F}_{q}\right)$ have the vectors in \mathcal{B} as rows, and find the smallest subfield of \mathbb{F}_{q} containing all entries of all $\operatorname{tg}_{i} t^{-1}$. If this is \mathbb{F}_{q} then output "No". Otherwise return that field and t.

围 Jon F. Carlson, Max Neunhöffer, and Colva M. Roney-Dougal. A polynomial-time reduction algorithm for groups of semilinear or subfield class.
J. Algebra, 322(3):613-637, 2009.
R. P. Glasby, C. R. Leedham-Green, and E. A. O'Brien.

Writing projective representations over subfields.
J. Algebra, 295(1):51-61, 2006.

目 Derek F. Holt and Sarah Rees.
Testing modules for irreducibility.
J. Austral. Math. Soc. Ser. A, 57(1):1-16, 1994.

R R. A. Parker.
The computer calculation of modular characters (the meat-axe). In Computational group theory (Durham, 1982), pages 267-274. Academic Press, London, 1984.

