# Constructive recognition 

Eamonn O'Brien<br>University of Auckland

August 2011

## Constructive recognition: the main tasks

$H=\langle X\rangle \leq \mathrm{GL}(d, q)$ where $H$ is (quasi)simple.
(1) Given $h \in H$, express $h=w(X)$. ("Constructive membership problem")
(2) Given $G=\langle Y\rangle$ where $G$ is representation of $H$,

- solve constructive membership problem for $G$;
- construct "effective" isomorphisms

$$
\phi: H \longmapsto G
$$

$$
\tau: G \longmapsto H
$$

Key idea: standard generators.

## Using standard generators

Define standard generators $\mathcal{S}$ for $H=\langle X\rangle$.
Need algorithms to:

- Construct $\mathcal{S}$ as words in $X$.
- For $h \in H$, express $h$ as $w(\mathcal{S})$ and so as $w(X)$.

If $\langle Y\rangle=G \simeq H$ then:

- Find standard generators $\overline{\mathcal{S}}$ in $G$ as words in $Y$.
- For $g \in G$, express $g$ as $w(\overline{\mathcal{S}})$ and so as $w(Y)$.

Choose $\mathcal{S}$ so that solving for word in $\mathcal{S}$ is easy.
Now define isomorphism $\phi: H \longmapsto G$ from $\mathcal{S}$ to $\overline{\mathcal{S}}$
Effective: if $h=w(\mathcal{S})$ then $\phi(h)=w(\overline{\mathcal{S}})$.
Similarly $\tau: G \longmapsto H$.

## Standard generators for SL(d, q)

Leedham-Green \& O'B (2009).
Natural module $V$ for $H=\operatorname{SL}(d, q)$ with basis $\left\{e_{1}, \ldots, e_{d}\right\}$.
Define standard generators $s, \delta, u, v$ for $H$ :
$s, \delta, u$ lie in copy of $\operatorname{SL}(2, q)$ and act on $\left\langle e_{1}, e_{2}\right\rangle$ as:

$$
s=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \delta=\left(\begin{array}{cc}
\omega & 0 \\
0 & \omega^{-1}
\end{array}\right) \quad u=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

cycle $v$ maps

$$
e_{1} \mapsto e_{d} \mapsto-e_{d-1} \mapsto-e_{d-2} \mapsto-e_{d-3} \cdots \mapsto-e_{1}
$$

Given $h \in H$, write $h=w(\mathcal{S})$ via echelonisation.

Simplest case: $G$ and $H$ identical.
Algorithm input $H=\langle X\rangle=\operatorname{SX}(d, q)$
First task: construct $\mathcal{S}$ as words in $X$.

## The basic algorithm

- Construct two subgroups $H$ and $K$ in $G$ so

$$
H=\left(\begin{array}{ccc}
\left.\begin{array}{|c|c}
\mathrm{sX}_{\mathrm{m}} & \\
& \\
& 1_{d-m}
\end{array}\right) \quad \text { and } \quad K=\left(\begin{array}{lll}
1_{m} & \\
\hline & & \\
& \mathrm{sX}_{\alpha_{d-m}}
\end{array}\right) .
\end{array}\right.
$$

- Recursively construct standard generators $\mathcal{S}_{H}$ and $\mathcal{S}_{K}$ for $H$ and $K$
- all but cycle from standard generators for $G$ contained in $\mathcal{S}_{H}$
- cycle is constructed by glueing two cycles from $\mathcal{S}_{H}$ and $\mathcal{S}_{K}$. e.g. if $G=\operatorname{SL}(d, q)$ with even $d$ and $q$, then



## Odd characteristic

## Theorem (Leedham-Green and O'B, 2009)

There is a Las Vegas algorithm that takes as input $G=\operatorname{SX}(d, q)=X$ of bounded cardinality of $\mathrm{GL}(d, q)$, and returns standard generators for $G$ as SLPs of length $\mathrm{O}\left(\log ^{3} \mathrm{~d}\right)$ in $X$. The algorithm has complexity $O\left(d^{4} \log q\right)$ measured in field operations.
$t$ is involution in $G$, with eigenspaces $E_{+}$and $E_{-}$ $C_{G}(t)$ is $\left(\mathrm{GL}\left(\mathrm{E}_{+}\right) \times \mathrm{GL}\left(\mathrm{E}_{-}\right)\right) \cap \mathrm{SL}(\mathrm{d}, \mathrm{q})$.
A strong involution in $\operatorname{SX}(d, q)$ has -1-eigenspace of dimension in range ( $d / 3,2 d / 3]$.

