
Chapter 3

Finite fields

We have seen, in the previous chapters, some examples of finite fields. For example, the residue
class ringZ/pZ (whenp is a prime) forms a field withp elements which may be identified with the
Galois fieldFp of orderp.

The fieldsFp are important in field theory. From the previous chapter, every field of character-
istic p contains a copy ofFp (its prime subfield) and can therefore be thought of as an extension of
Fp. Since every finite field must have characteristicp, this helps us to classify finite fields.

6 Characterizing finite fields

Lemma 6.1
Let F be a finite field containing a subfieldK with q elements. ThenF hasqm elements, where
m = [F : K].

Proof. F is a vector space overK, finite-dimensional sinceF is finite. Denote this dimension by
m; thenF has a basis overK consisting ofm elements, sayb1, . . . , bm. Every element ofF can
be uniquely represented in the formk1b1 + · · · kmbm (wherek1, . . . , km ∈ K). Since eachki ∈ K
can takeq values,F must have exactlyqm elements. �

We are now ready to answer the question: “What are the possible cardinalities for finite fields?”

Theorem 6.2
Let F be a finite field. ThenF haspn elements, where the primep is the characteristic ofF andn
is the degree ofF over its prime subfield.

Proof. SinceF is finite, it must have characteristicp for some primep (by Corollary 2.19).
Thus the prime subfieldK of F is isomorphic toFp, by Theorem 4.5, and so containsp elements.
Applying Lemma 6.1 yields the result. �

So, all finite fields must have prime power order - there is no finite field with 6 elements, for
example.

We next ask: does there exist a finite field of orderpn for every prime powerpn? How can such
fields be constructed?

We saw, in the previous chapter, that we can take the prime fieldsFp and construct other finite
fields from them by adjoining roots of polynomials. Iff ∈ Fp[x] is irreducible of degreen overFp,
then adjoining a root off to Fp yields a finite field ofpn elements. However, it is not clear whether
we can find an irreducible polynomial inFp[x] of degreen, for every integern.

The following two lemmas will help us to characterize fields using root adjunction.
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24 CHAPTER 3. FINITE FIELDS

Lemma 6.3
If F is a finite field withq elements, then everya ∈ F satisfiesaq = a.

Proof. Clearlyaq = a is satisfied fora = 0. The non-zero elements form a group of orderq − 1
under multiplication. Using the fact thata|G| = 1G for any elementa of a finite groupG, we have
that all0 6= a ∈ F satisfyaq−1 = 1, i.e. aq = a. �

Lemma 6.4
If F is a finite field withq elements andK is a subfield ofF , then the polynomialxq − x in K[x]
factors inF [x] as

xq − x =
∏

a∈F

(x − a)

andF is a splitting field ofxq − x overK.

Proof. Since the polynomialxq − x has degreeq, it has at mostq roots inF . By Lemma 6.3, all
the elements ofF are roots of the polynomial, and there areq of them. Thus the polynomial splits
in F as claimed, and cannot split in any smaller field. �

We are now ready to prove the main characterization theorem for finite fields.

Theorem 6.5 (Existence and Uniqueness of Finite Fields)
For every primep and every positive integern, there exists a finite field withpn elements. Any
finite field with q = pn elements is isomorphic to the splitting field ofxq − x overFp.

Proof. (Existence) Forq = pn, considerxq − x in Fp[x], and letF be its splitting field overFp.
Since its derivative isqxq−1 − 1 = −1 in Fp[x], it can have no common root withxq − x and so,
by Theorem 3.15,xq − x hasq distinct roots inF . Let S = {a ∈ F : aq − a = 0}. ThenS is a
subfield ofF since

• S contains0;

• a, b ∈ S implies (by Freshmen’s Exponentiation) that(a−b)q = aq−bq = a−b, soa−b ∈ S;

• for a, b ∈ S andb 6= 0 we have(ab−1)q = aqb−q = ab−1,soab−1 ∈ S.

