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The classical Voronoi Algorithm

I Around 1900 Korkine, Zolotareff, and Voronoi developed a reduction
theory for quadratic forms.

I The aim was to classify the densest lattice sphere packings in
n-dimensional Euclidean space.

I lattice L = Z1×n, Euclidean structure on L given by some some positive
definite F ∈ Rn×n

sym , (x, y) = xFytr.

I Voronoi described an algorithm to find all local maxima of the density
function on the space of all n-dimensional positive definite F .

I They are perfect forms (as will be defined below).

I There are only finitely many perfect forms up to the action of GLn(Z),
the unit group of the order Zn×n.

I Later, Voronoi’s algorithm has been used to compute generators and
relations for GLn(Z) but also its integral homology groups.

I It has been generalised to other situations: compute integral normalizer,
the automorphism group of hyperbolic lattices and

I more general unit groups of orders.



Unit groups of orders

I A separable Q-algebra, so A ∼=
⊕s

i=1D
ni×ni
i , is a direct sum of matrix

rings over division algebras.

I An order Λ in A is a subring that is finitely generated as a Z-module and
such that 〈Λ〉Q = A.

I Its unit group is Λ∗ := {u ∈ Λ | ∃v ∈ Λ, uv = 1}.
I Know in general: Λ∗ is finitely generated.

I Example: A = K a number field, Λ = OK , its ring of integers. Then
Dirichlet’s unit theorem says that Λ∗ ∼= µK × Zr+s−1.

I Example: Λ = 〈1, i, j, ij〉Z with i2 = j2 = (ij)2 = −1. Then Λ∗ = 〈i, j〉
the quaternion group of order 8.

I Example: A = QG for some finite group G, Λ = ZG.

I Example: A a division algebra with dimZ(A)(A) = d2 > 4. Not much
known about the structure of Λ∗.

I Voronoi’s algorithm may be used to compute generators and relations for
Λ∗ and to solve the word problem.

I Seems to be practical for “small” A and for d = 3.



The classical Voronoi Algorithm
Korkine, Zolotareff, Voronoi, ∼ 1900.

Definition

I V := {X ∈ Rn×n | X = Xtr} space of symmetric matrices

I σ : V × V → R, σ(A,B) := trace(AB) Euclidean inner product on V.

I for F ∈ V, x ∈ R1×n define F [x] := xFxtr = σ(F, xtrx)

I V>0 := {F ∈ V | F positive definite }
I for F ∈ V>0 define the minimum µ(F ) := min{F [x] : 0 6= x ∈ Z1×n} and
M(F ) := {x ∈ Z1×n | F [x] = µ(F )}

I Vor(F ) := {
∑

x∈M(F ) axx
trx | ax ≥ 0} the Voronoi domain

I F is called perfect ⇔ dim(Vor(F )) = dim(V) = n(n+1)
2

.

Remark

GLn(Z) acts on V>0 by (F, g) 7→ g−1Fg−tr. Then

M(g−1Fg−tr) = {xg | x ∈M(F )}
Vor(g−1Fg−tr) = gtr Vor(F )g
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Theorem (Voronoi)

(a) T := {Vor(F ) | F ∈ V>0, perfect } forms a face to face tesselation of V≥0.
(b) GLn(Z) acts on T with finitely many orbits that may be computed
algorithmically.



Example, generators for GL2(Z)

I n = 2, dim(V) = 3, dim(V>0/R>0) = 2

I compute in affine section of the projective space

I A≥0 = {F ∈ V≥0 | trace(F ) = 1}

I F0 =

(
2 −1
−1 2

)
, µ(F0) = 2, M(F0) = {±(1, 0),±(0, 1),±(1, 1)}

I A≥0 ∩Vor(F0) = conv(a =

(
10
00

)
, b =

(
00
01

)
, c = 1

2

(
11
11

)
)

a b

c

Vor(F0)
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Example, generators for GL2(Z)
I Compute neighbor: F1 ∈ V>0 so that Vor(F1) = conv(a, b, c′).
I linear equation on F1: trace(F1a) = trace(F1b) = 2 and trace(F1c) > 2,

I so F1 = F0 + sX where X =

(
01
10

)
generates 〈a, b〉⊥.

