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The classical Voronoi Algorithm

» Around 1900 Korkine, Zolotareff, and Voronoi developed a reduction
theory for quadratic forms.

» The aim was to classify the densest lattice sphere packings in
n-dimensional Euclidean space.

» lattice L = Z'*™, Euclidean structure on L given by some some positive
definite F' € RZ%572, (z,y) = aFy'™".

» Voronoi described an algorithm to find all local maxima of the density
function on the space of all n-dimensional positive definite F'.

> They are perfect forms (as will be defined below).

> There are only finitely many perfect forms up to the action of GL,(Z),
the unit group of the order Z"*".

» Later, Voronoi's algorithm has been used to compute generators and
relations for GL,,(Z) but also its integral homology groups.

> It has been generalised to other situations: compute integral normalizer,
the automorphism group of hyperbolic lattices and

» more general unit groups of orders.



Unit groups of orders

v

A separable Q-algebra, so A = @;_, D;'"*", is a direct sum of matrix
rings over division algebras.

An order A in A is a subring that is finitely generated as a Z-module and
such that (A)g = A.

Its unit group is A" :={u € A | Jv € A,uv = 1}.
Know in general: A* is finitely generated.

Example: A = K a number field, A = Ok, its ring of integers. Then
Dirichlet's unit theorem says that A* & g x Z"H571,

Example: A = (1,4,7,45)z with i* = j2 = (ij)®> = —1. Then A* = (i, j)
the quaternion group of order 8.
Example: A = QG for some finite group G, A = ZG.

Example: A a division algebra with dimz(4)(4) = d?> > 4. Not much
known about the structure of A*.

Voronoi's algorithm may be used to compute generators and relations for
A and to solve the word problem.

Seems to be practical for “small” A and for d = 3.



The classical Voronoi Algorithm
Korkine, Zolotareff, Voronoi, ~ 1900.

Definition

» V:={X € R"*" | X = X"} space of symmetric matrices

» 0:VxV =R, 0(A, B) := trace(AB) Euclidean inner product on V.

for F € V, x € R™™ define F[z] := 2 Fz'" = o(F, z'"x)

V>0 .= {F € V| F positive definite }

for F € V7 define the minimum p(F) := min{F[z] : 0 # = € Z'*"} and
M(F) := {z € Z'" | Flz] = p(F)}

Vor(F) := {3 ,c m(r) %' | @z > 0} the Voronoi domain

Fis called perfect < dim(Vor(F)) = dim(V) = 2,
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Remark
GL,(Z) acts on V° by (F,g) > g~ ' Fg~"". Then

M(g~'Fg™") = {axg|ze M(F)}
Vor(glegftr) = ¢ Vor(F)g



The classical Voronoi Algorithm
Korkine, Zolotareff, Voronoi, ~ 1900.

Definition

» V:={X € R"*" | X = X"} space of symmetric matrices

» 0:VxV =R, o(A, B) := trace(AB) Euclidean inner product on V.

for F € V, x € R**"™ define F[z] := 2Fx'" = o(F, 2" )

V>0 .= {F € V| F positive definite }

for F € V>° define the minimum p(F) := min{F[z] : 0 # = € Z'*"} and
M(F) = {z € Z'*" | Fla] = u(F)}

Vor(F) := {3, c m(r) azz""z | az > 0} the Voronoi domain
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Fis called perfect < dim(Vor(F)) = dim(V) = 2.

Theorem (Voronoi)

(a) T := {Vor(F) | F € V>°, perfect } forms a face to face tesselation of V=°.
(b) GLn(Z) acts on T with finitely many orbits that may be computed
algorithmically.



Example, generators for GLy(Z)

v

n =2, dim(V) = 3, dim(V>°/Rs0) = 2
» compute in affine section of the projective space
A=Y = {F € V=9 | trace(F) = 1}

Fo = (_21_21) w(Fo) = 2, M(Fp) = {£(1,0),+(0,1), +(1,1)}

10 00 11
AZ° N Vor(Fy) = conv(a = <00) b= <01> c=1% (11))

[3

v

v

v

Vor(F0)




Example, generators for GLy(Z)

v

n =2, dim(V) = 3, dim(V>°/Rs0) = 2
> compute in affine section of the projective space
AZ0 = {F € V=0 | trace(F) = 1}

Fo = ( 2 ) W(Fo) = 2, M(Fo) = {£(1,0), £(0, 1), +(1,1)}

10 00 11
AZ° N Vor(Fy) = conv(a = <00> b= (01) =13 (11>)

