
Black-Box Groups, Oracles and more

Alice Niemeyer

UWA, RWTH Aachen

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 1 / 62

Introduction

Motivation

Groups often arise as groups of symmetries in other areas. For
example,

symmetry groups of graphs
symmetry groups of geometric structures
crystallographic groups

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 2 / 62

Introduction

Motivation

Questions about a group G we would like to be able to answer
using a computer algebra systems:
|G|
a composition series of G
maximal subgroups of G
normaliser of g for g ∈ G
H ∩ K for H,K ≤ G
coset representatives for K E G
automorphism group of G

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 3 / 62

Introduction

Motivation

This summer school focusses on the geometric approach
using Aschbacher’s Theorem to design algorithms to
answer the above questions.
An alternative approach working with black box groups has
been pursued with stunning results by Babai and
collaborators since 1984 [3] culminating in [2].

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 4 / 62

Introduction

Motivation

G could be given as
finitely presented group
permutation group
matrix group
other descriptions

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 5 / 62

Introduction

Finitely Presented groups

G described by a finite presentation {X | R}.

studied a lot
e.g. polycyclic groups

Not the main focus of these lectures.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 6 / 62

Introduction

Permutation Groups

Let Sn denote the group of all permutations on Ω = {1, . . . ,n}.
Usually G = 〈X 〉, where X ⊆ Sn.

studied extensively
algorithms exist since 1950s
very efficient

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 7 / 62

Introduction

Permutation Group Example

Let G be the symmetry group of the square, i.e. Let
G = 〈(1,2,3,4), (1,2)(3,4)〉.
Note: (1,2,3,4) ∗ (1,2)(3,4) = (2,4).
More about permutation groups later.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 8 / 62

Introduction

Matrix Groups

Matrix groups are the main focus of this summer school.

G = 〈X 〉, with X ⊆ GL(n,q)

practical algorithms designed over past 20 years

Overview Articles
For further reading please see the two very nice overview
articles [4] and [5] by Eamonn O’Brien.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 9 / 62

Introduction

Other representations

factor groups
homomorphic images of known groups
kernels of homomorphisms

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 10 / 62

Black-Box Groups

summary

A group can come in many disguises. For example, as a

permutation group
matrix group
finitely presented group
a factor group of another group
a homomorphic image of another group

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 11 / 62

Black-Box Groups

Black Box Groups

Black Box groups allow us to describe an arbitrary group to a
computer without specifying anything more about the group.

Black Box groups were first introduced by Babai and Szemerédi
in 1984 [3].

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 12 / 62

Black-Box Groups

Black Box Groups

Q a finite set, called alphabet and N ∈ N and S ⊆ QN . Let
= be an equivalence relation on S,
∗ a binary relation on S and
- a unary relation on S.

If the following 3 conditions hold
1 ∗ induces a binary operation ∗ on S/ =
2 G = (S/ = , ∗) is a group;
3 - induces a unary operation −1 on S/ = where, for s ∈ S,

[s]−1 is the inverse of [s] in G.
then (S/ = ,∗) is called a Black-Box Group and (S, = , ∗ , -) a
Black-Box representation of (S/ = ,∗).

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 13 / 62

Black-Box Groups

Definition
Let Y ≤ S and define X = {[y] | y ∈ Y}. If X is a generating set
for G then (Y , = , ∗ , -) is called a generating tuple for the
black-box group G.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 14 / 62

Black-Box Groups

Example

Let Q = {0,1} and N = 3. Put S = QN and define
(i , j , k) = (`,m,n) if and only if j = m and k = n.
(i , j , k) ∗ (`,m,n) :=
(i ∗ `, (j + m + k ∗ n) (mod 2), (k + n) (mod 2))

(i , j , k) - := (i , (j + k) (mod 2), k)

What group is this?

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 15 / 62

Black-Box Groups

Example

Let Q = {0,1} and N = 3. Put S = QN and define
(i , j , k) = (`,m,n) if and only if j = m and k = n.
(i , j , k) ∗ (`,m,n) :=
(i ∗ `, (j + m + k ∗ n) (mod 2), (k + n) (mod 2))

(i , j , k) - := (i , (j + k) (mod 2), k)

The group is isomorphic to C4.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 16 / 62

Black-Box Groups

Complexity of algorithms for groups

We make some assumptions to simplify describing the
complexity of algorithms for groups:

all group operations cost the same, i.e. µ.
we have some bound in the size of the input

Definition
The (worst case) complexity of an algorithm for a group is the
maximum number of (group) operations required.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 17 / 62

Black-Box Groups

Examples

group size of input Cost of ∗
Sn n O(n)
GL(n,q) n2 log(q) O(n3 log(q))
BB G N µ
{0,1}N

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 18 / 62

Black-Box Groups

Example: Cost of Element Order

Algorithm 1: ORDER(g)

Input: g ∈ G
Output: o(g)

t := 1;
while gt 6= 1 do

t := t+1;
end
return t ;

Cost
The cost of Algorithm ORDER on input g is O(o(g)µ).

