Chapter 3

Finite fields

We have seen, in the previous chapters, some examples effiglids. For example, the residue
class ringZ/pZ (whenp is a prime) forms a field witlp elements which may be identified with the
Galois fieldF), of orderp.

The fieldsF, are important in field theory. From the previous chapterryefield of character-
istic p contains a copy af,, (its prime subfield) and can therefore be thought of as ameiie of
IF,. Since every finite field must have characterigtithis helps us to classify finite fields.

6 Characterizing finite fields

Lemma6.1
Let F be a finite field containing a subfield with q elements. Ther' hasq™ elements, where
m=[F: K].

Proof. F'is avector space ovéft, finite-dimensional sincé’ is finite. Denote this dimension by

m; then F' has a basis ovek consisting ofm elements, say, ..., b,,. Every element of" can
be uniquely represented in the folh, + - - - k. by, (Whereky, ... k,, € K). Since eaclt; € K
can takey values,F’ must have exactly™ elements. [ |

We are now ready to answer the question: “What are the pessétlinalities for finite fields?”

Theorem 6.2
Let I be a finite field. Thert” hasp™ elements, where the primeis the characteristic df andn
is the degree ofF' over its prime subfield.

Proof.  SinceF is finite, it must have characteristjc for some primep (by Corollary 2.19).
Thus the prime subfield of F' is isomorphic tdF,, by Theorem 4.5, and so containglements.
Applying Lemma 6.1 yields the result. [ |

So, all finite fields must have prime power order - there is nibefifield with 6 elements, for
example.

We next ask: does there exist a finite field of orglefor every prime powep™? How can such
fields be constructed?

We saw, in the previous chapter, that we can take the prinasfigl and construct other finite
fields from them by adjoining roots of polynomials. fife I, [z] is irreducible of degree overF,,
then adjoining a root of to I, yields a finite field ofp™ elements. However, it is not clear whether
we can find an irreducible polynomial I, [z] of degreen, for every integern.

The following two lemmas will help us to characterize fieldsng root adjunction.
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Lemma 6.3
If F' is a finite field withq elements, then everyc F satisfiea? = a.

Proof. Clearlya? = a is satisfied foln = 0. The non-zero elements form a group of orger 1
under multiplication. Using the fact that®! = 1 for any element of a finite groupG, we have
that all0 # a € F satisfya?=! =1, i.e.a? = a. |

Lemma 6.4
If F' is a finite field withq elements andk is a subfield off’, then the polynomiat? — z in K [x]

factors inF'[x] as
2l — = H (x —a)

a€F
andF is a splitting field ofz? — x overK.

Proof. Since the polynomiat? — x has degree, it has at mosg roots in F'. By Lemma 6.3, all
the elements of' are roots of the polynomial, and there gref them. Thus the polynomial splits
in " as claimed, and cannot split in any smaller field. [ |

We are now ready to prove the main characterization theooefinite fields.

Theorem 6.5 (Existence and Uniqueness of Finite Fields)
For every primep and every positive integer, there exists a finite field with"™ elements. Any
finite field withq = p™ elements is isomorphic to the splitting fieldaf — x overF,,.

Proof.  (Existence) Foy = p", considerz? — z in Fp[z], and letF be its splitting field ovef,.
Since its derivative igz9' —1 = —1in F,[x], it can have no common root wittf — = and so,
by Theorem 3.15¢% — x hasq distinct roots inF'. LetS = {a € F : a? — a = 0}. ThenS'is a
subfield of F" since

e S containsy;
e a,b € Simplies (by Freshmen’s Exponentiation) thiat-b)? = a?—b? = a—b, Soa—b € S,

e fora,b € S andb # 0 we have(ab=1)? = a% =7 = ab~!,s0ab™! € S.

On the other hand;? — x must split inS sinceS contains all its roots, i.e its splitting field is
a subfield ofS. ThusF = S and, sinceS hasq elementsF' is a finite field withg = p™ elements.
(Uniqueness) Lef be a finite field withy = p™ elements. Theld has characteristig by Theorem
6.2, and so contains, as a subfield. So, by Lemma 6 4,is a splitting field ofx? — z. The result
now follows from the uniqueness (up to isomorphism) of split fields, from Theorem 5.18. W

As a result of the uniqueness part of Theorem 6.5, we may spktie finite field (or the
Galois field) ofg elements. We shall denote this field By, whereq denotes a power of the prime
characteristigp of I,,.

Example 6.6
¢ In Example 5.14, we constructed a fidld= F3(#) of 9 elements, wheré is a root of the
polynomialz? + = + 2 € F3[z]. By Theorem 6.5[ is the field of 9 elements, i.eFy.

