Algorithms for Permutation groups

Alice Niemeyer

UWA, RWTH Aachen

Permutation Groups

The Symmetric Group

Let Ω be a finite set.

The Symmetric group, $Sym(\Omega)$, is the group of all bijections from Ω to itself.

A permutation group is a subgroup of $Sym(\Omega)$.

Permutation Groups

- 1960s: the Classification of finite simple groups required to work with large permutation groups.
- 1970s: C. Sims introduced algorithms for working with permutation groups.
- These were among the first algorithms in CAYLEY and GAP.
- 1990s: nearly linear algorithms for permutation groups emerged. These are now in GAP and MAGMA.
- Seress' book.
- A very brief summary.

Notation

From now on:

Let Ω be finite and $G \leq \text{Sym}(\Omega)$.

For $\alpha \in \Omega$ let G_{α} denote the stabiliser of α in G, i.e.

$$G_{\alpha} = \{ \boldsymbol{g} \in \boldsymbol{G} \mid \alpha^{\boldsymbol{g}} = \alpha \}.$$

If $\alpha, \beta \in \Omega$ let $G_{(\alpha,\beta)}$ denote the stabiliser of β in G_{α} , i.e.

$$G_{(\alpha,\beta)} = (G_{\alpha})_{\beta} = \{g \in G \mid \alpha^g = \alpha \text{ and } \beta^g = \beta\}.$$

Bases

Base and Stabiliser Chain

 $B = (\alpha_1, \alpha_2, \dots, \alpha_k)$ with $\alpha_i \in \Omega$ is a base for G if $G_{(\alpha_1, \alpha_2, \dots, \alpha_k)} = \{1\}$. The chain of subgroups

$$G = G^{(1)} \ge G^{(2)} \ge \cdots \ge G^{(k+1)} = \{1\}$$

defined by $G^{(i+1)} = G^{(i)}_{\alpha_i}$ for $1 \le i \le k$ is the stabiliser chain for *B*.

B is irredundant if all the inclusions in the stabiliser chain for *B* are proper.

Base Images

If *G* is a permutation group and $B = (\alpha_1, \alpha_2, ..., \alpha_k)$ a base for *G*, then each element $g \in G$ is uniquely determined by $(\alpha_1^g, \alpha_2^g, ..., \alpha_k^g)$. (Since $B^g = B^h$ implies $B^{gh^{-1}} = B$ and thus $gh^{-1} = 1$). Orbits

Orbits

Definition

Let $G = \langle X \rangle \leq \text{Sym}(\Omega)$ and $\alpha \in \Omega$. The orbit of α under G, denoted α^{G} is the set

$$\alpha^{\boldsymbol{G}} := \{ \alpha^{\boldsymbol{g}} \mid \boldsymbol{g} \in \boldsymbol{G} \}.$$

Orbits

Example

The orbits for $G = \langle x, y, z \rangle$ with

x = (1,2)(3,5,9)(4,6), y = (1,3,5)(7,8,10), z = (4,7,8)

on $\Omega=\{1,2,\ldots,10\}$ are $\Omega/{\it G}$ are $\Delta_1=\{1,2,3,5,9\}$ and $\Delta_2=\{4,6,7,8,10\}.$

Definition

Let $G \leq \text{Sym}(\Omega)$ and $(\alpha_1, \alpha_2, \dots, \alpha_k)$ a basis for G. Let $G = G^{(1)} \geq G^{(2)} \geq \dots \geq G^{(k+1)} = \{1\}$ (where $G^{(i+1)} = G^{(i)}_{\alpha_i}$ for $1 \leq i \leq k$) be the stabiliser chain for B. Then $S \subseteq G$ is a strong generating set for G if for every i with $1 \leq i \leq k + 1$ holds $G^{(i)} = \langle S \cap G^{(i)} \rangle$.

Orbits

The Schreier-Sims Algorithm

Input: $G \leq \text{Sym}(\Omega)$ Output:

- $(\alpha_1, \alpha_2, \dots, \alpha_k)$ a basis for *G*
- $S \subseteq G$ a strong generating set for G
- the orbits $\alpha_i^{G^{(i)}}$ stored in a particular way

Example

- $G := \langle (1, 2, 3, 4, 5, 6), (2, 6)(3, 5) \rangle.$
- base: {1,2}
- strong generating set: $S = \{(2,6)(3,5), (1,2,3,4,5,6), (1,3,5)(2,4,6)\}$
- stabiliser Chain:

$$G^{(1)}=G\geq G^{(2)}=\langle (2,6)(3,5)
angle\geq G^{(3)}=\{1\}.$$

• orbits:

$$1^{G^{(1)}} = \Omega, \, 2^{G^{(2)}} = \{2, 6\}.$$

Questions

The data structure of a base and a strong generating set together with the associated stabiliser chain allows us to answer questions about *G* such as

- what is |G|?
- does $g \in \operatorname{Sym}(\Omega)$ satisfy $g \in G$?

