Black-Box Groups, Oracles and more

Alice Niemeyer
UWA, RWTH Aachen

Motivation

Groups often arise as groups of symmetries in other areas. For example,

- symmetry groups of graphs
- symmetry groups of geometric structures
- crystallographic groups

Motivation

Questions about a group G we would like to be able to answer using a computer algebra systems:

- $|G|$
- a composition series of G
- maximal subgroups of G
- normaliser of g for $g \in G$
- $H \cap K$ for $H, K \leq G$
- coset representatives for $K \unlhd G$
- automorphism group of G

Motivation

- This summer school focusses on the geometric approach using Aschbacher's Theorem to design algorithms to answer the above questions.
- An alternative approach working with black box groups has been pursued with stunning results by Babai and collaborators since 1984 [3] culminating in [2].

Motivation

G could be given as

- finitely presented group
- permutation group
- matrix group
- other descriptions

Finitely Presented groups

G described by a finite presentation $\{X \mid R\}$.

- studied a lot
- e.g. polycyclic groups

Not the main focus of these lectures.

Permutation Groups

Let S_{n} denote the group of all permutations on $\Omega=\{1, \ldots, n\}$. Usually $G=\langle X\rangle$, where $X \subseteq S_{n}$.

- studied extensively
- algorithms exist since 1950s
- very efficient

Permutation Group Example

Let G be the symmetry group of the square, i.e. Let $G=\langle(1,2,3,4),(1,2)(3,4)\rangle$.
Note: $(1,2,3,4) *(1,2)(3,4)=(2,4)$.
More about permutation groups later.

Matrix Groups

Matrix groups are the main focus of this summer school.

$$
G=\langle X\rangle, \text { with } X \subseteq \mathrm{GL}(n, q)
$$

- practical algorithms designed over past 20 years

Overview Articles
For further reading please see the two very nice overview articles [4] and [5] by Eamonn O'Brien.

Other representations

- factor groups
- homomorphic images of known groups
- kernels of homomorphisms

summary

A group can come in many disguises. For example, as a

- permutation group
- matrix group
- finitely presented group
- a factor group of another group
- a homomorphic image of another group

Black Box Groups

Black Box groups allow us to describe an arbitrary group to a computer without specifying anything more about the group.

Black Box groups were first introduced by Babai and Szemerédi in 1984 [3].

Black Box Groups

Q a finite set, called alphabet and $N \in \mathbb{N}$ and $S \subseteq Q^{N}$. Let

- \Rightarrow be an equivalence relation on S,
- * a binary relation on S and
- - -1 a unary relation on S.

If the following 3 conditions hold
(1) * induces a binary operation $*$ on $S /=$
(2) $G=(S / \boxed{\square}, *)$ is a group;
(3) -1 induces a unary operation ${ }^{-1}$ on $S /=$ where, for $s \in S$, [$s]^{-1}$ is the inverse of $[s]$ in G.
then $(S / \boxed{=}, *)$ is called a Black-Box Group and $(S, \boxed{=}, *, \boxed{-1})$ a Black-Box representation of $(S / \boxed{=}, *)$.

Definition

Let $Y \leq S$ and define $X=\{[y] \mid y \in Y\}$. If X is a generating set for G then $(Y,==, *,--1)$ is called a generating tuple for the black-box group G.

Example

Let $Q=\{0,1\}$ and $N=3$. Put $S=Q^{N}$ and define

- $(i, j, k)=(\ell, m, n)$ if and only if $j=m$ and $k=n$.
- $(i, j, k) *(\ell, m, n):=$
$(i * \ell,(j+m+k * n)(\bmod 2),(k+n)(\bmod 2))$
- $(i, j, k)-1:=(i,(j+k)(\bmod 2), k)$

What group is this?

Example

Let $Q=\{0,1\}$ and $N=3$. Put $S=Q^{N}$ and define

- $(i, j, k)=(\ell, m, n)$ if and only if $j=m$ and $k=n$.
- $(i, j, k) *(\ell, m, n):=$

$$
(i * \ell,(j+m+k * n)(\bmod 2),(k+n)(\bmod 2))
$$

- $(i, j, k) \boxed{-1}:=(i,(j+k)(\bmod 2), k)$

The group is isomorphic to C_{4}.