[3
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Example, generators for GLy(Z)
» Compute neighbor: i € V> so that Vor(F1) = conv(a, b, ).
> linear equation on Fi: trace(Fia) = trace(F1b) = 2 and trace(Fic) > 2,

so F1 = Fy 4 sX where X = ((1)(1)> generates (a,b)".
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For s = 2 the matrix F; = 1; has again 6 minimal vectors
M(Fy) = {%£(1,0),£(0,1), £(1,-1)}

A=° N Vor(F1) = conv(a,b, ¢ = (—11_11>)
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Vor(F0)

Vor(F1)



Example, generators for GLy(Z)
0-1 01
Stabarao (70) = (o = (11) n = (1))

(a7b) g = (bvc)v (b7c) 9= (C>a)
Compute isometry t = diag(1, —1) € GL2(Z), so t ' Fot '™ = Fy.
Then GL2(Z) = (g, h, t).

C
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Vor(F(}\))
g

t
a N b

Vor(F1)



GL2(Z) = (g, h, t).
> Stabar(F0) = ta = (77) h = ()

> (a7b) g = (b7c)v (b7c) ‘g = (C>a)
» Compute isometry ¢t = diag(1, —1) € GLa(Z), so t~ ' Fot™"" = F}.
[Y

Vor(F0)
> e ’
b

t/
a T

Vor(F1)



Variations of Voronoi's algorithm

» Many authors used this algorithm to compute integral homology groups of
SL,(Z) and related groups, as developed C. Soulé in 1978.

» Max Kocher developed a general Voronoi Theory for pairs of dual cones in
the 1950s.
o : V1 X Vo — R non degenerate and positive on the cones V1>0 X V2>0.
discrete admissible set D C V5 ° used to define minimal vectors and
perfection for F' € V{"® and Vorp (F) C V2”°.

> J. Opgenorth (2001) used Kdcher's theory to compute the integral
normalizer Ngr,,(z)(G) for a finite unimodular group G.

» M. Mertens (Masterthesis, 2012) applied Kdcher's theory to compute
automorphism groups of hyperbolic lattices.

> This talk will explain how to apply it to obtain generators and relations for
unit group of orders in semi-simple rational algebras and an algorithm to
solve the word problem in these generators.



Orders in semi-simple rational algebras.
The positive cone

» K some rational division algebra, A = K™*"
> Agr := A ®q R semi-simple real algebra
> so Ag is isomorphic to a direct sum of matrix rings over of H, R or C.

> Ag carries a “canonical” involution T (depending on the choice of the
isomorphism) that we use to define symmetric elements:

» V:=Sym(A4r) := {F € Ag | Fft =F}
> o(F1, F») := trace(F1 F3) defines a Euclidean inner product on V.

> In general the involution T will not fix the set A.

The simple A-module.

> Let V = K'*™ denote the simple right A-module, V& = V ®qg R.
» For z € V we have zfz € V.
» F €V is called positive if

Flz] == o(F,z'z) > 0 for all 0 # z € Vk.



Minimal vectors.

The discrete admissible set

» O maximal order in K, L some O-lattice in the simple A-module V'

» A :=Endo(L) is a maximal order in A with unit group
A" :=GL(L)={a€ A|aL =L}.

L-minimal vectors

Let F € V0.

w(F) := pr,(F) = min{F[] | 0 # ¢ € L} the L-minimum of F'.
Mp(F):={teL|F[]=pur(F)} the finite set of L-minimal vectors.
Vorr (F) == {3, c v, () azx'x | az > 0} € V=° Voronoi domain of F.
F is called L-perfect < dim(Vor (F)) = dim(V).
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Theorem

T :={Vory(F) | F € V>°, L-perfect } forms a face to face tesselation of V=°,
A acts on T with finitely many orbits.



Generators for A*

» Compute R := {F,..., F,} set of representatives of A*-orbits on the
L-perfect forms, such that their Voronoi-graph is connected.

> For all neighbors F' of one of these F; (so Vor(F') N Vor(F;) has
codimension 1) compute some gr € A* such that gp - F € R.

» Then A* = (Aut(F;), gr | Fi € R, F neighbor of some F; € R).

so here A* = (Aut(F1), Aut(F>), Aut(Fs),a,b,c,d, e, f).



Example Q3 3.

v

Take the rational quaternion algebra ramified at 2 and 3,
Qus = (1 | # =27 = 3.4 = i) = (@ine(v2,~v2). ( § ¢ ))

Maximal order A = (1,4, 2(1 + i+ ij), 1 (j + ij))
V=A=Qs3 Ag =R¥? L =A
Embed A into Ag using the maximal subfield Q[v/2].

