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Abstract. We determine the Brauer trees of the faithful blocks of weight 1

of the Schur covers of the symmetric group and the alternating group in odd

characteristic.

1. Introduction

1.1. Let S̃n be a Schur cover of the symmetric group Sn, and Ãn be the Schur
cover of the alternating group An. Currently, parametrizations of the faithful mod-
ular irreducible characters of these groups and descriptions of their decomposition
matrices are investigated. In this paper, we deal with the particular case of faithful
blocks of cyclic defect.
More precisely, we determine the Brauer trees of the faithful blocks of weight 1 of
S̃n and Ãn in odd characteristic. Our main result is stated in Theorem 4.4. As
Corollary 6.3, we obtain a set of representatives of the Morita equivalence classes
of faithful blocks of cyclic defect occurring for some S̃n. In particular, for fixed odd
p, there are b(p+ 3)/4c Morita equivalence classes. This contrasts to the situation
for the symmetric groups Sn, where for fixed p there is exactly one such class.
Besides its own interest for the modular representation theory of S̃n and Ãn, the
result presented here is related to the following question: Which trees occur as
Brauer trees of blocks of cyclic defect of finite groups? By [5, Thm.1.1], all Brauer
trees are unfoldings of Brauer trees occurring for quasi-simple groups. Indeed, using
the classification of finite simple groups, much is known for this class of groups; one
of the few remaining gaps, the case of Ãn, is settled here.

1.2. We assume the reader familiar with the ordinary representation theory of the
symmetric group and its Schur cover, see, e. g., [9] and [15], as well as with the
decomposition theory of finite groups, in particular the theory of blocks of cyclic
defect, see, e. g., [4, Sect.VII] or [7, Sect.11]. The latter is used to determine the
shape of the Brauer trees, while we use a Scopes-Kessar reduction technique to
determine the labelling of the vertices of the Brauer trees.
The paper is organized as follows: In Sections 2 and 3, we collect well-known
definitions and facts from the combinatorics of partitions, see, e. g., [9, Sect.10], and
the representation theory of S̃n and Ãn, see, e. g., [9, Sect.10] and [15], respectively.
In Propositions 3.8 and 3.9, we consider certain table automorphisms of S̃n and Ãn.
In Section 4, we introduce a labelling of the characters in a block of weight 1, see
Proposition 4.3, state the main result Theorem 4.4, and give the first part of its
proof. In Section 5 we prepare the Scopes-Kessar reduction mechanism needed
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for the second part of the proof. The exposition is largely based on [12, Sect.4.4–
4.10], but we obtain somewhat sharper results, which in the weight 1 case lead to a
stronger reduction, which is just suitable for our purposes, see Proposition 5.5. In
Section 6 we give the second part of the proof of Theorem 4.4, and draw Corollaries
6.3, 6.4 and 6.6 on the Morita equivalence classes of blocks of weight 1 and on the
ordering of the vertices of the Brauer trees.

1.3. The setting. Let p be an odd rational prime. Let K ′ := Q(Z) ⊂ C be the
field extension of Q generated by Z := {ζ ∈ C; ζe = 1 for some e ∈ N, p 6 | e}, and
let K := K ′(ζp) ⊂ C, where 1 6= ζp ∈ C such that ζpp = 1. An element of K is called
p-rational, if it is contained in K ′. As all the algebraic field extensions Q ⊂ Q(ζ),
for ζ ∈ Z, are unramified over the prime p, see also [7, Thm.5.7], there is a discrete
valuation ring R in K with maximal ideal ℘CR containing p. We once and for all
fix such a p-modular system (K,R, k), where k := R/℘ denotes the residue class
field of R.
For a finite group G, we denote the usual scalar product of class functions χ, χ′ on
G by 〈χ, χ′〉G. For a p-block B of G we denote the number of ordinary and Brauer
characters in B by k(B) and l(B), respectively. If B has a cyclic defect group, then
the multiplicity of the exceptional vertex is denoted by m(B); in this case we have
m(B) = (p− 1)/l(B) and k(B) = l(B) +m(B).

1.4. Acknowledgement. The author thanks F. Noeske for many inspiring discus-
sions on the subject. Without his implementation of the generic character table of
S̃n within the computer algebra system GAP [6], and a wealth of explicitly com-
puted examples, both for small n and for some generic cases like S̃p or S̃p+1, see
[14], the present paper would not have been written.

2. Operations with partitions

2.1. Notation. Let Pn denote the set of partitions of n ∈ N0. For λ ∈ Pn let
[λ1, λ2, . . . , λl] be the sequence of its parts, where λ1 ≥ λ2 ≥ . . . ≥ λl > 0 and∑l
i=1 λi = n. Let lλ = l be its length, let σλ := n − lλ be its signature and let

ελ := (−1)σλ be its sign. Let P+
n := {λ ∈ Pn; ελ = 1} and P−n := Pn \ P+

n . Let
On := {λ ∈ Pn; all λi odd} ⊆ P+

n and Dn := {λ ∈ Pn;λi’s pairwise distinct}, as
well as D+

n := Dn ∩ P+
n and D−n := Dn ∩ P−n , and D := ∪n∈N0Dn.

2.2. Bar operations on the abacus. We record λ ∈ Dn by beads on an abacus
with runners labelled by 0, 1, . . . , p − 1 and rows labelled by N0 as follows: For
1 ≤ i ≤ lλ we place the i-th bead in row xi on runner yi, where λi = xip+ yi. For
0 ≤ j ≤ p− 1 let Xj

λ := {x ∈ N0;xp+ j is a part of λ}.
Note that position (0, 0) of the abacus is never occupied, and that we have a bijec-
tion between D and the bead configurations on the abacus with position (0, 0) not
occupied. Furthermore, λ is uniquely defined by the sets Xj

λ for 0 ≤ j ≤ p− 1.
Given λ ∈ Dn and its corresponding bead configuration on the abacus, performing
either of the following steps on the abacus is called a p-bar removal: Type ‘+’:
Move a bead from position (x, y) 6= (1, 0) to position (x− 1, y), if the latter is not
yet occupied. Type ‘0’: Remove a bead from position (1, 0). Type ‘−’: Remove
two beads from positions (0, y) and (0, p− y), where 1 ≤ y ≤ (p− 1)/2.
Conversely, performing either of the following steps on the abacus is called a p-bar
addition: Type ‘+’: Move a bead from position (x, y) to position (x + 1, y), if
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the latter is not yet occupied. Type ‘0’: Put a bead on position (1, 0), if it is not
yet occupied. Type ‘−’: Put two beads on positions (0, y) and (0, p − y), where
1 ≤ y ≤ (p− 1)/2, if both are not yet occupied.
Let I+

λ and I0
λ be the sets of ordinals 1 ≤ i ≤ lλ such that the i-th bead can be

moved by a p-bar removal of type ‘+’ and of type ‘0’, respectively. Let I−λ be the
sets of ordinals 1 ≤ i ≤ lλ such that there is some j > i such that the i-th and
the j-th bead can be moved by a p-bar removal of type ‘−’. Note that I0

λ contains
at most one element, and that the sets I+

λ , I0
λ and I−λ are pairwise disjoint. Let

Iλ := I+
λ ∪ I0

λ ∪ I
−
λ

2.3. Related notions. For i ∈ Iλ let the leg length bi be defined as follows: Let
λ̃ be obtained from λ by p-bar removal involving the i-th bead. If i ∈ I+

λ , let
bi := j− i, if the moved bead becomes the j-th bead of λ̃. If i ∈ I0

λ, let bi := lλ− i.
If i ∈ I−λ , let bi := j − i − λj − 1, where the j-th bead, j > i, is the other bead
involved in the p-bar removal. The reason for this terminology is an interpretation
of bi as the leg length of a hook in a certain Young diagram, see [9, Sect.10].
If λ̃ is obtained from λ by p-bar removal of type ‘+’, then we have lλ − lλ̃ = 0,
while for the types ‘0’ and ‘−’ we have lλ − lλ̃ = 1 and lλ − lλ̃ = 2, respectively.
Hence for the signatures and signs we have σλ− σλ̃ = p and ελ = −ελ̃ for type ‘+’,
while for the types ‘0’ and ‘−’ we have σλ − σλ̃ = p − 1 and ελ = ελ̃, as well as
σλ − σλ̃ = p− 2 and ελ = −ελ̃, respectively.
The partition λ ∈ Dn−pwλ obtained by successive p-bar removal until no further
p-bar removal is possible, is called the p-bar core of λ. The number wλ ∈ N0 of steps
needed to reach the p-bar core is called the p-weight of λ. If conversely λ ∈ Dn−pw
is a p-bar core, then we let Dλ,w := {π ∈ Dn;π = λ}, where π denotes the p-bar
core of π, as well as D+

λ,w
:= Dλ,w ∩ D+

n and D−
λ,w

:= Dλ,w ∩ D−n .