Complexity of algorithms for groups

We make some assumptions to simplify describing the complexity of algorithms for groups:

- all group operations cost the same, i.e. μ.
- we have some bound in the size of the input

Definition
The (worst case) complexity of an algorithm for a group is the maximum number of (group) operations required.

Examples

Example: Cost of Element Order

Algorithm 1: ORDER(g)

Input: $g \in G$
Output: $O(g)$
$t:=1$;
while $g^{t} \neq 1$ do
$\mathrm{t}:=\mathrm{t}+1$;
end
return t;
Cost
The cost of Algorithm Order on input g is $O(o(g) \mu)$.
This can be pretty bad ...

Order of elements in the symmetric group S_{n}

Landau 1909

$$
\lim _{n \rightarrow \infty} \frac{\max _{g \in S_{n}}(o(g))}{n^{\sqrt{n}}}=1 .
$$

Hence computing the order of an element in S_{n} like this has worst case complexity $O\left(n^{\sqrt{n}} \mu\right)$.

Complexity of BB algorithms

Definition
Suppose the cost of $=, \boxed{*}$ and $[-1$ is μ.

We write this cost as a function of the size of the input.
Input: words in Q of length N.
Size of the input: $N \log (Q) \sim N($ for fixed $|Q|)$.

Computing orders of elements in groups

- In permutation groups: cheap (cycle structure)
- In matrix groups: (Eamonn's lectures)
- In BB groups: expensive!

Let $(S, \boxed{=}, *,--1)$ be a black box representation of the group $G=(S / \boxed{=}, *)$ and $s \in S$. To determine the order of $[s]$, we need to find the smallest positive integer k with
$s^{k}:=s \square * s * \cdots \cdots s \square\left[1_{g}\right]$.
This requires $O([s])$ calls of $*$.

Example

$G=\mathbb{Z}_{2^{N}}$, the cyclic group of order 2^{N}.
An element can have order 2^{N}. The size of the input is N, thus
computing the order can be an exponential algorithm!

Order Tests

Does g have order dividing m ?
Let $k=\left\lfloor\log _{2}(m)\right\rfloor$. Compute

- $B_{m}=b_{0}+b_{1} 2+\ldots b_{k} 2^{k}$, the binary representation of m.
- $g, g^{2}, \ldots, g^{2^{k}}$
- $g^{m}=g^{b_{0}} * *\left(g^{2}\right)^{b_{1}}{ }_{*} \cdots \boxed{*}\left(g^{2^{k}}\right)^{b_{k}}$

Cost: $O(k \mu)$ to compute $g, g^{2}, \ldots, g^{2^{k}}$ and $O(k \mu)$ multiplications for g^{m}, thus $O(\log (m) \mu)$.

Deterministic Algorithms

deterministic algorithm

- computes an output for all (allowable) inputs
- same input yields same output
- output correct

Randomised Algorithms

randomised algorithm
Uses sequence random bits

- computes an output for most (allowable) inputs
- output depends on random bits and input
- output maybe incorrect

Monte-Carlo Algorithm
Let $0<\varepsilon<1$. A randomised algorithm is a Monte-Carlo algorithm with error probability ε if the algorithm returns an output for an allowable input and the probability that the output for an allowable input is correct is at least $1-\varepsilon$.

Algorithm 2: HEARTCARD (ε)

Input: Standard deck of 32 playing cards, real ε Output: a card
for i in $[1 \ldots M]$ do
pick a random card in the deck;
if the card is a heart card then return the card;
else
put card back into deck;
end
end
return a random card in the deck;

HeartCard

The algorithm is a Monte-Carlo algorithm since it

- always returns an output
- Output depends on random bits
- The output is correct if a heart card is returned
- The output is incorrect if a card of suit other than heart is returned

Analysis of example algorithm

- At any stage there are 32 cards in the deck.
- The probability that a random card is heart is $1 / 4$.
- How large must M be such that the probability of an incorrect answer is at most ε ?

Analysis of example algorithm

Probability of not returning a heart in M random selections is

$$
\left(1-\frac{1}{4}\right)^{M}=\left(\frac{3}{4}\right)^{M}
$$

Now

$$
\left(\frac{3}{4}\right)^{M} \leq \varepsilon
$$

if and only if

$$
M \geq \frac{\log \left(\varepsilon^{-1}\right)}{\log (4 / 3)} \sim 3.5 * \log \left(\varepsilon^{-1}\right) .
$$

For example, if $\varepsilon=1 / 100$ then we need $M>16$, while if $\varepsilon=1 / 10$ then we need $M>8$.