## $G=\operatorname{SX}(d, q)$ for $q$ odd

(1) Find and construct strong involution $t$ having - 1 -eigenspace of dimension $m$.
(2) Now construct $C_{G}(t)$. Construct the direct summands of the derived group to obtain $\operatorname{SX}(m, q)$ and $\operatorname{SX}(d-m, q)$ as subgroups of $G$.
(3) Recursively construct standard generators for $\mathrm{SX}(m, q)$ and $\operatorname{SX}(d-m, q)$.
(4) Construct centraliser $C$ of involution

$$
\left(\begin{array}{ccc}
I_{m-2} & 0 & 0 \\
0 & -I_{4} & 0 \\
0 & 0 & I_{d-m-2}
\end{array}\right)
$$

5. Within $C$ solve constructively for matrix $g$

$$
\left(\begin{array}{cccccc}
I_{m-2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & I_{d-m-2}
\end{array}\right)
$$

6. Now $m$-cycle $v_{m}$ and ( $d-m$ )-cycle $v_{d-m}$ "glued" together by $g$ to produce $d$-cycle $v_{m} g v_{d-m}$.

## Cost of finding a strong involution

First step: search for an element of $\operatorname{SX}(d, q)$ of even order that has as a power a strong involution.

## Theorem (Lübeck, Niemeyer, Praeger, 2009)

For an absolute constant $c$, the proportion of $g \in \operatorname{SX}(d, q)$ such that a power of $g$ is a strong involution is $\geq c / \log d$.

Recursion to smaller cases requires additional results.

## Theorem (Leedham-Green \& O'B, 2009)

For some absolute constant $c$, the proportion of $g \in \operatorname{SX}(d, q)$ such that a power of $g$ is a "suitable" involution is $\geq c / d$.

## Constructing centralisers

Bray (2001): Monte Carlo algorithm to construct $C_{G}(t)$ for involution $t \in G$.

Algorithm exploits properties of dihedral group.
(1) If $[t, g]$ has odd order $2 m+1$, then $g[t, g]^{m}$ commutes with $t$.
(2) If $[t, g]$ has even order $2 m$, both $[t, g]^{m}$ and $\left[t, g^{-1}\right]^{m}$ commute with $t$.

So convert random elements of $G$ into elements of $C_{G}(t)$.
Elements not, in general, uniformly-distributed, but:

## Lemma

If $g$ is uniformly distributed among the elements of $G$ for which $[t, g]$ has odd order, say $2 n+1$, then $g[t, g]^{n}$ is uniformly distributed among the elements of $C_{G}(t)$.

If odd order case occurs sufficiently often, we can construct nearly-uniformly distributed random elements of $C_{G}(t)$ in polynomial time.

## Proportion of odd order elements

## Theorem (Parker \& Wilson, 2009)

Let $G$ be a simple group of Lie type, of Lie rank $r$, defined over field of odd characteristic. The probability that $[t, g]$ has odd order, where $t$ is a fixed involution and $g$ is a random element of $G$, is at least $c / r$ for some absolute constant $c$.

Example: lower bound for $\operatorname{PSL}_{d}(q)$ is $\frac{1}{12 d}$.
Method: for each class of involutions, find a dihedral group of twice odd order generated by two involutions of this class, and show that a significant proportion of pairs of involutions in this class generate such a dihedral group.

## Cost of construction of centraliser

Bray (2001)
Parker \& Wilson (2010)
Holmes, Linton, O'B, Ryba, Wilson (2008)
Let $\mu, \xi$ and $\rho$ denote the costs of a group operation, constructing a random element of $G$, and an order oracle respectively.