On the other hand,xq − x must split inS sinceS contains all its roots, i.e its splitting fieldF is
a subfield ofS. ThusF = S and, sinceS hasq elements,F is a finite field withq = pn elements.
(Uniqueness) LetF be a finite field withq = pn elements. ThenF has characteristicp by Theorem
6.2, and so containsFp as a subfield. So, by Lemma 6.4,F is a splitting field ofxq − x. The result
now follows from the uniqueness (up to isomorphism) of splitting fields, from Theorem 5.18. �

As a result of the uniqueness part of Theorem 6.5, we may speakof the finite field (or the
Galois field) ofq elements. We shall denote this field byFq, whereq denotes a power of the prime
characteristicp of Fq.

Example 6.6
• In Example 5.14, we constructed a fieldL = F3(θ) of 9 elements, whereθ is a root of the

polynomialx2 + x + 2 ∈ F3[x]. By Theorem 6.5,L is the field of 9 elements, i.e.F9.

• In Example 5.15, we constructed a fieldL = F2(θ) of 4 elements, whereθ is a root of the
polynomialx2 + x + 1 ∈ F2[x]. By Theorem 6.5,L is the field of 4 elements, i.e.F4.

We can also completely describe the subfields of a finite fieldFq.
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Theorem 6.7 (Subfield Criterion)
Let Fq be the finite field withq = pn elements. Then every subfield ofFq has orderpm, wherem is
a positive divisor ofn. Conversely, ifm is a positive divisor ofn, then there is exactly one subfield
of Fq with pm elements.

Proof. Clearly, a subfieldK of F must have orderpm for some positive integerm ≤ n. By
Lemma 6.1,q = pn must be a power ofpm, and som must dividen.

Conversely, ifm is a positive divisor ofn, thenpm−1 dividespn−1, and soxpm−1−1 divides
xpn−1−1 in Fp[x]. So, every root ofxpm

−x is a root ofxq−x, and hence belongs toFq. It follows
thatFq must contain a splitting field ofxpm

− x overFp as a subfield, and (from proof of Theorem
6.5) such a splitting field has orderpm. If there were two distinct subfields of orderpm in Fq, they
would together contain more thanpm roots ofxpm

− x in Fq, a contradiction. �

So, the unique subfield ofFpn of orderpm, wherem is a positive divisor ofn, consists precisely
of the roots ofxpm

− x in Fpn .

Example 6.8
Determine the subfields of the finite fieldF230 . To do this, list all positive divisors of30. The
containment relations between subfields are equivalent to divisibility relations among the positive
divisors of30. (For diagram, see lectures!)

We can also completely characterize the multiplicative group of a finite field. For the finite field
Fq, we denote the multiplicative group of non-zero elements ofFq by F

∗
q.

Theorem 6.9
For every finite fieldFq, the multiplicative groupF∗

q of nonzero elements ofFq is cyclic.

Proof. We may assumeq ≥ 3. Seth = q − 1, the order ofF∗
q, and leth = pr1

1 pr2

2 . . . prm
m be

its prime factor decomposition. For eachi, 1 ≤ i ≤ m, the polynomialxh/pi − 1 has at mosth/pi

roots inFq. Sinceh/pi < h, it follows that there are nonzero elements ofFq which are not roots of

this polynomial. Letai be such an element, and setbi = a
h/p

ri
i

i . Now, b
p

ri
i

i = 1, so the order ofbi

dividespri

i and so has the formpsi

i for some0 ≤ si ≤ ri. On the other hand,

b
p

ri−1

i

i = a
h/pi

i 6= 1,

so the order ofbi is preciselypri

i .
Let b = b1b2 . . . bm. We claim: b has orderh(= q − 1), i.e. is a generator for the group.

Suppose, on the contrary, that the order ofb is a proper divisor ofh. It is therefore a divisor of at
least one of them integersh/pi, 1 ≤ i ≤ m; wlog, say ofh/p1. Then

1 = bh/p1 = b
h/p1

1 b
h/p1

2 · · · bh/p1

m .