Complexity of Algorithms

- worst case time complexity: maximum number of basic operations as function of size of the input.
- worst case space complexity: maximum number of storage units required as function of size of the input.
- the number of random bits used is usually a parameter.

Complexity of example:
$\log \left(\varepsilon^{-1}\right) / \log (4 / 3)$ random selections and $\log \left(\varepsilon^{-1}\right) / \log (4 / 3)$ card checks.

Complexity of algorithms

Let N be an upper bound on the size of the input. Depending on the behaviour of the function $f(N)$ yielding the complexity, we classify algorithms as follows:

Name and behaviour of $f(N)$
exponential exponential in N polynomial polynomial in N linear constant multiple of N
nearly linear constant multiple of $\log ^{c}(N) N$

Complexity of algorithms

We use the Big-O notation:

- $f(n) \in O(g(n))$ if there is a C such that $f(n) \leq C g(n)$ for all sufficiently large n.
- $f(n) \in o(g(n))$ if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$.
- $f(n) \in \Theta(g(n))$ if there are C_{1}, C_{2} such that $C_{1} g(n) \leq f(n) \leq C_{2} g(n)$ for all sufficiently large n.

1-Sided Monte-Carlo Algorithms

Given ε with $0<\varepsilon<1$.

- answer true or false questions
- answer true is provably correct
- answer false might be incorrect
- the probability that the answer is false and should have been true is less than ε

Example

Algorithm 3: IsAbeLIANSUBGROUP(G, H, ε)
Input: Black Box Group G with $H \leq G$, real ε and a method to construct random elements in H
Output: true or false

```
M :=?;
for i in [1...M] do
    g := PseUDORANDOM(H);
    h := PseudoRandom(H);
    if [g,h]\not=1 then
        return false;
    end
end
return true;
```


Example

What is M ?

- If H is abelian the algorithm returns true and the answer is correct.
- If H is non-abelian then the probability that two random elements g and h in H do not commute is at least $3 / 8$ (Gustafson, 1973).
- Thus each repetition of the for-loop will fail to find a pair to witness that H is non-abelian with probability at most $5 / 8$.
- The probability that in M repetitions we failed to find a non-commuting pair is $(5 / 8)^{M}$.
- If we require $(5 / 8)^{M}<\varepsilon$, we choose $M \geq \frac{\log \left(\varepsilon^{-1}\right)}{\log (8 / 5)} \geq 2.13 \log \left(\varepsilon^{-1}\right)$.

1-Sided Monte-Carlo Algorithms

Algorithm 4: IsAbeLIANSuBGRoup(G, H, ε)
Input: Black Box Group G with $H \leq G$, real ε and a method to construct random elements in H Output: true or false
$M:=\frac{\log \left(\varepsilon^{-1}\right)}{\log (8 / 5)}$;
for i in $[1 \ldots M]$ do
$\mathrm{g}:=$ PSEUDORANDOM(H);
h := PseUdoRandom(H);
if $[g, h] \neq 1$ then
return false;
end
end
return true;

Las Vegas Algorithms

Introduced in 1979 by Lásló Babai.
Definition
A Las Vegas algorithm with error probability ε with $0<\varepsilon<1$ is a randomised algorithm which either returns the correct answer or reports failure. The probability that it reports failure on an allowable input is at most ε.

Lessons

- randomised algorithms often draw conclusions from particular elements
- the probability of failing to find the element often features in complexity
- often need lower bounds for the probability of the elements
- the better the lower bound the smaller the complexity

Oracles

Sometimes the Black Box model is too restrictive.

- Some computations too hard, e.g. Discrete Log, see below
- Some computations more efficient, e.g. ElementOrder in S_{n}

Example:
The order of $(1,2)(3,4,5)(6,7,8,9,10)$ is just the Icm of the cycle lengths, i.e. $2 \cdot 3 \cdot 5=30$.

historical solution

In these situations we consult the oracle.