## Theorem

Let $H$ be a simple group of Lie rank $r$ defined over a field of odd characteristic. The centraliser in $H$ of an involution can be computed in time $O\left(r(\xi+\rho) \log (1 / \epsilon)+\mu r^{2}\right)$ with probability of success at least $1-\epsilon$, for $\epsilon>0$.

This is a black-box Monte Carlo algorithm.

## Even characteristic: Problems

- involutions cannot be found efficiently by a random search Guralnick \& Lübeck (2001): proportion of elements in $G$ of even order is $<5 / q$;
- groups for a recursion cannot be found in centraliser; Aschbacher \& Seitz (1976): various types of involutions.


## Theorem (Aschbacher \& Seitz)

If $g \in G$ is a good involution, then, mod base change,
where $r=\operatorname{rank}(g-1), m=2 r$, and $\mathrm{SX}_{d-m}$ same type as $G$.

## Even characteristic - The general approach

- find $H=\operatorname{SX}(m, q) \leq G$ where $m \in[d / 3,2 d / 3]$ is even or $4 \mid m$; if $G$ is linear or unitary, then so is $H$, otherwise $\Omega^{+}$;

- Recursion: construct standard generators of $\mathrm{SX}_{m}$ in H and a good involution $g \in H$ with $r=\operatorname{rank}(g-1)=m / 2$
- in $C_{G}(g)$ find $K=S X(d-m, q) \leq G$
- Recursion: construct standard generators of $\mathrm{SX}_{d-m}$ in $K$
- glue the cycles of $\mathrm{SX}_{m}$ and $\mathrm{SX}_{d-m}$


## Constructing $H \leq G=\langle X\rangle$

- Find $g \in G$ with 1 -eigenspace of dimension $d / 2<e<5 d / 6$; proportion of elements in $G$ which power to such $g$ is $O(1 / d)$ (Lübeck, Niemeyer \& Praeger, 2009)
- consider random conjugate $h=g^{k}$ in $G$; expect

$$
\begin{aligned}
S & =\operatorname{ker}(g-1) \cap \operatorname{ker}(h-1) \quad \text { of } \operatorname{dim} .2 e-d \\
I & =\operatorname{im}(g-1)+\operatorname{im}(h-1) \quad \text { of } \operatorname{dim} . m=2(d-e)
\end{aligned}
$$

- choose basis through $V=I \oplus S$, so that

$$
H=\left(\begin{array}{ll}
\left.\begin{array}{|c|c}
U & \\
& \\
& \\
& 1_{d-m}
\end{array}\right) \leq G .
\end{array}\right.
$$

with $U=\langle a, b\rangle \leq \operatorname{SX}(m, q)$ of degree $m \in[d / 2,2 d / 3]$

## Theorem (Praeger, Seress, Yalcinkaya)

$U=\langle a, b\rangle=\operatorname{SX}(m, q)$ with probability at least $1-c / q$.

## Constructing $K \leq G=\langle X\rangle$

- Recursion: construct standard generators of $\mathrm{SX}_{m}$ in H and good involution $g$ of corank $r=m / 2$; via base change

- In centraliser $C_{G}(g)$ construct


Bray (2000): random elements in centraliser Kantor \& Lubotzky (1990): random generation

## Theorem (Babai, Palfy, Saxl (2010))

For every prime $p$ the proportion of p-regular elements in $\operatorname{PSX}(d, q)$ is at least $1 /(2 d)$.

## Lemma

Let $K=H \ltimes M$ where $M$ is abelian and of exponent 2. Let $h \in H$ be of odd order and assume it acts fixed point freely on M. If $k=a m \in K$ where $a \in C_{H}(h)$ and $m \in M$, then $a=h k\left(h h^{k}\right)^{(|h|-1) / 2}$.

