
The GAP Character Table
Library

(Version 1.3.9)

Thomas Breuer

Thomas Breuer Email: sam@math.rwth-aachen.de
Homepage: https://www.math.rwth-aachen.de/~Thomas.Breuer

mailto://sam@math.rwth-aachen.de
https://www.math.rwth-aachen.de/~Thomas.Breuer

The GAP Character Table Library 2

Copyright
© 2003–2024 by Thomas Breuer

This package may be distributed under the terms and conditions of the GNU Public License Version 3 or
later, see http://www.gnu.org/licenses.

http://www.gnu.org/licenses

Contents

1 Introduction to the GAP Character Table Library 5
1.1 History of the GAP Character Table Library . 7
1.2 What’s New in CTblLib, Compared to Older Versions? 7
1.3 Acknowledgements . 16

2 Tutorial for the GAP Character Table Library 17
2.1 Concepts used in the GAP Character Table Library 17
2.2 Accessing a Character Table from the Library . 18
2.3 Examples of Using the GAP Character Table Library 22

3 The User Interface to the GAP Character Table Library 41
3.1 Accessing Data of the CTblLib Package . 41
3.2 The Interface to the TomLib Package . 46
3.3 The Interface to GAP’s Group Libraries . 48
3.4 Unipotent Characters of Finite Groups of Lie Type 51
3.5 Browse Applications Provided by CTblLib . 53
3.6 Duplicates of Library Character Tables . 65
3.7 Attributes for Library Character Tables . 67

4 Contents of the GAP Character Table Library 69
4.1 Ordinary and Brauer Tables in the GAP Character Table Library 69
4.2 Generic Character Tables . 71
4.3 Atlas Tables . 77
4.4 CAS Tables . 85
4.5 Customizations of the GAP Character Table Library 86
4.6 Technicalities of the Access to Character Tables from the Library 87
4.7 How to Extend the GAP Character Table Library 89
4.8 Sanity Checks for the GAP Character Table Library 94
4.9 Maintenance of the GAP Character Table Library 97

5 Functions for Character Table Constructions 98
5.1 Character Tables of Groups of Structure M.G.A . 98
5.2 Character Tables of Groups of Structure G.S3 . 100
5.3 Character Tables of Groups of Structure G.22 . 101
5.4 Character Tables of Groups of Structure 22.G . 102
5.5 Character Tables of Subdirect Products of Index Two 103

3

The GAP Character Table Library 4

5.6 Brauer Tables of Extensions by p-regular Automorphisms 104
5.7 Character Tables of Coprime Central Extensions . 105
5.8 Construction Functions used in the Character Table Library 105

6 Interfaces to Other Data Formats for Character Tables 110
6.1 Interface to the CAS System . 110
6.2 Interface to the MOC System . 111
6.3 Interface to GAP 3 . 115
6.4 Interface to the Cambridge Format . 117
6.5 Interface to the MAGMA System . 119

7 Utility Functions Provided by the CTblLib Package 124
7.1 Write Character Values in Terms of Atomic Atlas Irrationalities 124
7.2 Create a String that Describes the Group Structure 125

References 128

Index 129

Chapter 1

Introduction to the GAP Character Table
Library

The usefulness of GAP for character theoretic tasks depends on the availability of many known char-
acter tables, and there are a lot of character tables in the GAP table library. Of course, this library is
“open” in the sense that it shall be extended. So we would be grateful for any further tables of interest
sent to us for inclusion into our library. Please offer interesting new character tables via e-mail to
sam@math.rwth-aachen.de.

It depends on your GAP installation whether the character table library is available. You can check
this as follows.

Example
gap> InstalledPackageVersion("ctbllib") <> fail;
true

If the result is false then the library is not installed, and you may ask your system administrator
for installing it, or install the library in your home directory, see Section 4.5.1.

For general information about character tables in GAP, see Chapter (Reference: Character
Tables).

Examples of character theoretic computations involving the GAP Character Table Library are part
of the package. They are dealing with the following aspects.

• Maintenance issues concerning the GAP Character Table Library (CTblLibXpls: Mainte-
nance Issues for the GAP Character Table Library).

• Constructions of character tables using table automorphisms, see (CTblLibXpls: Using Table
Automorphisms for Constructing Character Tables in GAP).

• Computations of common central extensions, see (CTblLibXpls: Constructing Character
Tables of Central Extensions in GAP).

• Hamiltonian cycles in the generating graphs of finite groups, see (CTblLibXpls: GAP Com-
putations Concerning Hamiltonian Cycles in the Generating Graphs of Finite Groups).

• A question about the group PSO+(8,5).S3, see (CTblLibXpls: GAP Computations with
O_8^+(5).S_3 and O_8^+(2).S_3).

5

mailto://sam@math.rwth-aachen.de

The GAP Character Table Library 6

• Solvable subgroups of maximal order in sporadic simple groups (CTblLibXpls: Solvable Sub-
groups of Maximal Order in Sporadic Simple Groups).

• Large Nilpotent Subgroups of sporadic simple groups (CTblLibXpls: Large Nilpotent Sub-
groups of Sporadic Simple Groups).

• Computations of possible permutation characters, see (CTblLibXpls: Permutation Charac-
ters in GAP).

• Ambiguous class fusions, see (CTblLibXpls: Ambiguous Class Fusions in the GAP Char-
acter Table Library).

• Some computations concerning the classification of groups with the property that all complex
irreducible characters of the same degree are Galois conjugate (together with Klaus Lux), see
(CTblLibXpls: GAP computations needed in the proof of [DNT13, Theorem 6.1 (ii)]).

• Probabilistic generation of finite simple groups, see [Bree] or an updated version at
(CTblLibXpls: GAP Computations Concerning Probabilistic Generation of Finite Sim-
ple Groups).

• Ordinary character tables, Brauer tables, and decomposition matrices, see doc/ctbldeco.pdf
and htm/ctbldeco.htm.

• Multiplicity-free permutation characters of the sporadic simple groups and their automorphism
groups, see doc/multfree.pdf and htm/multfree.htm.

• Multiplicity-free permutation characters of central extensions of the sporadic simple groups,
and their automorphic extensions (together with Jürgen Müller), see doc/multfre2.pdf and
htm/multfre2.htm.

• The construction of some character tables of Atlas groups, using character theoretic methods,
see [Brec] or an updated version at doc/ctblatlas.pdf and htm/ctblatlas.htm.

• The verification of the character table of the Baby Monster group, see [BMW20] or an updated
version at doc/ctblbm.pdf and htm/ctblbm.htm.

If you use the GAP Character Table Library to solve a problem then please send a short e-mail to
sam@math.rwth-aachen.de about it. The GAP Character Table Library database should be refer-
enced as follows.

@misc{ CTblLib1.3.9,
author = {Breuer, T.},
title = {The \textsf{GAP} {C}haracter {T}able {L}ibrary,

{V}ersion 1.3.9},
month = {March},
year = {2024},
note = {\textsf{GAP} package},
howpublished = {http://www.math.rwth-aachen.de/\~{}Thomas.Breuer/ctbllib}

}

For referencing the GAP system in general, use the entry [GAP21] in the bibliography of this
manual, see also

http://www.gap-system.org.

http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc/ctbldeco.pdf
http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/htm/ctbldeco.htm
http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc/multfree.pdf
http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/htm/multfree.htm
http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc/multfre2.pdf
http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/htm/multfre2.htm
http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc/ctblatlas.pdf
http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/htm/ctblatlas.htm
http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc/ctblbm.pdf
http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/htm/ctblbm.htm
mailto://sam@math.rwth-aachen.de
http://www.gap-system.org

The GAP Character Table Library 7

1.1 History of the GAP Character Table Library

The first version of the GAP Character Table Library was released with GAP 3.1 in March 1992.
It was the first aim of this library to continue the character table library of the CAS system

(see [NPP84]) in GAP, as a part of the process of reimplementing the algorithms of CAS in GAP,
see (Reference: History of Character Theory Stuff in GAP). GAP 3.1 provided only very restricted
methods for computing character tables from groups, so its character theory part was concerned mainly
with library tables.

A second aspect of the character table library was to make all character tables shown in the At-
las of Finite Groups [CCN+85] available in GAP. In fact GAP turned out to provide a very good
environment for systematic checks of these character tables.

To some extent, the access to the (ordinary) character tables in [CCN+85] was a prerequisite for
storing also the corresponding Brauer character tables in the GAP Character Table Library. Already
GAP 3.1 contained many of these tables. They have been computed mainly “outside of GAP”, using
the methods described in [HJLP], and part of the library has been published in the Atlas of Brauer
Characters [JLPW95]. One of the roles of GAP was again to perform systematic checks.

Besides these projects, many individual character tables have been added to the GAP Charac-
ter Table Library since the times of GAP 3.1. They were computed from groups or with character
theoretic methods or using a combination of these two possibilities (see, e. g., [NPP84] and [LP91]).

Section 4.1 lists some of the sources. The changes in the GAP Character Table Library since the
release of GAP 4.1 (in July 1999) are individually documented in the file doc/ctbldiff.pdf of the
package.

Currently the main focus in the development of the GAP Character Table Library is –besides the
addition of tables that appear to be interesting– the better interaction with other databases, such as
the Atlas of Group Representations and the GAP Library of Tables of Marks (see the GAP packages
AtlasRep and TomLib) and GAP’s group libraries, and an improvement of the “database” aspect of
the character table library itself, see the sections 3.1 and 3.5.

Until the release of GAP 4.3 in spring 2002, the GAP Character Table Library had been a part of
the main GAP library. With GAP 4.3, it was “split off” as a GAP package.

1.2 What’s New in CTblLib, Compared to Older Versions?

The PDF file doc/ctbldiff.pdf of the package lists the important changes to the data since October
1996, mainly related to the relevant simple groups.

A perhaps more suitable overview of these changes is given by the GAP readable file
data/ctbldiff.json, which contains a complete overview of all changes, including the additions
of class fusions. (Note that each added or changed fusion is mentioned twice in this list, once for
the “from” table and once for the “to” table.) This list of changes can be shown and evaluated using
BrowseCTblLibDifferences (3.5.4) if the Browse package (see [BL23]) is available.

1.2.1 What’s New in Version 1.3.9? (March 2024)

The release of Version 1.3.9 was necessary because of a bug in the changes for version 1.3.8: Depend-
ing on the order in which packages are loaded, GAP ran into an error when it tried to load CTblLib.

http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc/ctbldiff.pdf

The GAP Character Table Library 8

1.2.2 What’s New in Version 1.3.8? (March 2024)

The following bug was fixed.

• The table with identifier "2^2x3^2.2.S4" is encoded as a direct product. Up to now, one of
the two factors did not fit to the identifier. Now this has been corrected.

The following data have been added.

• The class fusions from the maximal subgroups (L2(11)× L2(11)) : 4, 112 : (5× 2.A5), 72 :
2L2(7), and L2(19).2 of the Monster group have been added. (The proofs will be published in a
paper by Anthony Pisani and Tomasz Popiel.)

The following functionality has been changed.

• In order to make AllCharacterTableNames (3.1.4) efficient also if the Browse package is not
available, the relevant code from that package has been copied into CTblLib.

1.2.3 What’s New in Version 1.3.7? (January 2024)

The following bug was fixed.

• The GroupInfoForCharacterTable (3.3.1) entry "SigmaL(2,9)" had been erroneously at-
tributed to the table with identifier "2.A6.2_2", but the correct table is that of "2.A6.2_1".
(Thanks to Bernhard Böhmler for pointing this out.)

The following data have been added.

• Due to [DLP23], all classes of maximal subgroups of the Monster group are now known, their
number is 46. Currently not all their character tables (and the class fusions to the Monster)
are available in the character table library. The known information about the primitive permu-
tation characters of the Monster in the data file data/prim_perm_M.json has been updated
accordingly.

Now the groups with character tables "U3(4).4" and "L2(13).2" have been found as maximal
subgroups of the Monster. This means that the following changes of relative admissible names
were necessary.

Identifier New name Former name
"U3(4).4" "MM37" –
"L2(71)" "MM38" "MM37"
"L2(59)" "MM39" "MM38"
"11^2:(5x2.A5)" "MM40" "MM39"
"L2(41)" "MM41" "MM40"
"L2(29).2" "MM42" "MM41"
"7^2:2psl(2,7)" "MM43" "MM42"
"L2(19).2" "MM44" "MM43"
"L2(13).2" "MM45" –
"41:40" "MM46" "MM44"

The GAP Character Table Library 9

As a consequence, some arguments concerning the Monster in the chapters (CTblLibXpls:
GAP Computations Concerning Hamiltonian Cycles in the Generating Graphs of Finite
Groups) and (CTblLibXpls: Solvable Subgroups of Maximal Order in Sporadic Simple
Groups) have been adjusted.

• The following ordinary character tables of maximal subgroups of the Mon-
ster have been added to the library: "2^(10+16).O10+(2)" was con-
tributed by Alexander Hulpke. "3^8.O8-(3).2_3", "(3^2:2xO8+(3)).S4",
"3^(2+5+10).(M11x2S4)", "3^(3+2+6+6):(L3(3)xSD16)" were contributed by Tim
Burness. "2^[39].(L3(2)x3.S6)" and "2^(2+11+22).(M24xS3)" were computed using
MAGMA.

As a consequence, the permutation characters induced from these subgroups can be computed
directly. The relevant subsections in Section (CTblLibXpls: Four Primitive Permutation
Characters of the Monster Group) have been extended accordingly.

• The known information about orthogonal discriminants of orthogonally stable irreducible char-
acters of almost simple groups is now available, via the data in the file data/odresults.json.
The functions Display (Reference: Display for a character table) and Browse (for
character tables) (Browse: Browse for character tables) support the component OD in
the optional second argument, in order to show a column with the known orthogonal discrimi-
nants.

• Three new example sections have been added, which deal with subgroups of the Mon-
ster group: (CTblLibXpls: The Monster group does not contain subgroups of the type
2.U_4(2) (August 2023)), (CTblLibXpls: Perfect central extensions of L_3(4) (August
2023)) (CTblLibXpls: The character table of (2 × O_8^+(3)).S_4 ≤ 2.B (October 2023)).

1.2.4 What’s New in Version 1.3.6? (May 2023)

The release of Version 1.3.6 was necessary for technical reasons: The code for building the documen-
tation of the package had to be adjusted to a change in GAP 4.13. This does not affect most users of
the package because the package archive contains a ready documentation. (The ability to rebuild the
package documentation had been requested by packagers for Linux distributions.)

1.2.5 What’s New in Version 1.3.5? (March 2023)

• GAP 4.13 will provide the new “package extension” feature, which allows a package to execute
GAP code after the package and some other required packages have been loaded. In CTblLib,
this feature is now used for example in order to achieve that those functions which depend on
the Browse package can be used also if this package gets (installed and) loaded after CTblLib
has been loaded.

• A few (modular and ordinary) character tables have been added that were used for the com-
putation of orthogonal discriminants of characters. Also a few formerly unknown 2-modular
indicator values have been added.

• Character parameters for modular tables of symmetric groups are now available. (Thanks to
Jürgen Müller for these data.)

https://github.com/gap-system/gap/pull/5178

The GAP Character Table Library 10

• The identifier of one character table had to be changed from "D8.(S4x2)" to "2^3.(S4×2)"
because the old name suggested a wrong group structure. This bug had been announced in a
StackExchange discussion.

• The 11-modular character tables of HN and HN.2 (and as a consequence also that of (D10×
HN).2) had to be changed, in order to solve a generality problem. See (CTblLibXpls: A
generality problem concerning the group HN (August 2022)) for the details.

• A few class fusions had to be replaced; they were valid for the ordinary character tables in
question but not for their Brauer tables.

1.2.6 What’s New in Version 1.3.4? (April 2022)

The release of Version 1.3.4 was necessary for technical reasons: Now the testfile mentioned in
PackageInfo.g exits GAP in the end.

1.2.7 What’s New in Version 1.3.3? (January 2022)

The reason for this release was the addition of the new example section (CTblLibXpls: Generation
of sporadic simple groups by π- and π’-subgroups (December 2021)), which requires the new
data file data/prim_perm_M.json. (The data had already been used before in the example section
(CTblLibXpls: The Monster), which has now been changed accordingly.)

The database attribute IsQuasisimple has been added, which describes perfect central extensions
of nonabelian simple groups. It can be used for example to select the character tables of quasisimple
groups with AllCharacterTableNames (3.1.4). Thanks to Gunter Malle for suggesting this addition.