¢ In Example 5.15, we constructed a figld= Fy(#) of 4 elements, wheré is a root of the
polynomialz? + = + 1 € Fa[z]. By Theorem 6.5[ is the field of 4 elements, i.eF,.

We can also completely describe the subfields of a finite Held
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Theorem 6.7 (Subfield Criterion)

LetF, be the finite field withy = p™ elements. Then every subfield Bf has ordep™, wherem is

a positive divisor ofv. Conversely, ifn is a positive divisor of,, then there is exactly one subfield
of F, with p™ elements.

Proof.  Clearly, a subfieldK of F' must have ordep™ for some positive integem < n. By
Lemma 6.1 = p™ must be a power gi"™, and som must dividen.

Conversely, ifim is a positive divisor of:, thenp™ — 1 dividesp” — 1, and saz?” ~! — 1 divides
2" =1 —1inF,[x]. So, every root of?" — z is a root ofr? — x, and hence belongs &, It follows
thatF, must contain a splitting field of?™ — z over[F,, as a subfield, and (from proof of Theorem
6.5) such a splitting field has ordg¥*. If there were two distinct subfields of ordgt" in I, they
would together contain more thaff roots ofz?™ — xz in F,, a contradiction. n

So, the unique subfield @f,» of orderp™, wherem is a positive divisor of:, consists precisely
of the roots ofr?” — x in Fyn.

Example 6.8

Determine the subfields of the finite fieklso. To do this, list all positive divisors 030. The
containment relations between subfields are equivalenivisitality relations among the positive
divisors of30. (For diagram, see lectures!)

We can also completely characterize the multiplicativaugrof a finite field. For the finite field
IF4, we denote the multiplicative group of non-zero elements dby F;.

Theorem 6.9
For every finite fieldF,, the multiplicative grouf@; of nonzero elements df, is cyclic.

Proof. =~ We may assume > 3. Seth = ¢ — 1, the order off}, and leth = pi'py*...p; be
its prime factor decomposition. For eagh < i < m, the polynomiak:"/?: — 1 has at mosh/p;
roots inlF,. Sinceh/p; < h, it follows that there are nonzero elementsfgfwhich are not roots of
this polynomial. Letu; be such an element, and $gt= a?/pil. Now, bfiL = 1, so the order ob;
dividesp;" and so has the formpi’* for some0 < s; < r;. On the other hand,

r;—1

bpz — ah/pi 7& 1
so the order ob; is preciselyp;.
Let b = biby...b,. We claim: b has orderh(= ¢ — 1), i.e. is a generator for the group.

Suppose, on the contrary, that the ordeb ¢d a proper divisor of.. It is therefore a divisor of at
least one of then integersh/p;, 1 < i < m; wlog, say ofh/p;. Then

1= ph/pe = plPph/en L phfen

Now, if 2 < i < m, thenp! dividesh/p;, and sab/** = 1. This forces)!’”* = 1. Thus the order
of by must divideh/p;, which is impossible since the order fafis p;*. ThusFF; is a cyclic group
with generatoi. [ |

Definition 6.10
A generator of the cyclic group;, is called aorimitive element of ;.

By Theorem 1.13F, containsg(¢ — 1) primitive elements, where is Euler’s function: the

number of integers less than and relatively prime to1. Recall that, if the integet has the prime

factorizationp®' p52 ... pfr, then
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Example 6.11
e [F5 has¢(4) = 2 primitive elements, namely and3.

e [y has¢(3) = 2 primitive elements. Expressing, asFq(0) = {0,1,60,6 + 1}, where
6% + 6 + 1 = 0, we find that bott andé + 1 are primitive elements.

We are now ready to prove an important result.

Theorem 6.12
LetF, be a finite field and, a finite extension field. Then

e I, is a simple extension df,, i.eF, = F,(3) for somes € F,;

e every primitive element of,. can serve as a defining elemenof IF,. overF,.

Proof. Leta be a primitive element df,.. Clearly,F,(«) C F,. On the other hand, sind&(«)
contains) and all powers ofy, it contains all elements d,. SoF, = F,(«). [

So, we can expressy finite field K with subfieldF', by adjoining toF' a root of an appropri-
ate irreducible polynomiaf, which of course must have degrée= [K : F|. Although the proof
of Theorem 6.12 uses@which is a primitive element ok, it is not in fact necessary fgt to be a
multiplicative generator of{*, as the next example shows.