This can be pretty bad ...

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 19 / 62

Black-Box Groups

Order of elements in the symmetric group Sn

Landau 1909

lim
n→∞

maxg∈Sn(o(g))

n
√

n
= 1.

Hence computing the order of an element in Sn like this has
worst case complexity O(n

√
nµ).

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 20 / 62

Black-Box Groups

Complexity of BB algorithms

Definition
Suppose the cost of = , ∗ and - is µ.

Count the number of calls to = , ∗ and - .

We write this cost as a function of the size of the input.

Input: words in Q of length N.

Size of the input: N log(Q) ∼ N (for fixed |Q|).

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 21 / 62

Black-Box Groups

Computing orders of elements in groups

In permutation groups: cheap (cycle structure)
In matrix groups: (Eamonn’s lectures)
In BB groups: expensive!

Let (S, = , ∗ , -) be a black box representation of the group
G = (S/ = ,∗) and s ∈ S. To determine the order of [s], we need
to find the smallest positive integer k with
sk := s ∗ s ∗ · · · ∗ s = [1g].

This requires o([s]) calls of ∗ .

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 22 / 62

Black-Box Groups

Example

G = Z2N , the cyclic group of order 2N .
An element can have order 2N . The size of the input is N, thus

computing the order can be an exponential algorithm!

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 23 / 62

Black-Box Groups

Order Tests

Does g have order dividing m?

Let k = blog2(m)c. Compute
Bm = b0 + b12 + . . . bk2k , the binary representation of m.
g,g2, . . . ,g2k

gm = gb0 ∗ (g2)
b1 ∗ · · · ∗ (g2k

)
bk

Cost: O(kµ) to compute g,g2, . . . ,g2k and O(kµ) multiplications
for gm, thus O(log(m)µ).

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 24 / 62

Black-Box Groups Complexity of Algorithms

Deterministic Algorithms

deterministic algorithm
computes an output for all (allowable) inputs
same input yields same output
output correct

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 25 / 62

Black-Box Groups Complexity of Algorithms

Randomised Algorithms

randomised algorithm
Uses sequence random bits

computes an output for most (allowable) inputs
output depends on random bits and input
output maybe incorrect

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 26 / 62

Black-Box Groups Complexity of Algorithms

Monte-Carlo Algorithm
Let 0 < ε < 1. A randomised algorithm is a Monte-Carlo
algorithm with error probability ε if the algorithm returns an
output for an allowable input and the probability that the output
for an allowable input is correct is at least 1− ε.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 27 / 62

Black-Box Groups Complexity of Algorithms

Algorithm 2: HEARTCARD(ε)

Input: Standard deck of 32 playing cards, real ε
Output: a card

for i in [1 . . .M] do
pick a random card in the deck;
if the card is a heart card then

return the card;
else

put card back into deck;
end

end
return a random card in the deck;

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 28 / 62

Black-Box Groups Complexity of Algorithms

HeartCard

The algorithm is a Monte-Carlo algorithm since it
always returns an output
Output depends on random bits
The output is correct if a heart card is returned
The output is incorrect if a card of suit other than heart is
returned

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 29 / 62

Black-Box Groups Complexity of Algorithms

Analysis of example algorithm

At any stage there are 32 cards in the deck.
The probability that a random card is heart is 1/4.
How large must M be such that the probability of an
incorrect answer is at most ε?

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 30 / 62

Black-Box Groups Complexity of Algorithms

Analysis of example algorithm

Probability of not returning a heart in M random selections is

(1− 1
4

)M =

(
3
4

)M

.

Now (
3
4

)M

≤ ε

if and only if

M ≥ log(ε−1)

log(4/3)
∼ 3.5 ∗ log(ε−1).

For example, if ε = 1/100 then we need M > 16, while if
ε = 1/10 then we need M > 8.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 31 / 62

Black-Box Groups Complexity of Algorithms

Complexity of Algorithms

worst case time complexity: maximum number of basic
operations as function of size of the input.
worst case space complexity: maximum number of storage
units required as function of size of the input.
the number of random bits used is usually a parameter.