3. Spin characters and blocks

3.1. The groups S̃n and Ãn. For n ∈ N0 let Sn denote the symmetric group on
{1, . . . , n}. It is finitely presented as

Sn ∼= 〈s1, . . . , sn−1|s2
i = (sisi+1)3 = (sisj)2 = 1, 1 ≤ i < j ≤ n− 1, |i− j| ≥ 2〉,

where the isomorphism maps (i, i+ 1) 7→ si for 1 ≤ i ≤ n− 1. Let the Schur cover
S̃n of Sn be defined as the finitely presented group, see [15, Sect.I.3.],

S̃n := 〈z, s̃1, . . . , s̃n−1| z2 = 1, s̃2
i = (s̃is̃i+1)3 = (s̃is̃j)2 = z,

1 ≤ i < j ≤ n− 1, |i− j| ≥ 2〉.

Thus S̃n is a central extension 1→ 〈z〉 → S̃n
αn→ Sn → 1 of Sn by the cyclic group

〈z〉 order 2, where αn : z 7→ 1 and αn : s̃i 7→ si for 1 ≤ i ≤ n − 1. For the other
central extension Ŝn of Sn by a cyclic group order 2, which is isoclinic to S̃n, see
Remark 6.7.
Let An denote the alternating group on n letters. Let Ãn := α−1

n (An)E S̃n, which
for n ≥ 2 is a normal subgroup of index 2, and equals S̃n for n ≤ 1. Hence Ãn is a
central extension 1→ 〈z〉 → Ãn

αn→ An → 1 of An by the cyclic group 〈z〉 order 2.
If m ≤ n, let the monomorphism βmn : Sm → Sn be induced by the natural
embedding {1, . . . ,m} → {1, . . . , n}. Then there is monomorphism β̃mn : S̃m →
S̃n : s̃′i 7→ s̃i, for 1 ≤ i ≤ m − 1, where the s̃′i are the generators in the defining
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presentation for S̃m. Hence we have αn ◦ β̃mn = βmn ◦ αm. In the sequel, we will
identify S̃m and β̃mn (S̃m) ≤ S̃n.

3.2. Conjugacy classes. Given a conjugacy class Cπ ⊆ Sn, which consists of
elements of cycle type π ∈ Pn, then α−1

n (Cπ) consists of two conjugacy classes C1
π

and C2
π = zC1

π of S̃n, if and only if π ∈ On
.
∪ D−n . In this case, let π = [π1, . . . , πl]

and gπ :=
∏l
i=1(π1 + · · ·+ πi−1 + 1, . . . , π1 + · · ·+ πi) ∈ Cπ ⊆ Sn. Hence we have

gπ =
∏l
i=1(sπ1+···+πi−1 ·sπ1+···+πi−2 ·· · ··sπ1+···+πi−1+1). Following [15, Sect.III.11],

we define C1
π ⊆ S̃n to be the conjugacy class containing

g̃π :=
l∏
i=1

(s̃π1+···+πi−1 · s̃π1+···+πi−2 · · · · · s̃π1+···+πi−1+1) ∈ S̃n.

Given π ∈ P+
n , the conjugacy class Cπ of Sn consists of two conjugacy classes of

An if and only if π ∈ On ∩ D+
n . Given a conjugacy class C̃π of An consisting of

elements of cycle type π ∈ P+
n , then α−1

n (C̃π) consists of two conjugacy classes of
Ãn if and only if π ∈ On ∪ D+

n .

3.3. Spin characters. Let Irr(S̃n) denote the set of irreducible ordinary characters
of S̃n, and Irr−(S̃n) := {χ ∈ Irr(S̃n);χ(z) = −χ(1)} denote the set of spin char-
acters. Hence Irr+(S̃n) := Irr(S̃n) \ Irr−(S̃n) can be identified with Irr(Sn). Let
ε ∈ Irr(Sn) be the sign character, i. e., ε(π) = επ, and for χ ∈ Irr(S̃n) let χ′ := χ⊗ε.
The spin characters Irr−(S̃n) are parametrized by Dn, see [15, Sect.X.41], where
for λ ∈ D+

n there is a self-associate spin character 〈λ〉 = 〈λ〉′, while for λ ∈ D−n
there is a pair of distinct associate spin characters 〈λ〉 and 〈λ〉′. If λ ∈ D+

n , let
〈λ〉∗ := 〈λ〉 = 〈λ〉′, while if λ ∈ D−n , let 〈λ〉∗ := 〈λ〉+ 〈λ〉′.
We adopt the usual abuse of notation to write χ(π) for the value of χ ∈ Irr(S̃n)
on the elements contained in α−1

n (Cπ), for π ∈ Pn, where for χ ∈ Irr−(S̃n) and
π ∈ On

.
∪ D−n we let χ(π) := χ(g̃π). We have 〈λ〉(π) 6= 0 possibly only for π ∈ On

or for λ = π ∈ D−n . If λ = π ∈ D−n , then we define 〈λ〉 to be the character fulfilling

〈λ〉(λ) =
√
−1

(σλ+1)/2 ·
√

(
∏lλ
i=1 λi)/2, while of course 〈λ〉′(λ) = −〈λ〉(λ).

3.4. Morris recursion formula. If π ∈ On, then 〈λ〉(π) ∈ Z can be computed
by the following recursion formula, see [13, Thm.2]: Let e ∈ N be a part of π,
hence e is odd. Let Ieλ ⊆ {1, . . . , lλ} denote the I-set for λ with respect to e-bar
removal, see Section 2.2. For i ∈ Ieλ = Ie,+λ

.
∪ Ie,0λ

.
∪ Ie,−λ let λi ∈ Dn−e denote

the partition obtained by e-bar removal involving the i-th part of λ, and let bi the
corresponding leg length, see Section 2.3. Let ai ∈ {0, 1} be defined as follows: If
i ∈ Ie,+λ ∪ Ie,−λ and ελ = 1, then let ai := 1, otherwise let ai = 0. Then we have
〈λ〉(π) =

∑
i∈Ieλ

(−1)bi2ai〈λi〉(π \ e), where π \ e ∈ Dn−e is the partition obtained
from π by deleting its part e.

3.5. Branching rule. Let λ ∈ Dn. Let I1
λ ⊆ {1, . . . , lλ} denote the I-set for λ

with respect to 1-bar removal, see Section 2.2. Note that only types ‘+’ and ‘0’
are relevant here, and that we have lλ ∈ I1

λ. For i ∈ I1
λ let λi ∈ Dn−1 denote the

partition obtained by 1-bar removal involving the i-th part of λ. Note that 1-bar
removal of type ‘0’ is recorded on an abacus with p-runners by removing a bead
from position (0, 1), while type ‘+’ is recorded by moving the involved bead from
position (x, y) 6= (0, 1) to (x, y − 1) if y > 0, and to (x− 1, p− 1) if y = 0.



5

If λlλ 6= 1, by [9, Thm.10.2] we have 〈λ〉|S̃n−1
=
∑
i∈I1

λ
〈λi〉∗, while if λlλ = 1, we

have 〈λ〉|S̃n−1
= 〈λlλ〉+

∑
i∈I1

λ,i 6=lλ
〈λi〉∗.

For λ ∈ Dn and λ̃ ∈ Dm, where n ≥ m, let Rλ
λ̃

denote the set of all sequences
[λ = λ(0), λ(1), . . . , λ(n−m) = λ̃], such that λ(i) ∈ Dn−i is obtained from λ(i−1) ∈
Dn−i+1 by 1-bar removal, for 1 ≤ i ≤ n−m. From the decomposition of 〈λ〉|S̃n−1

we conclude by induction that for m ≤ n we have 〈〈λ〉|S̃m , 〈λ̃〉〉S̃m 6= 0 if and only if
Rλ
λ̃
6= ∅. For m ≤ n−2, from the character values given in Section 3.3, we conclude

that 〈λ〉′|S̃m = (〈λ〉 ⊗ ε)|S̃m = 〈λ〉|S̃m ⊗ ε = 〈λ〉|S̃m .