(a) N \& P (1998), Babai et al. (2010): construct direct factor
(b) find random $f=\left(\begin{array}{llll}\boxed{u} & & * \\ & 1_{d-m} & \\ & & u\end{array}\right)$ of odd order $k$ with $u$ irreducible; if $y=\left(\begin{array}{ccc}\begin{array}{|c|c|}1_{r} & *\end{array} & * \\ \hline & v & * \\ & & 1_{r}\end{array}\right)$, then $f y\left(f f^{y}\right)^{(k-1) / 2}=\left(\begin{array}{ccc}1_{r} & & * \\ \hline & v & \\ & & 1_{r}\end{array}\right)$
(c) Guralnick \& Lübeck (2001): squaring

## Base cases for recursion

$\operatorname{SX}(d, q)$ where $d=2,3,4$.
Conder, Leedham-Green, O'B (2006): $\mathrm{SL}_{2}(q)$.
Lübeck, Magaard and O'B (2006): $\mathrm{SL}_{3}(q)$.
Burns (2009): $\mathrm{SL}_{4}(q)$.

## Results

## Theorem (Dietrich, L-G, Lübeck, O'B)

Let $G=\langle X\rangle$ be a classical group in natural representation and even characteristic. There is a Las Vegas algorithm which constructs the standard generators for $G$ as words in $X$.
Subject to a discrete logarithm oracle, the algorithms needs

$$
O\left(d^{4} \log d \log ^{2} q\right)
$$

## field operations.

Easy modification: Las Vegas algorithm to construct involution in $G$ as word in $X$

## Writing elements as SLPs in classical groups

Elliot Costi (2009): algorithms to write element of $G$ as SLP on our standard generators.

- $G=\operatorname{SX}(d, q):$ Complexity: $O\left(d^{3} \log q\right)$
- $G \leq \mathrm{GL}(\mathrm{n}, \mathrm{q})$ is defining char (projective) irreducible representation of $\operatorname{SX}(d, q)$. Complexity:
$O\left(n^{3} \log ^{3} q+n^{4} \log q\right)$.
Schneider et al. (2011): arbitrary repn, our standard generators.


## Black-box algorithms for classical groups

## Theorem (Kantor \& Seress, 2001)

There is a Las Vegas algorithm which when given a perfect group $G=\langle X\rangle \leq G L(V)$ where $G / Z(G)$ is isomorphic to a classical simple group of known characteristic produces a constructive isomorphism $G / Z \longmapsto C$.

Algorithm not polynomial in size of input: factor of $q$ in the running time.

## Central difficulty?

Need to find elements of order $p$ and they're hard to find!
$\rho(G)$ is proportion of $p$-singular elements in $G$.
Kantor, Isaacs, Spaltenstein (1995); Guralnick \& Lübeck (2003)

## Theorem <br> $\frac{2}{5 q}<\rho(G)<\frac{5}{q}$ where $G$ is a group of Lie type defined over $\mathrm{GF}(q)$.

So random search requires $O(q)$ random selections.

Brooksbank \& Kantor (2001): algorithms can be made polynomial in $\log q$ given an oracle for constructive membership testing in $\langle X\rangle \cong \operatorname{SL}(2, q)$.

Critical task: find transvection as word in $X$.
Proportion is $O(1 / q)$, can't search randomly.
B \& K (2001-2006): Black-box algorithms for the classical families which run in polynomial time subject to existence of $\operatorname{SL}(2, q)$ oracle.

## Constructive recognition for $\operatorname{SL}(2, q)$

Landazuri \& Seitz (1974), Seitz \& Zalesskii (1993): faithful projective representations in cross characteristic have degree that is polynomial in $q$, so critical focus is defining characteristic representation.

Let $\tau(d)$ denote the number of factors of $d$.

## Theorem (Conder, Leedham-Green, O'B, 2006)

$G \leq \mathrm{GL}(\mathrm{d}, \mathrm{F})$ for $d \geq 2$, where $F$ has same characteristic as GF(q). Assume that $G$ is isomorphic modulo scalars to $\operatorname{PSL}(2, q)$. Then, subject to a fixed number of calls to a Discrete Log Oracle, there exists a Las Vegas algorithm that constructs an epimorphism from $G$ to $\operatorname{PSL}(2, q)$ at a cost of at most $O\left(d^{5} \tau(d)\right)$ field operations.