No new character tables have been added, and there are only a few new class fusions, admissible
names, and group constructions.

1.2.8 What’s New in Version 1.3.2? (March 2021)

The main new features of this release are technical.

• The initialization of the database (at the time when the package gets loaded) has been changed.
Instead of executing GAP code in the formerly available (huge) file data/ctprimar.tbl, now
one calls a few short GAP functions, in the new file gap4/ctprimar.g, which evaluate JSON
format files. This was one more step on the way to make the database independent of GAP.

• Also the files with the precomputed attribute values are now in JSON format, since now the
Browse supports this format.

• The “WWW table of contents” of the package has been updated in the sense that it shows the
same as the functions DisplayCTblLibInfo (3.5.1) and BrowseCTblLibInfo (3.5.2); at the
same time, these functions have been extended in order to link each table to its main table and
to its duplicates. The code for creating the HTML files is now distributed with the package, in
the ctbltoc directory.

• The mechanism for processing the package documentation (which contains two GAPDoc
books) has been changed to a more standard way. Now it is enough to process one GAP input
file in the package directory.

https://math.stackexchange.com/questions/4577016/group-names-in-gap-character-table-library
https://math.stackexchange.com/questions/4577016/group-names-in-gap-character-table-library
http://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/ctbltoc/index.html

The GAP Character Table Library 11

In several InfoText (3.7.5) values of character tables, information about group con-
structions has been added; where possible, these constructions are now also available via
GroupInfoForCharacterTable (3.3.1); for example, this function now supports also the construc-
tion of a group as the automorphism group of a simple group. (Thanks to Gunter Malle for ideas and
discussions about this feature.)

The function BrowseAtlasImprovements (3.5.10) can now show (also) the improvements for
the Atlas of Brauer Characters [JLPW95].

The strings "L2(49)" and "L2(81)" are now valid inputs for DisplayAtlasMap (3.5.8)
and BrowseAtlasTable (3.5.9), and DisplayAtlasContents (3.5.6) and BrowseAtlasContents
(3.5.5) now show information about these two and "L6(2)" and "S10(2)".

Besides these changes, a few new tables and class fusions have been added. A few new examples
of applications have been added, see the sections 2.3.10, (CTblLibXpls: The Character Table of
4.L_2(49).2_3 (December 2020)), (CTblLibXpls: The Character Table of 4.L_2(81).2_3 (Decem-
ber 2020)).

1.2.9 What’s New in Version 1.3.1? (April 2020)

This release was motivated by small technical changes: A few typos were fixed, an acknowledgement
was added, the directory name of the package now contains the version number (in order not to over-
write older versions), and the process to generate the package documentation was made independent
of other packages.

Besides that, the function CharacterTableComputedByMagma (6.5.3) was made more robust.
In particular, the data part of the package was not changed at all.

1.2.10 What’s New in Version 1.3.0? (December 2019)

We distinguish bug fixes, new features, new character table data, new data of other kind, and changed
documentation.

The following bugs were fixed.

• The 2-modular Brauer table of the character table with the identifier
"3.(2x2^(1+8)):(U4(2):2x2)" was wrong, due to an error in the GAP function that
constructs this Brauer table from the known Brauer table of U4(2).2; this was the only case in
the library that was affected by this bug. (Thanks to Jürgen Müller who pointed out this error.)

• The 2-power map of the character table with the identifier "2.F4(2).2" was wrong, see Section
(CTblLibXpls: An Error in a Power Map of the Character Table of 2.F_4(2).2 (November
2015)). (This error has been found in the context of the computations that are described in
[BMO17].)

• The character table of E6(2) was wrong w. r. t. some irrational character values and power maps
on the classes of element order 91, see Section (CTblLibXpls: An Error in the Character
Table of E_6(2) (March 2016)). (Thanks to Bill Unger who pointed out this error.)

• Character tables with construction info ConstructAdjusted (5.8.12) had immutable
ComputedPowerMaps (Reference: ComputedPowerMaps) values, which made it impossible
to add more power maps. (Thanks to Fabian Gundlach who pointed out this error.)

The following features have been added.

The GAP Character Table Library 12

• The functions AllCharacterTableNames (3.1.4), OneCharacterTableName (3.1.5), and
BrowseCTblLibInfo (3.5.2) support now the global option OrderedBy.

• The operation BrauerTable (3.1.3) now admits also a string as its first argument, and then
delegates to the ordinary character table with this name.

• The operation BrauerTable (3.1.3) is now successful also if the ordinary character table in
question has the attribute ConstructionInfoCharacterTable (3.7.4) set and the first entry
of the attribute value is the string "ConstructGS3" and the Brauer tables for the character tables
involved in the construction are available, see Section (CTblLibXpls: Examples for the Type
G.S_3).

• The function CambridgeMaps (6.4.1) has been improved in the sense that “relative” class names
such as "B*2" occur whenever this is possible, where the element order does not appear in the
class name, and a Galois automorphism describes the relation to another class. (The character
table with identifier "L2(13)" is an example for which the result is now different.)

• The function ConstructIsoclinic (5.8.10) has been extended, according to the extended
functionality of CharacterTableIsoclinic (Reference: CharacterTableIsoclinic). For
examples, see the sections (CTblLibXpls: Groups of the Structures 3.U_3(8).3_1 and
3.U_3(8).6 (February 2017)) and (CTblLibXpls: The Character Table of 9.U_3(8).3_3
(March 2017)).

• There is now a default InfoText (3.7.5) method for library character tables, which
returns an empty string. This admits searches for properties of the info text
via AllCharacterTableNames (3.1.4). Similarly, also properties of Identifier
(Reference: Identifier for character tables) can now be searched efficiently, see
AllCharacterTableNames (3.1.4) for examples.

• With the user preference DisplayFunction of the AtlasRep package (see Section 4.5.3), one
can configure how functions like DisplayCTblLibInfo (3.5.1) place their output on the screen.
(Up to now, the function Pager (Reference: Pager) had always been called.)

• The definition of “duplicate tables” has been extended in order to get a better integration of the
SpinSym package, see Section 3.6.

• A new variant of the function GAPTableOfMagmaFile (6.5.2) admits entering a MAGMA for-
mat string instead of the name of a file that contains this string.

• The new function CharacterTableComputedByMagma (6.5.3) uses the MAGMA system (if this
is available) for computing the character table of a permutation group.

• The new function NotifyCharacterTables (4.7.6) is more efficient than
NotifyCharacterTable (4.7.5) if one wants to add several private character tables at
the same time.

• In the tables of maximal subgroups and Sylow p normalizers shown by DisplayCTblLibInfo
(3.5.1) and BrowseCTblLibInfo (3.5.2), the former Name column has been replaced by two
columns Structure (which tries to show information about the structures of the groups, using
StructureDescriptionCharacterTableName (7.2.1)) and Name (which just shows the iden-
tifiers of the character tables). This improvement arose from a discussion with Gabriel Navarro.

The GAP Character Table Library 13

• The former GAP readable text file data/ctbldiff.dat has been replaced by the (still GAP
readable) JSON format file data/ctbldiff.json. (It is planned for future releases to replace
more data files by JSON format files, in order to make the data independent of GAP.)

• Two filenames of the package have been changed, from ctadmin.tbd and ctadmin.tbi to
ctadmin.gd and ctadmin.gi, respectively.

Concerning added character table data, the full list of differences w. r. t. earlier versions can be
found in the file data/ctbldiff.json of the package; see BrowseCTblLibDifferences (3.5.4) for
a way to utilize this list in a GAP session.

The following other data have been added.

• GroupInfoForCharacterTable (3.3.1) works now for more character tables than before.

In particular there are representations for all Atlas groups (bicyclic extensions of simple groups
whose character tables are shown in the Atlas of Finite Groups [CCN+85], up to isoclinism),
except the groups 2.B and M; several of these representations were computed in the context of
the computations that are described in [BMO17].

Also the library tables of groups that occur in GAP’s library of primitive groups (the GAP
package PrimGrp) know about this fact; note that older versions of PrimGrp contained only
groups of degree at most 2499.

See Section (CTblLibXpls: Some finite factor groups of perfect space groups (February
2014)) for some other representations that are now available.

Finally, the documentation was changed as follows.

• Several of the files showing examples of character theoretic computations with GAP have been
turned into the GAPDoc book “CTblLibXpls”, see above. Some advantages of this new setup
are that the contents can be accessed also in GAP’s interactive help, and that cross-referencing
is simpler.

1.2.11 What’s New in Version 1.2.2? (March 2013)

The following bugs were fixed.

• The functions AllCharacterTableNames (3.1.4) and OneCharacterTableName (3.1.5) ran
into an error in certain situations, if the library had been extended by private tables, see Section
4.7. (As a consequence, the description of IsDuplicateTable (3.6.1) has been extended.)
Thanks to Alexander Konovalov and Lukas Maas for pointing out this error.

• The function CharacterTableOfIndexTwoSubdirectProduct (5.5.1) returned a wrong re-
sult if the two factors were given by the same character table. An example is (A5× A5).2,
created as a subdirect product of two copies of S5.

1.2.12 What’s New in Version 1.2.0 and 1.2.1? (May 2012)

Concerning character table data, we have the following.

• A few bugs in character tables have been fixed.

The GAP Character Table Library 14

• Several class fusions stored in character tables have been changed, in order to be more consistent
with related data, see Section 4.9 for reasons of such changes.

• Many new character tables have been added. For example, a character table is available for each
table of marks in the TomLib package.

Besides these changes of the data, the following features are new.

• A tutorial for beginners was added to the package manual, see Chapter 2, and the package
manual was restructured. The manual is now based on the GAPDoc package (see [LN18]).

• Generic constructions of Brauer tables are now available if the underlying ordinary table
is encoded via ConstructMGA (5.8.1), ConstructIndexTwoSubdirectProduct (5.5.2), or
ConstructV4G (5.8.4), and if the Brauer tables of the compound tables are known.

• The attributes FusionToTom (3.2.4) and Maxes (3.7.1) are no longer set in duplicate tables.
This can be regarded as a bugfix, in the following sense. For the sake of consistency, it would
in general be necessary to apply a permutation to the fusion into the table of marks, and to add
the class fusions from the tables of the maximal subgroups to the duplicate table.

• The consistency checks for character tables have been improved and are now documented, see
Section 4.8. Due to these checks, several class fusions had to be replaced.

• The concept of duplicate character tables is now documented, see Section 3.6. As a conse-
quence, the behaviour of AllCharacterTableNames (3.1.4) has changed in situations where
IsSimple (Reference: IsSimple for a character table) or IsSporadicSimple (Reference:
IsSporadicSimple for a character table) occur as arguments (see (Reference: Group Op-
erations Applicable to Character Tables)), as follows. In earlier versions of the package,
duplicate tables had automatically been excluded. From now on, duplicates can be excluded if
one wants so, but they are not automatically excluded. This change may be regarded as a bugfix.

• Several attribute values for character tables, such as Size (Reference: Size) and
NrConjugacyClasses (Reference: NrConjugacyClasses) are now available without reading
the character table data files, provided that the Browse package (see [BL23]) has been loaded.
See the documentation of AllCharacterTableNames (3.1.4) for details; this function is much
faster if only these attributes appear in the conditions given. Thus it is now more reasonable to
use this function for searches in the table library.

• GAP’s group libraries provide many groups for which the Character Table Library contains the
character tables. Given a character table from the library, one can list and access available groups
with the functions described in Section 3.3, provided that the Browse package (see [BL23]) has
been loaded.

• An interactive overview of the contents is now available that is based on the Browse package
[BL23], see Section 3.5.

• Information about Deligne-Lusztig names of unipotent characters of finite groups of Lie type is
now available, see Section 3.4.

• An interface for reading MAGMA tables was added, see Section 6.5.

The GAP Character Table Library 15

1.2.13 What’s New in Version 1.1? (November 2003)

First of all, of course several character tables were added; for an overview, see the file
doc/ctbldiff.pdf in the home directory of the package. Also lots of class fusions were added. This
includes factor fusions onto the tables of the factor groups modulo the largest normal p-subgroups
whenever the tables of the factors are available; these maps admit the automatic construction of the
p-modular Brauer tables if the corresponding tables of the factors are available. For example, the
2-modular Brauer table of the maximal subgroup of the type 210 : M22 in the group Fi22 is available
because of the known 2-modular table of M22 and the stored factor fusion onto the table of M22.

Second, more information has been made more explicit, in the following sense.

• Identifier (Reference: Identifier for character tables) values of tables that are con-
structed from generic tables are now valid arguments of CharacterTable (Reference: Char-
acterTable), for example CharacterTable("C10") and CharacterTable("Sym(5)")
can be used to create the character table of the cyclic group of order 10 and of the symmetric
group of degree 5, respectively.

• Attributes have been introduced that replace more or less hidden components (see Section 3.7);
in particular, the way how many ordinary tables are encoded via the construction from other
tables is no longer encapsulated in a function call but instead the name of the function and the
arguments are stored as an attribute value (see ConstructionInfoCharacterTable (3.7.4)).

• The functions that are used for the table constructions have been documented (see Chapter 5).

• Several consistency checks are now part of the package distribution, in the files gap4/test.gd
and gap4/test.gi. However, currently they are not documented. The new file
tst/testall.g lists the files that belong to the “standard test suite”. Further checks involving
the GAP Character Table Library are parts of the GAP packages AtlasRep (see [WPN+22]) and
TomLib.

• As a part of the consistency checks, class fusions between character tables and from character
tables into corresponding tables of marks have been recomputed, and the text components have
been standardized; this means that the texts express whether the maps are unique, unique up to
table automorphisms, or ambiguous. However, currently this is not documented.

• One can now avoid unloading the contents of data files, which can speed up computations
involving many library tables. (In version 1.1, the function CTblLibSetUnload had been pro-
vided for that. Since version 1.2, a GAP 4.5 user preference replaces this function.)

Third, several errors have been corrected (again see doc/ctbldiff.pdf). Most of them affect
class fusions, and for most of those, the term “error” could be regarded as not really appropriate. See
4.9 for details.

Finally, the GAP functions for reading and writing other formats of character tables have been
moved from the main GAP library to this package (see Chapter 6), because they are useful only for
library tables. The GAP 3 format is now also supported, mainly for documentation purposes (see
Section 6.3).

The GAP Character Table Library 16

1.3 Acknowledgements

The development of the GAP Character Table Library has been supported by several DFG grants, in
particular the project “Representation Theory of Finite Groups and Finite Dimensional Algebras” (un-
til 1991), the Schwerpunkt “Algorithmische Zahlentheorie und Algebra” (from 1991 until 1997), and
the SFB-TRR 195 “Symbolic Tools in Mathematics and their Applications” (Project-ID 286237555,
since 2017).

The functions for the conversion of CAS tables to GAP format have been written by Götz Pfeiffer.
The functions for converting the so-called “Cambridge format” (in which the original data of the Atlas
of Finite Groups had been stored) to GAP format have been written by Christoph Jansen.

The generic character tables of double covers of alternating and symmetric groups were con-
tributed by Felix Noeske, see [Noe02].

The functions in Section 3.4 (DeligneLusztigName (3.4.3), DeligneLusztigNames (3.4.2), and
UnipotentCharacter (3.4.1)) as well as the corresponding data for the finite groups of Lie type in
the GAP Character Table Library have been contributed by Michael Claßen-Houben, see [CH05].

Several character tables of maximal subgroups of covering groups of simple groups have been
computed by Sebastian Dany, see [Dan06].

Thanks to Frank Lübeck and Max Neunhöffer for their help with solving technical problems con-
cerning the HMTL part of the example files that belong to the package documentation, and to Ian
Hutchinson whose TEX to HTML translator TtH was used to provide these HTML files.

Thanks to Frank Lübeck and Max Neunhöffer also for developing the GAPDoc package
(see [LN18]), on which the manual of the CTblLib package is based. The previously available docu-
mentation format had been completely inappropriate.

https://www.computeralgebra.de/sfb/

Chapter 2

Tutorial for the GAP Character Table
Library

This chapter gives an overview of the basic functionality provided by the GAP Character Table Li-
brary. The main concepts and interface functions are presented in the sections 2.1 and 2.2, Section 2.3
shows a few small examples.

In order to force that the output of the examples consists only of ASCII characters, we set the user
preference DisplayFunction of the AtlasRep to the value "Print". This is necessary because the
LATEX and HTML versions of GAPDoc documents support only ASCII characters.

Example
gap> origpref:= UserPreference("AtlasRep", "DisplayFunction");;
gap> SetUserPreference("AtlasRep", "DisplayFunction", "Print");

Some of the examples need functionalities from other GAP packages in the sense that the output
looks different if these packages are not available.