3.6. Spin characters for Ãn. Analogously to the definitions in Section 3.3, we
define the sets Irr(Ãn) = Irr+(Ãn)

.
∪ Irr−(Ãn), where Irr+(Ãn) can be identified

with Irr(An). The characters in Irr−(Ãn) are by Clifford theory described as follows:
If λ ∈ D−n , then the restriction 〈λ〉|Ãn of 〈λ〉 to Ãn is irreducuible, and we have
〈λ〉(′) := 〈λ〉|Ãn = 〈λ〉′|Ãn . If λ ∈ D+

n , then we have 〈λ〉|Ãn ∼= 〈λ〉1 + 〈λ〉2, where
the latter are a pair of distinct irreducible characters which are conjugate under
the outer automorphism of Ãn induced by S̃n. In this case, for π ∈ P+

n , we have
〈λ〉1(π) − 〈λ〉2(π) 6= 0, if and only if λ = π, and we define 〈λ〉1 and 〈λ〉2 to fulfill

〈λ〉1(λ)− 〈λ〉2(λ) =
√
−1

σλ/2 ·
√∏lλ

i=1 λi.

3.7. Table automorphisms. Let G be a finite group and Cl(G) the set of its
conjugacy classes. For d ∈ N, the d-th powermap of G is defined as pd : Cl(G) →
Cl(G) : gG 7→ (gd)G. A table automorphism τ of G is a bijection from Cl(G) to itself
which commutes with all the powermaps of G and leaves the set Irr(G) invariant,
where τ acts on Irr(G) via χ 7→ χ ◦ τ .

3.8. Proposition. Let λ ∈ D−n and α−1
n (Cλ) be the disjoint union of the conjugacy

classes C1 and C2 = zC1 of S̃n. Let τ : Cl(S̃n)→ Cl(S̃n) interchange C1 and C2 and
leave all the other conjugacy classes of S̃n fixed. Then τ is a table automorphism
of S̃n. It acts on Irr(S̃n) by interchanging 〈λ〉 and 〈λ〉′ and leaving all the other
characters in Irr(S̃n) fixed.

Proof. Let d ∈ N and C, C̃ ∈ Cl(S̃n) such that pd : C 7→ C̃. We may assume that
C or C̃ are not fixed by τ . If C̃ = C1, say, then by the assumption on λ we have
d odd and C = C1 or C = C2. As C2 = zC1, we conclude that pd either fixes
both of C1 and C2 or exchanges them, hence in any case commutes with τ . If C̃ is
fixed by τ and C = C1, say, then d divides one of the parts of λ. If d is even, then
we have pd(C2) = pd(zC1) = pd(C1). If d is odd, then pd(Cλ) is parametrized by
a partition in P−n \ D−n , hence α−1

n (pd(Cλ)) consists of a single conjugacy class of
S̃n, thus again we have pd(C1) = pd(C2). As τ induces the identity on Irr(Sn), the
second assertion follows using the spin character values in Section 3.3. ]

3.9. Proposition. Let λ ∈ D+
n .

a) Let λ 6∈ On and α−1
n (Cλ) be the disjoint union of the conjugacy classes C1 and

C2 = zC1. Let τ : Cl(Ãn)→ Cl(Ãn) interchange C1 and C2 and leave all the other
conjugacy classes of Ãn fixed. Then τ is a table automorphism of Ãn. It acts
on Irr(Ãn) by interchanging 〈λ〉1 and 〈λ〉2 and leaving all the other characters in
Irr(Ãn) fixed.
b) Let λ ∈ On and α−1

n (Cλ) be the disjoint union of the conjugacy classes C1,
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C2 = zC1, C3 and C4 = zC3 of Ãn, where C1 and C3, say, consist of elements
of odd order. Let τ : Cl(Ãn) → Cl(Ãn) interchange C1 and C3 as well as C2

and C4, and leave all the other conjugacy classes of Ãn fixed. Then τ is a table
automorphism of Ãn. It acts on Irr−(Ãn) by interchanging 〈λ〉1 and 〈λ〉2 and
leaving all the other characters in Irr−(Ãn) fixed.

Proof. a) is proved similarly to Proposition 3.8.
b) Let d ∈ N and C, C̃ ∈ Cl(S̃n) such that pd : C 7→ C̃. We may assume that C
or C̃ are not fixed by τ . If C̃ = C2, say, then necessarily d is odd and C1 is in the
image of pd as well. Hence we may assume C̃ = C1. Then d is coprime to all the
parts of λ. If d is odd, then pd either interchanges C1 and C3 as well as C2 and C4,
or leaves all of C1, C2, C3, C4 fixed. If d is even, then either pd(C1) = pd(C2) = C3

and pd(C3) = pd(C4) = C1, or pd(C1) = pd(C2) = C1 and pd(C3) = pd(C4) = C3.
Hence in any case pd commutes with τ .
If C̃ is fixed by τ and C = C1, say, then d divides one of the parts of λ. Hence
pd(Cλ) is parametrized by a partition in On \D+

n , thus α−1
n (pd(Cλ)) consists of two

conjugacy classes of Ãn, exactly one of which consists of elements of odd order.
Hence again pd commutes with τ .
As τ interchanges the conjugacy classes αn(C1) and αn(C3) of An, it follows from
[11, Thm.2.5.13] that τ induces a table automorphism of An. The second assertion
now follows from the description of the character values in Section 3.6. ]

3.10. Spin blocks. The distribution of the spin characters Irr−(S̃n) into p-blocks
is described as follows: Let λ ∈ Dn. If λ is a p-bar core, then by [9, Prop.10.6]
〈λ〉 and 〈λ〉′ are of p-defect 0, and hence form p-blocks of their own. If λ is not a
p-bar core, then by [10], 〈λ〉 is of positive p-defect, 〈λ〉 and 〈λ〉′ belong to the same
p-block, and for λ̃ ∈ Dn the characters 〈λ〉 and 〈λ̃〉 are in the same p-block if and
only if λ and λ̃ have the same p-bar core. In particular, it follows that all p-blocks
of Irr−(S̃n) of positive defect are invariant under complex conjugation χ 7→ χ and
under tensoring with the sign character χ 7→ χ⊗ ε = χ′, for χ ∈ Irr(S̃n).
For wλ > 0, let λ ∈ Dn−pwλ be the p-bar core of λ. Hence all characters in the
p-block Bλ,wλ of Irr−(S̃n) containing 〈λ〉 have the same p-weight wλ, which is also
called the weight of Bλ,wλ . Let σBλ,wλ := σλ and εBλ,wλ := ελ be the signature and
the sign of Bλ,wλ , respectively.

By [3, Thm.3.2.A] the p-Sylow subgroups of S̃pwλ ≤ S̃n, are defect groups of Bλ,wλ .
Hence the p-blocks of Irr−(S̃n) of cyclic defect are precisely the p-blocks of weight
1, which in turn are of defect 1. These blocks have the groups 〈g[p,1n−p]〉 ≤ S̃n,
where g[p,1n−p] is as defined in Section 3.2, as defect groups.

3.11. Spin blocks for Ãn. By Section 2.3, p-bar addition of type ‘+’ and ‘−’
changes the sign of the partitions involved, while for type ‘0’ the sign is unchanged.
From that and the description of the characters in p-blocks Bλ,w of Irr−(S̃n) of
positive weight w, it follows that Bλ,w contains a character 〈λ〉 where λ ∈ D−n .

As 〈λ〉|Ãn is irreducible, by [4, La.IV.4.10] there is exactly one p-block B̃λ,w of
Irr−(Ãn) which is covered by Bλ,w. Conversely, Bλ,w is the only p-block of Irr−(S̃n)
covering B̃λ,w. By [1, Thm.IV.15.1] this gives a bijection between the p-blocks of
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Irr−(Ãn) of positive weight and the p-blocks of Irr−(S̃n) of positive weight, which
preserves block defect groups.

