Basic concepts

Eamonn O'Brien
University of Auckland

August 2011

Determine the order of a matrix

Let $g \in \mathrm{GL}(\mathrm{d}, \mathrm{q})$.
Find $n \geq 1$ such that $g^{n}=1$.
GL(d, q) has elements of order $q^{d}-1$, Singer cycles, \ldots
so not practical to compute powers of g until we obtain the identity.

To find $|g|$: probably requires factorisation of numbers of form $q^{i}-1$, a hard problem.

Babai \& Beals (1999):

Theorem

If the set of primes dividing a multiplicative upper-bound B for $|g|$ is known, then the precise value of $|g|$ can be determined in polynomial time.

Celler \& Leedham-Green (1995): compute $|g|$ in time $O\left(d^{4} \log q\right)$ subject to factorisation of $q^{i}-1$ for $1 \leq i \leq d$.

- First compute a "good" multiplicative upper bound B for $|g|$.

Determine and factorise minimal polynomial for g as

$$
m(x)=\prod_{i=1}^{t} f_{i}(x)^{m_{i}}
$$

where $\operatorname{deg}\left(f_{i}\right)=d_{i}$ and $\beta=\left\lceil\log _{p} \max m_{i}\right\rceil$.
$B:=\prod_{i=1}^{t} \operatorname{lcm}\left(q^{d_{i}}-1\right) \times p^{\beta}$

Lemma

Let $B=\prod_{i=1}^{t} \operatorname{lcm}\left(q^{d_{i}}-1\right) \times p^{\beta}$. Then $|g|$ divides B.

To see this, reduce g to Jordan normal form over the algebraic closure of $\mathrm{GF}(q)$.
Each eigenvalue lies in an extension field of $\operatorname{GF}(q)$ of dimension d_{i} and so has multiplicative order dividing $q^{d_{i}}-1$.

If a block has size $\gamma_{i}>1$, then the p-part of the order of the block is p^{δ} where $\delta=\left\lceil\log _{p} \gamma_{i}\right\rceil$.

Can we use B to learn $|g|$?

(1) Factorise $B=\prod_{i=1}^{m} p_{i}^{\alpha_{i}}$ where the primes p_{i} are distinct.
(2) If $m=1$, then calculate $g^{p_{1}^{j}}$ for $j=1,2, \ldots, \alpha_{1}-1$ until the identity is constructed.
(3) If $m>1$ then express $B=u v$, where u, v are coprime and have approximately the same number of distinct prime factors. Now g^{u} has order k dividing v and g^{k} has order ℓ say dividing u, and $|g|$ is $k \ell$. Hence the algorithm proceeds by recursion on m.

Let $m(x)$ be the minimal polynomial of g. The F_{q}-algebra generated by g is isomorphic to $F_{q}[x] /(f(x))$.

It suffices to calculate the multiplicative order of x in the ring.
Hence multiplications can be done in $O\left(d^{2}\right)$ field multiplications.
Celler \& Leedham-Green prove the following:

Theorem

If we can compute a factorisation of B, then the cost of the algorithm is $O\left(d^{4} \log q \log \log q^{d}\right)$ field operations.

If we don't complete the factorisation, then obtain pseudo-order of g - the order \times some large primes.

Suffices for most theoretical and practical purposes.
Implementations in both GAP and Magma use databases of factorisations of numbers of the form $q^{i}-1$, prepared as part of the Cunningham Project.

Example

$$
A=\left(\begin{array}{llll}
2 & 5 & 1 & 2 \\
0 & 1 & 6 & 1 \\
4 & 0 & 2 & 2 \\
3 & 3 & 6 & 6
\end{array}\right)
$$

with entries in GF(7). A has minimal polynomial

$$
m(x)=x^{4}+3 x^{3}+6 x^{2}+6 x+4=(x+4)^{2}\left(x^{2}+2 x+2\right)
$$

Hence $e_{1}=1, e_{2}=2$ and $\beta=\left\lceil\log _{7} 2\right\rceil=1$. Hence $B=\left(7^{1}-1\right)\left(7^{2}-1\right) 7^{1}=336$.
Now $336=2^{4} \cdot 3 \cdot 7=u v$ where $u=2^{4}$ and $v=3 \cdot 7$.
A^{u} has order dividing v. Reapply: $\left|A^{u}\right|=21$.
A^{v} has order dividing u. Reapply: $\left|A^{v}\right|=8$.
Conclude $|A|=168$.