Oracles

We add new black boxes to the description of a black box group and call them oracles.
For example, an Order Oracle 0 could be used to compute the order of a group element.

Complexity of BB Algorithms with Oracles

We treat the Oracle as an unknown quantity and give the complexity as a function of

- the size of the input
- the number of random elements required
- the number of calls to black boxes
- the number of calls to an oracle

Discrete Logarithm

Let $G=\langle a\rangle$ be a cyclic group with n elements.
Discrete Log Problem
Given $b \in G$, find t such such that $a^{t}=b$.
t is called a discrete logarithm of b with respect to a. Note that two discrete logarithms of b with respect to a are congruent modulo $|G|$.

$$
t=\log _{a}(b) .
$$

Example

Let $p=1009$.
Problem:
Find x with $11^{x}=135$ in $G F(p)$.
How can we do this?

- $11^{1}=11$
- $11^{2}=121$
- $11^{3}=322$
- $11^{5}=620$
- $11^{6}=766$
- $11^{7}=354$
- :
- $11^{1000}=135$

Example

- The size of the input is $\log (p)$ as every element in $G F(p)$ can be stored in $\log (p)=N$ bits.
- Thus computing all powers of 11 modulo p cost $p=\log (p)^{\log (p) / \log \log (p)}=N^{N / \log (N)}$ basic operations.
- Thus exponential in the size of the input.

Discrete Logarithm Problem

Open Problem

Is there a polynomial time algorithm that computes the discrete logarithm of $\log _{a}(b)$ for a, b in a cyclic group ?

Existing Algorithms

- Faster than naive algorithm, but still exponential.
- Often trading time for space, e.g. Baby-step Giant-step or Pollard's Rho Algorithm (both $O(\sqrt{n})$), where n is the order of the cyclic group, i.e. $n=N^{N / \log (N)}$.

We usually treat the Discrete Log Problem as an Oracle.

Straight Line Programs

Given a group G by a generating set X, we would like to be able to represent a given $g \in G$ as a word in X. However, this word should not be too long.

Straight-Line Programs

Suppose we know for h in some group G that we can compute an element g that we need for some purpose as $g=h^{32}$.

Example

$$
g=h^{2^{5}}=h * h * \cdots * h
$$

requires 31 group operations.
We need a better way to record that $g=h^{32}$.

Straight-Line Programs

Example

A faster way for obtaining g from h :

$$
\begin{aligned}
{\left[w_{1}=h, w_{2}=\left(w_{1}, w_{1}\right), w_{3}\right.} & =\left(w_{2}, w_{2}\right), w_{4}=\left(w_{3}, w_{3}\right), \\
w_{5} & \left.=\left(w_{4}, w_{4}\right), w_{6}=\left(w_{5}, w_{5}\right)\right] .
\end{aligned}
$$

Evaluate this list in G, by computing first w_{1}, then w_{2}, where (a, b) means multiply a and b. We find:
$w_{1}=h, w_{2}=w_{1} * w_{1}=h^{2}, w_{3}=w_{2} * w_{2}=h^{4}$,
$w_{4}=w_{3} * w_{3}=h^{8}, w_{5}=w_{4} * w_{4}=h^{16}, w_{6}=w_{5} * w_{5}=h^{32}=g$.
This requires 5 multiplications.

Straight-Line Programs

Example

Suppose h, b are generators for G and

$$
g=h^{4} * b^{-1} * h^{8}
$$

lies in a particular subgroup.
Then we record SLP for g :

$$
\begin{aligned}
& {\left[w_{1}=h, w_{2}=\left(w_{1}, w_{1}\right), w_{3}=\left(w_{2}, w_{2}\right), w_{4}=\left(w_{3}, w_{3}\right),\right.} \\
& \left.w_{5}=b, w_{6}=\left(w_{5},-1\right), w_{7}=\left(w_{3}, w_{6}\right), w_{8}=\left(w_{7}, w_{4}\right)\right] .
\end{aligned}
$$

The entries of the SLP are called cells. Cells contain pointers to previous cells and operations. We see: $w_{1}=h, w_{2}=h^{2}, w_{3}=h^{4}, w_{4}=h^{8}, w_{5}=b, w_{6}=b^{-1}$, $w_{7}=h^{4} * b^{-1}$ and $w_{8}=g$.