Example
gap> LoadPackage("Browse", false);
true
gap> LoadPackage("SpinSym", false);
true
gap> LoadPackage("TomLib", false);
true

2.1 Concepts used in the GAP Character Table Library

The main idea behind working with the GAP Character Table Library is to deal with character tables
of groups but without having access to these groups. This situation occurs for example if one extracts
information from the printed Atlas of Finite Groups ([CCN+85]).

This restriction means first of all that we need a way to access the character tables, see Section
2.2 for that. Once we have such a character table, we can compute all those data about the underlying
group G, say, that are determined by the character table. Chapter (Reference: Attributes and Prop-
erties for Groups and Character Tables) lists such attributes and properties. For example, it can be
computed from the character table of G whether G is solvable or not.

17

The GAP Character Table Library 18

Questions that cannot be answered using only the character table of G can perhaps be treated using
additional information. For example, the structure of subgroups of G is in general not determined by
the character table of G, but the character table may yield partial information. Two examples can be
found in the sections 2.3.4 and 2.3.6.

In the character table context, the role of homomorphisms between two groups is taken by class
fusions. Monomorphisms correspond to subgroup fusions, epimorphisms correspond to factor fusions.
Given two character tables of a group G and a subgroup H of G, one can in general compute only
candidates for the class fusion of H into G, for example using PossibleClassFusions (Reference:
PossibleClassFusions). Note that G may contain several nonconjugate subgroups isomorphic with H,
which may have different class fusions.

One can often reduce a question about a group G to a question about its maximal subgroups. In
the character table context, it is often sufficient to know the character table of G, the character tables
of its maximal subgroups, and their class fusions into G. We are in this situation if the attribute Maxes
(3.7.1) is set in the character table of G.

Summary: The character theoretic approach that is supported by the GAP Character Table Library,
that is, an approach without explicitly using the underlying groups, has the advantages that it can be
used to answer many questions, and that these computations are usually cheap, compared to compu-
tations with groups. Disadvantages are that this approach is not always successful, and that answers
are often “nonconstructive” in the sense that one can show the existence of something without getting
one’s hands on it.

2.2 Accessing a Character Table from the Library

As stated in Section 2.1, we must define how character tables from the GAP Character Table Library
can be accessed.

2.2.1 Accessing a Character Table via a name

The most common way to access a character table from the GAP Character Table Library is to call
CharacterTable (3.1.2) with argument a string that is an admissible name for the character table.
Typical admissible names are similar to the group names used in the Atlas of Finite Groups [CCN+85].
One of these names is the Identifier (Reference: Identifier for character tables) value of the
character table, this name is used by GAP when it prints library character tables.

For example, an admissible name for the character table of an almost simple group is the Atlas
name, such as A5, M11, or L2(11).2. Other names may be admissible, for example S6 is admissible
for the symmetric group on six points, which is called A6.21 in the Atlas.

Example
gap> CharacterTable("J1");
CharacterTable("J1")
gap> CharacterTable("L2(11)");
CharacterTable("L2(11)")
gap> CharacterTable("S5");
CharacterTable("A5.2")

The GAP Character Table Library 19

2.2.2 Accessing a Character Table via properties

If one does not know an admissible name of the character table of a group one is interested in, or if one
does not know whether ths character table is available at all, one can use AllCharacterTableNames
(3.1.4) to compute a list of identifiers of all available character tables with given properties. Analo-
gously, OneCharacterTableName (3.1.5) can be used to compute one such identifier.

Example
gap> AllCharacterTableNames(Size, 168);
["(2^2xD14):3", "2^3.7.3", "L3(2)", "L3(4)M7", "L3(4)M8"]
gap> OneCharacterTableName(NrConjugacyClasses, n -> n <= 4);
"S3"

For certain filters, such as Size (Reference: Size) and NrConjugacyClasses (Reference: NrCon-
jugacyClasses), the computations are fast because the values for all library tables are precomputed.
See AllCharacterTableNames (3.1.4) for an overview of these filters.

The function BrowseCTblLibInfo (3.5.2) provides an interactive overview of available character
tables, which allows one for example to search also for substrings in identifiers of character tables.
This function is available only if the Browse package has been loaded.

2.2.3 Accessing a Character Table via a Table of Marks

Let G be a group whose table of marks is available via the TomLib package (see [MNP19] for
how to access tables of marks from this library) then the GAP Character Table Library contains the
character table of G, and one can access this table by using the table of marks as an argument of
CharacterTable (3.2.2).

Example
gap> tom:= TableOfMarks("M11");
TableOfMarks("M11")
gap> t:= CharacterTable(tom);
CharacterTable("M11")

2.2.4 Accessing a Character Table relative to another Character Table

If one has already a character table from the GAP Character Table Library that belongs to the group
G, say, then names of related tables can be found as follows.

The value of the attribute Maxes (3.7.1), if known, is the list of identifiers of the character tables
of all classes of maximal subgroups of G.

Example
gap> t:= CharacterTable("M11");
CharacterTable("M11")
gap> HasMaxes(t);
true
gap> Maxes(t);
["A6.2_3", "L2(11)", "3^2:Q8.2", "A5.2", "2.S4"]

If the Maxes (3.7.1) value of the character table with identifier id, say, is known then the character
table of the groups in the i-th class of maximal subgroups can be accessed via the “relative name”
idMi.

The GAP Character Table Library 20

Example
gap> CharacterTable("M11M2");
CharacterTable("L2(11)")

The value of the attribute NamesOfFusionSources (Reference: NamesOfFusionSources) is the list
of identifiers of those character tables which store class fusions to G. So these character tables belong
to subgroups of G and groups that have G as a factor group.

Example
gap> NamesOfFusionSources(t);
["A5.2", "A6.2_3", "P48/G1/L1/V1/ext2", "P48/G1/L1/V2/ext2",

"L2(11)", "2.S4", "3^5:M11", "3^6.M11", "3^(2+5+10).(M11x2S4)",
"s4", "3^2:Q8.2", "M11N2", "5:4", "11:5"]

The value of the attribute ComputedClassFusions (Reference: ComputedClassFusions) is the list
of records whose name components are the identifiers of those character tables to which class fusions
are stored. So these character tables belong to overgroups and factor groups of G.

Example
gap> List(ComputedClassFusions(t), r -> r.name);
["A11", "M12", "M23", "HS", "McL", "ON", "3^5:M11", "B"]

2.2.5 Different character tables for the same group

The GAP Character Table Library may contain several different character tables of a given group, in
the sense that the rows and columns are sorted differently.

For example, the Atlas table of the alternating group A5 is available, and since A5 is isomorphic
with the groups PSL(2,4) and PSL(2,5), two more character tables of A5 can be constructed in a
natural way. The three tables are of course permutation isomorphic. The first two are sorted in the
same way, but the rows and columns of the third one are sorted differently.

Example
gap> t1:= CharacterTable("A5");;
gap> t2:= CharacterTable("PSL", 2, 4);;
gap> t3:= CharacterTable("PSL", 2, 5);;
gap> TransformingPermutationsCharacterTables(t1, t2);
rec(columns := (), group := Group([(4,5)]), rows := ())
gap> TransformingPermutationsCharacterTables(t1, t3);
rec(columns := (2,4)(3,5), group := Group([(2,3)]),

rows := (2,5,3,4))

Another situation where several character tables for the same group are available is that a group con-
tains several classes of isomorphic maximal subgroups such that the class fusions are different.

For example, the Mathieu group M12 contains two classes of maximal subgroups of index 12,
which are isomorphic with M11.

Example
gap> t:= CharacterTable("M12");
CharacterTable("M12")
gap> mx:= Maxes(t);
["M11", "M12M2", "A6.2^2", "M12M4", "L2(11)", "3^2.2.S4", "M12M7",

"2xS5", "M8.S4", "4^2:D12", "A4xS3"]
gap> s1:= CharacterTable(mx[1]);

The GAP Character Table Library 21

CharacterTable("M11")
gap> s2:= CharacterTable(mx[2]);
CharacterTable("M12M2")

The class fusions into M12 are stored on the library tables of the maximal subgroups. The groups in
the first class of M11 type subgroups contain elements in the classes 4B, 6B, and 8B of M12, and the
groups in the second class contain elements in the classes 4A, 6A, and 8A. Note that according to the
Atlas (see [CCN+85, p. 33]), the permutation characters of the action of M12 on the cosets of M11 type
subgroups from the two classes of maximal subgroups are 1a + 11a and 1a + 11b, respectively.

Example
gap> GetFusionMap(s1, t);
[1, 3, 4, 7, 8, 10, 12, 12, 15, 14]
gap> GetFusionMap(s2, t);
[1, 3, 4, 6, 8, 10, 11, 11, 14, 15]
gap> Display(t);
M12

2 6 4 6 1 2 5 5 1 2 1 3 3 1 . .
3 3 1 1 3 2 . . . 1 1
5 1 1 1 1 . .

11 1 1 1

1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 8a 8b 10a 11a 11b
2P 1a 1a 1a 3a 3b 2b 2b 5a 3b 3a 4a 4b 5a 11b 11a
3P 1a 2a 2b 1a 1a 4a 4b 5a 2a 2b 8a 8b 10a 11a 11b
5P 1a 2a 2b 3a 3b 4a 4b 1a 6a 6b 8a 8b 2a 11a 11b

11P 1a 2a 2b 3a 3b 4a 4b 5a 6a 6b 8a 8b 10a 1a 1a

X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 11 -1 3 2 -1 -1 3 1 -1 . -1 1 -1 . .
X.3 11 -1 3 2 -1 3 -1 1 -1 . 1 -1 -1 . .
X.4 16 4 . -2 1 . . 1 1 . . . -1 A /A
X.5 16 4 . -2 1 . . 1 1 . . . -1 /A A
X.6 45 5 -3 . 3 1 1 . -1 . -1 -1 . 1 1
X.7 54 6 6 . . 2 2 -1 1 -1 -1
X.8 55 -5 7 1 1 -1 -1 . 1 1 -1 -1 . . .
X.9 55 -5 -1 1 1 3 -1 . 1 -1 -1 1 . . .
X.10 55 -5 -1 1 1 -1 3 . 1 -1 1 -1 . . .
X.11 66 6 2 3 . -2 -2 1 . -1 . . 1 . .
X.12 99 -1 3 . 3 -1 -1 -1 -1 . 1 1 -1 . .
X.13 120 . -8 3 1 . . . -1 -1
X.14 144 4 . . -3 . . -1 1 . . . -1 1 1
X.15 176 -4 . -4 -1 . . 1 -1 . . . 1 . .

A = E(11)+E(11)^3+E(11)^4+E(11)^5+E(11)^9
= (-1+Sqrt(-11))/2 = b11

Permutation equivalent library tables are related to each other. In the above example, the table s2 is a
duplicate of s1, and there are functions for making the relations explicit.

Example
gap> IsDuplicateTable(s2);
true

The GAP Character Table Library 22

gap> IdentifierOfMainTable(s2);
"M11"
gap> IdentifiersOfDuplicateTables(s1);
["HSM9", "M12M2", "ONM11"]

See Section 3.6 for details about duplicate character tables.

2.3 Examples of Using the GAP Character Table Library

The sections 2.3.1, 2.3.2, and 2.3.3 show how the function AllCharacterTableNames (3.1.4) can be
used to search for character tables with certain properties. The GAP Character Table Library serves
as a tool for finding and checking conjectures in these examples.

In Section 2.3.6, a question about a subgroup of the sporadic simple Fischer group G = Fi23 is
answered using only character tables from the GAP Character Table Library.

More examples can be found in [BGL+10], [Brea], [Bred], [Bree], [Bref].

2.3.1 Example: Ambivalent Simple Groups

A group G is called ambivalent if each element in G is G-conjugate to its inverse. Equivalently, G
is ambivalent if all its characters are real-valued. We are interested in nonabelian simple ambiva-
lent groups. Since ambivalence is of course invariant under permutation equivalence, we may omit
duplicate character tables.

Example
gap> isambivalent:= tbl -> PowerMap(tbl, -1)
> = [1 .. NrConjugacyClasses(tbl)];;
gap> AllCharacterTableNames(IsSimple, true, IsDuplicateTable, false,
> IsAbelian, false, isambivalent, true);
["3D4(2)", "3D4(3)", "3D4(4)", "A10", "A14", "A5", "A6", "J1", "J2",

"L2(101)", "L2(109)", "L2(113)", "L2(121)", "L2(125)", "L2(13)",
"L2(16)", "L2(17)", "L2(25)", "L2(29)", "L2(32)", "L2(37)",
"L2(41)", "L2(49)", "L2(53)", "L2(61)", "L2(64)", "L2(73)",
"L2(8)", "L2(81)", "L2(89)", "L2(97)", "O12+(2)", "O12-(2)",
"O12-(3)", "O7(5)", "O8+(2)", "O8+(3)", "O8+(7)", "O8-(2)",
"O8-(3)", "O9(3)", "S10(2)", "S12(2)", "S4(4)", "S4(5)", "S4(8)",
"S4(9)", "S6(2)", "S6(4)", "S6(5)", "S8(2)"]

2.3.2 Example: Simple p-pure Groups

A group G is called p-pure for a prime integer p that divides |G| if the centralizer orders of nonidentity
p-elements in G are p-powers. Equivalently, G is p-pure if p divides |G| and each element in G of
order divisible by p is a p-element. (This property was studied by L. Héthelyi in 2002.)

We are interested in small nonabelian simple p-pure groups.
Example

gap> isppure:= function(p)
> return tbl -> Size(tbl) mod p = 0 and
> ForAll(OrdersClassRepresentatives(tbl),
> n -> n mod p <> 0 or IsPrimePowerInt(n));
> end;;
gap> for i in [2, 3, 5, 7, 11, 13] do

The GAP Character Table Library 23

> Print(i, "\n",
> AllCharacterTableNames(IsSimple, true, IsAbelian, false,
> IsDuplicateTable, false, isppure(i), true),
> "\n");
> od;
2
["A5", "A6", "L2(16)", "L2(17)", "L2(31)", "L2(32)", "L2(64)",

"L2(8)", "L3(2)", "L3(4)", "Sz(32)", "Sz(8)"]
3
["A5", "A6", "L2(17)", "L2(19)", "L2(27)", "L2(53)", "L2(8)",

"L2(81)", "L3(2)", "L3(4)"]
5
["A5", "A6", "A7", "L2(11)", "L2(125)", "L2(25)", "L2(49)", "L3(4)",

"M11", "M22", "S4(7)", "Sz(32)", "Sz(8)", "U4(2)", "U4(3)"]
7
["A7", "A8", "A9", "G2(3)", "HS", "J1", "J2", "L2(13)", "L2(49)",

"L2(8)", "L2(97)", "L3(2)", "L3(4)", "M22", "O8+(2)", "S6(2)",
"Sz(8)", "U3(3)", "U3(5)", "U4(3)", "U6(2)"]

11
["A11", "A12", "A13", "Co2", "HS", "J1", "L2(11)", "L2(121)",

"L2(23)", "L5(3)", "M11", "M12", "M22", "M23", "M24", "McL",
"O10+(3)", "O12+(3)", "ON", "Suz", "U5(2)", "U6(2)"]

13
["2E6(2)", "2F4(2)’", "3D4(2)", "A13", "A14", "A15", "F4(2)",

"Fi22", "G2(3)", "G2(4)", "L2(13)", "L2(25)", "L2(27)", "L3(3)",
"L4(3)", "O7(3)", "O8+(3)", "S4(5)", "S6(3)", "Suz", "Sz(8)",
"U3(4)"]

Looking at these examples, we may observe that the alternating group An of degree n is 2-pure iff
n ∈ {4,5,6}, 3-pure iff n ∈ {3,4,5,6}, and p-pure, for p≥ 5, iff n ∈ {p, p+1, p+2}.

Also, the Suzuki groups Sz(q) are 2-pure since the centralizers of nonidentity 2-elements are
contained in Sylow 2-subgroups.

From the inspection of the generic character table(s) of PSL(2,q), we see that PSL(2, pd) is p-pure
Additionally, exactly the following cases of l-purity occur, for a prime l.

• q is even and q−1 or q+1 is a power of l.

• For q≡ 1 (mod 4), (q+1)/2 is a power of l or q−1 is a power of l = 2.

• For q≡ 3 (mod 4), (q−1)/2 is a power of l or q+1 is a power of l = 2.