Now, if 2 ≤ i ≤ m, thenpri

i dividesh/p1, and sobh/p1

i = 1. This forcesbh/p1

1 = 1. Thus the order
of b1 must divideh/p1, which is impossible since the order ofb1 is pr1

1 . ThusF
∗
q is a cyclic group

with generatorb. �

Definition 6.10
A generator of the cyclic groupF∗

q is called aprimitive element of Fq.

By Theorem 1.13,Fq containsφ(q − 1) primitive elements, whereφ is Euler’s function: the
number of integers less than and relatively prime toq− 1. Recall that, if the integern has the prime
factorizationpk1

1 pk2

2 . . . pkr
r , then

φ(n) = n(1 −
1

p1
)(1 −

1

p2
) · · · (1 −

1

pr
).
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Example 6.11
• F5 hasφ(4) = 2 primitive elements, namely2 and3.

• F4 hasφ(3) = 2 primitive elements. ExpressingF4 as F2(θ) = {0, 1, θ, θ + 1}, where
θ2 + θ + 1 = 0, we find that bothθ andθ + 1 are primitive elements.

We are now ready to prove an important result.

Theorem 6.12
Let Fq be a finite field andFr a finite extension field. Then

• Fr is a simple extension ofFq, i.eFr = Fq(β) for someβ ∈ Fr;

• every primitive element ofFr can serve as a defining elementβ of Fr overFq.

Proof. Let α be a primitive element ofFr. Clearly,Fq(α) ⊆ Fr. On the other hand, sinceFq(α)
contains0 and all powers ofα, it contains all elements ofFr. SoFr = Fq(α). �

So, we can expressany finite fieldK with subfieldF , by adjoining toF a rootβ of an appropri-
ate irreducible polynomialf , which of course must have degreed = [K : F ]. Although the proof
of Theorem 6.12 uses aβ which is a primitive element ofK, it is not in fact necessary forβ to be a
multiplicative generator ofK∗, as the next example shows.

Example 6.13
Consider the finite fieldF9. We can expressF9 in the formF3(β), whereβ is a root of the polyno-
mial x2 + 1, irreducible overF3. However, sinceβ4 = 1, β does not generate the whole ofF

∗
9, i.e.

β is not a primitive element ofF9.

Corollary 6.14
For every finite fieldFq and every positive integern, there exists an irreducible polynomial inFq[x]
of degreen.

Proof. Let Fr be the extension field ofFq of orderqn, so that[Fr : Fq] = n. By Theorem 6.12,
Fr = Fq(α) for someα ∈ Fr. Then, by properties of minimal polynomials, the minimal polynomial
of α overFq is an irreducible polynomial inFq[x] of degreen. �

7 Irreducible polynomials

In this section, we investigate irreducible polynomial over finite fields.

Lemma 7.1
Let f ∈ Fq[x] be an irreducible polynomial over a finite fieldFq and letα be a root off in an
extension field ofFq. Then, for a polynomialh ∈ Fq[x], we haveh(α) = 0 if and only if f divides
h.

Proof. The minimal polynomial ofα overFq is given bya−1f , wherea is the leading coefficient
of f (since it is a monic irreducible polynomial inFq[x] havingα as a root). The proposition then
follows from part (ii) of Theorem 4.10. �

Lemma 7.2
Let f ∈ Fq[x] be an irreducible polynomial overFq of degreem. Thenf dividesxqn

− x if and
only if m dividesn.
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Proof. First, supposef dividesxqn

− x. Let α be a root off in the splitting field off over
Fq. Thenαqn

= α, soα ∈ Fqn . ThusFq(α) is a subfield ofFqn . Since[Fq(α) : Fq] = m and
[Fqn : Fq] = n, we haven = [Fqn : Fq(α)]m, som dividesn.

Conversely, supposem dividesn. Then by Theorem 6.7,Fqn containsFqm as a subfield. Let
α be a root off in the splitting field off overFq. Then[Fq(α) : Fq] = m, and soFq(α) = Fqm .
Thusα ∈ Fqn , henceαqn

= α, and soα is a root ofxqn

− x ∈ Fq[x]. Therefore, by Lemma 7.1,f
dividesxqn

− x. �

We are now ready to describe the set of roots of an irreduciblepolynomial.

