The Composition Tree

Eamonn O'Brien
University of Auckland

August 2011

Geometry following Aschbacher: general strategy

$G=\langle X\rangle \leq \mathrm{GL}(\mathrm{d}, \mathrm{q})$.
(1) Determine (at least one of) its Aschbacher categories.
(2) If $N \triangleleft G$ exists, process N and G / N recursively.
(3) Otherwise G is either classical group in natural representation or $T \leq G / Z \leq \operatorname{Aut}(T)$ where T is simple.

- "Reduce" from G to quasisimple group L.
- Name L.
- Set up "effective" isomorphisms between L and its standard copy S.
$L \leq G / Z \leq \operatorname{Aut}(L)$ so $G \simeq Z . L . E$.
- Use determinant map to ensure that $|Z|$ is a divisor of $\operatorname{gcd}(d, q-1)$.
- Calculate the stable derivative $D=G^{(\infty)}$ of G.
- Construct $\phi: G \longmapsto E$ by letting G act on cosets of $H=\langle Z, D\rangle$.
$H x=H y \Longleftrightarrow x y^{-1} \in H$
Use "order of element modulo normal subgroup" algorithm to determine to decide membership in H.

The composition tree for G

Bäärnhielm, Leedham-Green \& O'B
Neunhöffer \& Seress

- Node: section H of G.
- Image I : image under homomorphism or isomorphism. Images correspond to Aschbacher category, but also others e.g determinant map.
- Kernel K.
- Leaf is "composition factor" of G : simple modulo scalars.

Cyclic not necessarily of prime order.

Constructing kernels

Assume $\phi: H \longmapsto I$ where $K=\operatorname{ker} \phi$.

Sometime easy to obtain theoretically generating sets for $\operatorname{ker} \phi$. e.g. Smaller Field, Semilinear, normaliser of symplectic-type group.

We could use random method to construct kernel
Otherwise, construct normal generating set for K, by evaluating relators in presentation for I and take normal closure.

To do so we need a presentation for l.

Verifying the outcome

Neunhöffer \& Seress (2006): new generating set, Y, on "nice generators" for G.

Want presentation for G on Y.
If Y satisfies presentation, then we have verified tree.
To obtain presentation for node: need only presentation for associated kernel and image.

So inductively need to know presentations only for the leaves - or composition factors.

Short presentations for finite groups

Babai and Szemerédi (1984): length of a presentation $P=\{X \mid R\}$ is number of symbols to write down the presentation.

Each generator is single symbol, relator is a string of symbols, exponents written in binary.

Example

S_{n} generated by $t_{k}=(k, k+1)$ for $1 \leq k<n$ with relations:

- $t_{k}^{2}=1$ for $1 \leq k<n$,
- $\left(t_{k-1} t_{k}\right)^{3}=1$ for $1<k<n$,
- $\left(t_{j} t_{k}\right)^{2}=1$ for $1 \leq j<k-1<n-1$.

Number of relations is $n(n-1) / 2$, and presentation length is $O\left(n^{2}\right)$.
S_{n} acts on deleted permutation module: cost of evaluation of relations is $O\left(n^{5}\right)$.
Goal: short presentations on bounded number of relations.

Theorem (Guralnick, Kantor, Kassabov, Lubotzky, 2008)

Every non-abelian finite simple group of rank n over $\mathrm{GF}(q)$, with possible exception of Ree groups ${ }^{2} G_{2}(q)$, has a presentation with a bounded number of generators and relations and total length $O(\log n+\log q)$.

Exploits results of:

- Campbell, Robertson and Williams (1990): PSL(2, p^{n}) has presentation on (at most) 3 generators and a bounded number of relations.
- Hulpke and Seress (2003): $\operatorname{PSU}(3, q)$

Previous best: Babai et al. (1997) presentation of length $O\left(\log ^{2}|G|\right)$. Modifications of Curtis-Steinberg-Tits presentations for groups of Lie rank at least 2.

Constructive version (L-G and O'B, ongoing): explicit short presentations for the classical groups on our standard generators. Complete for SL, Sp, SU.

Short presentations for S_{n} and A_{n}

Theorem (GKKL, 2006; Bray-Conder-LG-O'B, 2006)

A_{n} and S_{n} have presentations with a bounded number of generators and relations, and length $O(\log n)$.

