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Permutation Groups

Permutation Groups

The Symmetric Group
Let Ω be a finite set.
The Symmetric group, Sym(Ω), is the group of all bijections from
Ω to itself.
A permutation group is a subgroup of Sym(Ω).
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Permutation Groups

Permutation Groups

1960s: the Classification of finite simple groups required to
work with large permutation groups.
1970s: C. Sims introduced algorithms for working with
permutation groups.
These were among the first algorithms in CAYLEY and GAP.
1990s: nearly linear algorithms for permutation groups
emerged. These are now in GAP and MAGMA.
Seress’ book.
A very brief summary.
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Permutation Groups

Notation

From now on:
Let Ω be finite and G ≤ Sym(Ω).

For α ∈ Ω let Gα denote the stabiliser of α in G, i.e.

Gα = {g ∈ G | αg = α}.

If α, β ∈ Ω let G(α,β) denote the stabiliser of β in Gα, i.e.

G(α,β) = (Gα)β = {g ∈ G | αg = α and βg = β}.

Alice Niemeyer (UWA, RWTH Aachen) Perm Groups Sommerschule 2011 4 / 36



Permutation Groups

Bases

Base and Stabiliser Chain
B = (α1, α2, . . . , αk ) with αi ∈ Ω is a base for G if
G(α1,α2,...,αk ) = {1}.
The chain of subgroups

G = G(1) ≥ G(2) ≥ · · · ≥ G(k+1) = {1}

defined by G(i+1) = G(i)
αi

for 1 ≤ i ≤ k is the stabiliser chain for B.

B is irredundant if all the inclusions in the stabiliser chain for B
are proper.
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Permutation Groups

Base Images

If G is a permutation group and B = (α1, α2, . . . , αk ) a base for
G, then each element g ∈ G is uniquely determined by
(αg

1 , α
g
2 , . . . , α

g
k ).

(Since Bg = Bh implies Bgh−1
= B and thus gh−1 = 1).
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Orbits

Orbits

Definition
Let G = 〈X 〉 ≤ Sym(Ω) and α ∈ Ω. The orbit of α under G,
denoted αG is the set

αG := {αg | g ∈ G}.
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Orbits

Example
The orbits for G = 〈x , y , z〉 with

x = (1,2)(3,5,9)(4,6), y = (1,3,5)(7,8,10), z = (4,7,8)

on Ω = {1,2, . . . ,10} are Ω/G are ∆1 = {1,2,3,5,9} and
∆2 = {4,6,7,8,10}.
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Orbits

Definition
Let G ≤ Sym(Ω) and (α1, α2, . . . , αk ) a basis for G. Let
G = G(1) ≥ G(2) ≥ · · · ≥ G(k+1) = {1} (where G(i+1) = G(i)

αi
for

1 ≤ i ≤ k ) be the stabiliser chain for B.
Then S ⊆ G is a strong generating set for G if for every i with
1 ≤ i ≤ k + 1 holds G(i) = 〈S ∩G(i)〉.
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The Schreier-Sims Algorithm

The Schreier-Sims Algorithm

Input: G ≤ Sym(Ω)
Output:

(α1, α2, . . . , αk ) a basis for G
S ⊆ G a strong generating set for G
the orbits αG(i)

i stored in a particular way
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The Schreier-Sims Algorithm

Example

G := 〈(1,2,3,4,5,6), (2,6)(3,5)〉.
base: {1,2}
strong generating set:
S = {(2,6)(3,5), (1,2,3,4,5,6), (1,3,5)(2,4,6)}
stabiliser Chain:

G(1) = G ≥ G(2) = 〈(2,6)(3,5)〉 ≥ G(3) = {1}.

orbits:
1G(1)

= Ω, 2G(2)
= {2,6}.
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The Schreier-Sims Algorithm

Questions

The data structure of a base and a strong generating set
together with the associated stabiliser chain allows us to answer
questions about G such as

what is |G|?
does g ∈ Sym(Ω) satisfy g ∈ G?
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The Schreier-Sims Algorithm

Example: Is g = (1,4)(2,3)(5,6) ∈ G?

