## Basic concepts

### Eamonn O'Brien

University of Auckland

August 2011

## Determine the order of a matrix

Let  $g \in GL(d, q)$ . Find  $n \ge 1$  such that  $g^n = 1$ .

 $\operatorname{GL}(\operatorname{d},\operatorname{q})$  has elements of order  $q^d-1$ , Singer cycles,  $\ldots$ 

so not practical to compute powers of g until we obtain the identity.

To find |g|: probably requires factorisation of numbers of form  $q^i - 1$ , a hard problem.

Babai & Beals (1999):

#### Theorem

If the set of primes dividing a multiplicative upper-bound B for |g| is known, then the precise value of |g| can be determined in polynomial time.

Celler & Leedham-Green (1995): compute |g| in time  $O(d^4 \log q)$ subject to factorisation of  $q^i - 1$  for  $1 \le i \le d$ .

First compute a "good" multiplicative upper bound B for |g|.
 Determine and factorise minimal polynomial for g as

$$m(x) = \prod_{i=1}^t f_i(x)^{m_i}$$

where deg $(f_i) = d_i$  and  $\beta = \lceil \log_p \max m_i \rceil$ .  $B := \prod_{i=1}^t \operatorname{lcm}(q^{d_i} - 1) \times p^{\beta}$ 

#### Lemma

Let 
$$B = \prod_{i=1}^{t} \operatorname{lcm}(q^{d_i} - 1) \times p^{\beta}$$
. Then  $|g|$  divides  $B$ .

To see this, reduce g to Jordan normal form over the algebraic closure of GF(q).

Each eigenvalue lies in an extension field of GF(q) of dimension  $d_i$  and so has multiplicative order dividing  $q^{d_i} - 1$ .

If a block has size  $\gamma_i > 1$ , then the *p*-part of the order of the block is  $p^{\delta}$  where  $\delta = \lceil \log_p \gamma_i \rceil$ .

- **1** Factorise  $B = \prod_{i=1}^{m} p_i^{\alpha_i}$  where the primes  $p_i$  are distinct.
- 2 If m = 1, then calculate  $g^{p_1^j}$  for  $j = 1, 2, ..., \alpha_1 1$  until the identity is constructed.
- If m > 1 then express B = uv, where u, v are coprime and have approximately the same number of distinct prime factors. Now g<sup>u</sup> has order k dividing v and g<sup>k</sup> has order ℓ say dividing u, and |g| is kℓ. Hence the algorithm proceeds by recursion on m.

Let m(x) be the minimal polynomial of g. The  $F_q$ -algebra generated by g is isomorphic to  $F_q[x]/(f(x))$ .

It suffices to calculate the multiplicative order of x in the ring.

Hence multiplications can be done in  $O(d^2)$  field multiplications.

Celler & Leedham-Green prove the following:

#### Theorem

If we can compute a factorisation of B, then the cost of the algorithm is  $O(d^4 \log q \log \log q^d)$  field operations.

If we don't complete the factorisation, then obtain *pseudo-order* of g – the order  $\times$  some large primes.

Suffices for most theoretical and practical purposes.

Implementations in both GAP and Magma use databases of factorisations of numbers of the form  $q^i - 1$ , prepared as part of the Cunningham Project.

## Example

with entries in GF(7). A has minimal polynomial

$$m(x) = x^4 + 3x^3 + 6x^2 + 6x + 4 = (x+4)^2(x^2 + 2x + 2)$$

Hence 
$$e_1 = 1$$
,  $e_2 = 2$  and  $\beta = \lceil \log_7 2 \rceil = 1$ . Hence  
 $B = (7^1 - 1)(7^2 - 1)7^1 = 336$ .  
Now  $336 = 2^4 \cdot 3 \cdot 7 = uv$  where  $u = 2^4$  and  $v = 3 \cdot 7$ .  
 $A^u$  has order dividing  $v$ . Reapply:  $|A^u| = 21$ .  
 $A^v$  has order dividing  $u$ . Reapply:  $|A^v| = 8$ .  
Conclude  $|A| = 168$ .

Assume we know B, multiplicative upper bound to |g|.

If we just know B, then we can learn in polynomial time the *exact* power of 2 (or of any specified prime) which divides |g|.

By repeated division by 2, write  $B = 2^m b$  where b is odd.

Now compute  $h = g^b$ , and determine (by powering) its order which divides  $2^m$ .

In particular, can deduce in polynomial time if g has even order.

We can compute large powers n of g in at most  $2 \lfloor \log_2 n \rfloor$  multiplications by the standard doubling algorithm:

• 
$$g^n = g^{n-1}g$$
 if *n* is odd

• 
$$g^n = g^{(n/2)2}$$
 if *n* is even.

Black-box algorithm.

Rational canonical form of a square matrix A is a canonical form that reflects the structure of the minimal polynomial of A. Can be constructed over given field, no need to extend field.



Frobenius normal form N of A is sparse.

Hence multiplication by N costs just  $O(d^2)$  field operations.