Complexity of example:
log(ε−1)/ log(4/3) random selections and log(ε−1)/ log(4/3)
card checks.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 32 / 62

Black-Box Groups Complexity of Algorithms

Complexity of algorithms

Let N be an upper bound on the size of the input. Depending on
the behaviour of the function f (N) yielding the complexity, we
classify algorithms as follows:

Name and behaviour of f (N)

exponential exponential in N
polynomial polynomial in N
linear constant multiple of N
nearly linear constant multiple of logc(N)N

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 33 / 62

Black-Box Groups Complexity of Algorithms

Complexity of algorithms

We use the Big-O notation:

f (n) ∈ O(g(n)) if there is a C such that f (n) ≤ Cg(n) for all
sufficiently large n.
f (n) ∈ o(g(n)) if limn→∞

f (n)
g(n) = 0.

f (n) ∈ Θ(g(n)) if there are C1,C2 such that
C1g(n) ≤ f (n) ≤ C2g(n) for all sufficiently large n.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 34 / 62

Black-Box Groups Complexity of Algorithms

1-Sided Monte-Carlo Algorithms

Given ε with 0 < ε < 1.
answer true or false questions
answer true is provably correct
answer false might be incorrect
the probability that the answer is false and should have
been true is less than ε

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 35 / 62

Black-Box Groups Complexity of Algorithms

Example

Algorithm 3: ISABELIANSUBGROUP(G,H, ε)

Input: Black Box Group G with H ≤ G, real ε
and a method to construct random elements in H
Output: true or false

M :=?;
for i in [1 . . .M] do

g := PSEUDORANDOM(H);
h := PSEUDORANDOM(H);
if [g,h] 6= 1 then

return false;
end

end
return true;

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 36 / 62

Black-Box Groups Complexity of Algorithms

Example

What is M?
If H is abelian the algorithm returns true and the answer is
correct.
If H is non-abelian then the probability that two random
elements g and h in H do not commute is at least 3/8
(Gustafson, 1973).
Thus each repetition of the for-loop will fail to find a pair to
witness that H is non-abelian with probability at most 5/8.
The probability that in M repetitions we failed to find a
non-commuting pair is (5/8)M .
If we require (5/8)M < ε, we choose
M ≥ log(ε−1)

log(8/5) ≥ 2.13 log(ε−1).

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 37 / 62

Black-Box Groups Complexity of Algorithms

1-Sided Monte-Carlo Algorithms

Algorithm 4: ISABELIANSUBGROUP(G,H, ε)

Input: Black Box Group G with H ≤ G, real ε
and a method to construct random elements in H
Output: true or false

M := log(ε−1)
log(8/5) ;

for i in [1 . . .M] do
g := PSEUDORANDOM(H);
h := PSEUDORANDOM(H);
if [g,h] 6= 1 then

return false;
end

end
return true;

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 38 / 62

Black-Box Groups Complexity of Algorithms

Las Vegas Algorithms

Introduced in 1979 by Lásló Babai.

Definition
A Las Vegas algorithm with error probability ε with 0 < ε < 1 is a
randomised algorithm which either returns the correct answer or
reports failure. The probability that it reports failure on an
allowable input is at most ε.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 39 / 62

Black-Box Groups Complexity of Algorithms

Lessons

randomised algorithms often draw conclusions from
particular elements
the probability of failing to find the element often features in
complexity
often need lower bounds for the probability of the elements
the better the lower bound the smaller the complexity

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 40 / 62

Oracles

Oracles

Sometimes the Black Box model is too restrictive.

Some computations too hard, e.g. Discrete Log, see below
Some computations more efficient, e.g. ElementOrder in Sn

Example:
The order of (1,2)(3,4,5)(6,7,8,9,10) is just the lcm of the
cycle lengths, i.e. 2 · 3 · 5 = 30.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 41 / 62

Oracles

historical solution

In these situations we consult the oracle.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 42 / 62

Oracles

Oracles

We add new black boxes to the description of a black box group
and call them oracles.
For example, an Order Oracle o could be used to compute the
order of a group element.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 43 / 62

Oracles

Complexity of BB Algorithms with Oracles

We treat the Oracle as an unknown quantity and give the
complexity as a function of

the size of the input
the number of random elements required
the number of calls to black boxes
the number of calls to an oracle

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 44 / 62

Oracles The Discrete Logarithm Problem

Discrete Logarithm

Let G = 〈a〉 be a cyclic group with n elements.