Assume we know B, multiplicative upper bound to $|g|$.
If we just know B, then we can learn in polynomial time the exact power of 2 (or of any specified prime) which divides $|g|$.

By repeated division by 2 , write $B=2^{m} b$ where b is odd.
Now compute $h=g^{b}$, and determine (by powering) its order which divides 2^{m}.

In particular, can deduce in polynomial time if g has even order.

Computing powers of matrices

We can compute large powers n of g in at most $2\left\lfloor\log _{2} n\right\rfloor$ multiplications by the standard doubling algorithm:

- $g^{n}=g^{n-1} g$ if n is odd
- $g^{n}=g^{(n / 2) 2}$ if n is even.

Black-box algorithm.

Rational canonical form of a square matrix A is a canonical form that reflects the structure of the minimal polynomial of A. Can be constructed over given field, no need to extend field.

Definition

A is equivalent to $\left(\begin{array}{cccc}C_{1} & 0 & \ldots & 0 \\ 0 & C_{2} & \ldots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \ldots & C_{\ell}\end{array}\right)$.
Each block C_{i} is the companion matrix of monic $f_{i} \in F[x]$ and $f_{i} \mid f_{i+1}$ for $1 \leq i \leq \ell$.
The minimal polynomial of A is f_{ℓ} and char poly is $f_{1} \cdot f_{2} \ldots f_{\ell}$.

Frobenius normal form N of A is sparse.
Hence multiplication by N costs just $O\left(d^{2}\right)$ field operations.

A faster power algorithm

(1) Construct the Frobenius normal form of g and record change-of-basis matrix C.
(2) From the Frobenius normal form, read off the minimal polynomial $m(x)$ of g, and factorise $m(x)$ as a product of irreducible polynomials.
(3) Compute multiplicative upper bound, B, to the order of g.
(4) If $n>B$, then replace n by $n \bmod B$. By repeated squaring, calculate $x^{n} \bmod m(x)$ as a polynomial of degree $k-1$, where k is the degree of $m(x)$.
(5) Evaluate this polynomial in the Frobenius form of g to give g^{n} wrt Frobenius basis.
(6) Now compute $C^{-1} g^{n} C$ to return to the original basis.

Complexity of this task

Lemma

Let $g \in \mathrm{GL}(\mathrm{d}, \mathrm{q})$ and let $0 \leq n<q^{d}$. This is a Las Vegas algorithm that computes g^{n} in $\mathrm{O}\left(\mathrm{d}^{3} \log d+d^{2} \log d \log \log d \log q\right)$ field operations.

Bäärnhielm, Leedham-Green \& O'B
Neunhöffer \& Seress

- Node: section H of G.
- Image I : image under homomorphism or isomorphism.
- Kernel K.
- Leaf is "composition factor" of G : simple modulo scalars. Cyclic not necessarily of prime order.

Tree is constructed in right depth-first order.
If node H is not a leaf, construct recursively subtree rooted at I, then subtree rooted at K.

Constructing kernels

Assume $\phi: H \longmapsto I$ where $K=\operatorname{ker} \phi$.

Sometime easy to obtain theoretically generating sets for $\operatorname{ker} \phi$.
Two approaches to construct kernel.

1. Construct normal generating set for K, by evaluating relators in presentation for I and take normal closure.

So we need a presentation for l.
To obtain presentation for node: need only presentation for associated kernel and image.

So inductively need to know presentations only for the leaves - or composition factors.