2.3.3 Example: Simple Groups with only one p-Block

Are there nonabelian simple groups with only one p-block, for some prime p?
Example

gap> fun:= function(tbl)
> local result, p, bl;
>
> result:= false;
> for p in PrimeDivisors(Size(tbl)) do
> bl:= PrimeBlocks(tbl, p);
> if Length(bl.defect) = 1 then

The GAP Character Table Library 24

> result:= true;
> Print("only one block: ", Identifier(tbl), ", p = ", p, "\n");
> fi;
> od;
>
> return result;
> end;;
gap> AllCharacterTableNames(IsSimple, true, IsAbelian, false,
> IsDuplicateTable, false, fun, true);
only one block: M22, p = 2
only one block: M24, p = 2
["M22", "M24"]

We see that the sporadic simple groups M22 and M24 have only one 2-block.

2.3.4 Example:The Sylow 3 subgroup of 3.O′N

We want to determine the structure of the Sylow 3-subgroups of the triple cover G = 3.O′N of the
sporadic simple O’Nan group O′N. The Sylow 3-subgroup of O′N is an elementary abelian group of
order 34, since the Sylow 3 normalizer in O′N has the structure 34 : 21+4D10 (see [CCN+85, p. 132]).

Example
gap> CharacterTable("ONN3");
CharacterTable("3^4:2^(1+4)D10")

Let P be a Sylow 3-subgroup of G. Then P is not abelian, since the centralizer order of any preimage
of an element of order three in the simple factor group of G is not divisible by 35. Moreover, the
exponent of P is three.

Example
gap> 3t:= CharacterTable("3.ON");;
gap> orders:= OrdersClassRepresentatives(3t);;
gap> ord3:= PositionsProperty(orders, x -> x = 3);
[2, 3, 7]
gap> sizes:= SizesCentralizers(3t){ ord3 };
[1382446517760, 1382446517760, 3240]
gap> Size(3t);
1382446517760
gap> Collected(Factors(sizes[3]));
[[2, 3], [3, 4], [5, 1]]
gap> 9 in orders;
false

So both the centre and the Frattini subgroup of P are equal to the centre of G, hence P is an extraspecial
group 31+4

+ .

2.3.5 Example: Primitive Permutation Characters of 2.A6

It is often interesting to compute the primitive permutation characters of a group G, that is, the charac-
ters of the permutation actions of G on the cosets of its maximal subgroups. These characters can be
computed for example when the character tables of G, the character tables of its maximal subgroups,
and the class fusions from these character tables into the table of G are known.

The GAP Character Table Library 25

Example
gap> tbl:= CharacterTable("2.A6");;
gap> HasMaxes(tbl);
true
gap> maxes:= Maxes(tbl);
["2.A5", "2.A6M2", "3^2:8", "2.Symm(4)", "2.A6M5"]
gap> mx:= List(maxes, CharacterTable);;
gap> prim1:= List(mx, s -> TrivialCharacter(s)^tbl);;
gap> Display(tbl,
> rec(chars:= prim1, centralizers:= false, powermap:= false));
2.A6

1a 2a 4a 3a 6a 3b 6b 8a 8b 5a 10a 5b 10b

Y.1 6 6 2 3 3 1 1 1 1
Y.2 6 6 2 . . 3 3 . . 1 1 1 1
Y.3 10 10 2 1 1 1 1 2 2
Y.4 15 15 3 3 3 . . 1 1
Y.5 15 15 3 . . 3 3 1 1

These permutation characters are the ones listed in [CCN+85, p. 4].
Example

gap> PermCharInfo(tbl, prim1).ATLAS;
["1a+5a", "1a+5b", "1a+9a", "1a+5a+9a", "1a+5b+9a"]

Alternatively, one can compute the primitive permutation characters from the table of marks if this
table and the fusion into it are known.

Example
gap> tom:= TableOfMarks(tbl);
TableOfMarks("2.A6")
gap> allperm:= PermCharsTom(tbl, tom);;
gap> prim2:= allperm{ MaximalSubgroupsTom(tom)[1] };;
gap> Display(tbl,
> rec(chars:= prim2, centralizers:= false, powermap:= false));
2.A6

1a 2a 4a 3a 6a 3b 6b 8a 8b 5a 10a 5b 10b

Y.1 6 6 2 3 3 1 1 1 1
Y.2 6 6 2 . . 3 3 . . 1 1 1 1
Y.3 10 10 2 1 1 1 1 2 2
Y.4 15 15 3 . . 3 3 1 1
Y.5 15 15 3 3 3 . . 1 1

We see that the two approaches yield the same permutation characters, but the two lists are sorted in
a different way. The latter is due to the fact that the rows of the table of marks are ordered in a way
that is not compatible with the ordering of maximal subgroups for the character table. Moreover, there
is no way to choose the fusion from the character table to the table of marks in such a way that the
two lists of permutation characters would become equal. The component perm in the FusionToTom
(3.2.4) record of the character table describes the incompatibility.

The GAP Character Table Library 26

Example
gap> FusionToTom(tbl);
rec(map := [1, 2, 5, 4, 8, 3, 7, 11, 11, 6, 13, 6, 13],

name := "2.A6", perm := (4,5),
text := "fusion map is unique up to table autom.")

2.3.6 Example: A Permutation Character of Fi23

Let x be a 3B element in the sporadic simple Fischer group G = Fi23. The normalizer M of x in G
is a maximal subgroup of the type 31+8

+ .21+6
− .31+2

+ .2S4. We are interested in the distribution of the
elements of the normal subgroup N of the type 31+8

+ in M to the conjugacy classes of G.
This information can be computed from the permutation character π = 1G

N , so we try to compute
this permutation character. We have π = (1M

N)G, and 1M
N can be computed as the inflation of the regular

character of the factor group M/N to M. Note that the character tables of G and M are available, as
well as the class fusion of M in G, and that N is the largest normal 3-subgroup of M.

Example
gap> t:= CharacterTable("Fi23");
CharacterTable("Fi23")
gap> mx:= Maxes(t);
["2.Fi22", "O8+(3).3.2", "2^2.U6(2).2", "S8(2)", "S3xO7(3)",

"2..11.m23", "3^(1+8).2^(1+6).3^(1+2).2S4", "Fi23M8", "A12.2",
"(2^2x2^(1+8)).(3xU4(2)).2", "2^(6+8):(A7xS3)", "S4xS6(2)",
"S4(4).4", "L2(23)"]

gap> m:= CharacterTable(mx[7]);
CharacterTable("3^(1+8).2^(1+6).3^(1+2).2S4")
gap> n:= ClassPositionsOfPCore(m, 3);
[1 .. 6]
gap> f:= m / n;
CharacterTable("3^(1+8).2^(1+6).3^(1+2).2S4/[1, 2, 3, 4, 5, 6]")
gap> reg:= 0 * [1 .. NrConjugacyClasses(f)];;
gap> reg[1]:= Size(f);;
gap> infl:= reg{ GetFusionMap(m, f) };
[165888, 165888, 165888, 165888, 165888, 165888, 0, 0, 0, 0, 0, 0,

0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

gap> ind:= Induced(m, t, [infl]);
[ClassFunction(CharacterTable("Fi23"),

[207766624665600, 0, 0, 0, 603832320, 127567872, 6635520, 663552,
0, 0,
0, 0,
0, 0,
0, 0,
0, 0, 0, 0, 0, 0])]

gap> PermCharInfo(t, ind).contained;
[[1, 0, 0, 0, 864, 1538, 3456, 13824, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

The GAP Character Table Library 27

0, 0,
0, 0,
0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]

gap> PositionsProperty(OrdersClassRepresentatives(t), x -> x = 3);
[5, 6, 7, 8]

Thus N contains 864 elements in the class 3A, 1538 elements in the class 3B, and so on.

2.3.7 Example: Non-commutators in the commutator group

In general, not every element in the commutator group of a group is itself a commutator. Are there
examples in the Character Table Library, and if yes, what is a smallest one?

Example
gap> nam:= OneCharacterTableName(CommutatorLength, x -> x > 1
> : OrderedBy:= Size);
"3.(A4x3):2"
gap> Size(CharacterTable(nam));
216

The smallest groups with this property have order 96.
Example

gap> OneSmallGroup(Size, [2 .. 100],
> G -> CommutatorLength(G) > 1, true);
<pc group of size 96 with 6 generators>

(Note the different syntax: OneSmallGroup (smallgrp: OneSmallGroup) does not admit a function
such as x -> x > 1 for describing the admissible values.)

Nonabelian simple groups cannot be expected to have non-commutators, by the main theorem in
[LOST10].

Example
gap> OneCharacterTableName(IsSimple, true, IsAbelian, false,
> IsDuplicateTable, false,
> CommutatorLength, x -> x > 1
> : OrderedBy:= Size);
fail

Perfect groups can contain non-commutators.
Example

gap> nam:= OneCharacterTableName(IsPerfect, true,
> IsDuplicateTable, false,
> CommutatorLength, x -> x > 1
> : OrderedBy:= Size);
"P1/G1/L1/V1/ext2"
gap> Size(CharacterTable(nam));
960

This is in fact the smallest example of a perfect group that contains non-commutators.

The GAP Character Table Library 28

Example
gap> for n in [2 .. 960] do
> for i in [1 .. NrPerfectGroups(n)] do
> g:= PerfectGroup(n, i);
> if CommutatorLength(g) <> 1 then
> Print([n, i], "\n");
> fi;
> od;
> od;
[960, 2]

2.3.8 Example: An irreducible 11-modular character of J4 (December 2018)

Let G be the sporadic simple Janko group J4. For the ordinary irreducible characters of degree 1333
of G, the reductions modulo 11 are known to be irreducible Brauer characters.

David Craven asked Richard Parker how to show that the antisymmetric squares of these Brauer
characters are irreducible. Richard proposed the following.

Restrict the given ordinary character χ , say, to a subgroup S of J4 whose 11-modular character
table is known, decompose the restriction χS into irreducible Brauer characters, and compute those
constituents that are constant on all subsets of conjugacy classes that fuse in J4. If the Brauer char-
acter χS cannot be written as a sum of two such constituents then χ , as a Brauer character of J4, is
irreducible.

Here is a GAP session that shows how to apply this idea.
The group J4 has exactly two ordinary irreducible characters of degree 1333. They are complex

conjugate, and so are their antisymmetric squares. Thus we may consider just one of the two.
Example

gap> t:= CharacterTable("J4");;
gap> deg1333:= Filtered(Irr(t), x -> x[1] = 1333);;
gap> antisym:= AntiSymmetricParts(t, deg1333, 2);;
gap> List(antisym, x -> Position(Irr(t), x));
[7, 6]
gap> ComplexConjugate(antisym[1]) = antisym[2];
true
gap> chi:= antisym[1];; chi[1];
887778

Let S be a maximal subgroup of the structure 211 : M24 in J4. Fortunately, the 11-modular character
table of S is available (it had been constructed by Christoph Jansen), and we can restrict the interesting
character to this table.

Example
gap> s:= CharacterTable(Maxes(t)[1]);;
gap> Size(s) = 2^11 * Size(CharacterTable("M24"));
true
gap> rest:= RestrictedClassFunction(chi, s);;
gap> smod11:= s mod 11;;
gap> rest:= RestrictedClassFunction(rest, smod11);;

The restriction is a sum of nine pairwise different irreducible Brauer characters of S.

The GAP Character Table Library 29

Example
gap> dec:= Decomposition(Irr(smod11), [rest], "nonnegative")[1];;
gap> Sum(dec);
9
gap> constpos:= PositionsProperty(dec, x -> x <> 0);
[15, 36, 46, 53, 55, 58, 63, 67, 69]

Next we compute those sets of classes of S which fuse in J4.
Example

gap> smod11fuss:= GetFusionMap(smod11, s);;
gap> sfust:= GetFusionMap(s, t);;
gap> fus:= CompositionMaps(sfust, smod11fuss);;
gap> inv:= Filtered(InverseMap(fus), IsList);
[[3, 4, 5], [2, 6, 7], [8, 9], [10, 11, 16],

[12, 14, 15, 17, 18, 21], [13, 19, 20, 22], [26, 27, 28, 30],
[25, 29, 31], [34, 39], [35, 37, 38], [40, 42], [41, 43],
[44, 47, 48], [45, 49, 50], [46, 51], [56, 57], [63, 64],
[69, 70]]

Finally, we run over all 29 subsets of the irreducible constituents.
Example

gap> const:= Irr(smod11){ constpos };;
gap> zero:= 0 * TrivialCharacter(smod11);;
gap> comb:= List(Combinations(const), x -> Sum(x, zero));;
gap> cand:= Filtered(comb,
> x -> ForAll(inv, l -> Length(Set(x{ l })) = 1));;
gap> List(cand, x -> x[1]);
[0, 887778]

We see that no proper subset of the constituents yields a Brauer character that can be restricted from
J4.

2.3.9 Example: Tensor Products that are Generalized Projectives (October 2019)

Let G be a finite group and p be a prime integer. If the tensor product Φ, say, of two ordinary ir-
reducible characters of G vanishes on all p-singular elements of G then Φ is a Z-linear combination
of the projective indecomposable characters Φϕ = ∑χ∈Irr(G) dχϕ χ of G, where ϕ runs over the irre-
ducible p-modular Brauer characters of G and dχϕ is the decomposition number of χ and ϕ . (See for
example [Nav98, p. 25] or [LP10, Def. 4.3.1].) Such class functions are called generalized projective
characters.

In fact, very often Φ is a projective character, that is, the coefficients of the decomposition into
projective indecomposable characters are nonnegative.

We are interested in examples where this is not the case. For that, we write a small GAP function
that computes, for a given p-modular character table, those tensor products of ordinary irreducible
characters that are generalized projective characters but are not projective.

Many years ago, Richard Parker had been interested in the question whether such tensor products
can exist for a given group. Note that forming tensor products that vanish on p-singular elements is
a recipe for creating projective characters, provided one knows in advance that the answer is negative
for the given group.

The GAP Character Table Library 30

Example
gap> GenProjNotProj:= function(modtbl)
> local p, tbl, X, PIMs, n, psingular, list, labels, i, j, psi,
> pos, dec, poss;
>
> p:= UnderlyingCharacteristic(modtbl);
> tbl:= OrdinaryCharacterTable(modtbl);
> X:= Irr(tbl);
> PIMs:= TransposedMat(DecompositionMatrix(modtbl)) * X;
> n:= Length(X);
> psingular:= Difference([1 .. n], GetFusionMap(modtbl, tbl));
> list:= [];
> labels:= [];
> for i in [1 .. n] do
> for j in [1 .. i] do
> psi:= List([1 .. n], x -> X[i][x] * X[j][x]);
> if IsZero(psi{ psingular }) then
> # This is a generalized projective character.
> pos:= Position(list, psi);
> if pos = fail then
> Add(list, psi);
> Add(labels, [[j, i]]);
> else
> Add(labels[pos], [j, i]);
> fi;
> fi;
> od;
> od;
>
> if Length(list) > 0 then
> # Decompose the generalized projective tensor products
> # into the projective indecomposables.
> dec:= Decomposition(PIMs, list, "nonnegative");
> poss:= Positions(dec, fail);
> return Set(Concatenation(labels{ poss }));
> else
> return [];
> fi;
> end;;

One group for which the function returns a nonempty result is the sporadic simple Janko group J2
in characteristic 2.

Example
gap> tbl:= CharacterTable("J2");;
gap> modtbl:= tbl mod 2;;
gap> pairs:= GenProjNotProj(modtbl);
[[6, 12]]
gap> irr:= Irr(tbl);;
gap> PIMs:= TransposedMat(DecompositionMatrix(modtbl)) * irr;;
gap> SolutionMat(PIMs, irr[6] * irr[12]);
[0, 0, 0, 1, 1, 1, 0, 0, -2, 3]

The GAP Character Table Library 31

Checking all available tables from the library takes several hours of CPU time and also requires a
lot of space; finally, it yields the following result.

Example
gap> examples:= [];;
gap> for name in AllCharacterTableNames(IsDuplicateTable, false) do
> tbl:= CharacterTable(name);
> for p in PrimeDivisors(Size(tbl)) do
> modtbl:= tbl mod p;
> if modtbl <> fail then
> res:= GenProjNotProj(modtbl);
> if not IsEmpty(res) then
> AddSet(examples, [name, p, Length(res)]);
> fi;
> fi;
> od;
> od;
gap> examples;
[["(A5xJ2):2", 2, 4], ["(D10xJ2).2", 2, 9], ["2.Suz", 3, 1],

["2.Suz.2", 3, 4], ["2xCo2", 5, 4], ["3.Suz", 2, 6],
["3.Suz.2", 2, 4], ["Co2", 5, 1], ["Co3", 2, 4],
["Isoclinic(2.Suz.2)", 3, 4], ["J2", 2, 1], ["Suz", 2, 2],
["Suz", 3, 1], ["Suz.2", 3, 4]]

This list looks rather “sporadic”. The number of examples is small, and all groups in question except
two (the subdirect products of S5 and J2.2, and of 5 : 4 and J2.2, respectively) are extensions of sporadic
simple groups.