Example 6.13

Consider the finite fieldy. We can expresEy in the formFs(3), whereg is a root of the polyno-
mial 22 + 1, irreducible oveif's. However, sinces* = 1, 3 does not generate the wholelg, i.e.
0 is not a primitive element dfy.

Corollary 6.14
For every finite field?, and every positive integer, there exists an irreducible polynomialliig|x]
of degreen.

Proof. LetF, be the extension field &, of orderq”, so that[F, : F;] = n. By Theorem 6.12,
F, = F,(«) for somex € F,. Then, by properties of minimal polynomials, the minimalym@mial
of o overF, is an irreducible polynomial ii,[z] of degreen. [ |

7 lrreducible polynomials
In this section, we investigate irreducible polynomial iofieite fields.

Lemma 7.1

Let f € F,[z] be an irreducible polynomial over a finite fielt}, and leta be a root off in an
extension field off,. Then, for a polynomiah € F,[z]|, we haveh(a) = 0 if and only if f divides
h.

Proof.  The minimal polynomial ofx overF,, is given bya~' f, whereu is the leading coefficient
of f (since it is a monic irreducible polynomial Ify[z] havinga as a root). The proposition then
follows from part (ii) of Theorem 4.10. [ |

Lemma 7.2
Let f € F,[z] be an irreducible polynomial ové, of degreem. Thenf dividesz?" — z if and
only if m dividesn.
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Proof.  First, supposef dividesz¢" — z. Let o be a root off in the splitting field of f over
F,. Thena?" = a, soa € Fyn. ThusF,(a) is a subfield off ;.. Since[F,(«) : F,] = m and
[Fgn : Fy] = n, we haven = [Fyn : Fy(ar)]m, Som dividesn.

Conversely, suppose: dividesn. Then by Theorem 6.7~ containsF,~ as a subfield. Let
a be a root off in the splitting field off overF,. Then[F,(a) : F,] = m, and sdF,(a) = Fym.
Thusa € Fyn, hencen?” = «, and sox is aroot ofz?" — z € F,[z]. Therefore, by Lemma 7.%,
dividesz?" — x. |

We are now ready to describe the set of roots of an irredupibignomial.

Theorem 7.3
If f is an irreducible polynomial ifi ,[z] of degreem, thenf has a rootv in F . Moreover, all
the roots off are simple and are given by thedistinct elements., a?,a7 ..., a?" " Of Fym.

Proof.  Let o be a root off in the splitting field off overF,. Then[F,(«) : F,] = m, hence
Fg(a) = Fgm, and sav € Fym.

We now show that, if3 € F,~ is a root of f, then3? is also a root off. Write f = a,,2™ +
-+ a1z +ag (a; € Fy). Then

fB) = anB™ +-- -+ a8+ ap
= a0+ a5+ o
= (amfB" + -+ a1+ ao)?
= f(B)?*=0,

using Lemma 6.3 and Freshmen’s Exponentiation.
Thus, the elements, a?,...,a¢"" " are roots off. We must check that they are all distinct.
Suppose not, i.ex? = a?" for some) < j < k < m — 1. Raising this to the powef™* , we get

m—k+j m
af =a? =aq.

It then follows from Lemma 7.1 that dividesz?" """ — 2. By Lemma 7.2, this is possible only if

m dividesm — k + j, a contradiction sinceé < m — k 4+ j < m. [ |

This result gives us two useful corollaries.

Corollary 7.4
Let f be an irreducible polynomial ifi,[x] of degreem. Then the splitting field of overF, is
Fym.

Proof. ~Theorem 7.3 shows that splits inF,~. To see that this is the splitting field, note that
Fo(a,09,... Ll = Fy(a) =Fgm. |

Corollary 7.5
Any two irreducible polynomials iff ;] of the same degree have isomorphic splitting fields.

As we shall see later, sets of elements such as those in ThébBappear often in the theory
of fields.

Theorem 7.6
For every finite field®, and everyn € N, the product of all monic irreducible polynomials oWy
whose degrees divide is equal tar?" — x.
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Proof. By Lemma 7.2, the monic irreducible polynomials o¥&grwhich occur in the canonical
factorization ofg = 27" — x in F,[x] are precisely those whose degrees dividsSinceg’ = —1,
by Theorem 3.1% has no multiple roots in its splitting field ov&y,. Thus each monic irreducible
polynomial overF, whose degree divides occurs exactly once in the canonical factorizatiory of
inFg[z]. ]

Example 7.7
Takeq = n = 2; the monic irreducible polynomials ov&;[x] whose degrees dividearez, = + 1
andz? + z + 1. Itis easily seen that(z + 1)(22 + 2+ 1) = 2' + z = 21 — 2.