4. Blocks of weight 1

4.1. The s-invariant. Let λ ∈ Dn−p be a p-bar core. Thus to find the characters
in the weight 1 block Bλ,1 of Irr−(S̃n) we have to find Dλ,1, hence we have to apply
p-bar addition steps to the bead configuration for λ.
Let the s-invariant sλ ≥ 0 be the number of occupied positions in the 0-th row of
the abacus, in the bead configuration for λ. As for 1 ≤ y ≤ (p−1)/2 at most one of
the y-th and (p−y)-th runners might possibly be occupied, we have sλ ≤ (p−1)/2.

4.2. Partitions. For s := sλ let {y1, . . . , ys} ⊆ {1, . . . , p− 1} be the set of runners
occupied by at least one bead, and for 1 ≤ i ≤ s let xi ∈ N0 be the largest element of
Xyi
λ

. We assume the ordering chosen such that x1p+y1 > x2p+y2 > . . . > xsp+ys.

Let λ
i

+ ∈ Dλ,1 denote the partition obtained by p-bar addition of type ‘+’ involving
the bead on position (xi, yi). We have I0

λ
i
+

= ∅ = I−
λ
i
+

, but I+

λ
i
+

contains one element.

The corresponding leg length, see Section 2.3, is easily seen to be bi+ := i− 1.

Let λ
0 ∈ Dλ,1 denote the partition obtained by p-bar addition of type ‘0’, i. e., λ

0

has the parts of λ as its parts, and an additional part equal to p. Note that hence λ
0

is the only partition in Dλ,1 having a part divisible by p. We have I+

λ
0 = ∅ = I−

λ
0 ,

but I0

λ
0 contains one element. The corresponding leg length is easily seen to be

b0 := s.
Let {ỹ1, . . . , ỹt} := {1, . . . , (p − 1)/2} \ {y1, (p − y1), . . . , ys, (p − ys)}, where t :=
(p − 1)/2 − sλ and where we assume the ordering chosen such that ỹ1 > . . . > ỹt.
For 1 ≤ i ≤ t let λ

i

− ∈ Dλ,1 denote the partition obtained by p-bar addition of type
‘−’ involving runners ỹi and (p− ỹi). We have I+

λ
i
−

= ∅ = I0

λ
i
−

, but I−
λ
i
−

contains one

element. The corresponding leg length is easily seen to be bi− := (p− 1)/2− i+ 1.
Hence we have proved:

4.3. Proposition. Let λ ∈ Dn−p be a p-bar core, s := sλ and t := (p − 1)/2 −
sλ. Then we have Dλ,1 = {λ1

+, . . . , λ
s

+, λ
0
, λ
t

−, . . . , λ
1

−}. For all λ ∈ Dλ,1 the set
Iλ contains exactly one element, and the corresponding leg lengths are pairwise
different and equal to 0, . . . , s− 1, s, s+ 1, . . . , (p− 1)/2, respectively. ]

We can now state our main result.

4.4. Theorem. Let λ ∈ Dn−p be a p-bar core with s-invariant sλ.
a) Let Bλ,1 denote the p-block of Irr−(S̃n) having weight 1 and p-bar core λ, see
Section 3.10. Depending on the cases εBλ,1 = 1, where in turn σBλ,1−p ≡ 1 (mod 4)
or σBλ,1 − p ≡ −1 (mod 4), or εBλ,1 = −1 the Brauer tree of Bλ,1 is as depicted in
Table 1, 2 and 3, respectively, up to the table automorphisms in Proposition 3.8.
b) Let B̃λ,1 denote the p-block of Irr−(Ãn) being covered by Bλ,1, see Section 3.11.
Depending on the cases εB̃λ,1 = 1 or εB̃λ,1 = −1, where in turn σB̃λ,1

+ p ≡ 0

(mod 4) or σB̃λ,1 + p ≡ 2 (mod 4) the Brauer tree of B̃λ,1 is as depicted in Table
4, 5 and 6, respectively, up to the table automorphisms in Proposition 3.9.
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Table 1. Brauer tree of Bλ,1, εBλ,1 = 1, σBλ,1 − p ≡ 1 (mod 4),
s := sλ and t = (p− 1)/2− sλ.

t t p p p p t t t t t p p p p t t
t
pppp
t

t
pppp
t

〈λ0〉

〈λs+〉 〈λ2
+〉 〈λ

1
+〉〈λs+〉′〈λ2

+〉′〈λ1
+〉′

〈λt−〉

〈λ1
−〉

〈λt−〉′

〈λ1
−〉′

Table 2. Brauer tree of Bλ,1, εBλ,1 = 1, σBλ,1 − p ≡ −1 (mod 4),
s := sλ and t = (p− 1)/2− sλ.

t t p p p p t t t t t p p p p t t
t
pppp
t

t
pppp
t

〈λ0〉

〈λt−〉 〈λ2
−〉 〈λ

1
−〉〈λt−〉′〈λ2

−〉′〈λ1
−〉′

〈λs+〉

〈λ1
+〉

〈λs+〉′

〈λ1
+〉′

Table 3. Brauer tree of Bλ,1, εBλ,1=−1, s :=sλ and t = (p− 1)/2− sλ.

t p p p p t ti t t p p p p t t
〈λ0〉, 〈λ0〉′

〈λs+〉 〈λ1
+〉〈λt−〉〈λ1

−〉
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Table 4. Brauer tree of B̃λ,1, εB̃λ,1 = 1, s := sλ and t = (p− 1)/2− sλ.

t p p p p t ti t t p p p p t t
〈λ0〉1,2

〈λs+〉(′) 〈λ1
+〉(′)〈λt−〉(′)〈λ1

−〉(′)

Table 5. Brauer tree of B̃λ,1, εB̃λ,1 = −1, σB̃λ,1 + p ≡ 0 (mod 4),
s := sλ and t = (p− 1)/2− sλ.

t t p p p p t t t t t p p p p t t
t
pppp
t

t
pppp
t

〈λ0〉(′)
〈λs+〉1 〈λ2

+〉1 〈λ
1
+〉1〈λs+〉2〈λ2

+〉2〈λ1
+〉2

〈λt−〉1

〈λ1
−〉1

〈λt−〉2

〈λ1
−〉2

Table 6. Brauer tree of B̃λ,1, εB̃λ,1 = −1, σB̃λ,1 + p ≡ 2 (mod 4),
s := sλ and t = (p− 1)/2− sλ.

t t p p p p t t t t t p p p p t t
t
pppp
t

t
pppp
t

〈λ0〉(′)
〈λt−〉1 〈λ2

−〉1 〈λ
1
−〉1〈λt−〉2〈λ2

−〉2〈λ1
−〉2

〈λs+〉1

〈λ1
+〉1

〈λs+〉2

〈λ1
+〉2
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4.5. Proof of Theorem 4.4, part I. In part I we determine the shape of the
Brauer trees and obtain preliminary information on the labelling of its vertices. In
part II, see Section 6.2, we completely determine the labelling of the vertices.

a) We first consider Bλ,1 and distinguish the cases εBλ,1 = 1 and εBλ,1 = −1.

4.6. Case εBλ,1 = 1. By Section 2.3 we have ε
λ
i
+

= −1 = ε
λ
j
−

for all 1 ≤ i ≤ s := sλ
and 1 ≤ j ≤ t := (p − 1)/2 − sλ, and ε

λ
0 = 1. Hence we have k(Bλ,1) = p, where

D+

λ,1
= {λ0}. By Section 3.3, for λ ∈ D−

λ,1
and π ∈ P−n , we have 〈λ〉(π) = 0, except

for 〈λ〉(λ) = −〈λ〉′(λ) 6= 0. As λ ∈ D−
λ,1

has no part divisible by p, we conclude
that l(Bλ,1) = p− 1, hence m(Bλ,1) = 1. We now have a further case distinction.

4.7. Subcase σBλ,1 − p ≡ 1 (mod 4). By Sections 2.3 and 3.3 we find that 〈λ0〉
as well as 〈λi+〉 and 〈λi+〉′ are real-valued for all 1 ≤ i ≤ s, while 〈λi−〉 and 〈λi−〉′
are pairs of complex conjugate characters for all 1 ≤ i ≤ t. This determines the
vertices on the real stem of the Brauer tree of Bλ,1.