Note that the following cases could be omitted because the characters in question belong to proper
factor groups: 2.Suz mod 3, 2.Suz.2 mod 3, and its isoclinic variant.

2.3.10 Example: Certain elementary abelian subgroups in quasisimple groups
(November 2020)

In October 2020, Bob Guralnick asked: Does each quasisimple group G contain an elementary abelian
subgroup that contains elements from all conjugacy classes of involutions in G? (Such a subgroup is
called a broad subgroup of G. See [GR] for the paper.)

In the case of simple groups, theoretical arguments suffice to show that the answer is positive for
simple groups of alternating and Lie type, thus it remains to inspect the sporadic simple groups.

In the case of nonsimple quasisimple groups, again groups having a sporadic simple factor group
have to be checked, and also the central extensions of groups of Lie type by exceptional multipliers
have to be checked computationally.

In the following situations, the answer is positive for a given group G.

1. G has at most two classes of involutions. (Take an involution x in the centre of a Sylow 2-
subgroup P of G; if there is a conjugacy class of involutions in G different from xG then P
contains an element in the other involution class.)

2. G has exactly three classes of involutions such that there are representatives x, y, z with the
property xy = z. (The subgroup 〈x,y〉 is a Klein four group; note that x and y commute because
x−1y−1xy = (xy)2 = z2 = 1 holds.)

The GAP Character Table Library 32

3. G has a central elementary abelian 2-subgroup N, and there is an elementary abelian 2-subgroup
P/N in G/N containing elements from all those involution classes of G/N that lift to involutions
of G, but no elements from other involution classes of G/N. (Just take the preimage P, which is
elementary abelian.)

This condition is satisfied for example if the answer is positive for G/N and all involutions of
G/N lift to involutions in G, or if exactly one class of involutions of G/N lifts to involutions in
G.

The following function evaluates the first two of the above criteria and easy cases of the third one,
for the given character table of the group G.

Example
gap> ApplyCriteria:= "dummy";; # Avoid a syntax error ...
gap> ApplyCriteria:= function(tbl)
> local id, ord, invpos, cen, facttbl, factfus, invmap, factord,
> factinvpos, imgs;
> id:= ReplacedString(Identifier(tbl), " ", "");
> ord:= OrdersClassRepresentatives(tbl);
> invpos:= PositionsProperty(ord, x -> x <= 2);
> if Length(invpos) <= 3 then
> # There are at most 2 involution classes.
> Print("#I ", id, ": ",
> "done (", Length(invpos) - 1, " inv. class(es))\n");
> return true;
> elif Length(invpos) = 4 and
> ClassMultiplicationCoefficient(tbl, invpos[2], invpos[3],
> invpos[4]) <> 0 then
> Print("#I ", id, ": ",
> "done (3 inv. classes, nonzero str. const.)\n");
> return true;
> fi;
> cen:= Intersection(invpos, ClassPositionsOfCentre(tbl));
> if Length(cen) > 1 then
> # Consider the factor modulo the largest central el. ab. 2-group.
> facttbl:= tbl / cen;
> factfus:= GetFusionMap(tbl, facttbl);
> invmap:= InverseMap(factfus);
> factord:= OrdersClassRepresentatives(facttbl);
> factinvpos:= PositionsProperty(factord, x -> x <= 2);
> if ForAll(factinvpos,
> i -> invmap[i] in invpos or
> (IsList(invmap[i]) and
> IsSubset(invpos, invmap[i]))) then
> # All involutions of the factor group lift to involutions.
> if ApplyCriteria(facttbl) = true then
> Print("#I ", id, ": ",
> "done (all inv. in ",
> ReplacedString(Identifier(facttbl), " ", ""),
> " lift to inv.)\n");
> return true;
> fi;
> fi;

The GAP Character Table Library 33

> imgs:= Set(factfus{ invpos });
> if Length(imgs) = 2 and
> ForAll(imgs,
> i -> invmap[i] in invpos or
> (IsList(invmap[i]) and
> IsSubset(invpos, invmap[i]))) then
> # There is a C2 subgroup of the factor
> # such that its involution lifts to involutions,
> # and the lifts of the C2 cover all involution classes of ’tbl’.
> Print("#I ", id, ": ",
> "done (all inv. in ", id,
> " are lifts of a C2\n",
> "#I in the factor modulo ",
> ReplacedString(String(cen), " ", ""), ")\n");
> return true;
> fi;
> fi;
> Print("#I ", id, ": ",
> "OPEN (", Length(invpos) - 1, " inv. class(es))\n");
> return false;
> end;;

We start with the sporadic simple groups.
Example

gap> SizeScreen([72]);;
gap> spor:= AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false);
["B", "Co1", "Co2", "Co3", "F3+", "Fi22", "Fi23", "HN", "HS", "He",

"J1", "J2", "J3", "J4", "Ly", "M", "M11", "M12", "M22", "M23",
"M24", "McL", "ON", "Ru", "Suz", "Th"]

gap> Filtered(spor,
> x -> not ApplyCriteria(CharacterTable(x)));
#I B: OPEN (4 inv. class(es))
#I Co1: OPEN (3 inv. class(es))
#I Co2: done (3 inv. classes, nonzero str. const.)
#I Co3: done (2 inv. class(es))
#I F3+: done (2 inv. class(es))
#I Fi22: done (3 inv. classes, nonzero str. const.)
#I Fi23: done (3 inv. classes, nonzero str. const.)
#I HN: done (2 inv. class(es))
#I HS: done (2 inv. class(es))
#I He: done (2 inv. class(es))
#I J1: done (1 inv. class(es))
#I J2: done (2 inv. class(es))
#I J3: done (1 inv. class(es))
#I J4: done (2 inv. class(es))
#I Ly: done (1 inv. class(es))
#I M: done (2 inv. class(es))
#I M11: done (1 inv. class(es))
#I M12: done (2 inv. class(es))
#I M22: done (1 inv. class(es))
#I M23: done (1 inv. class(es))

The GAP Character Table Library 34

#I M24: done (2 inv. class(es))
#I McL: done (1 inv. class(es))
#I ON: done (1 inv. class(es))
#I Ru: done (2 inv. class(es))
#I Suz: done (2 inv. class(es))
#I Th: done (1 inv. class(es))
["B", "Co1"]

The two open cases can be handled as follows.
The group G = B contains maximal subgroups of the type 5 : 4×HS.2 (the normalizers of 5A

elements, see [CCN+85, p. 217]). The direct factor H = HS.2 of such a subgroup has four classes of
involutions, which fuse to the four involution classes of G.

Example
gap> t:= CharacterTable("B");;
gap> invpos:= Positions(OrdersClassRepresentatives(t), 2);
[2, 3, 4, 5]
gap> mx:= List(Maxes(t), CharacterTable);;
gap> s:= First(mx,
> x -> Size(x) = 20 * Size(CharacterTable("HS.2")));
CharacterTable("5:4xHS.2")
gap> fus:= GetFusionMap(s, t);;
gap> prod:= ClassPositionsOfDirectProductDecompositions(s);
[[[1, 40 .. 157], [1 .. 39]]]
gap> fusinB:= List(prod[1], l -> fus{ l });
[[1, 18, 8, 3, 8],

[1, 3, 4, 6, 8, 9, 14, 19, 18, 18, 25, 22, 31, 36, 43, 51, 50, 54,
57, 81, 100, 2, 5, 8, 11, 16, 21, 20, 24, 34, 33, 48, 52, 59,
76, 106, 100, 100, 137]]

gap> IsSubset(fusinB[2], invpos);
true
gap> h:= CharacterTable("HS.2");;
gap> fusinB[2]{ Positions(OrdersClassRepresentatives(h), 2) };
[3, 4, 2, 5]

The table of marks of H is known. We find five classes of elementary abelian subgroups of order
eight in H that contain elements from all four involution classes of H.

Example
gap> tom:= TableOfMarks(h);
TableOfMarks("HS.2")
gap> ord:= OrdersTom(tom);;
gap> invpos:= Positions(ord, 2);
[2, 3, 534, 535]
gap> 8pos:= Positions(ord, 8);;
gap> filt:= Filtered(8pos,
> x -> ForAll(invpos,
> y -> Length(IntersectionsTom(tom, x, y)) >= y
> and IntersectionsTom(tom, x, y)[y] <> 0));
[587, 589, 590, 593, 595]
gap> reps:= List(filt, i -> RepresentativeTom(tom, i));;
gap> ForAll(reps, IsElementaryAbelian);
true

The GAP Character Table Library 35

The group G = Co1 has a maximal subgroup H of type A9× S3 (see [CCN+85, p. 183]) that
contains elements from all three involution classes of G. Moreover, the factor S3 contains 2A elements,
and the factor A9 contains 2B and 2C elements. This yields the desired elementary abelian subgroup
of order eight.

Example
gap> t:= CharacterTable("Co1");;
gap> invpos:= Positions(OrdersClassRepresentatives(t), 2);
[2, 3, 4]
gap> mx:= List(Maxes(t), CharacterTable);;
gap> s:= First(mx, x -> Size(x) = 3 * Factorial(9));
CharacterTable("A9xS3")
gap> fus:= GetFusionMap(s, t);;
gap> prod:= ClassPositionsOfDirectProductDecompositions(s);
[[[1 .. 3], [1, 4 .. 52]]]
gap> List(prod[1], l -> fus{ l });
[[1, 8, 2],

[1, 3, 4, 5, 7, 6, 13, 14, 15, 19, 24, 28, 36, 37, 39, 50, 61, 61
]]

Thus we know that the answer is positive for each sporadic simple group. Next we look at the
relevant covering groups of sporadic simple groups. For a quasisimple group with a sporadic simple
factor, the Schur multiplier has at most the prime factors 2 and 3; only the extension by the 2-part of
the multipier must be checked.

Example
gap> sporcov:= AllCharacterTableNames(IsSporadicSimple, true,
> IsDuplicateTable, false, OfThose, SchurCover);
["12.M22", "2.B", "2.Co1", "2.HS", "2.J2", "2.M12", "2.Ru", "3.F3+",

"3.J3", "3.McL", "3.ON", "6.Fi22", "6.Suz", "Co2", "Co3", "Fi23",
"HN", "He", "J1", "J4", "Ly", "M", "M11", "M23", "M24", "Th"]

gap> Filtered(sporcov, x -> ’.’ in x);
["12.M22", "2.B", "2.Co1", "2.HS", "2.J2", "2.M12", "2.Ru", "3.F3+",

"3.J3", "3.McL", "3.ON", "6.Fi22", "6.Suz"]
gap> relevant:= ["2.M22", "4.M22", "2.B", "2.Co1", "2.HS", "2.J2",
> "2.M12", "2.Ru", "2.Fi22", "2.Suz"];;
gap> Filtered(relevant,
> x -> not ApplyCriteria(CharacterTable(x)));
#I 2.M22: done (3 inv. classes, nonzero str. const.)
#I 4.M22: done (2 inv. class(es))
#I 2.B: OPEN (5 inv. class(es))
#I 2.Co1: OPEN (4 inv. class(es))
#I 2.HS: done (3 inv. classes, nonzero str. const.)
#I 2.J2: done (3 inv. classes, nonzero str. const.)
#I 2.M12: done (3 inv. classes, nonzero str. const.)
#I 2.Ru: done (3 inv. classes, nonzero str. const.)
#I 2.Fi22/[1,2]: done (3 inv. classes, nonzero str. const.)
#I 2.Fi22: done (all inv. in 2.Fi22/[1,2] lift to inv.)
#I 2.Suz: done (3 inv. classes, nonzero str. const.)
["2.B", "2.Co1"]

The group B has four classes of involutions, let us call them 2A, 2B, 2C, and 2D. All except 2C lift
to involutions in 2.B.

The GAP Character Table Library 36

Example
gap> t:= CharacterTable("B");;
gap> 2t:= CharacterTable("2.B");;
gap> invpost:= Positions(OrdersClassRepresentatives(t), 2);
[2, 3, 4, 5]
gap> invpos2t:= Positions(OrdersClassRepresentatives(2t), 2);
[2, 3, 4, 5, 7]
gap> GetFusionMap(2t, t){ invpos2t };
[1, 2, 3, 3, 5]

Thus it suffices to show that there is a subgroup of type 22 in B that contains elements from 2A, 2B,
and 2D (but no element from 2C). This follows from the fact that the (2A, 2B, 2D) structure constant of
B is nonzero.

Example
gap> ClassMultiplicationCoefficient(t, 2, 3, 5);
120

The group Co1 has three classes of involutions, let us call them 2A, 2B, and 2C. All except 2B lift
to involutions in 2.Co1.

Example
gap> t:= CharacterTable("Co1");;
gap> 2t:= CharacterTable("2.Co1");;
gap> invpost:= Positions(OrdersClassRepresentatives(t), 2);
[2, 3, 4]
gap> invpos2t:= Positions(OrdersClassRepresentatives(2t), 2);
[2, 3, 4, 6]
gap> GetFusionMap(2t, t){ invpos2t };
[1, 2, 2, 4]

Thus it suffices to show that there is a subgroup of type 22 in Co1 that contains elements from 2A
and 2C but no element from 2B. This follows from the fact that the (2A, 2A, 2C) structure constant of
Co1 is nonzero.

Example
gap> ClassMultiplicationCoefficient(t, 2, 2, 4);
264

Finally, we deal with the relevant central extensions of finite simple groups of Lie type with excep-
tional multipliers. These groups are listed in [CCN+85, p. xvi, Table 5]. The following cases belong
to exceptional multipliers with nontrivial 2-part.

The GAP Character Table Library 37

Group Name Multiplier
A1(4) "A5" 2
A2(2) "L3(2)" 2
A2(4) "L3(4)" 42

A3(2) "A8" 2
2A3(2) "U4(2)" 2
2A5(2) "U6(2)" 22

B2(2) "S6" 2
2B2(2) "Sz(8)" 22

B3(2)∼=C3(2) "S6(2)" 2
D4(2) "O8+(2)" 22

G2(4) "G2(4)" 2
F4(2) "F4(2)" 2
2E6(2) "2E6(2)" 22

Table: Groups with exceptional 2-part of their multiplier

This leads to the following list of cases to be checked. (We would not need to deal with the groups
A5 and L3(2), because of isomorphisms with groups of Lie type for which the multiplier in question is
not exceptional, but here we ignore this fact.)