G := 〈(1,2,3,4,5,6), (2,6)(3,5)〉.
base: {1,2}
strong generating set:
S = {(2,6)(3,5), (1,2,3,4,5,6), (1,3,5)(2,4,6)}
stabiliser Chain:

G(1) = G ≥ G(2) = 〈(2,6)(3,5)〉 ≥ G(3) = {1}.

orbits:
1G(1)

= Ω, 2G(2)
= {2,6}.
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The Schreier-Sims Algorithm

Example: Is g = (1,4)(2,3)(5,6) ∈ G?

G := 〈(1,2,3,4,5,6), (2,6)(3,5)〉.
1g = 4
Find h ∈ G with 1h = 4.
h = (1,4)(2,5)(3,6) ∈ G.
g ∈ G if and only if gh−1 ∈ G.
1gh−1

= 1 so g ∈ G if and only if gh−1 ∈ G(2).

gh−1 = (2,6)(3,5).
(2,6)(3,5) ∈ S, so gh−1 ∈ G(2).

Thus g ∈ G.
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The Schreier-Sims Algorithm

Schreier’s Lemma

SCHREIER’S LEMMA

Let G = 〈X 〉 be a finite group, H ≤ G and T set of
representatives of the right cosets of H in G such that T
contains 1. Denote by g the representative of Hg for g ∈ G.
Then H is generated by

XH = {tx(tx)−1|t ∈ T , x ∈ X}.
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The Schreier-Sims Algorithm

Essential steps

Compute the orbits αG(i)

i together with
Ti set of cosets representatives for cosets of G(i+1) in G(i)

for β ∈ αG(i)

i find representative in Ti

find generators for G(i+1).
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The Schreier-Sims Algorithm Complexity of the algorithm

Theorem
Let Ω finite, n = |Ω| and G = 〈X 〉 ≤ Sym(Ω) a permutation
group. Then the complexity of the Schreier -Sims algorithm is

O(n3 log2(|G|)3 + |X |n3 log2(|G|)).

Note that |Sym(Ω)| = n! ∼ nn, so log(|Sym(Ω)|) ∼ n log(n).
Therefore, the complexity can be as bad as

O(n6 + |X |n4).
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The Schreier-Sims Algorithm Complexity of the algorithm

A Remark about |B|

Given a basis B for G = 〈X 〉 ≤ Sym(Ω), with Ω finite. Then
2|B| ≤ |G| ≤ n|B| or

log(|G|)
log(n)

≤ |B| ≤ log(|G|)
log(2)

.
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The Schreier-Sims Algorithm Complexity of the algorithm

Small Base

Let G be a family of permutation groups. We call G small-base if
for every G ∈ G of degree n holds

log |G| < logc(n)

for a constant c, fixed for G.
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The Schreier-Sims Algorithm Complexity of the algorithm

Theorem of Liebeck

Theorem
Let G be a family of permutation groups. Every large-base
primitive group in G of degree n involves the action of An or Sn

on the set of k -element subsets of {1, . . . ,n}, for some n and
k < n/2.

These groups are called the giants.
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The Schreier-Sims Algorithm Complexity of the algorithm

Remark

Let G be a family of small-base permutation groups, i.e. for every
G ∈ G of degree n holds

log |G| < logc(n)

for a constant c, fixed for G.
Then complexity of the Schreier-Sims algorithm is

O(n3 log2(|G|)3 + |X |n3 log2(|G|)).
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The Schreier-Sims Algorithm Complexity of the algorithm

Remark

Let G be a family of small-base permutation groups, i.e. for every
G ∈ G of degree n holds

log |G| < logc(n)

for a constant c, fixed for G.
Then complexity of the Schreier-Sims algorithm is

O(n3 logc(n)3 + |X |n3 logc(n)).

This is only slightly more expensive than O(n3).
If we can limit the length of the basis by n, the complexity is
O(n6).
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The Schreier-Sims Algorithm Complexity of the algorithm

“State of the Art”

Seress proves in his book (p. 75, Theorem 4.5.5):

Theorem
Let G ≤ 〈X 〉 ≤ Sym(Ω) with |Ω| = n. Then there exists a
Monte-Carlo algorithm, which computes with probability ε for
ε ≤ 1

nd (for a positive whole number d, given by the user) a basis
and a strong generating system for G in time

O(n log(n) log(|G|)4 + |X |n log(|G|))

and uses O(n log(|G|) + |X |n) space.