I For s = 2 the matrix F1 =

(
21
12

)
has again 6 minimal vectors

I M(F1) = {±(1, 0),±(0, 1),±(1,−1)}

I A≥0 ∩Vor(F1) = conv(a, b, c′ := 1
2

(
1 −1
−1 1

)
)

a b

c

Vor(F0)

Vor(F1)

c’



Example, generators for GL2(Z)

I StabGL2(Z)(F0) = 〈g =

(
0−1
1 1

)
, h =

(
01
10

)
〉

I (a, b) · g = (b, c), (b, c) · g = (c, a)
I Compute isometry t = diag(1,−1) ∈ GL2(Z), so t−1F0t

−tr = F1.
I Then GL2(Z) = 〈g, h, t〉.

a b

c

Vor(F0)

Vor(F1)

c’

g

t



GL2(Z) = 〈g, h, t〉.
I StabGL2(Z)(F0) = 〈g =
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(
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)
〉

I (a, b) · g = (b, c), (b, c) · g = (c, a)
I Compute isometry t = diag(1,−1) ∈ GL2(Z), so t−1F0t

−tr = F1.

a b

c

Vor(F0)

Vor(F1)

c’

Vor(F1g)Vor(F1g )
2

g

t



Variations of Voronoi’s algorithm

I Many authors used this algorithm to compute integral homology groups of
SLn(Z) and related groups, as developed C. Soulé in 1978.

I Max Köcher developed a general Voronoi Theory for pairs of dual cones in
the 1950s.
σ : V1 × V2 → R non degenerate and positive on the cones V>0

1 × V>0
2 .

discrete admissible set D ⊂ V>0
2 used to define minimal vectors and

perfection for F ∈ V>0
1 and VorD(F ) ⊂ V2>0.

I J. Opgenorth (2001) used Köcher’s theory to compute the integral
normalizer NGLn(Z)(G) for a finite unimodular group G.

I M. Mertens (Masterthesis, 2012) applied Köcher’s theory to compute
automorphism groups of hyperbolic lattices.

I This talk will explain how to apply it to obtain generators and relations for
unit group of orders in semi-simple rational algebras and an algorithm to
solve the word problem in these generators.



Orders in semi-simple rational algebras.

The positive cone

I K some rational division algebra, A = Kn×n

I AR := A⊗Q R semi-simple real algebra

I so AR is isomorphic to a direct sum of matrix rings over of H, R or C.

I AR carries a “canonical” involution † (depending on the choice of the
isomorphism) that we use to define symmetric elements:

I V := Sym(AR) :=
{
F ∈ AR | F † = F

}
I σ(F1, F2) := trace(F1F2) defines a Euclidean inner product on V.

I In general the involution † will not fix the set A.

The simple A-module.

I Let V = K1×n denote the simple right A-module, VR = V ⊗Q R.

I For x ∈ V we have x†x ∈ V.

I F ∈ V is called positive if

F [x] := σ(F, x†x) > 0 for all 0 6= x ∈ VR.



Minimal vectors.

The discrete admissible set

I O maximal order in K, L some O-lattice in the simple A-module V

I Λ := EndO(L) is a maximal order in A with unit group
Λ∗ := GL(L) = {a ∈ A | aL = L}.

L-minimal vectors

Let F ∈ V>0.

I µ(F ) := µL(F ) = min{F [`] | 0 6= ` ∈ L} the L-minimum of F .

I ML(F ) := {` ∈ L | F [`] = µL(F )} the finite set of L-minimal vectors.

I VorL(F ) := {
∑

x∈ML(F ) axx
†x | ax ≥ 0} ⊂ V≥0 Voronoi domain of F .

I F is called L-perfect ⇔ dim(VorL(F )) = dim(V).

Theorem

T := {VorL(F ) | F ∈ V>0, L-perfect } forms a face to face tesselation of V≥0.
Λ∗ acts on T with finitely many orbits.



Generators for Λ∗

I Compute R := {F1, . . . , Fs} set of representatives of Λ∗-orbits on the
L-perfect forms, such that their Voronoi-graph is connected.

I For all neighbors F of one of these Fi (so Vor(F ) ∩Vor(Fi) has
codimension 1) compute some gF ∈ Λ∗ such that gF · F ∈ R.

I Then Λ∗ = 〈Aut(Fi), gF | Fi ∈ R, F neighbor of some Fj ∈ R〉.

3

1

2

2

1

1

1

1
1

a

c

d

e

f

b

so here Λ∗ = 〈Aut(F1),Aut(F2),Aut(F3), a, b, c, d, e, f〉.



Example Q2,3.

I Take the rational quaternion algebra ramified at 2 and 3,

Q2,3 = 〈i, j | i2 = 2, j2 = 3, ij = −ji〉 = 〈diag(
√

2,−
√

2),

(
0 1
3 0

)
〉

Maximal order Λ = 〈1, i, 1
2
(1 + i+ ij), 1

2
(j + ij)〉

I V = A = Q2,3, AR = R2×2, L = Λ

I Embed A into AR using the maximal subfield Q[
√

2].