Example
gap> list:= [
> ["A5", "2.A5"],
> ["L3(2)", "2.L3(2)"],
> ["L3(4)", "2.L3(4)", "2^2.L3(4)", "4_1.L3(4)", "4_2.L3(4)",
> "(2x4).L3(4)", "4^2.L3(4)"],
> ["A8", "2.A8"],
> ["U4(2)", "2.U4(2)"],
> ["U6(2)", "2.U6(2)", "2^2.U6(2)"],
> ["A6", "2.A6"],
> ["Sz(8)", "2.Sz(8)", "2^2.Sz(8)"],
> ["S6(2)", "2.S6(2)"],
> ["O8+(2)", "2.O8+(2)", "2^2.O8+(2)"],
> ["G2(4)", "2.G2(4)"],
> ["F4(2)", "2.F4(2)"],
> ["2E6(2)", "2.2E6(2)", "2^2.2E6(2)"]];;
gap> Filtered(Concatenation(list),
> x -> not ApplyCriteria(CharacterTable(x)));
#I A5: done (1 inv. class(es))
#I 2.A5: done (1 inv. class(es))
#I L3(2): done (1 inv. class(es))
#I 2.L3(2): done (1 inv. class(es))
#I L3(4): done (1 inv. class(es))
#I 2.L3(4): done (3 inv. classes, nonzero str. const.)
#I 2^2.L3(4)/[1,2,3,4]: done (1 inv. class(es))
#I 2^2.L3(4): done (all inv. in 2^2.L3(4)/[1,2,3,4] lift to inv.)
#I 4_1.L3(4): done (2 inv. class(es))
#I 4_2.L3(4): done (2 inv. class(es))
#I (2x4).L3(4): done (all inv. in (2x4).L3(4) are lifts of a C2
#I in the factor modulo [1,2,3,4])
#I 4^2.L3(4): done (all inv. in 4^2.L3(4) are lifts of a C2

The GAP Character Table Library 38

#I in the factor modulo [1,2,3,4])
#I A8: done (2 inv. class(es))
#I 2.A8: done (2 inv. class(es))
#I U4(2): done (2 inv. class(es))
#I 2.U4(2): done (2 inv. class(es))
#I U6(2): done (3 inv. classes, nonzero str. const.)
#I 2.U6(2)/[1,2]: done (3 inv. classes, nonzero str. const.)
#I 2.U6(2): done (all inv. in 2.U6(2)/[1,2] lift to inv.)
#I 2^2.U6(2)/[1,2,3,4]: done (3 inv. classes, nonzero str. const.)
#I 2^2.U6(2): done (all inv. in 2^2.U6(2)/[1,2,3,4] lift to inv.)
#I A6: done (1 inv. class(es))
#I 2.A6: done (1 inv. class(es))
#I Sz(8): done (1 inv. class(es))
#I 2.Sz(8): done (2 inv. class(es))
#I 2^2.Sz(8)/[1,2,3,4]: done (1 inv. class(es))
#I 2^2.Sz(8): done (all inv. in 2^2.Sz(8)/[1,2,3,4] lift to inv.)
#I S6(2): OPEN (4 inv. class(es))
#I 2.S6(2): OPEN (3 inv. class(es))
#I O8+(2): OPEN (5 inv. class(es))
#I 2.O8+(2): OPEN (5 inv. class(es))
#I 2^2.O8+(2): OPEN (5 inv. class(es))
#I G2(4): done (2 inv. class(es))
#I 2.G2(4): done (3 inv. classes, nonzero str. const.)
#I F4(2): OPEN (4 inv. class(es))
#I 2.F4(2)/[1,2]: OPEN (4 inv. class(es))
#I 2.F4(2): OPEN (9 inv. class(es))
#I 2E6(2): done (3 inv. classes, nonzero str. const.)
#I 2.2E6(2)/[1,2]: done (3 inv. classes, nonzero str. const.)
#I 2.2E6(2): done (all inv. in 2.2E6(2)/[1,2] lift to inv.)
#I 2^2.2E6(2)/[1,2,3,4]: done (3 inv. classes, nonzero str. const.)
#I 2^2.2E6(2): done (all inv. in 2^2.2E6(2)/[1,2,3,4] lift to inv.)
["S6(2)", "2.S6(2)", "O8+(2)", "2.O8+(2)", "2^2.O8+(2)", "F4(2)",

"2.F4(2)"]

We could assume that the answer is positive for the simple groups in the list of open cases, by
theoretical arguments, but it is easy to show this computationally.

For G = S6(2), consider a maximal subgroup 26.L3(2) of G (see [CCN+85, p. 46]): Its 2-core is
elementary abelian and covers all four involution classes of G.

Example
gap> t:= CharacterTable("S6(2)");;
gap> invpos:= Positions(OrdersClassRepresentatives(t), 2);
[2, 3, 4, 5]
gap> mx:= List(Maxes(t), CharacterTable);;
gap> s:= First(mx,
> x -> Size(x) = 2^6 * Size(CharacterTable("L3(2)")));
CharacterTable("2^6:L3(2)")
gap> corepos:= ClassPositionsOfPCore(s, 2);
[1 .. 5]
gap> OrdersClassRepresentatives(t){ corepos };
[1, 2, 2, 2, 2]
gap> GetFusionMap(s, t){ corepos };
[1, 3, 4, 2, 5]

The GAP Character Table Library 39

Concerning G = 2.S6(2), note that from the four involution classes of S6(2), exactly 2B and 2D lift
to involutions in 2.S6(2).

Example
gap> 2t:= CharacterTable("2.S6(2)");;
gap> invpost:= Positions(OrdersClassRepresentatives(t), 2);
[2, 3, 4, 5]
gap> invpos2t:= Positions(OrdersClassRepresentatives(2t), 2);
[2, 4, 6]
gap> GetFusionMap(2t, t){ invpos2t };
[1, 3, 5]

Thus it suffices to show that there is a subgroup of type 22 in S6(2) that contains elements from
2B and 2D but no elements from 2A or 2C. This follows from the fact that the (2B, 2D, 2D) structure
constant of S6(2) is nonzero.

Example
gap> ClassMultiplicationCoefficient(t, 3, 5, 5);
15

For G = O+
8 (2), we consider the known table of marks.

Example
gap> t:= CharacterTable("O8+(2)");;
gap> tom:= TableOfMarks(t);
TableOfMarks("O8+(2)")
gap> ord:= OrdersTom(tom);;
gap> invpos:= Positions(ord, 2);
[2, 3, 4, 5, 6]
gap> 8pos:= Positions(ord, 8);;
gap> filt:= Filtered(8pos,
> x -> ForAll(invpos,
> y -> Length(IntersectionsTom(tom, x, y)) >= y
> and IntersectionsTom(tom, x, y)[y] <> 0));
[151, 153]
gap> reps:= List(filt, i -> RepresentativeTom(tom, i));;
gap> ForAll(reps, IsElementaryAbelian);
true

Concerning G = 2.O+
8 (2), note that from the five involution classes of O+

8 (2), exactly 2A, 2B, and
2E lift to involutions in 2.O+

8 (2).
Example

gap> 2t:= CharacterTable("2.O8+(2)");;
gap> invpost:= Positions(OrdersClassRepresentatives(t), 2);
[2, 3, 4, 5, 6]
gap> invpos2t:= Positions(OrdersClassRepresentatives(2t), 2);
[2, 3, 4, 5, 8]
gap> GetFusionMap(2t, t){ invpos2t };
[1, 2, 3, 3, 6]

Thus it suffices to show that the (2A, 2B, 2E) structure constant of O+
8 (2) is nonzero.

The GAP Character Table Library 40

Example
gap> ClassMultiplicationCoefficient(t, 2, 3, 6);
4

Concerning G = 22.O+
8 (2), note that from the five involution classes of O+

8 (2), exactly the first
and the last lift to involutions in 22.O+

8 (2).
Example

gap> v4t:= CharacterTable("2^2.O8+(2)");;
gap> invposv4t:= Positions(OrdersClassRepresentatives(v4t), 2);
[2, 3, 4, 5, 12]
gap> GetFusionMap(v4t, t){ invposv4t };
[1, 1, 1, 2, 6]

Thus it suffices to show that a corresponding structure constant of O+
8 (2) is nonzero.

Example
gap> ClassMultiplicationCoefficient(t, 2, 6, 6);
27

For G = F4(2), consider a maximal subgroup 210.A8 of a maximal subgroup S8(2) of G (see
[CCN+85, p. 123 and 170]): Its 2-core is elementary abelian and covers all four involution classes of
G.

Example
gap> t:= CharacterTable("F4(2)");;
gap> invpost:= Positions(OrdersClassRepresentatives(t), 2);
[2, 3, 4, 5]
gap> "S8(2)" in Maxes(t);
true
gap> s:= CharacterTable("S8(2)M4");
CharacterTable("2^10.A8")
gap> corepos:= ClassPositionsOfPCore(s, 2);
[1 .. 7]
gap> OrdersClassRepresentatives(s){ corepos };
[1, 2, 2, 2, 2, 2, 2]
gap> poss:= PossibleClassFusions(s, t);;
gap> List(poss, map -> map{ corepos });
[[1, 4, 2, 3, 4, 5, 5], [1, 4, 2, 3, 4, 5, 5],

[1, 4, 3, 2, 4, 5, 5], [1, 4, 3, 2, 4, 5, 5]]

Finally, all involutions of G lift to involutions in 2.F4(2).
Example

gap> 2t:= CharacterTable("2.F4(2)");;
gap> invpos2t:= Positions(OrdersClassRepresentatives(2t), 2);
[2, 3, 4, 5, 6, 7, 8, 9, 10]
gap> GetFusionMap(2t, t){ invpos2t };
[1, 2, 2, 3, 3, 4, 4, 5, 5]

Chapter 3

The User Interface to the GAP Character
Table Library

3.1 Accessing Data of the CTblLib Package

3.1.1 Admissible Names for Character Tables in CTblLib

When you access a character table from the GAP Character Table Library, this table is specified by an
admissible name.

Admissible names for the ordinary character table tbl of the group G are

• an Atlas like name if tbl is an Atlas table (see Section 4.3), for example "M22" for the table of
the Mathieu group M22, "L2(13).2" for L2(13) : 2, and "12_1.U4(3).2_1" for 121.U4(3).21.

(The difference to the name printed in the Atlas is that subscripts and superscripts are omitted
except if they are used to qualify integer values, and double dots are replaced by a single dot.)

• the names that were admissible for tables of G in the CAS system if the CAS table library
contained a table of G, for example sl42 for the table of the alternating group A8.

(But note that the ordering of rows and columns of the GAP table may be different from that in
CAS, see Section 4.4.)

• some “relative” names, as follows.

– If G is the n-th maximal subgroup (in decreasing group order) of a group whose library
table subtbl is available in GAP and stores the Maxes (3.7.1) value, and if name is an
admissible name for subtbl then nameMn is admissible for tbl. For example, the name
"J3M2" can be used to access the second maximal subgroup of the sporadic simple Janko
group J3 which has the admissible name "J3".

– If G is a nontrivial Sylow p normalizer in a sporadic simple group with admissible name
name –where nontrivial means that G is not isomorphic to a subgroup of p : (p−1)– then
nameNp is an admissible name of tbl. For example, the name "J4N11" can be used to
access the table of the Sylow 11 normalizer in the sporadic simple Janko group J4.

– In a few cases, the table of the Sylow p-subgroup of G is accessible via the name nameSylp
where name is an admissible name of the table of G. For example, "A11Syl2" is an
admissible name for the table of the Sylow 2-subgroup of the alternating group A11.

41

The GAP Character Table Library 42

– In a few cases, the table of an element centralizer in G is accessible via the name nameCcl
where name is an admissible name of the table of G. For example, "M11C2" is an admis-
sible name for the table of an involution centralizer in the Mathieu group M11.

The recommended way to access a Brauer table is via applying the mod operator to the ordi-
nary table and the desired characteristic (see BrauerTable (Reference: BrauerTable) and Sec-
tion (Reference: Operators for Character Tables)), so it is not necessary to define admissible
names of Brauer tables.

A generic character table (see Section 4.2) is accessible only by the name given by its
Identifier (Reference: Identifier for character tables) value.

3.1.2 CharacterTable (for a string)

. CharacterTable(tblname[, para1[, para2]]) (method)

If the only argument is a string tblname and if this is an admissible name (see 3.1.1) of a library
character table then CharacterTable returns this library table, otherwise fail.

If CharacterTable is called with more than one argument then the first must be a string
tblname specifying a series of groups which is implemented via a generic character table, for ex-
ample "Symmetric" for symmetric groups; the remaining arguments specialize the desired member
of the series (see Section 4.2 for a list of available generic tables). If no generic table with name
tblname is available or if the parameters are not admissible then CharacterTable returns fail.

A call of CharacterTable may cause that some library files are read and that some table objects
are constructed from the data stored in these files, so fetching a library table may take more time than
one expects.

Case is not significant for tblname . For example, both "suzm3" and "SuzM3" can be entered
in order to access the character table of the third class of maximal subgroups of the sporadic simple
Suzuki group.

Example
gap> s5:= CharacterTable("A5.2");
CharacterTable("A5.2")
gap> sym5:= CharacterTable("Symmetric", 5);
CharacterTable("Sym(5)")
gap> TransformingPermutationsCharacterTables(s5, sym5);
rec(columns := (2,3,4,7,5), group := Group(()),

rows := (1,7,3,4,6,5,2))

The above two tables are tables of the symmetric group on five letters; the first is in Atlas format
(see Section 4.3), the second is constructed from the generic table for symmetric groups (see 4.2).

Example
gap> CharacterTable("J5");
fail
gap> CharacterTable("A5") mod 2;
BrauerTable("A5", 2)

3.1.3 BrauerTable (for a string, and a prime integer)

. BrauerTable(tblname, p) (operation)

The GAP Character Table Library 43

Called with a string tblname and a prime integer p , BrauerTable returns the p -modular charac-
ter table of the ordinary character table with admissible name tblname , if such an ordinary character
table exists and if GAP can compute its p -modular table. Otherwise fail is returned.

The default method delegates to BrauerTable (Reference: BrauerTable for a character table,
and a prime integer) with arguments the CharacterTable (3.1.2) value of tblname and p .

Example
gap> BrauerTable("A5", 2);
BrauerTable("A5", 2)
gap> BrauerTable("J5", 2); # no ordinary table with name J5
fail
gap> BrauerTable("M", 2); # Brauer table not known
fail

3.1.4 AllCharacterTableNames

. AllCharacterTableNames([func, val, ...[, OfThose, func]]: OrderedBy :=
func) (function)

Similar to group libraries (see Chapter (Reference: Group Libraries)), the GAP Character Table
Library can be used to search for ordinary character tables with prescribed properties.

A specific library table can be selected by an admissible name, see 3.1.1.
The selection function (see (Reference: Selection Functions)) for character tables from the GAP

Character Table Library that have certain abstract properties is AllCharacterTableNames. Contrary
to the situation in the case of group libraries, the selection function returns a list not of library character
tables but of their names; using CharacterTable (3.1.2) one can then access the tables themselves.

AllCharacterTableNames takes an arbitrary even number of arguments. The argument at each
odd position must be a function, and the argument at the subsequent even position must be either a
value that this function must return when called for the character table in question, in order to have the
name of the table included in the selection, or a list of such values, or a function that returns true for
such a value, and false otherwise. For example,

Example
gap> names:= AllCharacterTableNames();;

returns a list containing one admissible name of each ordinary character table in the GAP library,
Example

gap> simpnames:= AllCharacterTableNames(IsSimple, true,
> IsAbelian, false);;

returns a list containing an admissible name of each ordinary character table in the GAP library
whose groups are nonabelian and simple, and

Example
gap> AllCharacterTableNames(IsSimple, true, IsAbelian, false,
> Size, [1 .. 100]);
["A5", "A6M2", "Alt(5)"]

The GAP Character Table Library 44

returns a list containing an admissible name of each ordinary character table in the GAP library
whose groups are nonabelian and simple and have order at most 100, respectively. (Note that "A5",
"A6M2", and "Alt(5)" are identifiers of permutation equivalent character tables. It would be possible
to exclude duplicates, see Section 3.6).

Similarly,
Example

gap> AllCharacterTableNames(Size, IsPrimeInt);
["2.Alt(2)", "Alt(3)", "C2", "C3", "Sym(2)"]

returns the list of all identifiers of library tables whose Size (Reference: Size) value is a prime
integer, and

Example
gap> AllCharacterTableNames(Identifier,
> x -> PositionSublist(x, "L8") <> fail);
["L8(2)", "P1L82", "P2L82"]

returns the identifiers that contain the string "L8" as a substring.
For the sake of efficiency, the attributes whose names are listed in

CTblLib.SupportedAttributes are handled in a special way, GAP need not read all files of
the table library in these cases in order to find the desired names.

Example
gap> CTblLib.SupportedAttributes;
["AbelianInvariants", "Identifier", "IdentifiersOfDuplicateTables",

"InfoText", "IsAbelian", "IsAlmostSimple", "IsDuplicateTable",
"IsNontrivialDirectProduct", "IsPerfect", "IsQuasisimple",
"IsSimple", "IsSporadicSimple", "KnowsDeligneLusztigNames",
"KnowsSomeGroupInfo", "Maxes", "NamesOfFusionSources",
"NrConjugacyClasses", "Size"]

If the Browse package (see [BL23]) is not loaded then CTblLib.SupportedAttributes con-
tains only "Identifier", and AllCharacterTableNames will be very slow when one selects char-
acter tables according to other attributes from the list shown above.

The global option OrderedBy can be used to prescribe the ordering of the result. The value of this
option, if given, must be a function that takes a character table as its unique argument; the result list is
then sorted according to the results of this function (w. r. t. the comparison by GAP’s \< operation).

For example, we may be interested in the tables of small sporadic simple groups, ordered alpha-
betically or by size (Size (Reference: Size for a character table)) or by the number of conjugacy
classes (NrConjugacyClasses (Reference: NrConjugacyClasses for a character table)).