Example: Is $g = (1, 4)(2, 3)(5, 6) \in G$?

- $G := \langle (1, 2, 3, 4, 5, 6), (2, 6)(3, 5) \rangle.$
- base: {1,2}
- strong generating set: $S = \{(2,6)(3,5), (1,2,3,4,5,6), (1,3,5)(2,4,6)\}$
- stabiliser Chain:

$$G^{(1)}=G\geq G^{(2)}=\langle (2,6)(3,5)
angle\geq G^{(3)}=\{1\}.$$

• orbits:

$$1^{G^{(1)}} = \Omega, \, 2^{G^{(2)}} = \{2, 6\}.$$

Example: Is $g = (1, 4)(2, 3)(5, 6) \in G$?

- $G := \langle (1, 2, 3, 4, 5, 6), (2, 6)(3, 5) \rangle.$
 - 1^g = 4
 - Find $h \in G$ with $1^h = 4$.
 - $h = (1, 4)(2, 5)(3, 6) \in G$.
 - $g \in G$ if and only if $gh^{-1} \in G$.
 - $1^{gh^{-1}} = 1$ so $g \in G$ if and only if $gh^{-1} \in G^{(2)}$.
 - $gh^{-1} = (2, 6)(3, 5)$.
 - $(2,6)(3,5) \in S$, so $gh^{-1} \in G^{(2)}$.
 - Thus $g \in G$.

Schreier's Lemma

SCHREIER'S LEMMA

Let $G = \langle X \rangle$ be a finite group, $H \leq G$ and T set of representatives of the right cosets of H in G such that Tcontains 1. Denote by \overline{g} the representative of Hg for $g \in G$. Then H is generated by

$$X_H = \{ tx(\overline{tx})^{-1} | t \in T, x \in X \}.$$

Essential steps

- Compute the orbits $\alpha_i^{G^{(i)}}$ together with
- *T_i* set of cosets representatives for cosets of *G*^(*i*+1) in *G*^(*i*)
- for $\beta \in \alpha_i^{G^{(i)}}$ find representative in T_i
- find generators for $G^{(i+1)}$.

Theorem

Let Ω finite, $n = |\Omega|$ and $G = \langle X \rangle \leq Sym(\Omega)$ a permutation group. Then the complexity of the Schreier -Sims algorithm is

 $O(n^3 \log_2(|G|)^3 + |X|n^3 \log_2(|G|)).$

Note that $|\text{Sym}(\Omega)| = n! \sim n^n$, so $\log(|\text{Sym}(\Omega)|) \sim n \log(n)$. Therefore, the complexity can be as bad as

 $O(n^6 + |X|n^4).$

A Remark about |B|

Given a basis *B* for $G = \langle X \rangle \leq \text{Sym}(\Omega)$, with Ω finite. Then $2^{|B|} \leq |G| \leq n^{|B|}$ or

$$rac{| ext{log}(|G|)}{| ext{log}(n)} \leq |B| \leq rac{| ext{log}(|G|)}{| ext{log}(2)}.$$

Small Base

Let G be a family of permutation groups. We call G small-base if for every $G \in G$ of degree *n* holds

 $\log |G| < \log^c(n)$

for a constant c, fixed for G.

Complexity of the algorithm

Theorem of Liebeck

Theorem

Let G be a family of permutation groups. Every large-base primitive group in G of degree n involves the action of A_n or S_n on the set of k-element subsets of $\{1, \ldots, n\}$, for some n and k < n/2.

These groups are called the giants.

Remark

Let \mathcal{G} be a family of small-base permutation groups, i.e. for every $G \in \mathcal{G}$ of degree *n* holds

$$\log |G| < \log^c(n)$$

for a constant c, fixed for G. Then complexity of the Schreier-Sims algorithm is

$$O(n^3 \log_2(|G|)^3 + |X|n^3 \log_2(|G|)).$$

Remark

Let \mathcal{G} be a family of small-base permutation groups, i.e. for every $G \in \mathcal{G}$ of degree *n* holds

$$\log |G| < \log^c(n)$$

for a constant c, fixed for G.