» Get three perfect forms:

n=( 0 ) 0% )

F3 = diag(—3v2 +9,3v2 +5)

v

v

v

v






A*/{(£1) = (a,b,t | a3, b?, atbt)




Easy solution of the word problem
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Easy solution of the word problem




The tesselation for Q3 < Q[v/3]>*2.




Conclusion

> Algorithm works quite well for indefinite quaternion algebras over the
rationals

» Obtain presentation and algorithm to solve the word problem

» For Q19,37 our algorithm computes the presentation within 5 minutes (288
perfect forms, 88 generators) whereas the MAGMA implementation
“FuchsianGroup” does not return a result after four hours

> Reasonably fast for quaternion algebras with imaginary quadratic center or
matrix rings of degree 2 over imaginary quadratic fields

» For the rational division algebra of degree 3 ramified at 2 and 3 compute
presentation of A*, 431 perfect forms, 50 generators in about 10 minutes.

» Quaternion algebra with center Q[(s]: > 40.000 perfect forms.

» Masterthesis by Oliver Braun: The tesselation 7 can be used to compute
the maximal finite subgroups of A*.

> Masterthesis by Sebastian Schonnenbeck: Compute integral homology of
A™.



Calculating maximal finite subgroups
Minimal classes

Definition

Let A,B € V>° A and B are minimally equivalent if M (A) = M (B).

C:=Cl (A) = {X € V7° | Mp(X) = Mz(A)} is the minimal class of A.
In this case M (C) := Mg (A). Call C well-rounded if M (C) contains a
K-basis of V = K",

Remark
A € V>0 is L-perfect if and only if Clz(A) = {aA | @ € Rso}.



Calculating maximal finite subgroups
Minimal classes

Definition

Let A,B € V>° A and B are minimally equivalent if M (A) = M (B).

C:=Cl (A) = {X € V7° | Mp(X) = Mz(A)} is the minimal class of A.
In this case M (C) := Mg (A). Call C well-rounded if M (C) contains a
K-basis of V = K",

Remark
A € V>0 is L-perfect if and only if Clz(A) = {aA | @ € Rso}.

Remark

dimg (V) — dimg({(z'z | £ € Mr(A))), the perfection corank, is constant on
Clp(A).



Calculating minimal classes

Theorem

Let A € V70 be L-perfect. Any codimension-k-face of Vorr,(A) corresponds to
a minimal class of perfection corank k, represented by

I k
1 1 i
At oY piRi= 1> (A+ BR) eV
i=1 i=1

with facet vectors R; and p; € Rs¢ such that A + p;R; is a perfect neighbour
of A (and the codimension-k-face in question is the intersection is the
intersection of the facets with facet vectors R;).



Calculating minimal classes

Theorem

Let A € V70 be L-perfect. Any codimension-k-face of Vorr,(A) corresponds to
a minimal class of perfection corank k, represented by

1 < 1 pi
A+ﬁ;piRi:%;(A+§Ri) e Y0

with facet vectors R; and p; € Rs¢ such that A + p;R; is a perfect neighbour
of A (and the codimension-k-face in question is the intersection is the
intersection of the facets with facet vectors R;).

Example: The minimal classes in dimension 2 over Z

Fo = (_21 ;1),M(F()):{i(1,0), +(0,1), +(1,1)}

AZ% N Vor(Fy) = conv ((é 8) ’ (8 (1)) 3 G D)

0 1 2 1 0 -1
Facet vectors Ry = (1 0), Ry = (_1 0 ) Rs = (_1 9 )

All perfect neighbours of Fy are given by Fy +2R;, so p; =2 forall 1 <7 < 3.



Now consider the dual of the tesselation of 7 = {Vor(F) | F € V>° perfect}.
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Now consider the dual of the tesselation of 7 = {Vor(F) | F € V>° perfect}.

F1 F2

NS

Fo

F3

» The corank 2 class is represented by %(QFO + Ri+ R2) = (_31 71).

» The well-rounded classes have

perfection corank 0 or 1. The corank 0
class is the perfect class of Fp.

The corank 1 classes are represented
by

2 0
Fo+ R = (0 2)

4 -2
Fo+ Ry = (_2 2)

2 =2
Fo+ Rs = (_2 4)

The minimal classes represented by
these three matrices are in the same
orbit under GL2(Z). This is easily
checked for well-rounded minimal
classes using a theorem by A.-M.
Bergé.