Example
gap> AllCharacterTableNames(IsSporadicSimple, true,
> Size, [1 .. 10^6],
> IsDuplicateTable, false);
["J1", "J2", "M11", "M12", "M22"]
gap> AllCharacterTableNames(IsSporadicSimple, true,
> Size, [1 .. 10^6],
> IsDuplicateTable, false : OrderedBy:= Size);
["M11", "M12", "J1", "M22", "J2"]
gap> AllCharacterTableNames(IsSporadicSimple, true,

The GAP Character Table Library 45

> Size, [1 .. 10^6],
> IsDuplicateTable, false : OrderedBy:= NrConjugacyClasses);
["M11", "M22", "J1", "M12", "J2"]

(Note that the alphabtical ordering could also be achieved by entering OrderedBy:=
Identifier.)

If the dummy function OfThose is an argument at an odd position then the following argument
func must be a function that takes a character table and returns a name of a character table or a list
of names; this is interpreted as replacement of the names computed up to this position by the union
of names returned by func . For example, func may be Maxes (3.7.1) or NamesOfFusionSources
(Reference: NamesOfFusionSources)).

Example
gap> maxesnames:= AllCharacterTableNames(IsSporadicSimple, true,
> HasMaxes, true,
> OfThose, Maxes);;

returns the union of names of ordinary tables of those maximal subgroups of sporadic simple
groups that are contained in the table library in the sense that the attribute Maxes (3.7.1) is set.

For the sake of efficiency, OfThose followed by one of the arguments AutomorphismGroup
(Reference: AutomorphismGroup), SchurCover (Reference: SchurCover), CompleteGroup is
handled in a special way.

3.1.5 OneCharacterTableName

. OneCharacterTableName([func, val, ...[, OfThose, func]]: OrderedBy := func)
(function)

The example function for character tables from the GAP Character Table Library that have
certain abstract properties is OneCharacterTableName. It is analogous to the selection function
AllCharacterTableNames (3.1.4), the difference is that it returns one Identifier (Reference:
Identifier for character tables) value of a character table with the properties in question instead of
the list of all such values. If no table with the required properties is contained in the GAP Character
Table Library then fail is returned.

Example
gap> OneCharacterTableName(IsSimple, true, Size, 60);
"A5"
gap> OneCharacterTableName(IsSimple, true, Size, 20);
fail

The global option OrderedBy can be used to search for a “smallest” example, according
to the value of the option. If this function is one of the attributes whose names are listed in
CTblLib.SupportedAttributes then the tables are processed according to increasing values of
the option, which may speed up the search.

The GAP Character Table Library 46

3.1.6 NameOfEquivalentLibraryCharacterTable

. NameOfEquivalentLibraryCharacterTable(ordtbl) (function)

. NamesOfEquivalentLibraryCharacterTables(ordtbl) (function)

Let ordtbl be an ordinary character table. NameOfEquivalentLibraryCharacterTable
returns the Identifier (Reference: Identifier for character tables) value of a char-
acter table in the GAP Character Table Library that is permutation equivalent to
ordtbl (see TransformingPermutationsCharacterTables (Reference: Transform-
ingPermutationsCharacterTables)) if such a character table exists, and fail otherwise.
NamesOfEquivalentLibraryCharacterTables returns the list of all Identifier (Reference:
Identifier for character tables) values of character tables in the GAP Character Table Library that
are permutation equivalent to ordtbl ; thus an empty list is returned in this case if no equivalent
library table exists.

Example
gap> tbl:= CharacterTable("Alternating", 5);;
gap> NameOfEquivalentLibraryCharacterTable(tbl);
"A5"
gap> NamesOfEquivalentLibraryCharacterTables(tbl);
["A5", "A6M2", "Alt(5)"]
gap> tbl:= CharacterTable("Cyclic", 17);;
gap> NameOfEquivalentLibraryCharacterTable(tbl);
fail
gap> NamesOfEquivalentLibraryCharacterTables(tbl);
[]

3.2 The Interface to the TomLib Package

The GAP Character Table Library contains ordinary character tables of all groups for which the Tom-
Lib package [MNP19] contains the table of marks. This section describes the mapping between these
character tables and their tables of marks.

If the TomLib package is not loaded then FusionToTom (3.2.4) is the only available function from
this section, but of course it is of little interest in this situation.

3.2.1 TableOfMarks (for a character table from the library)

. TableOfMarks(tbl) (method)

Let tbl be an ordinary character table from the GAP Character Table Library, for the group G,
say. If the TomLib package is loaded and contains the table of marks of G then there is a method based
on TableOfMarks (Reference: TableOfMarks for a string) that returns this table of marks. If there
is no such table of marks but tbl knows its underlying group then this method delegates to the group.
Otherwise fail is returned.

Example
gap> TableOfMarks(CharacterTable("A5"));
TableOfMarks("A5")
gap> TableOfMarks(CharacterTable("M"));
fail

The GAP Character Table Library 47

3.2.2 CharacterTable (for a table of marks)

. CharacterTable(tom) (method)

For a table of marks tom , this method for CharacterTable (Reference: CharacterTable for a
group) returns the character table corresponding to tom .

If tom comes from the TomLib package, the character table comes from the GAP Character Table
Library. Otherwise, if tom stores an UnderlyingGroup (Reference: UnderlyingGroup for tables
of marks) value then the task is delegated to a CharacterTable (Reference: CharacterTable for a
group) method for this group, and if no underlying group is available then fail is returned.

Example
gap> CharacterTable(TableOfMarks("A5"));
CharacterTable("A5")

3.2.3 FusionCharTableTom

. FusionCharTableTom(tbl, tom) (method)

Let tbl be an ordinary character table from the GAP Character Table Library with the attribute
FusionToTom (3.2.4), and let tom be the table of marks from the GAP package TomLib that corre-
sponds to tbl . In this case, a method for FusionCharTableTom (Reference: FusionCharTable-
Tom) is available that returns the fusion from tbl to tom that is given by the FusionToTom (3.2.4)
value of tbl .

Example
gap> tbl:= CharacterTable("A5");
CharacterTable("A5")
gap> tom:= TableOfMarks("A5");
TableOfMarks("A5")
gap> FusionCharTableTom(tbl, tom);
[1, 2, 3, 5, 5]

3.2.4 FusionToTom

. FusionToTom(tbl) (attribute)

If this attribute is set for an ordinary character table tbl then the GAP Library of Tables of Marks
contains the table of marks of the group of tbl , and the attribute value is a record with the following
components.

name
the Identifier (Reference: Identifier for tables of marks) component of the table of marks
of tbl ,

map the fusion map,

text (optional)
a string describing the status of the fusion, and

The GAP Character Table Library 48

perm (optional)
a permutation that establishes the bijection between the classes of maximal subgroups in the
table of marks (see MaximalSubgroupsTom (Reference: MaximalSubgroupsTom)) and the
Maxes (3.7.1) list of tbl . Applying the permutation to the sublist of permutation characters
(see PermCharsTom (Reference: PermCharsTom via fusion map)) at the positions of the
maximal subgroups of the table of marks yields the list of primitive permutation characters
computed from the character tables described by the Maxes (3.7.1) list. Usually, there is no
perm component, which means that the two lists of primitive permutation characters are equal.
See Section 2.3.5 for an example.

Example
gap> FusionToTom(CharacterTable("2.A6"));
rec(map := [1, 2, 5, 4, 8, 3, 7, 11, 11, 6, 13, 6, 13],

name := "2.A6", perm := (4,5),
text := "fusion map is unique up to table autom.")

3.2.5 NameOfLibraryCharacterTable

. NameOfLibraryCharacterTable(tomname) (function)

This function returns the Identifier (Reference: Identifier for character tables) value of the
character table corresponding to the table of marks with Identifier (Reference: Identifier for
tables of marks) value tomname . If no such character table exists in the GAP Character Table Library
or if the TomLib package is not loaded then fail is returned.

Example
gap> NameOfLibraryCharacterTable("A5");
"A5"
gap> NameOfLibraryCharacterTable("S5");
"A5.2"

3.3 The Interface to GAP’s Group Libraries

Sometimes it is useful to extend a character-theoretic computation with computations involving a
group that has the character table in question. For many character tables in the GAP Character Table
Library, corresponding groups can be found in the various group libraries that are distributed with
GAP. This section describes how one can access the library groups that belong to a given character
table.

3.3.1 GroupInfoForCharacterTable

. GroupInfoForCharacterTable(tbl) (attribute)

Let tbl be an ordinary character table from the GAP Character Table Library.
GroupInfoForCharacterTable returns a sorted list of pairs such that calling GroupForGroupInfo
(3.3.4) with any of these pairs yields a group whose ordinary character table is tbl , up to permutations
of rows and columns.

Note that this group is in general not determined up to isomorphism, since nonisomorphic groups
may have the same character table (including power maps).

The GAP Character Table Library 49

Contrary to the attribute UnderlyingGroup (Reference: UnderlyingGroup for tables of
marks), the entries of the GroupInfoForCharacterTable list for tbl are not related to the ordering
of the conjugacy classes in tbl .

Sources for this attribute are the GAP databases of groups described in Chapter (Reference:
Group Libraries), and the packages AtlasRep and TomLib, see also GroupForTom (3.3.5) and
AtlasStabilizer (3.3.6). If these packages are not loaded then part of the information may be
missing. If the Browse package (see [BL23]) is not loaded then GroupInfoForCharacterTable
returns always an empty list.

Example
gap> GroupInfoForCharacterTable(CharacterTable("A5"));
[["AlternatingGroup", [5]], ["AtlasGroup", ["A5"]],

["AtlasStabilizer", ["A6", "A6G1-p6aB0"]],
["AtlasStabilizer", ["A6", "A6G1-p6bB0"]],
["AtlasStabilizer", ["L2(11)", "L211G1-p11aB0"]],
["AtlasStabilizer", ["L2(11)", "L211G1-p11bB0"]],
["AtlasStabilizer", ["L2(19)", "L219G1-p57aB0"]],
["AtlasStabilizer", ["L2(19)", "L219G1-p57bB0"]],
["AtlasSubgroup", ["A5.2", 1]], ["AtlasSubgroup", ["A6", 1]]

, ["AtlasSubgroup", ["A6", 2]],
["AtlasSubgroup", ["J2", 9]],
["AtlasSubgroup", ["L2(109)", 4]],
["AtlasSubgroup", ["L2(109)", 5]],
["AtlasSubgroup", ["L2(11)", 1]],
["AtlasSubgroup", ["L2(11)", 2]],
["AtlasSubgroup", ["S6(3)", 11]],
["GroupForTom", ["2^4:A5", 68]],
["GroupForTom", ["2^4:A5‘", 56]], ["GroupForTom", ["A5"]],
["GroupForTom", ["A5xA5", 85]], ["GroupForTom", ["A6", 21]],
["GroupForTom", ["J2", 99]],
["GroupForTom", ["L2(109)", 25]],
["GroupForTom", ["L2(11)", 15]],
["GroupForTom", ["L2(125)", 18]],
["GroupForTom", ["L2(16)", 18]],
["GroupForTom", ["L2(19)", 17]],
["GroupForTom", ["L2(29)", 19]],
["GroupForTom", ["L2(31)", 25]],
["GroupForTom", ["S5", 18]], ["PSL", [2, 4]],
["PSL", [2, 5]], ["PerfectGroup", [60, 1]],
["PrimitiveGroup", [5, 4]], ["PrimitiveGroup", [6, 1]],
["PrimitiveGroup", [10, 1]], ["SmallGroup", [60, 5]],
["TransitiveGroup", [5, 4]], ["TransitiveGroup", [6, 12]],
["TransitiveGroup", [10, 7]], ["TransitiveGroup", [12, 33]],
["TransitiveGroup", [15, 5]], ["TransitiveGroup", [20, 15]],
["TransitiveGroup", [30, 9]]]

3.3.2 KnowsSomeGroupInfo

. KnowsSomeGroupInfo(tbl) (property)

For an ordinary character table tbl , this function returns true if the list returned by
GroupInfoForCharacterTable (3.3.1) is nonempty, and false otherwise.

The GAP Character Table Library 50

Example
gap> KnowsSomeGroupInfo(CharacterTable("A5"));
true
gap> KnowsSomeGroupInfo(CharacterTable("M"));
false

3.3.3 CharacterTableForGroupInfo

. CharacterTableForGroupInfo(info) (attribute)

This function is a partial inverse of GroupInfoForCharacterTable (3.3.1). If info has the form
[f uncname, args] and occurs in the list returned by GroupInfoForCharacterTable (3.3.1)
when called with a character table t, say, then CharacterTableForGroupInfo returns a character
table from the GAP Character Table that is equivalent to t. Otherwise fail is returned.

Example
gap> CharacterTableForGroupInfo(["AlternatingGroup", [5]]);
CharacterTable("A5")

3.3.4 GroupForGroupInfo

. GroupForGroupInfo(info) (attribute)

If info has the form [f uncname, args] and occurs in the list returned by
GroupInfoForCharacterTable (3.3.1) when called with a character table tbl, say, then
GroupForGroupInfo returns a group that is described by info and whose character table is
equal to tbl, up to permutations of rows and columns. Otherwise fail is returned.

Typically, f uncname is a string that is the name of a global GAP function f un, say, and args is a
list of arguments for this function such that CallFuncList(f un, args) yields the desired group.

Example
gap> GroupForGroupInfo(["AlternatingGroup", [5]]);
Alt([1 .. 5])
gap> GroupForGroupInfo(["PrimitiveGroup", [5, 4]]);
A(5)

3.3.5 GroupForTom

. GroupForTom(tomidentifier[, repnr]) (attribute)

Let tomidentifier be a string that is an admissible name for a table of marks from the GAP
Library of Tables of Marks (the TomLib package [MNP19]). Called with one argument, GroupForTom
returns the UnderlyingGroup (Reference: UnderlyingGroup for tables of marks) value of this
table of marks. If a positive integer repnr is given as the second argument then a representative
of the repnr -th class of subgroups of this group is returned, see RepresentativeTom (Reference:
RepresentativeTom).

The string"GroupForTom" may occur in the entries of the list returned by
GroupInfoForCharacterTable (3.3.1), and therefore may be called by GroupForGroupInfo
(3.3.4).

The GAP Character Table Library 51

If the TomLib package is not loaded or if it does not contain a table of marks with identifier
tomidentifier then fail is returned.

Example
gap> g:= GroupForTom("A5"); u:= GroupForTom("A5", 2);
Group([(2,4)(3,5), (1,2,5)])
Group([(2,3)(4,5)])
gap> IsSubset(g, u);
true
gap> GroupForTom("J4");
fail

3.3.6 AtlasStabilizer

. AtlasStabilizer(gapname, repname) (function)

Let gapname be an admissible name of a group G, say, in the sense of the AtlasRep pack-
age (see Section (AtlasRep: Group Names Used in the AtlasRep Package)), and repname be a
string that occurs as the repname component of a record returned by AllAtlasGeneratingSetInfos
(AtlasRep: AllAtlasGeneratingSetInfos) when this function is called with first argument gapname
and further arguments IsTransitive (Reference: IsTransitive) and true. In this case, repname
describes a transitive permutation representation of G.

If the AtlasRep package is available and if the permutation group in question can be fetched then
AtlasStabilizer returns a point stabilizer. Otherwise fail is returned.

The string"AtlasStabilizer" may occur in the entries of the list returned by
GroupInfoForCharacterTable (3.3.1), and therefore may be called by GroupForGroupInfo
(3.3.4).

Example
gap> AtlasStabilizer("A5","A5G1-p5B0");
Group([(1,2)(3,4), (2,3,4)])

3.3.7 IsNontrivialDirectProduct

. IsNontrivialDirectProduct(tbl) (property)

For an ordinary character table tbl of the group G, say, this function returns true if G is the
direct product of smaller groups, and false otherwise.

Example
gap> mx:= Maxes(CharacterTable("J1"));
["L2(11)", "2^3.7.3", "2xA5", "19:6", "11:10", "D6xD10", "7:6"]
gap> List(mx, name -> IsNontrivialDirectProduct(
> CharacterTable(name)));
[false, false, true, false, false, true, false]

3.4 Unipotent Characters of Finite Groups of Lie Type

Unipotent characters are defined for finite groups of Lie type. For most of these groups whose charac-
ter table is in the GAP Character Table Library, the unipotent characters are known and parametrised

The GAP Character Table Library 52

by labels. This labeling is due to the work of P. Deligne and G. Lusztig, thus the label of a unipotent
character is called its Deligne-Lusztig name (see [CH05]).