Let κ : χ 7→ χ′ = χ′ denote the concatenation of complex conjugation and tensoring
with the sign character, for χ ∈ Irr(S̃n). Again a consideration of character values
shows that 〈λ0〉 as well as 〈λi−〉 and 〈λi−〉′ for all 1 ≤ i ≤ t are invariant under κ,

while 〈λi+〉 and 〈λi+〉′ for all 1 ≤ i ≤ s are κ-orbits of length 2. By the arguments
in the proof of [7, Thm.11.15,11.16] we conclude that the set of κ-fixed points also
induces a subgraph of the Brauer tree which is a connected open polygon.

Hence the Brauer tree is a 4-fold star having 〈λ0〉 in its center; see Table 1. The
real stem is depicted as horizontal line, whose vertices are labelled by 〈λ0〉 and the
〈λi+〉, 〈λ

i

+〉′ for 1 ≤ i ≤ s, while the vertices on the other branches are labelled

by the 〈λi−〉, 〈λ
i

−〉′ for 1 ≤ i ≤ t. As tensoring with the sign character induces a
graph automorphism of the Brauer tree of order 2, which leaves both the set of real
characters as well as the set of κ-fixed points invariant, we conclude that 〈λ〉 and
〈λ〉′ have equal distance from the center 〈λ0〉 for all λ ∈ Dλ,1. By Proposition 3.8
there are enough table automorphisms of S̃n which allow to interchange the pairs
of associate characters in Bλ,1 independently. In Table 1 we depict the Brauer tree
where the 〈λ〉’s are concentrated on the right and upper branches of the Brauer
tree, while the 〈λ〉′’s are concentrated on the left and lower branches. It remains
to show that the ordering of the 〈λi+〉, for 1 ≤ i ≤ s, on the right horizontal branch

and the 〈λi−〉, for 1 ≤ i ≤ t, on the upper vertical branch of the Brauer tree is as
indicated, see Section 6.2.

4.8. Subcase σBλ,1 − p ≡ −1 (mod 4). The same line of argument as in Section

4.7 works with the roles of the 〈λi+〉’s and 〈λi−〉’s interchanged, see Table 2.

4.9. Case εBλ,1 = −1. By Section 2.3 we have ε
λ
i
+

= 1 = ε
λ
j
−

for all 1 ≤ i ≤ s

and 1 ≤ j ≤ t, and ε
λ

0 = −1. Hence we have k(Bλ,1) = (p − 1)/2 + 2, where

D−
λ,1

= {λ0}. By Section 3.3, we have 〈λ0〉(λ0
) = −〈λ0〉′(λ0

) 6= 0. As λ
0

has p as a

part, 〈λ0〉 is not p-rational. Hence by [7, Thm.11.5] we conclude that 〈λ0〉 and 〈λ0〉′
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are exceptional characters of Bλ,1. Furthermore 〈λ〉 is integer-valued for λ ∈ D+

λ,1
.

Thus we have l(Bλ,1) = (p− 1)/2, hence m(Bλ,1) = 2, and the Brauer tree is a real
stem, see Table 3. From the results in Section 4.11, by induction from Ãn to S̃n,
we deduce that the vertices on one of the branches of the Brauer tree are labelled
by the 〈λi+〉, for 1 ≤ i ≤ s, while the vertices on the other branch are labelled by

the 〈λi−〉, for 1 ≤ i ≤ t. It remains to show that the ordering of the 〈λi+〉 and 〈λi−〉
on the branches of the Brauer tree is as indicated, see Section 6.2.

b) We now consider B̃λ,1 and distinguish the cases εB̃λ,1 = 1 and εB̃λ,1
= −1.

4.10. Case εB̃λ,1
= 1. As 〈λ0〉 is a self-associate character and λ

0
has p as a part,

by Section 3.6 the characters 〈λ0〉1 and 〈λ0〉2 in Irr−(Ãn) are not p-rational, and
hence exceptional. For λ ∈ D−

λ,1
the characters 〈λ〉 and 〈λ〉′ restrict irreducibly to

Ãn, and hence 〈λ〉(′) is integer-valued. Thus we have k(B̃λ,1) = (p − 1)/2 + 2, as
well as l(B̃λ,1) = (p − 1)/2 and m(B̃λ,1) = 2. Furthermore, all the characters in
B̃λ,1 are real-valued. From the results in Sections 4.7 and 4.8, by restriction from
S̃n to Ãn, we deduce the Brauer tree as depicted in Table 4.

4.11. Case εB̃λ,1
= −1. The characters 〈λ0〉 and 〈λ0〉′ restrict to the p-rational

irreducible character 〈λ0〉(′) of Ãn. For the character 〈λ〉, where λ ∈ D+

λ,1
, we have

〈λ〉|Ãn = 〈λ〉1 + 〈λ〉2, which by Section 3.6 are p-rational as well. We conclude
k(B̃λ,1) = p, as well as l(B̃λ,1) = p− 1 and m(B̃λ,1) = 1, by [7, Thm.11.5].
Again we have to distinguish two subcases σB̃λ,1 + p ≡ 0 (mod 4) and σB̃λ,1

+ p ≡
2 (mod 4). For both subcases, using the description of the character values in
Section 3.6, we determine the real valued characters in B̃λ,1, and the characters
fixed under κ̃ : χ 7→ χσ = χσ, for χ ∈ Irr(Ãn), which is the concatenation of
complex conjugation and the action σ induced by the outer automorphism of Ãn
induced by S̃n. Again using [7, Thm.11.15,11.16], we conclude that the Brauer tree
is a 4-fold star having 〈λ0〉(′) in its center, see Tables 5 and 6, the vertices on the
branches being labelled by the 〈λi+〉1, 〈λi+〉2 for 1 ≤ i ≤ s and the 〈λi−〉1, 〈λi−〉2 for
1 ≤ i ≤ t, respectively.
As σ induces a graph automorphism of the Brauer tree of order 2, which leaves both
the set of real characters as well as the set of κ̃-fixed points invariant, we conclude
that 〈λ〉1 and 〈λ〉2 have equal distance from the center 〈λ0〉 for all λ ∈ D+

λ,1
. Using

Proposition 3.9, in Tables 5 and 6 we depict the Brauer trees where the 〈λ〉1’s are
concentrated on the right and upper branches of the Brauer tree, while the 〈λ〉2’s
are concentrated on the left and lower branches. The ordering of the 〈λi+〉1, for

1 ≤ i ≤ s, and the 〈λi−〉1, for 1 ≤ i ≤ t, on the right and upper branches of the
Brauer tree follows from the corresponding result for Bλ,1, see Section 4.9. ]

5. Scopes-Kessar reduction

5.1. Proposition. Let λ ∈ Dn have p-weight wλ, let λ ∈ Dn−pwλ be its p-bar core,
and let 1 ≤ j ≤ p− 1.
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a) We have {0, . . . , |Xj
λ| − wλ − 1} ⊆ Xj

λ ⊆ {0, . . . , |X
j
λ| + wλ − 1}, where for

|Xj
λ| ≤ wλ the left hand side is the empty set; and X0

λ ⊆ {1, . . . , wλ}.
b) We have |Xj

λ|−|X
j

λ
| ≤ wλ; and if |Xj

λ| ≥ wλ+1, then |Xj
λ| = |X

j

λ
| and Xp−j

λ = ∅.

Proof. The inclusions Xj
λ ⊆ {0, . . . , |X

j
λ| + wλ − 1} and X0

λ ⊆ {1, . . . , wλ} follow
from a consideration of p-bar removal steps of type ‘+’ and ‘0’. A consideration of
p-bar removal steps of type ‘−’ yields |Xj

λ| ≤ |X
j

λ
|+ wλ.

Let |Xj
λ| ≥ wλ+1. Then, if one of the rows 0, . . . , |Xj

λ|−wλ−1 were not occupied on
the j-th runner, at least wλ+1 steps of type ‘+’ would be possible, a contradiction.
Furthermore, if a step of type ‘−’ involving the j-th runner were possible, then at
least wλ additional steps of type ‘+’ would be possible as well, a contradiction. ]

5.2. Definition. For 1 ≤ j ≤ p − 1 the j-th Scopes-Kessar map Sj : D → D is
defined as follows: For j 6= 1, (p+ 1)/2 the bead configuration of Sj(λ) is obtained
from the one of λ by exchanging runners j and j − 1 as well as exchanging runners
p−j and p−j+1. For j = (p+1)/2 runners (p+1)/2 and (p−1)/2 are exchanged.
For j = 1 runners 1 and p−1 are exchanged, and subsequently the beads on runner
p− 1 are moved one position towards decreasing row numbers.