Theorem (Bray-Conder-LG-O'B, 2006)

Let p be an odd prime, and let λ be a primitive element of $\mathrm{GF}(\mathrm{p})$, with inverse μ. Then

$$
\begin{gathered}
\left\{a, c, t \mid a^{p}, a c a c a c^{-1},\left(a^{(p+1) / 2} c a^{4} c\right)^{2}, t^{2},[t, a],\right. \\
\left.\left[t, c a^{\lambda} c a^{\mu} c\right],[t, c]^{3},\left(t t^{c} t t^{c a}\right)^{2},\left(t t^{c} t t^{c a^{\lambda}}\right)^{2},\left(a t^{c}\right)^{p+1}\right\}
\end{gathered}
$$

is a 3-generator 10 -relator presentation of length $O(\log p)$ for S_{p+2}, in which att ${ }^{c}$ stands for a $(p+2)$-cycle and t stands for a transposition.

Previous best results: length $O(n \log n)$ (Moore, 1897)

Theorem (GKKL, 2008)

A_{n} has presentation on 3 generators, 4 relations, length $O(\log n)$.
S_{n} : presentation of length $O\left(n^{2}\right)$ on $(1,2)$ and $(1,2, \ldots, n)$ and 78 relations.

Problem

Is there a $O(\log n)$ presentation for S_{n} on $(1,2)$ and $(1,2, \ldots, n)$ with a uniformly bounded number of relators?

Output of CompositionTree

Given $G=\langle X\rangle \leq \operatorname{GL}(\mathrm{d}, \mathrm{q})$ as input.
Output:

- a composition series: $1=G_{0} \triangleleft G_{1} \triangleleft G_{2} \cdots \triangleleft G_{m}=G$.
- A representation $S_{k}=\left\langle X_{k}\right\rangle$ of G_{k} / G_{k-1}
- Effective maps $\tau_{k}: G_{k} \rightarrow S_{k}, \phi_{k}: S_{k} \rightarrow G_{k}$ τ_{k} epimorphism with kernel G_{k-1}
- Map to write $g \in G$ as word in X.

Construct presentation for group defined by tree and verify that G satisfies the relations.

Characteristic structure

G has characteristic series \mathcal{C} of subgroups:

$$
1 \leq O_{\infty}(G) \leq S^{*}(G) \leq P(G) \leq G
$$

$O_{\infty}(G)=$ largest soluble normal subgroup of G, soluble radical $S^{*}(G) / O_{\infty}(G)=$ Socle $\left(G / O_{\infty}(G)\right)=T_{1} \times \ldots \times T_{k}$ where T_{i} non-abelian simple
$\phi: G \longmapsto \operatorname{Sym}(k)$ is repn of G induced by conjugation on $\left\{T_{1}, \ldots, T_{k}\right\}$ and $P(G)=\operatorname{ker} \phi$
$P(G) / S^{*}(G) \leq \operatorname{Out}\left(T_{1}\right) \times \ldots \times \operatorname{Out}\left(T_{k}\right)$ and so is soluble
$G / P(G) \leq \operatorname{Sym}(k)$ where $k \leq \log |G| / \log 60$

Black-box model pioneered by Babai and Beals.
Babai, Beals, Seress (2009):

Theorem

\mathcal{C} can be constructed directly in black-box groups in polynomial time (subject to Discrete Log solution and some other restrictions).

Work with Holt:

- refine composition series obtained from "geometric model" to obtain chief series reflecting this characteristic structure.
- exploit CompositionTree and resulting \mathcal{C} as infrastructure for algorithms to solve "real" problems.

Cannon \& Holt: exploit this model in many algorithms e.g. automorphism group, conjugacy classes of subgroups.

Work with Derek Holt
$1=G_{0} \triangleleft G_{1} \triangleleft G_{2} \cdots \triangleleft G_{m}=G$
Computable maps $\tau_{k}: G_{k} \rightarrow S_{k}, \phi_{k}: S_{k} \rightarrow G_{k}$
$S_{k}=\left\langle X_{k}\right\rangle$ and $W_{k}=\left\{g_{1}, \ldots, g_{s}\right\}$, inverse images in G
For $k=1,2, \ldots, m$
For each non-trivial subgroup C in \mathcal{C} do For each $g \in W_{k}$ do decide whether there exists $h \in G_{k-1}$ such that $g h \in C$; If so, replace g by $g h$;

Outcome: union of some of the adjusted W_{k} will generate the three characteristic subgroups of G.