Straight-Line Programs

Let $G=S /=$ be a Black Box group given by a Black Box generating tuple $(Y,=, \boxed{*},(-1)$. Let $g \in G$.

Definition
A Straight-Line Program (SLP) for g is a list $L=\left[w_{1}, \ldots, w_{n}\right]$, for which each cell satisfies one of:

- $w_{i} \in Y$,
- $w_{i}=\left(w_{j},--1\right)$ with $j<i$,
- $w_{i}=\left(w_{j}, w_{k}, *\right)$ with $k, j<i$,
such that the evaluation of w_{n} is g.
The evaluation of an SLP of length m requires m BB operations.

Better Straight-Line Programs

We might allow more operations than ** and ${ }_{-1}$.
For example, in a permutation group G the following operations can be computed quickly:

- g^{m} for positive m
- $g^{-1} \cdot h$

Example

$g=(1,2,3,4,5)(6,7,8,9,10,11)$. Then $g^{4}=(1,5,4,3,2)(6,10,8)(7,11,9)$.
$g^{-1} \cdot h$ can be computed as fast as $g \cdot h$.

Better Straight-Line Programs

Definition

A Straight-Line Program (SLP) for g is a list $L=\left[w_{1}, \ldots, w_{n}\right]$, where every cell satisfies one of:

- $w_{i} \in Y$,
- $w_{i}=\left(w_{j}, \boxed{-1}\right)$ with $j<i$,
- $w_{i}=\left(w_{j}, w_{k}, *\right)$ with $k, j<i$,
- $w_{i}=\left(w_{j}, w_{k}, \stackrel{\wedge m}{n}\right)$ with $k, j<i$,
- $w_{i}=\left(w_{j}, w_{k}, \square_{1 *}\right)$ with $k, j<i$,
such that the evaluation w_{n} is g.
The evaluation of an SLP of length m may now require more than m BB operations.

Better Straight-Line Programs

A straight line program can encode several words, e.g. in our example

$$
g=h^{4} * b^{-1} * h^{8}
$$

The SLP for g

$$
\begin{aligned}
& {\left[w_{1}=h, w_{2}=\left(w_{1}, w_{1}\right), w_{3}=\left(w_{2}, w_{2}\right), w_{4}=\left(w_{3}, w_{3}\right),\right.} \\
& \left.w_{5}=b, w_{6}=\left(w_{5},-1\right), w_{7}=\left(w_{3}, w_{6}\right), w_{8}=\left(w_{7}, w_{4}\right)\right] .
\end{aligned}
$$

with $w_{1}=h, w_{2}=h^{2}, w_{3}=h^{4}, w_{4}=h^{8}, w_{5}=b, w_{6}=b^{-1}$, $w_{7}=h^{4} * b^{-1}$ and $w_{8}=g$. It also encodes $h^{4}, h^{4} \cdot b^{-1}$, etc.

Better Straight-Line Programs

A straight line program can encode several words,
Encode several elements
By storing pointers to the elements in the SLP.
Example:
$G=\langle a, b\rangle$ and $M \leq G$ is generated by g, h which we found as SLP in a and b by random search. Most likely g and h contain many common subwords and share large chunks in their SLPs.

Evaluating Straight-Line Programs

A straight line program can be evaluated linearly, e.g.
Example
Consider the SLP

$$
\begin{aligned}
& {\left[w_{1}=h, w_{2}=\left(w_{1}, w_{1}\right), w_{3}=\left(w_{2}, w_{2}\right), w_{4}=\left(w_{3}, w_{3}\right),\right.} \\
& \left.w_{5}=b, w_{6}=\left(w_{5},-1\right), w_{7}=\left(w_{3}, w_{6}\right), w_{8}=\left(w_{7}, w_{2}\right)\right] .
\end{aligned}
$$

with $w_{1}=h, w_{2}=h^{2}, w_{3}=h^{4}, w_{4}=h^{8}, w_{5}=b, w_{6}=b^{-1}$, $w_{7}=h^{4} * b^{-1}$ and $w_{8}=h^{4} * b^{-1} * h^{4}$.

This way we compute and store group elements w_{1}, \ldots, w_{8}. However... the element w_{4} was never used.

Alternative for evaluating SLPs

An SLP can be evaluated recursively, storing a counter how often a cell is visited.