5.3. Remark.
a) Let λ ∈ D have p-bar core λ, and for 1 ≤ j ≤ p − 1 let Sj(λ) have p-bar core
Sj(λ). If j = 1, then let additionally 0 ∈ X1

λ and Xp−1
λ = ∅. Then, as is easily seen

or by [12, La.4.7], we have wSj(λ) = wλ and Sj(λ) = Sj(λ).
b) For 1 ≤ j, j′ ≤ p− 1 we have Sj = Sj

′
if and only if j+ j′ = p+ 1. For j 6= 1 we

have a weight-preserving involutory bijection Sj : D → D, which commutes with
taking p-bar cores. For j = 1 the map S1 induces a bijection from {λ ∈ D; 0 ∈ X1

λ}
to D, since for λ ∈ D the preimage (S1)−1(λ) consists of two elements, λ̃ and ˜̃

λ say,
where 0 ∈ X1

λ̃
and ˜̃

λ = λ̃ \ 1.

5.4. Proposition. Let λ ∈ Dn be a p-bar core. Let 1 ≤ j ≤ p−1 such that Xj

λ
6= ∅

and Sj(λ) ∈ Dm.
a) Then we have n−m ≥ |Xj

λ
| − |Xj−1

λ
|. In particular, for j = (p+ 1)/2 we have

n−m = |X(p+1)/2

λ
|, and for j = 1 we have n−m = 2|X1

λ
| − 1.

b) If j = 1 and |X1
λ
| ≥ 2, then for w ≤ |X1

λ
| − 1 the map S1 induces a bijection

between the sets Dλ,w and DS1(λ),w.

Proof. a) For j 6= 1, (p+1)/2 we have n−m = |Xj

λ
|−|Xj−1

λ
|+ |Xp−j+1

λ
|−|Xp−j

λ
|.

As |Xj

λ
| 6= 0, we have Xp−j

λ
= ∅. For j = (p+ 1)/2 we have n−m = |X(p+1)/2

λ
| −

|X(p−1)/2

λ
| = |X(p+1)/2

λ
|. For j = 1 we have n −m = 1 + 2 · (|X1

λ
| − |Xp−1

λ
|). As

|X1
λ
| 6= 0, we have Xp−1

λ
= ∅, hence n−m = 2|X1

λ
| − 1 ≥ |X1

λ
|.

b) Let π ∈ Dλ,w. Then |X1
π| ≥ |X1

λ
| ≥ w + 1 = wπ + 1. Hence by Proposition 5.1

we have 0 ∈ X1
π and Xp−1

π = ∅. By Remark 5.3 we conclude that S1 maps Dλ,w
injectively to DS1(λ),w.

Conversely, let π ∈ DS1(λ),w. Then |Xp−1
π | ≥ |Xp−1

S1(λ)
| ≥ w = wπ. If |Xp−1

π | =

|Xp−1

S1(λ)
| = wπ, then in the p-bar removal process from π to S1(λ) the (p − 1)-st
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runner is involved only for steps of type ‘+’ as X1
S1(λ)

= ∅, we have X1
π = ∅. If

|Xp−1
π | ≥ wπ + 1, by Proposition 5.1 we have X1

π = ∅. Let π̃ ∈ D such that
S1(π̃) = π and 0 ∈ X1

π̃. Hence Xp−1
π̃ = ∅, and by Remark 5.3 we have wπ̃ = wπ.

Let π̃ have p-bar core π̃. Again by Remark 5.3 we have S1(π̃) = S1(λ). Since
0 ∈ X1

λ
∩X1

π̃
, we have π̃ = λ. ]

5.5. Proposition. Let λ ∈ Dn−p be a p-bar core, let 1 ≤ j ≤ p − 1 such that
|Xj

λ
| > |Xj−1

λ
|, and if j = 1 let additionally |X1

λ
| ≥ 2. For λ ∈ Dλ,1 and λ̃ ∈ DSj(λ),1

we then have Rλ
λ̃
6= ∅ if and only if λ̃ = Sj(λ), where Rλ

λ̃
is as in Section 3.5.

Proof. Note that by Remark 5.3 and Proposition 5.4 indeed Sj(λ) ∈ DSj(λ),1. We
consider different cases:

5.6. Case j 6= 1. We have |Xj

λ
| ≥ 1. Assume |Xj

λ| > |X
j

λ
|, hence |Xj

λ| ≥ 2, then
by Proposition 5.1 we have |Xj

λ| = |Xj

λ
|, a contradiction. Thus indeed we have

|Xj
λ| = |Xj

λ
|, and by the same argument as in the proof of Proposition 5.1 we

conclude that Xp−j
λ = ∅. Furthermore we have |Xj−1

Sj(λ)
| = |Xj

λ
|, and hence the

same argument shows |Xj−1

λ̃
| = |Xj−1

Sj(λ)
| and Xp−j+1

λ̃
= ∅.

Let k := |Xj−1
λ | − |Xj−1

λ
|. By Proposition 5.1 we have 0 ≤ k ≤ 1. If k = 1, the

p-bar removal step from λ to λ is of type ‘−’ and involves the (j − 1)-st runner of
the abacus. Hence we have Xj−1

λ = {0} and Xj−1

λ
= ∅, as well as Xj

λ = Xj

λ
6= ∅.

If k = 0, the p-bar removal step from λ to λ either is of type ‘+’ and involves
the (j − 1)-st runner, in which case we have Xj−1

λ = {0, . . . , |Xj−1

λ
| − 2, |Xj−1

λ
|} ⊆

{0, . . . , |Xj

λ
| − 1} = Xj

λ
= Xj

λ; or it is of type ‘+’ and involves the j-th runner, in
which case we have Xj−1

λ = Xj−1

λ
= {0, . . . , |Xj−1

λ
|−1} ⊆ {0, . . . , |Xj

λ
|−2, |Xj

λ
|} =

Xj
λ; or the (j − 1)-st and j-th runners are not involved, in which case we have

Xj−1
λ = Xj−1

λ
= {0, . . . , |Xj−1

λ
| − 1} ⊆ {0, . . . , |Xj

λ
| − 1} = Xj

λ
= Xj

λ.

Hence in either case we have Xj−1
λ ⊆ Xj

λ. As Xp−j
λ = ∅, we also have Xp−j

λ ⊆
Xp−j+1
λ , hence RλSj(λ) 6= ∅. Let conversely [λ = λ(0), λ(1), . . . , λ(n−m) = λ̃] ∈ Rλ

λ̃
.

5.7. Subcase j 6= (p + 1)/2. We have |Xj−1

λ̃
| − |Xj−1

λ | = |Xj

λ
| − |Xj−1

λ
| − k ≥ 0.

Hence there is a set Ij ⊆ {0, . . . , n−m− 1} of cardinality |Ij | = |Xj

λ
| − |Xj−1

λ
| − k,

such that for i ∈ Ij there is xi ∈ Xj−1

λ̃
\Xj−1

λ such that in the 1-bar removal step
from λ(i) to λ(i+1) a bead is moved from position (xi, j) to position (xi, j − 1).
Note that we have |Xp−j+1

λ | − |Xp−j+1

λ
| = k, and Xp−j+1

λ̃
= ∅. Hence there is

a set Ip−j+1 ⊆ {0, . . . , n − m − 1} of cardinality |Ip−j+1| = |Xp−j+1

λ
| + k, such

that for i ∈ Ip−j+1 there is xi ∈ Xp−j+1
λ such that in the 1-bar removal step from

λ(i) to λ(i+1) a bead is moved from position (xi, p − j + 1) to position (xi, p − j).
We have Ij ∩ Ip−j+1 = ∅ and |Ij | + |Ip−j+1| = n − m, as Xp−j

λ
= ∅. Hence

Ij ∪ Ip−j+1 = {0, . . . , n−m− 1}, which means that in all the 1-bar removal steps
only beads on the j-th and (p− j + 1)-st runners are moved to the left.
Let i ∈ Ij . Assume xi 6∈ Xj

λ, then a bead on the (j+1)-st runner must be moved to
the left, a contradiction. Thus we have {xi; i ∈ Ij} ⊆ Xj

λ, and hence {xi; i ∈ Ij} =
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Xj
λ\X

j−1
λ , since the latter set has cardinality |Xj

λ
|−|Xj−1

λ
|−k = |Ij |. Furthermore

we have {xi; i ∈ Ip−j+1} = Xp−j+1
λ . Hence we conclude that λ̃ = Sj(λ).