To solve problem for classical groups: constructively test irreducible modules for isomorphism.

Exploiting the characteristic series \mathcal{C}

Cannon, Holt et al. (2000s): use \mathcal{C} in practical algorithms.

$$
1 \leq L:=O_{\infty}(G) \leq S^{*}(G) \leq P(G) \leq G
$$

Also compute series

$$
1=N_{0} \triangleleft N_{1} \triangleleft \cdots \triangleleft N_{r}=L \triangleleft G
$$

where $N_{i} \unlhd G$ and N_{i} / N_{i-1} is elementary abelian.
Framework sometimes called Soluble Radical model of computation.

$$
1=N_{0} \triangleleft N_{1} \triangleleft \cdots \triangleleft N_{r}=L \leq S^{*}(G) \leq P(G) \leq G
$$

where $N_{i} \unlhd G$ and N_{i} / N_{i-1} is elementary abelian.
Given a problem:
Solve problem first in $G / L=G / N_{r}$, and then, successively, solve it in G / N_{i}, for $i=r-1, \ldots, 0$.
$H:=G / L$ is a TF-group.
So H has a socle S which is direct product of non-abelian simple groups T_{i} and these are permuted under conjugation by H.
Problem may have nice solution for H.
In many cases, easy to reduce the computation for TF-group H to almost simple groups.

Examples of practical algorithms using TF-model

- Determine conjugacy classes of elements of G; (Cannon \& Souvignier, 1997)
- Determine maximal subgroups of G; (Cannon \& Holt, 2004) and (Eick \& Hulpke, 2001)
- Determine the automorphism group of G; (Cannon \& Holt, 2003)
- Determine conjugacy classes of subgroups of G; (Cannon, Cox \& Holt, 2001)

Most algorithms are representation-independent.
Implementations use BSGS and Random Schreier for associated computations: so limited in range.

Plan to use CompositionTree for these.

Almost simple groups: Conjugacy classes

Wall (1963): description of conjugacy classes and centralisers of elements of classical groups.

Murray \& Haller (ongoing): algorithms, which given d and q, constructs classes for $\operatorname{SX}(d, q) \leq K \leq \operatorname{CX}(d, q)$.
Constructive recognition: provides $\phi: K \longmapsto \bar{K}$.
Embed TF-group $H=G / L$ in direct product W of $\operatorname{Aut}\left(T_{i}\right)$) $\operatorname{Sym}\left(d_{i}\right)$, where T_{i} occurs d_{i} times as socle factor.

Conjugacy class representatives in wreath products described theoretically (Hulpke 2004; Cannon \& Holt, 2006).

Example: Automorphism group of G

Cannon \& Holt, 2003
$H:=G / L$ permutes the direct factors of its socle S by conjugation.
Embed H in direct product D of $\operatorname{Aut}\left(T_{i}\right)$ $\operatorname{Sym}\left(d_{i}\right)$, where T_{i} occurs d_{i} times as socle factor of S.

Aut (H) is normaliser of the image of H in D.
Now lift results through elementary abelian layers, computing Aut $\left(G / N_{i}\right)$ successively.

Suppose $N \leq M \leq G$, where both M, N char in G and M / N is elementary abelian of order p^{d}.

- G

Suppose $A_{M}=\operatorname{Aut}(G / M)$ is known.
All automorphisms of G fix both M and N.

- $M \quad A_{N}=\operatorname{Aut}(G / N)$ has normal subgroups $C \leq B$
B induces identity on G / M
C induces identity on both G / M and M / N.
M / N is $\mathbb{F}_{p}(G / M)$-module.
- Elements of C correspond to derivations from G / M to M / N.
- Elements of B / C correspond to module automorphisms of M / N. Can choose M and N to ensure that these tasks "easy".
- Hardest task: determine $S \leq A_{M}$ which lifts to G / N. $S \leq A^{\prime}$, subgroup of A_{M} whose elements preserve the isomorphism type of module M / N.
G / N split extension of M / N by G / M ?
If so, all elements of A^{\prime} lift.
Otherwise, must test each element of A^{\prime} for lifting.