Then complexity of the Schreier-Sims algorithm is

$$O(n^3 \log^c(n)^3 + |X|n^3 \log^c(n)).$$

This is only slightly more expensive than $O(n^3)$. If we can limit the length of the basis by *n*, the complexity is $O(n^6)$.

"State of the Art"

Seress proves in his book (p. 75, Theorem 4.5.5):

Theorem

Let $G \leq \langle X \rangle \leq \text{Sym}(\Omega)$ with $|\Omega| = n$. Then there exists a Monte-Carlo algorithm, which computes with probability ε for $\varepsilon \leq \frac{1}{n^d}$ (for a positive whole number d, given by the user) a basis and a strong generating system for G in time

 $O(n\log(n)\log(|G|)^4 + |X|n\log(|G|))$

and uses $O(n\log(|G|) + |X|n)$ space.

For small-base groups this algorithm is nearly linear.

One of the first approaches to deal with Matrix Groups (Butler, 1979).

Let $G \leq GL(n, q)$. Then G acts faithfully as a permutation group on $V = \mathbb{F}_q^n$ via $g : v \mapsto vg$.

Thus we an apply the Schreier-Sims algorithm to this permutation group.

Problem

How long can the orbit v^G be? It can be $q^n - 1$.

Example

q = 3, *n* = 100

q^{*n*} – 1

= 515377520732011331036461129765621272702107522000

Even

$$3^{20} - 1 = 348678440.$$

Problem

- In a permutation group G ≤ S_n the length of an orbit is at most n. Hence easy to compute an orbit for n quite large.
- In a matrix group $G \leq GL(n, q)$ orbits can be $O(q^n)$.

Complexity

- S_n linear in n.
- GL(n, q) exponential in n.

- works well for small *n* and *q*.
- Algorithms developed by Butler (1979)
- Murray & O'Brien (1995) consider the selection of base points
- Lübeck & Neunhöffer (2000) and Müller, Neunhöffer, Wilson (2007) consider large orbits

How can we rule out that our given group is a giant beforehand?

Consider first A_n and S_n in their natural representation.

Definition

An element $g \in S_n$ is called *purple* if it contains in its disjoint cycle decomposition one cycle of prime length *p* with n/2 .

Theorem (Modification of a theorem of Jordan, 1873)

 $G \leq S_n$ acts transitively on $\Omega = \{1, ..., n\}$. If G contains a purple element, then G contains A_n .

Theorem

Let p a prime with $n/2 . The proportion of purple elements in <math>S_n$ and A_n is $\frac{1}{p}$.

Bertrand's postulate

The following Theorem was already conjectured by Bertrand (1822-1900) and proved by Chebyshev (1821-1894) in 1850.

Theorem

For a positive integer m with m > 3 there exists at least one prime p with m .

Proportions in S_n and A_n

The proportion of purple elements in S_n or A_n is $\frac{c}{\log(n)}$ for a small constant *c*.

Monte-Carlo Test: is $A_n \leq G$?

Algorithm 1: CONTAINSAn

Eingabe: $G = \langle X \rangle \leq S_n$ Ausgabe: true or false if not ISTRANSITIVE(G) then return false; for $i = 1 \dots N$ do g := Random(G); if g purple then return true; end return false;

Complexity of CONTAINSAn

The probability that among *N* independent, uniformly distributed random elements $g \in G$, with $A_n \leq G$, no purple elements were found is $(1 - \frac{c}{\log(n)})^N$. Thus choose *N* such that $(1 - \frac{c}{\log(n)})^N < \varepsilon$, or

$$\mathsf{N} > \mathsf{log}(arepsilon^{-1}) \, \mathsf{log}\left(rac{\mathsf{log}(n)}{\mathsf{log}(n) - c}
ight)^{-1}$$

This is the case, if $N > \log(\varepsilon^{-1}) \frac{\log(n)}{c}$. Thus the complexity is

I

$$O(\log(\varepsilon^{-1})\log(n)(\rho+n)),$$

where ρ is the cost of a call to RANDOM.

Problems with no known polynomial time Algorithms

Consider the following problems for permutation groups.

- set stabiliser
- centraliser of one group in another
- intersection of permutation groups
- decide whether two elements in a group are conjugate

For Further Reading

For Further Reading I

Ákos Seress Permutation Group Algorithms, Cambridge Tracts in Mathematics 152, Cambridge University Press, 2003.