Discrete Log Problem

Given b ∈ G, find t such such that at = b.

t is called a discrete logarithm of b with respect to a. Note that
two discrete logarithms of b with respect to a are congruent
modulo |G|.

t = loga(b).

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 45 / 62

Oracles The Discrete Logarithm Problem

Example
Let p = 1009.

Problem:
Find x with 11x = 135 in GF (p).

How can we do this?
111 = 11
112 = 121
113 = 322
115 = 620
116 = 766
117 = 354
...
111000 = 135

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 46 / 62

Oracles The Discrete Logarithm Problem

Example

The size of the input is log(p) as every element in GF (p)
can be stored in log(p) = N bits.
Thus computing all powers of 11 modulo p cost
p = log(p)log(p)/ log log(p) = NN/log(N) basic operations.
Thus exponential in the size of the input.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 47 / 62

Oracles The Discrete Logarithm Problem

Discrete Logarithm Problem

Open Problem
Is there a polynomial time algorithm that computes the discrete
logarithm of loga(b) for a,b in a cyclic group ?

Existing Algorithms
Faster than naive algorithm, but still exponential.
Often trading time for space, e.g. Baby-step Giant-step or
Pollard’s Rho Algorithm (both O(

√
n)), where n is the order

of the cyclic group, i.e. n = NN/log(N).

We usually treat the Discrete Log Problem as an Oracle.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 48 / 62

Oracles Straight Line Programs

Straight Line Programs

Given a group G by a generating set X , we would like to be able
to represent a given g ∈ G as a word in X .
However, this word should not be too long.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 49 / 62

Oracles Straight Line Programs

Straight-Line Programs

Suppose we know for h in some group G that we can compute
an element g that we need for some purpose as g = h32.

Example

g = h25
= h ∗ h ∗ · · · ∗ h

requires 31 group operations.

We need a better way to record that g = h32.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 50 / 62

Oracles Straight Line Programs

Straight-Line Programs

Example
A faster way for obtaining g from h:

[w1 = h,w2 = (w1,w1),w3 = (w2,w2),w4 = (w3,w3),

w5 = (w4,w4),w6 = (w5,w5)].

Evaluate this list in G, by computing first w1, then w2, where
(a,b) means multiply a and b.
We find:
w1 = h, w2 = w1 ∗ w1 = h2, w3 = w2 ∗ w2 = h4,
w4 = w3 ∗ w3 = h8, w5 = w4 ∗ w4 = h16, w6 = w5 ∗ w5 = h32 = g.

This requires 5 multiplications.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 51 / 62

Oracles Straight Line Programs

Straight-Line Programs
Example
Suppose h,b are generators for G and

g = h4 ∗ b−1 ∗ h8

lies in a particular subgroup.
Then we record SLP for g:

[w1 = h,w2 = (w1,w1),w3 = (w2,w2),w4 = (w3,w3),

w5 = b,w6 = (w5,−1),w7 = (w3,w6),w8 = (w7,w4)].

The entries of the SLP are called cells. Cells contain pointers to
previous cells and operations.
We see: w1 = h, w2 = h2, w3 = h4, w4 = h8, w5 = b, w6 = b−1,
w7 = h4 ∗ b−1 and w8 = g.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 52 / 62

Oracles Straight Line Programs

Straight-Line Programs

Let G = S/ = be a Black Box group given by a Black Box
generating tuple (Y , = , ∗ , -). Let g ∈ G.

Definition
A Straight-Line Program (SLP) for g is a list L = [w1, . . . ,wn], for
which each cell satisfies one of:

wi ∈ Y ,
wi = (wj , -) with j < i ,
wi = (wj ,wk , ∗) with k , j < i ,

such that the evaluation of wn is g.

The evaluation of an SLP of length m requires m BB operations.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 53 / 62

Oracles Straight Line Programs

Better Straight-Line Programs

We might allow more operations than ∗ and - .
For example, in a permutation group G the following operations
can be computed quickly:

gm for positive m
g−1 · h

Example
g = (1,2,3,4,5)(6,7,8,9,10,11). Then
g4 = (1,5,4,3,2)(6,10,8)(7,11,9).
g−1 · h can be computed as fast as g · h.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 54 / 62

Oracles Straight Line Programs

Better Straight-Line Programs

Definition
A Straight-Line Program (SLP) for g is a list L = [w1, . . . ,wn],
where every cell satisfies one of:

wi ∈ Y ,
wi = (wj , -) with j < i ,
wi = (wj ,wk , ∗) with k , j < i ,

wi = (wj ,wk , ˆm) with k , j < i ,
wi = (wj ,wk , -∗) with k , j < i ,

such that the evaluation wn is g.