I Get three perfect forms:

I F1 =

(
1 2−

√
2

2−
√

2 1

)
, F2 =

(
6− 3

√
2 2

2 2 +
√

2

)
I F3 = diag(−3

√
2 + 9, 3

√
2 + 5)



The tesselation for Q2,3 ↪→ Q[
√

2]2×2.



Λ∗/〈±1〉 = 〈a, b, t | a3, b2, atbt〉
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Easy solution of the word problem

b

a

P

PX

t

t
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Easy solution of the word problem

b

a

P

PX
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Pa X
−1

t

t



Easy solution of the word problem

b

a

P

PXPa X
−1

t

t



The tesselation for Q2,3 ↪→ Q[
√

3]2×2.



Conclusion

I Algorithm works quite well for indefinite quaternion algebras over the
rationals

I Obtain presentation and algorithm to solve the word problem

I For Q19,37 our algorithm computes the presentation within 5 minutes (288
perfect forms, 88 generators) whereas the Magma implementation
“FuchsianGroup” does not return a result after four hours

I Reasonably fast for quaternion algebras with imaginary quadratic center or
matrix rings of degree 2 over imaginary quadratic fields

I For the rational division algebra of degree 3 ramified at 2 and 3 compute
presentation of Λ∗, 431 perfect forms, 50 generators in about 10 minutes.

I Quaternion algebra with center Q[ζ5]: > 40.000 perfect forms.

I Masterthesis by Oliver Braun: The tesselation T can be used to compute
the maximal finite subgroups of Λ∗.

I Masterthesis by Sebastian Schönnenbeck: Compute integral homology of
Λ∗.



Calculating maximal finite subgroups
Minimal classes

Definition

Let A,B ∈ V>0. A and B are minimally equivalent if ML(A) =ML(B).
C := ClL(A) = {X ∈ V>0 | ML(X) =ML(A)} is the minimal class of A.
In this case ML(C) :=ML(A). Call C well-rounded if ML(C) contains a
K-basis of V = K1×n.

Remark

A ∈ V>0 is L-perfect if and only if ClL(A) = {αA | α ∈ R>0}.

Remark

dimR(V)− dimR(〈x†x | x ∈ML(A)〉), the perfection corank, is constant on
ClL(A).
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Calculating minimal classes

Theorem

Let A ∈ V>0 be L-perfect. Any codimension-k-face of VorL(A) corresponds to
a minimal class of perfection corank k, represented by

A+
1

2k

k∑
i=1

ρiRi =
1

k

k∑
i=1

(
A+

ρi
2
Ri

)
∈ V>0

with facet vectors Ri and ρi ∈ R>0 such that A+ ρiRi is a perfect neighbour
of A (and the codimension-k-face in question is the intersection is the
intersection of the facets with facet vectors Ri).

Example: The minimal classes in dimension 2 over Z

F0 =

(
2 −1
−1 2

)
, M(F0) = {±(1, 0), ± (0, 1), ± (1, 1)}

A≥0 ∩Vor(F0) = conv

((
1 0
0 0

)
,

(
0 0
0 1

)
, 1
2

(
1 1
1 1

))
Facet vectors R1 =

(
0 1
1 0

)
, R2 =

(
2 −1
−1 0

)
, R3 =

(
0 −1
−1 2

)
All perfect neighbours of F0 are given by F0 + 2Ri, so ρi = 2 for all 1 ≤ i ≤ 3.
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Now consider the dual of the tesselation of T =
{

Vor(F ) | F ∈ V>0 perfect
}

.

F1 F2

F0

F3

I The well-rounded classes have
perfection corank 0 or 1. The corank 0
class is the perfect class of F0.

I The corank 1 classes are represented
by

F0 +R1 =

(
2 0
0 2

)
F0 +R2 =

(
4 −2
−2 2

)
F0 +R3 =

(
2 −2
−2 4

)
I The minimal classes represented by

these three matrices are in the same
orbit under GL2(Z). This is easily
checked for well-rounded minimal
classes using a theorem by A.-M.
Bergé.

I The corank 2 class is represented by 1
2

(2F0 +R1 +R2) =

(
3 −1
−1 2

)
.
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Maximal finite subgroups

Theorem (Coulangeon, Nebe (2013))

G ≤ GL(L) maximal finite =⇒ G = AutL(C), where C is a well-rounded
minimal class, such that dim(C ∩ F(G)) = 1.
F(G) := {A ∈ V | A[g] = A ∀ g ∈ G}

Remark

This theorem yields a finite set of finite subgroups of GL(L), containing a set
of representatives of conjugacy classes of maximal finite subgroups of GL(L).