Example: evaluate w_{8}

$$
\begin{aligned}
& {\left[w_{1}=h(0), w_{2}=\left(w_{1}, w_{1}\right)(0), w_{3}=\left(w_{2}, w_{2}\right)(0), w_{4}=\left(w_{3}, w_{3}\right)(0)\right.} \\
& \left.w_{5}=b(0), w_{6}=\left(w_{5},-1\right)(0), w_{7}=\left(w_{3}, w_{6}\right)(0), w_{8}=\left(w_{7}, w_{2}\right)(1)\right] .
\end{aligned}
$$

- $w_{2}=w_{1} * w_{1}$ so w_{1} visited
- $w_{7}=w_{3} * w_{6}$, so w_{6} and w_{3} visited and evaluated
- $w_{6}=w_{5}^{-1}$, so w_{5} visited
- $w_{3}=w_{2} * w_{2}$, so w_{2} visited again, already evaluated. - w_{4} not visited, so not evaluated.

Alternative for evaluating SLPs

An SLP can be evaluated recursively, storing a counter how often a cell is visited.
Example: evaluate w_{8}

$$
\begin{aligned}
& {\left[w_{1}=h(0), w_{2}=\left(w_{1}, w_{1}\right)(1), w_{3}=\left(w_{2}, w_{2}\right)(0), w_{4}=\left(w_{3}, w_{3}\right)(0)\right.} \\
& \left.w_{5}=b(0), w_{6}=\left(w_{5},-1\right)(0), w_{7}=\left(w_{3}, w_{6}\right)(1), w_{8}=\left(w_{7}, w_{2}\right)(1)\right] .
\end{aligned}
$$

- $w_{8}=w_{7} * w_{2}$, so w_{7} and w_{2} visited and evaluated
- $w_{7}=w_{3} * w_{6}$, so w_{6} and w_{3} visited and evaluated
- $w_{6}=w_{5}^{-1}$, so w_{5} visited
- $w_{3}=w_{2} * W_{2}$, so W_{2} visited again, already evaluated.
- w_{4} not visited, so not evaluated.

Alternative for evaluating SLPs

An SLP can be evaluated recursively, storing a counter how often a cell is visited.
Example: evaluate w_{8}

$$
\begin{aligned}
& {\left[w_{1}=h(2), w_{2}=\left(w_{1}, w_{1}\right)(1), w_{3}=\left(w_{2}, w_{2}\right)(0), w_{4}=\left(w_{3}, w_{3}\right)(0)\right.} \\
& \left.w_{5}=b(0), w_{6}=\left(w_{5},-1\right)(0), w_{7}=\left(w_{3}, w_{6}\right)(1), w_{8}=\left(w_{7}, w_{2}\right)(1)\right] .
\end{aligned}
$$

- $w_{8}=w_{7} * w_{2}$, so w_{7} and w_{2} visited and evaluated
- $w_{2}=w_{1} * w_{1}$ so w_{1} visited
- $W_{7}=W_{3} * w_{6}$, so w_{6} and W_{3} visited and evaluated - $w_{6}=w_{5}^{-1}$, so w_{5} visited
- $w_{3}=w_{2} * w_{2}$, so w_{2} visited again, already evaluated. - w_{4} not visited, so not evaluated.

Alternative for evaluating SLPs

An SLP can be evaluated recursively, storing a counter how often a cell is visited.
Example: evaluate w_{8}
$\left[w_{1}=h(2), w_{2}=\left(w_{1}, w_{1}\right)(1), w_{3}=\left(w_{2}, w_{2}\right)(1), w_{4}=\left(w_{3}, w_{3}\right)(0)\right.$
$\left.w_{5}=b(0), w_{6}=\left(w_{5},-1\right)(1), w_{7}=\left(w_{3}, w_{6}\right)(1), w_{8}=\left(w_{7}, w_{2}\right)(1)\right]$.

- $w_{8}=w_{7} * w_{2}$, so w_{7} and w_{2} visited and evaluated
- $w_{2}=w_{1} * w_{1}$ so w_{1} visited
- $w_{7}=w_{3} * w_{6}$, so w_{6} and w_{3} visited and evaluated
- $W_{3}=w_{2} * W_{2}$, so w_{2} visited again, already evaluated. - w_{4} not visited, so not evaluated.