- Construct the Frobenius normal form of g and record change-of-basis matrix C.
- From the Frobenius normal form, read off the minimal polynomial m(x) of g, and factorise m(x) as a product of irreducible polynomials.
- **3** Compute multiplicative upper bound, B, to the order of g.
- ④ If n > B, then replace n by n mod B. By repeated squaring, calculate x<sup>n</sup> mod m(x) as a polynomial of degree k − 1, where k is the degree of m(x).
- S Evaluate this polynomial in the Frobenius form of g to give g<sup>n</sup> wrt Frobenius basis.
- **6** Now compute  $C^{-1}g^nC$  to return to the original basis.

#### Lemma

Let  $g \in GL(d,q)$  and let  $0 \le n < q^d$ . This is a Las Vegas algorithm that computes  $g^n$  in  $O(d^3 \log d + d^2 \log d \log \log d \log q)$  field operations.

Bäärnhielm, Leedham-Green & O'B Neunhöffer & Seress



- Node: section H of G.
- ► Image *I*: image under homomorphism or isomorphism.
- ► Kernel *K*.
- Leaf is "composition factor" of G: simple modulo scalars. Cyclic not necessarily of prime order.

Tree is constructed in right depth-first order.

If node H is not a leaf, construct recursively subtree rooted at I, then subtree rooted at K.



Assume 
$$\phi: H \longmapsto I$$
 where  $K = \ker \phi$ .  
 $H$   
 $\widehat{K}$  I

Sometime easy to obtain theoretically generating sets for  $\ker\phi.$ 

Two approaches to construct kernel.

1. Construct normal generating set for K, by evaluating relators in presentation for I and take normal closure.

So we **need** a presentation for *I*.

To obtain presentation for node: need only presentation for associated kernel and image.

So inductively need to know presentations **only for the leaves** – or composition factors.

Let  $x_1, \ldots, x_t$  be generating set for  $h \in H$ . Let  $y_j = \phi(x_j)$  for  $j = 1, \ldots, t$ . Let  $h \in H$  and let  $i = \phi(h)$ . Write  $i = w(y_1, \ldots, y_t)$ . Let  $\bar{h} = w(x_1, \ldots, x_t)$ . Now  $k = h\bar{h}^{-1} \in K := \ker \phi$ .

Choose random  $h \in H$  to obtain random generator k of K.

Randomised algorithm to construct the kernel – but assumes that we can write  $i = w(y_1, \ldots, y_t)$ .

# Classical group in natural representation or other almost simple modulo scalars: $S \le H/Z \le Aut(S)$

Principal focus: matrix representations in defining characteristic.

 $H = \langle X \rangle \leq \operatorname{GL}(d, q)$  where H is (quasi)simple. So H is perfect and H/Z is simple.

- **2** Given  $G = \langle Y \rangle$  where G is representation of H,
  - solve constructive membership problem for G;
  - construct "effective" isomorphisms  $\phi: H \longmapsto G$  $\tau: G \longmapsto H.$

Key idea: standard generators.

## Using standard generators

Define standard generators S for  $H = \langle X \rangle$ .

Need algorithms to:

- Construct S as words in X.
- For  $h \in H$ , express h as w(S) and so as w(X).
- If  $\langle Y \rangle = G \simeq H$  then:
  - Find standard generators  $\overline{S}$  in G as words in Y.
  - For  $g \in G$ , express g as  $w(\overline{S})$  and so as w(Y).

Choose  $\mathcal S$  so that solving for word in  $\mathcal S$  is easy.

Now define isomorphism  $\phi : H \mapsto G$  from S to  $\overline{S}$ Effective: if h = w(S) then  $\phi(h) = w(\overline{S})$ .

Similarly  $\tau: G \longmapsto H$ .

#### Example

 $H = \langle X \rangle = \operatorname{SL}(d, q)$  $G = \langle Y \rangle$  is symmetric square repn.

H is our "gold-plated" copy in which we know information.

Examples include

- Conjugacy classes of elements.
- Maximal subgroups.

We know or can obtain these readily as words w in S.

If we know  $\overline{S} \subset G$ , we can evaluate w in  $\overline{S}$ .

So we now know this information in our arbitrary copy G.

# Application I: Conjugacy classes of classical groups

Example: 
$$H = \langle X \rangle = \operatorname{SX}(d, q)$$
  
 $G = \langle Y \rangle$  is symmetric cube

Wall (1963): description of conjugacy classes and centralisers of elements of classical groups.

Murray: algorithm, which given d and q, constructs classes for SX(d, q).

 $\phi: H \longmapsto G$  now maps class reps and centralisers to G.

#### Example

Higman's (1961) count of *p*-groups of *p*-class 2. Eick and O'B (1999): algorithm which, given *d* and *p*, counts precisely the number of *d*-generator *p*-groups of class 2. Critical task: for each conjugacy class rep *r* in  $G := \Lambda^2(GL(d, p))$  use Cauchy-Frobenius theorem to count fixed points for *r*. Kleidmann & Liebeck (1990): describe some maximal subgroups of classical groups where  $d \ge 13$ .

Bray, Holt & Roney-Dougal (ongoing): construct generating sets for geometric maximal subgroups, and all maximals for  $d \le 12$ .

So obtain  $M \leq H := SX(d, q)$ , classical group in natural representation.

Use  $\phi: H \mapsto G$  to construct image of M in arbitrary representation G.