I There are algorithmic methods to check if a finite subgroup is maximal
finite and whether two maximal finite subgroups are conjugate.

I Therefore in the previous example, we obtain two conjugacy classes of
maximal finite subgroups:
The stabilizer of the perfect form F0, which is isomorphic to D12.
The stabilizer of the corank 1 class, which is isomorphic to D8.

I These groups are indeed maximal finite.
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Example: Q(
√
−6)

O = Z[
√
−6], L0 = O ⊕O, L1 = O ⊕ p, where p | (2).

Well-rounded minimal classes for Q(
√
−6)

L = L0 L = L1

C G = AutL(C) max. C G = AutL(C) max.
P1 SL(2, 3) yes P1 Q8 yes
C1 D12 yes P2 C3 o C4 yes
C2 D12 yes C1 D8 yes
C3 C4 no C2 C4 no
C4 D8 yes C3 C4 no
D1 D8 yes C4 D12 yes
D2 D8 yes D1 C2 × C2 yes
D3 C2 × C2 yes D2 C2 × C2 yes

=⇒ GL(L0) 6∼= GL(L1)



Resolutions for Unit Groups of Orders

Setup: As before A = Kn×n for some rational division algebra K, O a
maximal order in K and Λ = EndO(L) for some O-lattice L.

Target

Compute a ZΛ∗-free resolution of Z (which may then be used to compute e.g.
the integral homology of Λ∗).

Basic idea

Find a cell complex with a suitable Λ∗-action and employ its cellular chain
complex.

Reminder

AR := A⊗Q R carries a “canonical” involution †, V :=
{
F ∈ AR | F † = F

}
.

Λ∗ acts on V>0 via (g, F ) 7→ gFg†.
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The cell decomposition of V>0

Minimal classes

For F ∈ V>0 define ClL(F ) := {F ′ ∈ V>0 | ML(F ′) =ML(F )} the minimal
class corresponding to F .

V>0 decomposes into the disjoint union of all minimal classes.

Properties of this decomposition:

I Partial ordering on the minimal classes: C � C′ ⇔ML(C) ⊂ML(C′).

I Each minimal class is a convex set in V.

I The decomposition as well as the partial ordering are compatible with the
Λ∗-action.

I We have C =
⋃

C�C′ C
′.

The cellular chain complex

The decomposition yields an acyclic chain complex C, where Cn is the free
Abelian group on the minimal classes in dimension n. Cn becomes a
Λ∗-module by means of the Λ∗-action on V.
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Assembling the information

Problem 1: The modules Cn are not necessarily free.

Perturbations - C.T.C. Wall (1961)

There is an algorithm which takes as input the cellular chain complex and free
resolutions of Z for the occuring stabilizers of cells and outputs a free
resolution of Z for Λ∗.

Problem 2: Some cells have infinite stabilisers.
Solution: Consider only a certain retract of V>0.

The well-rounded retract

I F ∈ V>0 is called well-rounded, if ML(F ) contains a K-Basis of Kn.

I V>0,wr
=1 := {F ∈ V>0 | F well-rounded, µL(F ) = 1}.
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The well-rounded retract

Properties of the well-rounded retract
In V>0,wr

=1 we have:

I There are only finitely many Λ∗-orbits in any dimension and every
occuring stabiliser is finite.

I The topological closure of each cell is a polytope.

I V>0,wr
=1 is a retract of V>0, especially we have that the cellular chain

complex is again acyclic and H0
∼= Z (A. Ash, 1984).

Summary

I The group Λ∗ acts on the space of positive definite forms.

I This space decomposes into cells in a Λ∗-compatible way.

I There is a subspace such that each cell in it is a polytope and has finite
stabiliser in Λ∗.

I We may use this cellular decomposition and the finite stabilisers to
construct a free ZΛ∗-resolution of Z.
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Example 1: Linear Groups over Imaginary Quadratic Integers

Q(
√
−5)

K := Q(
√
−5), A := K2×2, O := Z

[√
−5
]
.

Λi := EndO(Li) where L1 := O2 and L2 := O ⊕ ℘ where ℘2 = (2).

1. G1 := GL(L1):

Hn(G1,Z) =


C5

2 n = 1

C2
4 × C12 × Z n = 2

C8
2 × C24 n = 3

C7
2 n = 4

2. G2 := GL(L2):

Hn(G2,Z) =


C3

2 n = 1

C2
2 × C12 × Z n = 2

C8
2 × C24 n = 3

C7
2 n = 4

Especially: G1 � G2.
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Example 2: The well-rounded retract and the Voronoi domains

A = K =
(

2,3
Q

)
, O = Λ = 〈1, i, j, k〉Z
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