Theorem 7.3
If f is an irreducible polynomial inFq[x] of degreem, thenf has a rootα in Fqm. Moreover, all

the roots off are simple and are given by them distinct elementsα,αq , αq2

, . . . , αqm−1

of Fqm.

Proof. Let α be a root off in the splitting field off over Fq. Then[Fq(α) : Fq] = m, hence
Fq(α) = Fqm, and soα ∈ Fqm.

We now show that, ifβ ∈ Fqm is a root off , thenβq is also a root off . Write f = amxm +
· · · + a1x + a0 (ai ∈ Fq). Then

f(βq) = amβqm + · · · + a1β
q + a0

= aq
mβqm + · · · + aq

1β
q + aq

0

= (amβm + · · · + a1β + a0)
q

= f(β)q = 0,

using Lemma 6.3 and Freshmen’s Exponentiation.
Thus, the elementsα,αq , . . . , αqm−1

are roots off . We must check that they are all distinct.
Suppose not, i.e.αqj

= αqk

for some0 ≤ j < k ≤ m− 1. Raising this to the powerqm−k , we get

αqm−k+j

= αqm

= α.

It then follows from Lemma 7.1 thatf dividesxqm−k+j

− x. By Lemma 7.2, this is possible only if
m dividesm − k + j, a contradiction since0 < m − k + j < m. �

This result gives us two useful corollaries.

Corollary 7.4
Let f be an irreducible polynomial inFq[x] of degreem. Then the splitting field off over Fq is
Fqm.

Proof. Theorem 7.3 shows thatf splits in Fqm. To see that this is the splitting field, note that
Fq(α,αq , . . . , αqm−1

) = Fq(α) = Fqm. �

Corollary 7.5
Any two irreducible polynomials inFq[x] of the same degree have isomorphic splitting fields.

As we shall see later, sets of elements such as those in Theorem 7.3 appear often in the theory
of fields.

Theorem 7.6
For every finite fieldFq and everyn ∈ N, the product of all monic irreducible polynomials overFq

whose degrees dividen is equal toxqn

− x.
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Proof. By Lemma 7.2, the monic irreducible polynomials overFq which occur in the canonical
factorization ofg = xqn

− x in Fq[x] are precisely those whose degrees dividen. Sinceg′ = −1,
by Theorem 3.15g has no multiple roots in its splitting field overFq. Thus each monic irreducible
polynomial overFq whose degree dividesn occurs exactly once in the canonical factorization ofg
in Fq[x]. �

Example 7.7
Takeq = n = 2; the monic irreducible polynomials overF2[x] whose degrees divide2 arex, x + 1
andx2 + x + 1. It is easily seen thatx(x + 1)(x2 + x + 1) = x4 + x = x4 − x.

Corollary 7.8
If Nq(d) is the number of monic irreducible polynomials inFq[x] of degreed, then

qn =
∑

d|n

dNq(d) for all n ∈ N,

where the sum is extended over all positive divisorsd of n.

Proof. This follows immediately from Theorem 7.6, upon comparing the degree ofg = xqn

− x
with the total degree of the canonical factorization ofg. �

This corollary allows us to obtain an explicit formula for the number of monic irreducible poly-
nomials inFq[x] of a given degree. To do so, we need the following arithmetic function, which will
also prove useful in the next chapter.

Definition 7.9
TheMoebius function µ is the function onN defined by

µ(n) =











1 if n = 1;

(−1)k if n is the product ofk distinct primes

0 if n is divisible by the square of a prime.

Example 7.10
(i)µ(5) = −1; (ii)µ(35) = 1; (iii) µ(50) = 0.

Lemma 7.11
Forn ∈ N, the Moebius function satisfies

∑

d|n

µ(d) =

{

1 if n = 1

0 if n > 1.