Alternative for evaluating SLPs

An SLP can be evaluated recursively, storing a counter how often a cell is visited.
Example: evaluate w_{8}
$\left[w_{1}=h(2), w_{2}=\left(w_{1}, w_{1}\right)(1), w_{3}=\left(w_{2}, w_{2}\right)(1), w_{4}=\left(w_{3}, w_{3}\right)(0)\right.$
$\left.w_{5}=b(1), w_{6}=\left(w_{5},-1\right)(1), w_{7}=\left(w_{3}, w_{6}\right)(1), w_{8}=\left(w_{7}, w_{2}\right)(1)\right]$.

- $w_{8}=w_{7} * w_{2}$, so w_{7} and w_{2} visited and evaluated
- $w_{2}=w_{1} * w_{1}$ so w_{1} visited
- $w_{7}=w_{3} * w_{6}$, so w_{6} and w_{3} visited and evaluated
- $w_{6}=w_{5}^{-1}$, so w_{5} visited
- $w_{3}=w_{2} * w_{2}$, so W_{2} visited again, already evaluated.

Alternative for evaluating SLPs

An SLP can be evaluated recursively, storing a counter how often a cell is visited.
Example: evaluate w_{8}
$\left[w_{1}=h(2), w_{2}=\left(w_{1}, w_{1}\right)(3), w_{3}=\left(w_{2}, w_{2}\right)(1), w_{4}=\left(w_{3}, w_{3}\right)(0)\right.$
$\left.w_{5}=b(1), w_{6}=\left(w_{5},-1\right)(1), w_{7}=\left(w_{3}, w_{6}\right)(1), w_{8}=\left(w_{7}, w_{2}\right)(1)\right]$.

- $w_{8}=w_{7} * w_{2}$, so w_{7} and w_{2} visited and evaluated
- $w_{2}=w_{1} * w_{1}$ so w_{1} visited
- $w_{7}=w_{3} * w_{6}$, so w_{6} and w_{3} visited and evaluated
- $w_{6}=w_{5}^{-1}$, so w_{5} visited
- $w_{3}=w_{2} * w_{2}$, so w_{2} visited again, already evaluated.

Alternative for evaluating SLPs

An SLP can be evaluated recursively, storing a counter how often a cell is visited.
Example: evaluate w_{8}
$\left[w_{1}=h(2), w_{2}=\left(w_{1}, w_{1}\right)(3), w_{3}=\left(w_{2}, w_{2}\right)(1), w_{4}=\left(w_{3}, w_{3}\right)(0)\right.$
$\left.w_{5}=b(1), w_{6}=\left(w_{5},-1\right)(1), w_{7}=\left(w_{3}, w_{6}\right)(1), w_{8}=\left(w_{7}, w_{2}\right)(1)\right]$.

- $w_{8}=w_{7} * w_{2}$, so w_{7} and w_{2} visited and evaluated
- $w_{2}=w_{1} * w_{1}$ so w_{1} visited
- $w_{7}=w_{3} * w_{6}$, so w_{6} and w_{3} visited and evaluated
- $w_{6}=w_{5}^{-1}$, so w_{5} visited
- $w_{3}=w_{2} * w_{2}$, so w_{2} visited again, already evaluated.
- w_{4} not visited, so not evaluated!

Alternative for evaluating SLPs

An SLP can be evaluated recursively, storing a counter how often a cell is visited.

- Cells with counter (0) can be deleted.
- During evaluation, store only group elements for visited cells.

More details in Bäärnhielm and Leedham-Green [1].

For Further Reading I

宣
Henrik Bäärnhielm and Charles Leedham－Green
The product replacement prospector， preprint．

家
Lásló Babai，Robert Beals and Ákos Seress
Polynomial－time Theory of Matrix Groups STOC＇09， 2009.

五
L．Babai and E．Szemerédi
On the complexity of matrix group problems I FOCS＇84，229－240．

For Further Reading II

击 Eamonn A. O'Brien
Towards effective algorithms for linear groups Finite Geometries, Groups and Computation, (Colorado), September 2004, 163-190, 2006.

国 Eamonn A. O'Brien
Algorithms for matrix groups
Groups St Andrews 2009 in Bath, LMS Lecture Notes 388, 297-323, 2011.