The evaluation of an SLP of length m may now require more
than m BB operations.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 55 / 62

Oracles Straight Line Programs

Better Straight-Line Programs

A straight line program can encode several words, e.g. in our
example

g = h4 ∗ b−1 ∗ h8.

The SLP for g

[w1 = h,w2 = (w1,w1),w3 = (w2,w2),w4 = (w3,w3),

w5 = b,w6 = (w5,−1),w7 = (w3,w6),w8 = (w7,w4)].

with w1 = h, w2 = h2, w3 = h4, w4 = h8, w5 = b, w6 = b−1,
w7 = h4 ∗ b−1 and w8 = g. It also encodes h4,h4 · b−1, etc.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 56 / 62

Oracles Straight Line Programs

Better Straight-Line Programs

A straight line program can encode several words,

Encode several elements
By storing pointers to the elements in the SLP.

Example:
G = 〈a,b〉 and M ≤ G is generated by g,h which we found as
SLP in a and b by random search. Most likely g and h contain
many common subwords and share large chunks in their SLPs.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 57 / 62

Oracles Straight Line Programs

Evaluating Straight-Line Programs
A straight line program can be evaluated linearly, e.g.

Example
Consider the SLP

[w1 = h,w2 = (w1,w1),w3 = (w2,w2),w4 = (w3,w3),

w5 = b,w6 = (w5,−1),w7 = (w3,w6),w8 = (w7,w2)].

with w1 = h, w2 = h2, w3 = h4, w4 = h8, w5 = b, w6 = b−1,
w7 = h4 ∗ b−1 and w8 = h4 ∗ b−1 ∗ h4.

This way we compute and store group elements w1, . . . ,w8.

However...
the element w4 was never used.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 58 / 62

Oracles Straight Line Programs

Alternative for evaluating SLPs

An SLP can be evaluated recursively, storing a counter how
often a cell is visited.

Example: evaluate w8

[w1 =h (0),w2 =(w1,w1) (0),w3 =(w2,w2)(0),w4 =(w3,w3) (0)
w5 =b (0),w6 =(w5,−1) (0),w7 =(w3,w6) (0),w8 =(w7,w2) (1)].

w8 = w7 ∗ w2, so w7 and w2 visited and evaluated
w2 = w1 ∗ w1 so w1 visited
w7 = w3 ∗ w6, so w6 and w3 visited and evaluated
w6 = w−1

5 , so w5 visited
w3 = w2 ∗ w2, so w2 visited again, already evaluated.
w4 not visited, so not evaluated.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 59 / 62

Oracles Straight Line Programs

Alternative for evaluating SLPs

An SLP can be evaluated recursively, storing a counter how
often a cell is visited.

Example: evaluate w8

[w1 =h (0),w2 =(w1,w1) (1),w3 =(w2,w2)(0),w4 =(w3,w3) (0)
w5 =b (0),w6 =(w5,−1) (0),w7 =(w3,w6) (1),w8 =(w7,w2) (1)].

w8 = w7 ∗ w2, so w7 and w2 visited and evaluated
w2 = w1 ∗ w1 so w1 visited
w7 = w3 ∗ w6, so w6 and w3 visited and evaluated
w6 = w−1

5 , so w5 visited
w3 = w2 ∗ w2, so w2 visited again, already evaluated.
w4 not visited, so not evaluated.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 59 / 62

Oracles Straight Line Programs

Alternative for evaluating SLPs

An SLP can be evaluated recursively, storing a counter how
often a cell is visited.

Example: evaluate w8

[w1 =h (2),w2 =(w1,w1) (1),w3 =(w2,w2)(0),w4 =(w3,w3) (0)
w5 =b (0),w6 =(w5,−1) (0),w7 =(w3,w6) (1),w8 =(w7,w2) (1)].

w8 = w7 ∗ w2, so w7 and w2 visited and evaluated
w2 = w1 ∗ w1 so w1 visited
w7 = w3 ∗ w6, so w6 and w3 visited and evaluated
w6 = w−1

5 , so w5 visited
w3 = w2 ∗ w2, so w2 visited again, already evaluated.
w4 not visited, so not evaluated.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 59 / 62

Oracles Straight Line Programs

Alternative for evaluating SLPs

An SLP can be evaluated recursively, storing a counter how
often a cell is visited.

