Solution to Exercise 1.3.3

(a) Clearly $c_{\varphi} = c_{\varphi - \lambda \cdot \mathrm{id}_{V}}(X - \lambda) \in K[X]$ for $\lambda \in K$. Hence $m_{\lambda}(\varphi) = 1$ implies $m_{0}(\varphi - \lambda \cdot \mathrm{id}_{V}) = 1$ and hence $\dim_{K} \ker p(\varphi) = 1$.

(b) The argument of (a) shows that $n(\lambda,\lambda)=n(0,0)=n_{d,q}$ for any $\lambda\in K$. Let $B:=(v_1,\ldots,v_d)$ be a basis of V. Let $\varphi\in\operatorname{End}_K V$ and $m_0(\varphi)=1$, so that in particular $\dim_K\ker\varphi=1$. Then $\ker\varphi=\langle v_1\rangle$ if and only if $[\varphi]_B=\begin{bmatrix}0&a\\\mathbf{0}&A\end{bmatrix}$ with $a\in K^{1\times(q-1)}$ and $A\in\operatorname{GL}_{d-1}(q)$. In fact, $A=[\bar{\varphi}]_{\bar{B}}$, where $\bar{\varphi}$ is as in the hint to the exercise and $\bar{B}=(v_2+\ker\varphi,\ldots,v_d+\ker\varphi)$. Since the number of 1-dimensional subspaces of V is $(q^d-1)/(q-1)$ and $|\operatorname{GL}_d(q)|=\prod_{i=0}^{d-1}(q^d-q^i)$, we get

$$n_{d,q} = \frac{q^d - 1}{q - 1} q^{d-1} |\operatorname{GL}_{d-1}(q)| = \frac{q^d - 1}{q - 1} \prod_{i=1}^{d-1} (q^d - q^i) = \frac{|\operatorname{GL}_d(q)|}{q - 1}.$$
 (1)

Clearly $n(\lambda_1, \lambda_2) = n(0, \lambda)$ if $\lambda_1 \neq \lambda_2$ and $\lambda \neq 0$. If B, φ and $\bar{\varphi}$ are as above and, in addition $m_{\lambda}(\varphi) = 1$, then $[\varphi]_B = \begin{bmatrix} 0 & a \\ \mathbf{0} & A \end{bmatrix}$ with $a \in K^{1 \times (q-1)}$ and $A \in \mathrm{GL}_{d-1}(q)$ with $m_{\lambda}(\bar{\varphi}) = 1$. Obviously the number of such A (or $\bar{\varphi}$) is $\leq n_{d-1,q}$, hence

$$n(\lambda_1, \lambda_2) \le \frac{q^d - 1}{q - 1} q^{d - 1} n_{d - 1, q}.$$

For $\lambda \in K$ let $M_{\lambda} := \{ \varphi \in \operatorname{End}_K V \mid m_{\lambda}(\varphi) = 1 \}$. Then $|M_{\lambda_1} \cap M_{\lambda_2}| = n(\lambda_1, \lambda_2)$. Hence

$$m_{d,q} = |\bigcup_{\lambda \in K} M_{\lambda}| \ge \sum_{\lambda \in K} |M_{\lambda}| - \sum_{|\{(\lambda_1, \lambda_2\}| = 2} n(\lambda_1, \lambda_2)$$
 (2)

$$\geq q n_{d,q} - \frac{q(q-1)}{2} \frac{q^d - 1}{q-1} q^{d-1} n_{d-1,q}$$
(3)

$$\geq q n_{d,q} - \frac{1}{2} (q^d - 1) q n_{d-1,q} = \frac{1}{2} q n_{d,q}.$$
 (4)

Observe, that (1) implies that $n_{d,q}/n_{d-1,q} = (q^d - 1) q^{d-1}$. From (4) and (1) we conclude, since $q \ge 2$

$$\frac{m_{d,q}}{|\operatorname{End}_{K} V|} \geq \frac{|\operatorname{GL}_{d}(q)|}{2 q^{d-1} (q-1)} = \frac{1}{2} (1 - q^{-2}) (1 - q^{-3}) \cdots (1 - q^{-d})$$
$$\geq \prod_{i=1}^{d} (1 - 2^{-i}) =: p_{d}.$$

For $n, k \in \mathbb{N}$ we put

$$p_{n,k} := (1 - 2^{-(n+1)}) \cdots (1 - 2^{-(n+k)})$$

and using induction on k (and $p_{n,k+1} = p_{n,1} \cdot p_{n+1,k})$ we immediately see that

$$1 - p_{n,k} < \frac{1}{2^n}$$
 for all $n, k \in \mathbb{N}$. (5)

We compute $p_4 = \frac{315}{1024} > 0.3$ and for d > 4 we obtain

$$p_d = p_4 \cdot p_{4,d-4} > \frac{315}{1024} \cdot \frac{15}{16} > 0.288.$$

Note: It follows from (5) that the infinite product $\prod_{i=1}^{\infty} (1-2^{-i})$ is convergent. The first 100 decimal digits of

$$Q := \prod_{i=1}^{\infty} (1 - 2^{-i}) = 0.28878809508\dots$$

can be found in Sloane's On-Line Encyclopedia of Integer Sequences, see http://www.research.att.com/ njas/sequences/?q=id%3aA048651&p=1 &n=10&sort=1 . The constant Q plays also a role in digital tree searching, see http://mathworld.wolfram.com/TreeSearching.html .