For small-base groups this algorithm is nearly linear.
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The Schreier-Sims Algorithm Complexity of the algorithm

Schreier-Sims for Matrix Groups

One of the first approaches to deal with Matrix Groups (Butler,
1979).
Let G ≤ GL(n,q). Then G acts faithfully as a permutation group
on V = Fn

q via g : v 7→ vg.
Thus we an apply the Schreier-Sims algorithm to this
permutation group.
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The Schreier-Sims Algorithm Complexity of the algorithm

Schreier-Sims for Matrix Groups

Problem
How long can the orbit vG be? It can be qn − 1.

Example
q = 3,n = 100

qn − 1
= 515377520732011331036461129765621272702107522000.

Even
320 − 1 = 348678440.
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The Schreier-Sims Algorithm Complexity of the algorithm

Schreier-Sims for Matrix Groups

Problem
In a permutation group G ≤ Sn the length of an orbit is at
most n. Hence easy to compute an orbit for n quite large.
In a matrix group G ≤ GL(n,q) orbits can be O(qn).

Complexity
Sn linear in n.
GL(n,q) exponential in n.
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The Schreier-Sims Algorithm Complexity of the algorithm

Schreier-Sims for Matrix Groups

works well for small n and q.
Algorithms developed by Butler (1979)
Murray & O’Brien (1995) consider the selection of base
points
Lübeck & Neunhöffer (2000) and Müller, Neunhöffer, Wilson
(2007) consider large orbits
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The Schreier-Sims Algorithm Complexity of the algorithm

How can we rule out that our given group is a giant beforehand?

Consider first An and Sn in their natural representation.
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Randomised recognition of alternating groups

Definition
An element g ∈ Sn is called purple if it contains in its disjoint
cycle decomposition one cycle of prime length p with
n/2 < p < n − 2.
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Randomised recognition of alternating groups

Theorem (Modification of a theorem of Jordan, 1873)
G ≤ Sn acts transitively on Ω = {1, . . . ,n}. If G contains a purple
element, then G contains An.
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Randomised recognition of alternating groups

Theorem
Let p a prime with n/2 < p < n − 2. The proportion of purple
elements in Sn and An is 1

p .
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Randomised recognition of alternating groups

Bertrand’s postulate

The following Theorem was already conjectured by Bertrand
(1822-1900) and proved by Chebyshev (1821-1894) in 1850.

Theorem
For a positive integer m with m > 3 there exists at least one
prime p with m < p < 2m − 2.
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Randomised recognition of alternating groups

Proportions in Sn and An

The proportion of purple elements in Sn or An is c
log(n) for a small

constant c.
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Randomised recognition of alternating groups

Monte-Carlo Test: is An ≤ G?

Algorithm 1: CONTAINSAn

Eingabe: G = 〈X 〉 ≤ Sn

Ausgabe: true or false
if not ISTRANSITIVE(G) then return false;
for i = 1 . . .N do

g := Random(G);
if g purple then return true;

end
return false;
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Randomised recognition of alternating groups

Complexity of CONTAINSAn

The probability that among N independent, uniformly distributed
random elements g ∈ G, with An ≤ G, no purple elements were
found is (1− c

log(n))N . Thus choose N such that (1− c
log(n))N < ε,

or

N > log(ε−1) log
(

log(n)

log(n)− c

)−1

.

This is the case, if N > log(ε−1) log(n)
c .

Thus the complexity is

O(log(ε−1) log(n)(ρ + n)),

where ρ is the cost of a call to RANDOM.
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Randomised recognition of alternating groups

Problems with no known polynomial time
Algorithms

Consider the following problems for permutation groups.
set stabiliser
centraliser of one group in another
intersection of permutation groups
decide whether two elements in a group are conjugate
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Anhang For Further Reading

For Further Reading I

Ákos Seress
Permutation Group Algorithms,
Cambridge Tracts in Mathematics 152,
Cambridge University Press, 2003.
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