2



Maximal finite subgroups

Theorem (Coulangeon, Nebe (2013))

G < GL(L) maximal finite = G = Autz(C), where C' is a well-rounded
minimal class, such that dim(C' N F(G)) = 1.
F(G)={AeV|Ag=AVgeG}

Remark

This theorem yields a finite set of finite subgroups of GL(L), containing a set
of representatives of conjugacy classes of maximal finite subgroups of GL(L).
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Maximal finite subgroups

Theorem (Coulangeon, Nebe (2013))

G < GL(L) maximal finite = G = Autz(C), where C' is a well-rounded
minimal class, such that dim(C' N F(G)) = 1.
F(G)={AeV|Ag=AVgeG}

Remark

This theorem yields a finite set of finite subgroups of GL(L), containing a set
of representatives of conjugacy classes of maximal finite subgroups of GL(L).

» There are algorithmic methods to check if a finite subgroup is maximal
finite and whether two maximal finite subgroups are conjugate.

» Therefore in the previous example, we obtain two conjugacy classes of
maximal finite subgroups:
The stabilizer of the perfect form Fy, which is isomorphic to D12.
The stabilizer of the corank 1 class, which is isomorphic to Ds.

» These groups are indeed maximal finite.



Example: Q(1/—6)

O=Z=6), Ly=080, L

= O @p, where p | (2).

Well-rounded minimal classes for Q(1/—6)

L = Lo L= Ll
C | G=Aut.(C) | max. C | G=Aut(C) | max.
P SL(2,3) yes P Qs yes
1 Do yes Ps C3 xCy yes
Cz D12 yes Cl Dg yes
Cs Cy no Cs Cy no
Cy Dg yes Cs Cy no
D, Dsg yes Cy D1, yes
D2 Dg yes D1 CQ X 02 yes
D3 CQ X CQ yes D2 CQ X CQ yes

= GL(Lo) ¢ GL(L1)
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Resolutions for Unit Groups of Orders

Setup: As before A = K™*" for some rational division algebra K, O a
maximal order in K and A = Endop (L) for some O-lattice L.

Target

Compute a ZA*-free resolution of Z (which may then be used to compute e.g.
the integral homology of A*).

Basic idea

Find a cell complex with a suitable A*-action and employ its cellular chain
complex.

Reminder
Ar := A ®q R carries a “canonical” involution T, V := {F € Ar | Ft = F}.
A* acts on V>0 via (g, F) — gFg'.
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class corresponding to F'.
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The cell decomposition of V>0

Minimal classes

For F € V>° define Cl.(F) := {F' € V7° | ML(F') = Mr(F)} the minimal
class corresponding to F'.

V9 decomposes into the disjoint union of all minimal classes.

Properties of this decomposition:
» Partial ordering on the minimal classes: C < C' & M (C) C Mr(C").
» Each minimal class is a convex set in V.
» The decomposition as well as the partial ordering are compatible with the
A*-action.
> We have C' = Ug<er €.

The cellular chain complex

The decomposition yields an acyclic chain complex C, where C,, is the free
Abelian group on the minimal classes in dimension n. C),, becomes a
A*-module by means of the A*-action on V.
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Assembling the information

Problem 1: The modules C,, are not necessarily free.

Perturbations - C.T.C. Wall (1961)

There is an algorithm which takes as input the cellular chain complex and free
resolutions of Z for the occuring stabilizers of cells and outputs a free
resolution of Z for A*.

Problem 2: Some cells have infinite stabilisers.
Solution: Consider only a certain retract of V>°.

The well-rounded retract

» F c V7" is called well-rounded, if My (F) contains a K-Basis of K.
» Y20 = (F € V9 | F well-rounded, ur(F) = 1}.
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The well-rounded retract

Properties of the well-rounded retract
In V=2"" we have:

» There are only finitely many A*-orbits in any dimension and every
occuring stabiliser is finite.

» The topological closure of each cell is a polytope.

> V29" is a retract of V70, especially we have that the cellular chain
complex is again acyclic and Ho 2 Z (A. Ash, 1984).

Summary

» The group A™ acts on the space of positive definite forms.

» This space decomposes into cells in a A*-compatible way.

> There is a subspace such that each cell in it is a polytope and has finite
stabiliser in A™.

» We may use this cellular decomposition and the finite stabilisers to
construct a free ZA™-resolution of Z.
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Example 1: Linear Groups over Imaginary Quadratic Integers

Q(v=5)

K :=Q(/-5), A:= K2X2 0.=7 [x/75 .
A; == Endp(L;) where Ly := 02 and La := O @ p where p? = (2).

1. Gy :=GL(L1):

C’g’ n=1
C2><012><Z n=2
Hn(GI:Z) = C;é % 024 n =
027 n=4
2. G2 := GL(L»):
CS’ n=1
CZ2xCiaXZ n=2
H,(G2,Z) = 2
n( 2 ) C2SX024 n =
027 n=4

Especially: G1 2 Ga.
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