Random generation of the kernel

Let x_{1}, \ldots, x_{t} be generating set for $h \in H$.
Let $y_{j}=\phi\left(x_{j}\right)$ for $j=1, \ldots, t$.
Let $h \in H$ and let $i=\phi(h)$.
Write $i=w\left(y_{1}, \ldots, y_{t}\right)$.
Let $\bar{h}=w\left(x_{1}, \ldots, x_{t}\right)$.
Now $k=h \bar{h}^{-1} \in K:=\operatorname{ker} \phi$.
Choose random $h \in H$ to obtain random generator k of K.
Randomised algorithm to construct the kernel - but assumes that we can write $i=w\left(y_{1}, \ldots, y_{t}\right)$.

Base cases for recursion

Classical group in natural representation or other almost simple modulo scalars: $S \leq H / Z \leq \operatorname{Aut}(S)$

Principal focus: matrix representations in defining characteristic.

Constructive recognition: the main tasks

$H=\langle X\rangle \leq \mathrm{GL}(d, q)$ where H is (quasi)simple.
So H is perfect and H / Z is simple.
(1) Given $h \in H$, express $h=w(X)$.
("Constructive membership problem")
(2) Given $G=\langle Y\rangle$ where G is representation of H,

- solve constructive membership problem for G;
- construct "effective" isomorphisms $\phi: H \longmapsto G$ $\tau: G \longmapsto H$.

Key idea: standard generators.

Using standard generators

Define standard generators \mathcal{S} for $H=\langle X\rangle$.
Need algorithms to:

- Construct \mathcal{S} as words in X.
- For $h \in H$, express h as $w(\mathcal{S})$ and so as $w(X)$.

If $\langle Y\rangle=G \simeq H$ then:

- Find standard generators $\overline{\mathcal{S}}$ in G as words in Y.
- For $g \in G$, express g as $w(\overline{\mathcal{S}})$ and so as $w(Y)$.

Choose \mathcal{S} so that solving for word in \mathcal{S} is easy.
Now define isomorphism $\phi: H \longmapsto G$ from \mathcal{S} to $\overline{\mathcal{S}}$
Effective: if $h=w(\mathcal{S})$ then $\phi(h)=w(\overline{\mathcal{S}})$.
Similarly $\tau: G \longmapsto H$.

Motivation

Example

$$
\begin{aligned}
& H=\langle X\rangle=\operatorname{SL}(d, q) \\
& G=\langle Y\rangle \text { is symmetric square repn. }
\end{aligned}
$$

H is our "gold-plated" copy in which we know information.
Examples include

- Conjugacy classes of elements.
- Maximal subgroups.

We know or can obtain these readily as words w in S.
If we know $\bar{S} \subset G$, we can evaluate w in \bar{S}.
So we now know this information in our arbitrary copy G.

Application I: Conjugacy classes of classical groups

Example: $H=\langle X\rangle=\operatorname{SX}(d, q)$
$G=\langle Y\rangle$ is symmetric cube.
Wall (1963): description of conjugacy classes and centralisers of elements of classical groups.

Murray: algorithm, which given d and q, constructs classes for $\operatorname{SX}(d, q)$.
$\phi: H \longmapsto G$ now maps class reps and centralisers to G.

Example

Higman's (1961) count of p-groups of p-class 2.
Eick and O'B (1999): algorithm which, given d and p, counts precisely the number of d-generator p-groups of class 2 . Critical task: for each conjugacy class rep r in $G:=\Lambda^{2}(\mathrm{GL}(\mathrm{d}, \mathrm{p}))$ use Cauchy-Frobenius theorem to count fixed points for r.

Application II: Maximal subgroups of classical groups

Kleidmann \& Liebeck (1990): describe some maximal subgroups of classical groups where $d \geq 13$.

Bray, Holt \& Roney-Dougal (ongoing): construct generating sets for geometric maximal subgroups, and all maximals for $d \leq 12$.

So obtain $M \leq H:=\operatorname{SX}(d, q)$, classical group in natural representation.

Use $\phi: H \longmapsto G$ to construct image of M in arbitrary representation G.