5.8. Subcase j = (p+1)/2. Since (p+1)/2 = p−(p+1)/2+1, we have X(p+1)/2

λ̃
=

∅. Hence there is a set I(p+1)/2 ⊆ {0, . . . , n − m − 1} of cardinality |I(p+1)/2| =
|X(p+1)/2

λ
|, such that for i ∈ I(p+1)/2 there is xi ∈ X(p+1)/2

λ such that in the 1-bar
removal step from λ(i) to λ(i+1) a bead is moved from position (xi, (p + 1)/2) to
position (xi, (p − 1)/2). By Proposition 5.4 we have |X(p+1)/2

λ
| = n − m, hence

I(p+1)/2 = {0, . . . , n−m− 1}, which means that in all the 1-bar removal steps only
beads on the (p + 1)/2-nd runner are moved to the left. Hence we conclude that
λ̃ = S(p+1)/2(λ).

5.9. Case j = 1. We have |Xp−1

λ̃
| ≥ |Xp−1

S1(λ)
| ≥ 1 = wλ̃. If |Xp−1

λ̃
| = |Xp−1

S1(λ)
| = 1,

then in the p-bar removal step from λ̃ to S1(λ) the (p − 1)-st runner is involved
possibly only in a step of type ‘+’; as X1

S1(λ)
= ∅, we have X1

λ̃
= ∅. If |Xp−1

λ̃
| ≥ 2,

by Proposition 5.1 we have |Xp−1

λ̃
| = |Xp−1

S1(λ)
| and X1

λ̃
= ∅. By Proposition 5.1 we

have |X1
λ| = |X1

λ
| and Xp−1

λ = ∅. By Propositions 5.1 and 5.4 we have X0
λ ⊆ {1}

and {0, . . . , |X1
λ| − 2} ⊆ X1

λ. Hence if |X1
λ| ≥ 3 or X1

λ = {0, 1}, then we have
X0
λ ⊆ X1

λ. If |X1
λ| = 2, but X1

λ 6= {0, 1}, we conclude from wλ = 1 that X1
λ = {0, 2}

and X1
λ = ∅, hence in any case we have X0

λ ⊆ X1
λ and 0 ∈ X1

λ.

Thus we have λ̃ = S1(λ) if and only if Xp−1

λ̃
= {x−1; 0 6= x ∈ X1

λ}. Since X0
λ ⊆ X1

λ,
we have RλS1(λ) 6= ∅. Let conversely [λ = λ(0), λ(1), . . . , λ(n−m) = λ̃] ∈ Rλ

λ̃
.

There is a set I1 ⊆ {0, . . . , n − m − 1} of cardinality |I1| = |X1
λ
| such that for

i ∈ I1 there is xi ∈ X1
λ such that in the 1-bar removal step from λ(i) to λ(i+1)

a bead is moved from position (xi, 1) to position (xi, 0). And there is a set I0 ⊆
{0, . . . , n − m − 1} of cardinality |I0| = |X1

λ
| − 1, such that for i ∈ I0 there is

xi ∈ X0
λ such that in the 1-bar removal step from λ(i) to λ(i+1) a bead is moved

from position (xi, 0) to position (xi−1, p−1). We have I0∩I1 = ∅ and, by Proposition
5.4, |I0|+ |I1| = n−m, hence I0 ∪ I1 = {0, . . . , n−m− 1}.
Let x ∈ Xp−1

λ̃
; we are going to show that x+ 1 ∈ X1

λ. We may assume x+ 1 6∈ X0
λ,

and hence there is some i ∈ I1 such that x + 1 = xi ∈ X1
λ. Thus {x + 1;x ∈

Xp−1

λ̃
} ⊆ X1

λ \ {0}. As these sets both have cardinality |X1
λ
| − 1, we have equality,

and hence λ̃ = S1(λ). ]

5.10. Remark. By the branching rule, see Section 3.5, we have 〈〈λ〉|S̃m , 〈λ̃〉〉S̃m 6=
0, if and only if Rλ

λ̃
6= ∅. Indeed, the cardinality |Rλ

λ̃
| is closely related to the value

of the above scalar product, see, e. g., [12, Prop.3.7]. It is possible to determine
|Rλ

λ̃
| precisely, but we will not need this information.

6. The trees

6.1. Proposition. Let λ ∈ Dn−p be a p-bar core, with s-invariant sλ. Let 1 ≤
j ≤ p − 1 such that |Xj

λ
| > |Xj−1

λ
|, and if j = 1 let additionally |X1

λ
| ≥ 2. Then

Sj(λ) has s-invariant sλ and the map Sj induces a bijection between the sets Dλ,1
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and DSj(λ),1. Precisely, we have Sj(λ
i

+) = (Sj(λ))i+ for 1 ≤ i ≤ sλ, as well as

Sj(λ
0
) = (Sj(λ))0, and Sj(λ

i

−) = (Sj(λ))i− for 1 ≤ i ≤ (p− 1)/2− sλ.

Proof. The invariance of the s-invariant follows directly from Definition 5.2. The
bijectivity of Sj follows from Remark 5.3 and Proposition 5.4.

Using the definitions in Section 4.2, the assertion on Sj(λ
0
) is clear. Let the p-bar

addition step from λ to λ
i

+ involve a bead on runner y, where 1 ≤ y ≤ p − 1 and

y 6= p− j. If j = 1, then in both cases y 6= 1 and y = 1 the assertion on Sj(λ
i

+) is

clear. Let j 6= 1. If y 6∈ {j − 1, j, p− j + 1}, then the assertion on Sj(λ
i

+) is clear.
If y = j or y = j − 1, then the assertion follows from Xj−1

λ
⊂ Xj

λ
. If y = p− j + 1,

then we use analogously ∅ = Xp−j
λ
⊂ Xp−j+1

λ
. Finally, let the p-bar addition step

from λ to λ
i

− involve beads on runners y and p − y, where 1 ≤ y ≤ (p − 1)/2 and

y 6∈ {j, p− j}. For both cases j 6= 1 and j = 1, the assertion on Sj(λ
i

−) is clear. ]

6.2. Proof of Theorem 4.4, part II. We now determine the ordering of the
〈λi+〉, for 1 ≤ i ≤ s := sλ, and the 〈λi−〉, for 1 ≤ i ≤ t := (p − 1)/2 − sλ, on the
branches of the Brauer tree of Bλ,1 by induction on n.

If there is 2 ≤ j ≤ p − 1 such that |Xj

λ
| > |Xj−1

λ
|, or if |X1

λ
| ≥ 2, in which

case we let j = 1, then, by Proposition 5.4, Sj(λ) ∈ Dm−p, where n − m ≥
|Xj

λ
| − |Xj−1

λ
| > 0. By induction the Brauer tree of BSj(λ),1 is as asserted, and

hence 〈Sj(λ)i+〉∗ + 〈Sj(λ)i+1
+ 〉∗, for 1 ≤ i ≤ s − 1, and 〈Sj(λ)i−〉∗ + 〈Sj(λ)i+1

− 〉∗,
for 1 ≤ i ≤ t − 1, as well as 〈Sj(λ)s+〉 + 〈Sj(λ)0〉∗ and 〈Sj(λ)t−〉 + 〈Sj(λ)0〉∗ are
projective characters in BSj(λ),1. Inducing these projective characters to S̃n and
taking Bλ,1-components yields a set of projective characters, whose decomposition
into ordinary irreducible characters is found using the branching rule, see Section
3.5, Frobenius reciprocity, and Propositions 5.5 and 6.1. From that the Brauer tree
of Bλ,1 is seen to be as asserted.