Example: evaluate w8

[w1 =h (2),w2 =(w1,w1) (1),w3 =(w2,w2)(1),w4 =(w3,w3) (0)
w5 =b (0),w6 =(w5,−1) (1),w7 =(w3,w6) (1),w8 =(w7,w2) (1)].

w8 = w7 ∗ w2, so w7 and w2 visited and evaluated
w2 = w1 ∗ w1 so w1 visited
w7 = w3 ∗ w6, so w6 and w3 visited and evaluated
w6 = w−1

5 , so w5 visited
w3 = w2 ∗ w2, so w2 visited again, already evaluated.
w4 not visited, so not evaluated.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 59 / 62

Oracles Straight Line Programs

Alternative for evaluating SLPs

An SLP can be evaluated recursively, storing a counter how
often a cell is visited.

Example: evaluate w8

[w1 =h (2),w2 =(w1,w1) (1),w3 =(w2,w2)(1),w4 =(w3,w3) (0)
w5 =b (1),w6 =(w5,−1) (1),w7 =(w3,w6) (1),w8 =(w7,w2) (1)].

w8 = w7 ∗ w2, so w7 and w2 visited and evaluated
w2 = w1 ∗ w1 so w1 visited
w7 = w3 ∗ w6, so w6 and w3 visited and evaluated
w6 = w−1

5 , so w5 visited
w3 = w2 ∗ w2, so w2 visited again, already evaluated.
w4 not visited, so not evaluated.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 59 / 62

Oracles Straight Line Programs

Alternative for evaluating SLPs

An SLP can be evaluated recursively, storing a counter how
often a cell is visited.

Example: evaluate w8

[w1 =h (2),w2 =(w1,w1) (3),w3 =(w2,w2)(1),w4 =(w3,w3) (0)
w5 =b (1),w6 =(w5,−1) (1),w7 =(w3,w6) (1),w8 =(w7,w2) (1)].

w8 = w7 ∗ w2, so w7 and w2 visited and evaluated
w2 = w1 ∗ w1 so w1 visited
w7 = w3 ∗ w6, so w6 and w3 visited and evaluated
w6 = w−1

5 , so w5 visited
w3 = w2 ∗ w2, so w2 visited again, already evaluated.
w4 not visited, so not evaluated.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 59 / 62

Oracles Straight Line Programs

Alternative for evaluating SLPs

An SLP can be evaluated recursively, storing a counter how
often a cell is visited.

Example: evaluate w8

[w1 =h (2),w2 =(w1,w1) (3),w3 =(w2,w2)(1),w4 =(w3,w3) (0)
w5 =b (1),w6 =(w5,−1) (1),w7 =(w3,w6) (1),w8 =(w7,w2) (1)].

w8 = w7 ∗ w2, so w7 and w2 visited and evaluated
w2 = w1 ∗ w1 so w1 visited
w7 = w3 ∗ w6, so w6 and w3 visited and evaluated
w6 = w−1

5 , so w5 visited
w3 = w2 ∗ w2, so w2 visited again, already evaluated.
w4 not visited, so not evaluated!

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 59 / 62

Oracles Straight Line Programs

Alternative for evaluating SLPs

An SLP can be evaluated recursively, storing a counter how
often a cell is visited.

Cells with counter (0) can be deleted.
During evaluation, store only group elements for visited
cells.

More details in Bäärnhielm and Leedham-Green [1].

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 60 / 62

Anhang For Further Reading

For Further Reading I

Henrik Bäärnhielm and Charles Leedham-Green
The product replacement prospector,
preprint.

Lásló Babai, Robert Beals and Ákos Seress
Polynomial-time Theory of Matrix Groups
STOC’09, 2009.

L. Babai and E. Szemerédi
On the complexity of matrix group problems I
FOCS’84, 229–240.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 61 / 62

Anhang For Further Reading

For Further Reading II

Eamonn A. O’Brien
Towards effective algorithms for linear groups
Finite Geometries, Groups and Computation, (Colorado),
September 2004, 163–190, 2006.

Eamonn A. O’Brien
Algorithms for matrix groups
Groups St Andrews 2009 in Bath, LMS Lecture Notes 388,
297–323, 2011.

Alice Niemeyer (UWA, RWTH Aachen) Black-Box Groups Sommerschule 2011 62 / 62

	Introduction
	Black-Box Groups
	

	Oracles
	
	

	Anhang
	Anhang
	