Corollary 7.8
If N,(d) is the number of monic irreducible polynomialslig|z] of degreel, then

¢" = _dN,(d) foralln €N,
din

where the sum is extended over all positive divisbrd n.

Proof.  This follows immediately from Theorem 7.6, upon comparing tlegree of = 29" — z
with the total degree of the canonical factorizatioryof [ |

This corollary allows us to obtain an explicit formula foethumber of monic irreducible poly-
nomials inF,[z] of a given degree. To do so, we need the following arithmeiicfion, which will
also prove useful in the next chapter.

Definition 7.9
TheMoebius function p is the function orlN defined by

1 if n=1;
p(n) =< (—1)* if nis the product ok distinct primes
0 if n is divisible by the square of a prime.
Example 7.10
() p(5) = —1; ()p(35) =1; (iii) u(50) = 0.
Lemma 7.11

Forn € N, the Moebius function satisfies

S () — {1 ifn=1
dln 0

ifn>1.

Proof. Then = 1 case is immediate. For > 1 we need only consider the positive divisarsf
n for which p(d) is non-zero, namely thoséfor whichd = 1 or d is a product of distinct primes.
If p1,...,p are the distinct prime divisors ef then

k

Zu(d) = p(1)+ Zﬂ(pz‘) + Z 1(Pipiy) + -+ - + p(p1p2 - - - pr)

dn i=1 1<iy <ip<k
= 1+ (T)(—l) + <§>(—1)2 ++ <:>(—1)k
= (1+(-1))F=o0.
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Theorem 7.12 (Moebius Inversion Formula)
e Additive version: leth and H be two functions fronN into an additively written abelian
groupG. Then

H(n) = _h(d) foralln € N (3.1)
din
if and only if . "
h(n) = Zp(E)H(d) = Zu(d)H(E) foralln € N. (3.2)
din d|

e Multiplicative version: leth andH be two functions fronN into a multiplicatively written
abelian groufts. Then

H(n) =] n(d) foralin € N (3.3)
din
if and only if
hn) =[] H@)" @ = HH(%)“(d) for all n € N. (3.4)
d| din

Proof.  Additive version: we prove the forward implication; the gerse is similar and is left as
an exercise. Assume the first identity holds. Using Lemma, 7k get

Sr(DHE) = S adHG) =Y uld) Y h(e)
d|n dln d|n

c|%

= > > udhle) =D h(e) > uld) = h(n)
d|z

cln dI% c|n
foralln € N.

Multiplicative version: immediate upon replacing sums bgducts and multiples by powers.
[ |

We can now apply this result as follows.

Theorem 7.13
The numbetN,(n) of monic irreducible polynomials ii,[x] of degreen is given by

Ny(n) = %Zu(g)qd = %Zu(d)qg-

din din
Proof.  Apply the additive case of the Moebius Inversion Formulén®droupG = (Z, +). Take
h(n) = nNy(n) andH (n) = ¢" for all n € N. By Corollary 7.8, the identity (3.1) is satisfied, and
so the result follows. |
Remark 7.14
Since it is clear from this formula tha¥,(n) is greater than zero for all, this gives an alternative
proof of Theorem 6.14.

Example 7.15
The number of monic irreducibles Iy, [x] of degreel2 is given by
1 12 6 4 3 2
Ny(12) = S (u()e™ +p2)d” + pB)d" + n(4)a” + u(6)g” + u(12)q)
1
= E(l'q12 +(=1)¢® + (=1)¢* + 0.¢* + 1.¢> + 0.¢)
1

= E(q12 —¢* — "+ ¢%.
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We can also obtain a formula for tfpeoduct of all monic irreducible polynomials iff,[z] of
fixed degree.

Theorem 7.16
The product (¢, n; z) of all monic irreducible polynomials ifi,[x] of degreen is given by:

I(g,n;x) = H(l’qd — x)”(%) = H(:qu% _ :L')”(d),
dn dln

Proof. From Theorem 7.6 we know that

21— = Hl(q,d;x).

dln

Now apply Moebius Inversion in the multiplicative form teetmultiplicative group of non-zero
rational functions oveF,. Takeh(n) = I(g,n;z) andH (n) = 27" — z to get the desired formula.

|
Example 7.17
Takeq = 2 andn = 4. Then the product of all monic irreducible quarticsFis|z] is:
12,4;2) = (' —2)"D (2t — 2)H2) (g2 — g)r@)
16 — x® -1
I

= 2242 a2+l 41