If such j does not exist, then we have λ = λ
(s)

:= [s, s − 1, . . . , 1] ∈ Dn−p, hence

n − p = s(s + 1)/2. For s ≥ 1 let λ̃(s) := [s, s − 1, . . . , 2] = λ
(s) \ 1 ∈ Dn−p−1,

which is a p-bar core with s-invariant sλ̃(s) = s − 1. By induction the Brauer tree
of Bλ̃(s),1 is as asserted, and hence 〈(λ̃(s))i+〉∗ + 〈(λ̃(s))i+1

+ 〉∗ for 1 ≤ i ≤ s − 2,
and 〈(λ̃(s))i−〉∗ + 〈(λ̃(s))i+1

− 〉∗ for 1 ≤ i ≤ t, as well as 〈(λ̃(s))s−1
+ 〉 + 〈(λ̃(s))0〉∗ and

〈(λ̃(s))t+1
+ 〉 + 〈(λ̃(s))0〉∗ are projective characters in Bλ̃(s),1. By the branching rule

the Bλ̃(s),1-components of the restrictions of the characters in B
λ

(s)
,1

to S̃n−1 are as

follows: 〈(λ(s)
)i+〉|S̃n−1

≡ 〈(λ̃(s))i+〉 for 1 ≤ i ≤ s−1 and 〈(λ(s)
)s+〉|S̃n−1

≡ 〈(λ̃(s))0〉∗,

as well as 〈(λ(s)
)i−〉|S̃n−1

≡ 〈(λ̃(s))i−〉 for 1 ≤ i ≤ t and 〈(λ(s)
)0〉|S̃n−1

≡ 〈(λ̃(s))0〉 +
〈(λ̃(s))t+1

− 〉∗. Again by Frobenius reciprocity the Brauer tree of B
λ

(s)
,1

is as asserted.

If s = 0 then λ = λ
(0)

= [] and n = p. Hence p does not divide |S̃n−1|, and thus
all characters in Irr−(S̃n−1) are projective. By the branching rule and Frobenius
reciprocity we obtain the following induced projective characters, where again we
only record the B[],1-components: 〈[(p− 1)/2 + i, (p− 1)/2− i]〉 ↑S̃p≡ 〈(λ(0)

)i−〉∗ +
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〈(λ(0)
)i+1
− 〉∗ for 1 ≤ i ≤ (p−1)/2−1 = t−1, and 〈[p−1]〉 ↑S̃p≡ 〈(λ(0)

)0〉∗+〈(λ(0)
)t−〉.

This shows that the Brauer tree of B[],1 is as asserted. ]

6.3. Corollary. We consider the set of all Morita equivalence classes of p-blocks
of Irr−(S̃n) of weight 1 occurring for some n ≥ p. Then, by Theorem 4.4, the set
of representatives Bλ,1 for these classes with nλ minimal is given as follows, where

λ
(s)

:= [s, s−1, . . . , 1] ∈ Ds(s+1)/2 for 1 ≤ s ≤ (p−1)/2 is as defined in Section 6.2,

and λ
(s+)

:= [s+ 1, s− 1, s− 2, . . . , 1] ∈ Ds(s+1)/2+1 is the partition obtained from

λ
(s)

by exchanging its part s against s+ 1.
a) Let p ≡ 1 (mod 4). For the cases m(Bλ,1) = 1 and m(Bλ,1) = 2, respectively,
the p-bar core λ ranges over

{λ(s)
; 0 ≤ s ≤ (p− 1)/4, s ≡ 0, 1 (mod 4)}

.
∪ {λ(s+)

; 0 ≤ s ≤ (p− 1)/4, s 6≡ 0, 1 (mod 4)},
and

{λ(s)
; 0 ≤ s ≤ (p− 1)/4, s 6≡ 0, 1 (mod 4)}

.
∪ {λ(s+)

; 0 ≤ s ≤ (p− 1)/4, s ≡ 0, 1 (mod 4)}.
b) Let p ≡ −1 (mod 4). For the cases m(Bλ,1) = 1 and m(Bλ,1) = 2, respectively,
the p-bar core λ ranges over

{λ(s)
; 0 ≤ s ≤ (p− 3)/4, s ≡ 0, 1 (mod 4)}

.
∪ {λ(s+)

; 0 ≤ s ≤ (p− 3)/4, s 6≡ 0, 1 (mod 4)},
and

{λ(s)
; 0 ≤ s ≤ (p− 3)/4, s 6≡ 0, 1 (mod 4)}

.
∪ {λ(s+)

; 0 ≤ s ≤ (p− 3)/4, s ≡ 0, 1 (mod 4)}.
Note that this set of Morita equivalence classes coincides with the set of all Morita
equivalence classes of p-blocks of Irr−(Ãn) of weight 1 occurring for some n ≥ p.

6.4. Corollary. If we walk along the Brauer tree of Bλ,1, from the leaf labelled

by 〈λ1

+〉 inwards to the center, and then outwards again to the leaf labelled by

〈λ1

−〉, and record the leg lengths of the labelling partitions accordingly, then by
Proposition 4.3 we get the increasing sequence 0, 1, . . . , s, . . . , (p− 1)/2.

6.5. The δ-invariant. Let λ ∈ Dn−p be a p-bar core. If εBλ,1 = −1, then,

by Theorem 4.4, 〈λ0〉∗ is the sum of the exceptional characters in Bλ,1, while if
εBλ,1 = 1, then it is a self-associate irreducible character. Let δχ, δ〈λ0〉∗ ∈ {±1},
where χ is a non-exceptional character in Bλ,1, denote the invariants defined in [4,
Thm.VII.2.14], reflecting the lengths of the Green correspondents of indecompos-
able lattices for these characters.

6.6. Corollary. Let λ ∈ Dn−p be a p-bar core with s-invariant sλ.
a) If λ ∈ Dλ,1, where λ 6= λ

0
, then δ〈λ〉 = δ〈λ〉′ .

b) We have δ〈λ0〉∗ = (−1)sλ , and δ〈λi+〉
= (−1)i−1 for 1 ≤ i ≤ sλ, as well as

δ〈λi−〉
= (−1)(p−1)/2−i+1 for 1 ≤ i ≤ (p− 1)/2− sλ.
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Proof. a) As 〈λ〉′ = 〈λ〉 ⊗ ε, the assertion follows from [4, Thm.VII.2.14].
b) By Section 3.10 and [8, La.4.4.6] we have 〈λ〉([p, 1n−p])·δ〈λ〉 > 0, where λ ∈ Dλ,1,

λ 6= λ
0
. By Section 3.4, we have 〈λ〉([p, 1n−p]) =

∑
i∈Iλ(−1)bi2ai〈λi〉([1n−p]). Since

|Iλ| = 1, we only have to consider the corresponding leg length bi. Hence the
assertion follows from Proposition 4.3. The same argument holds for 〈λ0〉∗. ]

6.7. Remark. For n ∈ N0, let Let Ŝn be defined as the finitely presented group,
see [15, Sect.I.3.]:

Ŝn := 〈z, ŝ1, . . . , ŝn−1| z2 = ŝ2
i = (ŝiz)2 = (ŝiŝi+1)3 = 1, (ŝiŝj)2 = z,

1 ≤ i < j ≤ n− 1, |i− j| ≥ 2〉

Thus Ŝn also is a central extension 1 → 〈z〉 → Ŝn
α̂n→ Sn → 1 of Sn by the

cyclic group 〈z〉 order 2, where α̂n : z 7→ 1 and α̂n : ŝi 7→ si for 1 ≤ i ≤ n− 1. For
n 6= 0, 1, 6, the groups Ŝn and S̃n are not isomorphic, but for all n they are isoclinic,
see [2, Def.III.1.1]. In particular, for Ân := α̂−1

n (An) E Ŝn we have Ân ∼= Ãn. By
[2, Thm.III.5.6] a short calculation shows that we have a bijection Irr−(S̃n) →
Irr−(Ŝn) : χ 7→ χ̂, where χ̂(zi ·

∏l
j=1 ŝij ) :=

√
−1

l · χ(zi ·
∏l
j=1 s̃ij ), for i ∈ Z

and 1 ≤ ij ≤ n − 1 for all j, which induces a bijection between the p-blocks of
Irr−(S̃n) and the p-blocks of Irr−(Ŝn). There is an analogous bijection on the set of
p-modular Brauer characters in these blocks, which by [2, Thm.III.5.12] commutes
with the p-modular decomposition map. Hence, by Theorem 4.4, the Brauer trees
of the p-blocks of weight 1 of Ŝn are also as depicted in Tables 1, 2 and 3, except
that in Tables 1 and 2 the trees have to be reflected along the main diagonal.
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