## Theorem (Brauer \& Nesbitt, 1940)

Let $F$ be an algebraically closed field of characteristic $p$, and let $V$ be an irreducible $F[G]$-module for $G=\mathrm{SL}(2, q)$, where $q=p^{e}$. Then $V \simeq T_{1} \otimes T_{2} \otimes \cdots \otimes T_{t} \otimes_{\mathrm{GF}(\mathrm{q})} F$, where $T_{i}$ is the $s_{i}$-fold symmetric power $S_{i}$ of the natural $\mathrm{GF}(q)[G]$-module $M$ twisted by the $f_{i}$ th power of the Frobenius map, with
$0 \leq f_{1}<f_{2}<\cdots<f_{t}<e$, and $1 \leq s_{i}<p$ for all $i$.
$G$ absolutely irreducible representation of $\operatorname{SL}(2, q)$.
Three components to constructive recognition algorithm for $G$.
(1) Decompose tensor product to obtain one symmetric power $T_{i}$.
(2) Decompose $T_{i}$ to obtain $\operatorname{SL}(2, \mathrm{q})$ in its natural representation.
(3) Construct standard generators for $\mathrm{SL}(2, \mathrm{q})$.

## Standard generators for $\operatorname{SL}(2, q)$ in natural repn

(1) Find $A \in H$ of order $q-1$ and $B$ a random conjugate of $A$.
(2) Compute eigenvectors $u$ and $v$ of $A$, with corresponding eigenvalues $a$ and $a^{-1}$.
(3) Find a random element $C$ of $H$ and an $i$ such that $B^{i} C$ fixes $\langle u\rangle$, if such an $i$ exists. If $A$ and $B^{i} C$ lie in $\operatorname{SL}(2, q)$ and have common eigenvector $u$, then $S=\left[A, B^{i} C\right]$ is a transvection fixing $u$.
(4) Similarly, find a random element $D$ of $H$ and a $j$ such that $B^{j} D$ fixes $\langle v\rangle$ and $T=\left[A, B^{j} D\right]$ is not trivial. Now, $T$ is a non-trivial transvection fixing $v$.
(5) Write $S, T$, $A$ with respect to the ordered basis $(u, v)$ to obtain generating set for $\operatorname{SL}(2, q)$.

Step 3 critical: $i$ exists if and only if $\langle u\rangle C^{-1}$ lies in the orbit of $\langle u\rangle$ under $\langle B\rangle$.
$B^{i} C$ fixes $\langle u\rangle$
Equivalently: $a^{2 i}=\mu$ where $\mu \in \mathrm{GF}$ (q).
Its solution relies on discrete log.
Easy to find elements of order $q-1$ : proportion is $\phi(q-1) / 2(q-1)>1 / 2 \log \log q$.
Now given $x \in \operatorname{SL}(2, q)$, use echelonisation to write $x$ as word in $S, T, A$.

Lübeck, Magaard, O'B (2007).
Exploit solution for $\operatorname{SL}(2, q)$ to find generators for set of six root subgroups in $G$ which are normalised by single maximal torus.

Now parameterise root subgroups.
Also: algorithm to write $g \in G$ as word in images of standard generators.

## Constructive recognition for the sporadics

Wilson (1996): standard generators for sporadic $G=\langle Y\rangle$
Bray and Wilson: black-box algorithms to find these (as words) in $Y$.

Two methods to solve constructive membership problem for $G$.

- Random Schreier works well for many - with careful choice of base points (O'B \& Wilson, 2002).
- Reduction algorithm of Holmes et al. (2008): reduces constructive membership problem in $G$ to three instances of the same problem for involution centralisers in $G$.


## Constructive recognition for other families

- $A_{n}$ : Bratus \& Pak (2000), Holt; Beals et al. (2001-05). Black-box.
- Exceptional groups:
- Henrik Bäärnhielm (2006-2009): Algorithms for matrix representations of Suzuki, large and small Ree groups.
- Kantor \& Magaard (2010): black-box algorithms.
- Small degree representations of $\operatorname{SL}(d, q)$ (Magaard, O'B, Seress, 2008).