Proof. Then = 1 case is immediate. Forn > 1 we need only consider the positive divisorsd of
n for which µ(d) is non-zero, namely thosed for which d = 1 or d is a product of distinct primes.
If p1, . . . , pk are the distinct prime divisors ofn then

∑

d|n

µ(d) = µ(1) +

k
∑

i=1

µ(pi) +
∑

1≤i1<i2≤k

µ(pi1pi2) + · · · + µ(p1p2 . . . pk)

= 1 +

(

k

1

)

(−1) +

(

k

2

)

(−1)2 + · · · +

(

k

k

)

(−1)k

= (1 + (−1))k = 0.

�
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Theorem 7.12 (Moebius Inversion Formula)
• Additive version: leth andH be two functions fromN into an additively written abelian

groupG. Then
H(n) =

∑

d|n

h(d) for all n ∈ N (3.1)

if and only if

h(n) =
∑

d|n

µ(
n

d
)H(d) =

∑

d|n

µ(d)H(
n

d
) for all n ∈ N. (3.2)

• Multiplicative version: leth andH be two functions fromN into a multiplicatively written
abelian groupG. Then

H(n) =
∏

d|n

h(d) for all n ∈ N (3.3)

if and only if
h(n) =

∏

d|n

H(d)µ(n
d
) =

∏

d|n

H(
n

d
)µ(d) for all n ∈ N. (3.4)

Proof. Additive version: we prove the forward implication; the converse is similar and is left as
an exercise. Assume the first identity holds. Using Lemma 7.11, we get

∑

d|n

µ(
n

d
)H(d) =

∑

d|n

µ(d)H(
n

d
) =

∑

d|n

µ(d)
∑

c|n
d

h(c)

=
∑

c|n

∑

d|n
c

µ(d)h(c) =
∑

c|n

h(c)
∑

d|n
c

µ(d) = h(n)

for all n ∈ N.
Multiplicative version: immediate upon replacing sums by products and multiples by powers.

�

We can now apply this result as follows.

Theorem 7.13
The numberNq(n) of monic irreducible polynomials inFq[x] of degreen is given by

Nq(n) =
1

n

∑

d|n

µ(
n

d
)qd =

1

n

∑

d|n

µ(d)q
n
d .

Proof. Apply the additive case of the Moebius Inversion Formula to the groupG = (Z,+). Take
h(n) = nNq(n) andH(n) = qn for all n ∈ N. By Corollary 7.8, the identity (3.1) is satisfied, and
so the result follows. �

Remark 7.14
Since it is clear from this formula thatNq(n) is greater than zero for alln, this gives an alternative
proof of Theorem 6.14.

Example 7.15
The number of monic irreducibles inFq[x] of degree12 is given by

Nq(12) =
1

12
(µ(1)q12 + µ(2)q6 + µ(3)q4 + µ(4)q3 + µ(6)q2 + µ(12)q)

=
1

12
(1.q12 + (−1)q6 + (−1)q4 + 0.q3 + 1.q2 + 0.q)

=
1

12
(q12 − q6 − q4 + q2).
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We can also obtain a formula for theproduct of all monic irreducible polynomials inFq[x] of
fixed degree.

Theorem 7.16
The productI(q, n;x) of all monic irreducible polynomials inFq[x] of degreen is given by:

I(q, n;x) =
∏

d|n

(xqd

− x)µ(n
d
) =

∏

d|n

(xq
n
d − x)µ(d).

Proof. From Theorem 7.6 we know that

xqn

− x =
∏

d|n

I(q, d;x).

Now apply Moebius Inversion in the multiplicative form to the multiplicative groupG of non-zero
rational functions overFq. Takeh(n) = I(q, n;x) andH(n) = xqn

− x to get the desired formula.
�

Example 7.17
Takeq = 2 andn = 4. Then the product of all monic irreducible quartics inF2[x] is:

I(2, 4;x) = (x16 − x)µ(1)(x4 − x)µ(2)(x2 − x)µ(4)

=
x16 − x

x4 − x
=

x15 − 1

x3 − 1

= x12 + x9 + x6 + x3 + 1