3.4.1 UnipotentCharacter

. UnipotentCharacter(tbl, label) (function)

Let tbl be the ordinary character table of a finite group of Lie type in the GAP Character Table
Library. UnipotentCharacter returns the unipotent character with Deligne-Lusztig name label .

The object label must be either a list of integers which describes a partition (if the finite group of
Lie type is of the type Al or 2Al), a list of two lists of integers which describes a symbol (if the group
is of classical type other than Al and 2Al) or a string (if the group is of exceptional type).

A call of UnipotentCharacter sets the attribute DeligneLusztigNames (3.4.2) for tbl .
Example

gap> tbl:= CharacterTable("U4(2).2");;
gap> UnipotentCharacter(tbl, [[0, 1], [2]]);
Character(CharacterTable("U4(2).2"),
[15, 7, 3, -3, 0, 3, -1, 1, 0, 1, -2, 1, 0, 0, -1, 5, 1, 3, -1, 2,
-1, 1, -1, 0, 0])

3.4.2 DeligneLusztigNames

. DeligneLusztigNames(obj) (attribute)

For a character table obj , DeligneLusztigNames returns a list of Deligne-Lusztig names of the
the unipotent characters of obj . If the i-th entry is bound then it is the name of the i-th irreducible
character of obj , and this character is irreducible. If an irreducible character is not unipotent the
accordant position is unbound.

DeligneLusztigNames called with a string obj , calls itself with the argument
CharacterTable(obj).

When DeligneLusztigNames is called with a record obj then this should have the components
isoc, isot, l, and q, where isoc and isot are strings defining the isogeny class and isogeny type,
and l and q are integers. These components define a finite group of Lie type uniquely. Moreover this
way one can choose Deligne-Lusztig names for a prescribed type in those cases where a group has
more than one interpretation as a finite group of Lie type, see the example below. (The first call of
DeligneLusztigNames sets the attribute value in the character table.)

Example
gap> DeligneLusztigNames("L2(7)");
[[2],,,, [1, 1]]
gap> tbl:= CharacterTable("L2(7)");
CharacterTable("L3(2)")
gap> HasDeligneLusztigNames(tbl);
true
gap> DeligneLusztigNames(rec(isoc:= "A", isot:= "simple",
> l:= 2, q:= 2));
[[3],,, [2, 1],, [1, 1, 1]]

The GAP Character Table Library 53

3.4.3 DeligneLusztigName

. DeligneLusztigName(chi) (function)

For a unipotent character chi , DeligneLusztigName returns the Deligne-Lusztig name of chi .
For that, DeligneLusztigNames (3.4.2) is called with the argument UnderlyingCharacterTable(
chi).

Example
gap> tbl:= CharacterTable("F4(2)");;
gap> DeligneLusztigName(Irr(tbl)[9]);
fail
gap> HasDeligneLusztigNames(tbl);
true
gap> List([1 .. 8], i -> DeligneLusztigName(Irr(tbl)[i]));
["phi{1,0}", "[[2], []]", "phi{2,4}’’", "phi{2,4}’",

"F4^II[1]", "phi{4,1}", "F4^I[1]", "phi{9,2}"]

3.4.4 KnowsDeligneLusztigNames

. KnowsDeligneLusztigNames(tbl) (property)

For an ordinary character table tbl , this function returns true if DeligneLusztigNames (3.4.2)
returns the list of Deligne-Lusztig names of the unipotent characters of tbl , and false otherwise.

Example
gap> KnowsDeligneLusztigNames(CharacterTable("A5"));
true
gap> KnowsDeligneLusztigNames(CharacterTable("M"));
false

3.5 Browse Applications Provided by CTblLib

The following functions are available only if the GAP package Browse (see [BL23]) is loaded. The
function DisplayCTblLibInfo (3.5.1) shows details about an ordinary or modular character table in
a pager, the other functions can be used to show the following information via browse tables.

• An overview of the GAP Character Table Library, and details pages about ordinary and modular
character tables (see BrowseCTblLibInfo (3.5.2)), which allow one to navigate to related pages
and to pages showing for example decomposition matrices (cf. BrowseDecompositionMatrix
(Browse: BrowseDecompositionMatrix)),

• an alternative display function that shows character tables from the Atlas of Finite Groups
[CCN+85] and the Atlas of Brauer Characters [JLPW95] in a format similar to the one
used in these books (see BrowseAtlasTable (3.5.9), cf. Browse (for character tables)
(Browse: Browse for character tables) for the default display format for character tables),

• an overview of the names of simple groups for which the Atlas of Finite Groups [CCN+85]
and the Atlas of Brauer Characters [JLPW95] show the character tables and other in-
formation (see BrowseAtlasContents (3.5.5), a variant that doe not rely on Browse is
DisplayAtlasContents (3.5.6)),

The GAP Character Table Library 54

• a function that shows the Atlas map of the bicyclic extensions of a simple Atlas group (see
BrowseAtlasMap (3.5.7), a variant that does not rely on Browse is DisplayAtlasMap (3.5.8)),

• an overview of the “atomic irrationalities” that occur in Atlas character tables (see
BrowseCommonIrrationalities (3.5.3)),

• an overview of the lists of improvements to the Atlas of Finite Groups (see
BrowseAtlasImprovements (3.5.10)).

• an overview of the differences between the character table data since version 1.1.3 of the CT-
blLib package (see BrowseCTblLibDifferences (3.5.4)),

The functions BrowseCTblLibInfo (3.5.2), BrowseCommonIrrationalities
(3.5.3), BrowseCTblLibDifferences (3.5.4), BrowseAtlasContents (3.5.5), and
BrowseAtlasImprovements (3.5.10) occur also in the list of choices shown by BrowseGapData
(Browse: BrowseGapData).

3.5.1 DisplayCTblLibInfo (for a character table)

. DisplayCTblLibInfo(tbl) (function)

. DisplayCTblLibInfo(name[, p]) (function)

. StringCTblLibInfo(tbl) (function)

. StringCTblLibInfo(name[, p]) (function)

When DisplayCTblLibInfo is called with an ordinary or modular character table tbl then an
overview of the information available for this character table is shown via the function that is given
by the user preference 4.5.3. When DisplayCTblLibInfo is called with a string name that is an
admissible name for an ordinary character table then the overview for this character table is shown. If
a prime integer p is entered in addition to name then information about the p -modular character table
is shown instead.

An interactive variant of DisplayCTblLibInfo is BrowseCTblLibInfo (3.5.2).
The string that is shown by DisplayCTblLibInfo can be computed using StringCTblLibInfo,

with the same arguments.
Example

gap> StringCTblLibInfo(CharacterTable("A5"));;
gap> StringCTblLibInfo(CharacterTable("A5") mod 2);;
gap> StringCTblLibInfo("A5");;
gap> StringCTblLibInfo("A5", 2);;

3.5.2 BrowseCTblLibInfo

. BrowseCTblLibInfo([func, val, ...]) (function)

. BrowseCTblLibInfo(tbl) (function)

. BrowseCTblLibInfo(name[, p]) (function)

Returns: nothing.
Called without arguments, BrowseCTblLibInfo shows the contents of the GAP Character Table

Library in an overview table, see below.
When arguments func , val , ... are given that are admissible arguments for

AllCharacterTableNames (3.1.4) –in particular, the first argument must be a function– then

The GAP Character Table Library 55

the overview is restricted to those character tables that match the conditions. The global option
"OrderedBy" is supported as in AllCharacterTableNames (3.1.4).

When BrowseCTblLibInfo is called with a character table tbl then a details table is opened that
gives an overview of the information available for this character table. When BrowseCTblLibInfo is
called with a string name that is an admissible name for an ordinary character table then the details
table for this character table is opened. If a prime integer p is entered in addition to name then
information about the p -modular character table is shown instead.

The overview table has the following columns.

name
the Identifier (Reference: Identifier for character tables) value of the table,

size
the group order,

nccl
the number of conjugacy classes,

fusions -> G
the list of identifiers of tables on which a fusion to the given table is stored, and

fusions G ->
the list of identifiers of tables to which a fusion is stored on the given table.

The details table for a given character table has exactly one column. Only part of the functionality
of the function NCurses.BrowseGeneric (Browse: NCurses.BrowseGeneric) is available in such a
table. On the other hand, the details tables contain “links” to other Browse applications, for example
other details tables.

When one “clicks” on a row or an entry in the overview table then the details table for the char-
acter table in question is opened. One can navigate from this details table to a related one, by first
activating a link (via repeatedly hitting the TAB key) and then following the active link (via hitting the
RETURN key). If mouse actions are enabled (by hitting the M key, see NCurses.UseMouse (Browse:
NCurses.UseMouse)) then one can alternatively activate a link and click on it via mouse actions.

Example
gap> tab:= [9];; # hit the TAB key
gap> n:= [14, 14, 14];; # ‘‘do nothing’’ input (means timeout)
gap> BrowseData.SetReplay(Concatenation(
> # select the first column, search for the name A5
> "sc/A5", [NCurses.keys.DOWN, NCurses.keys.DOWN,
> NCurses.keys.RIGHT, NCurses.keys.ENTER],
> # open the details table for A5
> [NCurses.keys.ENTER], n, n,
> # activate the link to the character table of A5
> tab, n, n,
> # show the character table of A5
> [NCurses.keys.ENTER], n, n, "seddrr", n, n,
> # close this character table
> "Q",
> # activate the link to the maximal subgroup D10
> tab, tab, n, n,

The GAP Character Table Library 56

> # jump to the details table for D10
> [NCurses.keys.ENTER], n, n,
> # close this details table
> "Q",
> # activate the link to a decomposition matrix
> tab, tab, tab, tab, tab, n, n,
> # show the decomposition matrix
> [NCurses.keys.ENTER], n, n,
> # close this table
> "Q",
> # activate the link to the AtlasRep overview
> tab, tab, tab, tab, tab, tab, tab, n, n,
> # show the overview
> [NCurses.keys.ENTER], n, n,
> # close this table
> "Q",
> # and quit the applications
> "QQ"));
gap> BrowseCTblLibInfo();
gap> BrowseData.SetReplay(false);

3.5.3 BrowseCommonIrrationalities

. BrowseCommonIrrationalities() (function)

Returns: a list of info records for the irrationalities that have been “clicked” in visual mode.
This function shows the atomic irrationalities that occur in character tables in the Atlas of Finite

Groups [CCN+85] or the Atlas of Brauer Characters [JLPW95], together with descriptions of their
reductions to the relevant finite fields in a browse table with the following columns. The format is the
same as in [JLPW95, Appendix 1].

name
the name of the irrationality, see AtlasIrrationality (Reference: AtlasIrrationality),

p the characteristic,

value mod C_n
the corresponding reduction to a finite field of characteristic p, given by the residue modulo the
n-th Conway polynomial (see ConwayPolynomial (Reference: ConwayPolynomial)),

n the degree of the smallest extension of the prime field of characteristic p that contains the re-
duction.

Example
gap> n:= [14, 14, 14];; # ‘‘do nothing’’ input (means timeout)
gap> BrowseData.SetReplay(Concatenation(
> # categorize the table by the characteristics
> "scrsc", n, n,
> # expand characteristic 2
> "srxq", n, n,
> # scroll down
> "DDD", n, n,
> # and quit the application

The GAP Character Table Library 57

> "Q"));
gap> BrowseCommonIrrationalities();;
gap> BrowseData.SetReplay(false);

3.5.4 BrowseCTblLibDifferences

. BrowseCTblLibDifferences() (function)

Returns: nothing.
BrowseCTblLibDifferences lists the differences between the versions of the character table

data in the CTblLib package, since version 1.1.3.
The overview table contains one row for each change, where “change” means the addition, modi-

fication, or removal of information, and has the following columns.

Identifier
the Identifier (Reference: Identifier for character tables) value of the character table,

Type
one of NEW (for the addition of previously not available information), *** (for a bugfix), or C
(for a change that does not really fix a bug, typically a change motivated by a new consistency
criterion),

What
one of class fusions (some class fusions from or to the table in question were changed),
maxes (the value of the attribute Maxes (3.7.1) was changed), names (incorrect admissible
names were removed), table or table mod p (the ordinary or p-modular character table was
changed), maxes (the value of the attribute Maxes (3.7.1) was changed), tom fusion (the value
of the attribute FusionToTom (3.2.4) was changed),

Description
a description what has been changed,

Flag
one of Dup (the table is a duplicate, in the sense of IsDuplicateTable (3.6.1)), Der (the row
belongs to a character table that is derived from other tables), Fus (the row belongs to the
addition of class fusions), Max (the row belongs to a character table that was added because its
group is maximal in another group), or None (in all other cases –these rows are to some extent
the interesting ones). The information in this column can be used to restrict the overview to
interesting subsets.

Vers.
the package version in which the change described by the row appeared first.

The full functionality of the function NCurses.BrowseGeneric (Browse:
NCurses.BrowseGeneric) is available.

The following examples show the input for

• restricting the overview to error rows,

• restricting the overview to “None” rows, and

The GAP Character Table Library 58

• restricting the overview to rows about a particular table.
Example

gap> n:= [14, 14, 14, 14, 14, 14];; # ‘‘do nothing’’
gap> enter:= [NCurses.keys.ENTER];;
gap> down:= [NCurses.keys.DOWN];;
gap> right:= [NCurses.keys.RIGHT];;
gap> BrowseData.SetReplay(Concatenation(
> "scr", # select the ’Type’ column,
> "f***", enter, # filter rows containing ’***’,
> n, "Q")); # and quit
gap> BrowseCTblLibDifferences();
gap> BrowseData.SetReplay(Concatenation(
> "scrrrr", # select the ’Flag’ column,
> "fNone", enter, # filter rows containing ’None’,
> n, "Q")); # and quit
gap> BrowseCTblLibDifferences();
gap> BrowseData.SetReplay(Concatenation(
> "fM", # filter rows containing ’M’,
> down, down, down, right, # but ’M’ as a whole word,
> enter, #
> n, "Q")); # and quit
gap> BrowseCTblLibDifferences();
gap> BrowseData.SetReplay(false);

3.5.5 BrowseAtlasContents

. BrowseAtlasContents() (function)

Returns: nothing.
BrowseAtlasContents shows the list of names of simple groups and the corresponding page

numbers in the Atlas of Finite Groups [CCN+85], as given on page v of this book, plus a few groups
for which [JLPW95, Appendix 2] states that their character tables in Atlas format have been obtained;
if applicable then also the corresponding page numbers in the Atlas of Brauer Characters [JLPW95]
are shown.

Clicking on a page number opens the Atlas map for the group in question, see BrowseAtlasMap
(3.5.7). (From the map, one can open the Atlas style display using the input "T".)

Example
gap> d:= [NCurses.keys.DOWN];; r:= [NCurses.keys.RIGHT];;
gap> c:= [NCurses.keys.ENTER];;
gap> BrowseData.SetReplay(Concatenation(
> "/J2", # Find the string J2,
> c, # start the search,
> r, # select the page for the ordinary table,
> c, # click the entry,
> "se", # select the box of the simple group,
> c, # click the box,
> "Q", # quit the info overview for J2,
> d, # move down to 2.J2,
> c, # click the box,
> "Q", # quit the info overview for 2.J2,
> "T", # show the ATLAS table for (extensions of) J2
> "Q", # quit the ATLAS table,

The GAP Character Table Library 59

> "Q", # quit the map,
> r, # select the page for the 2-modular table,
> c, # click the entry,
> "T", # show the 2-modular ATLAS table
> "Q", # quit the ATLAS table,
> "Q", # quit the map,
> "Q")); # and quit the application.
gap> BrowseAtlasContents();
gap> BrowseData.SetReplay(false);

3.5.6 DisplayAtlasContents

. DisplayAtlasContents() (function)

. StringAtlasContents() (function)

DisplayAtlasContents calls the function that is given by the user preference 4.5.3, in order to
show the list of names of simple groups and the corresponding page numbers in the Atlas of Finite
Groups [CCN+85], as given on page v of this book, plus a few groups for which [JLPW95, Appendix
2] states that their character tables in Atlas format have been obtained; if applicable then also the
corresponding page numbers in the Atlas of Brauer Characters [JLPW95] are shown.

An interactive variant of DisplayAtlasContents is BrowseAtlasContents (3.5.5).
The string that is shown by DisplayAtlasContents can be computed using

StringAtlasContents.
Example

gap> str:= StringAtlasContents();;
gap> pos:= PositionNthOccurrence(str, ’\n’, 10);;
gap> Print(str{ [1 .. pos] });
A5 = L2(4) = L2(5) 2 2:2, 3:2, 5:2
L3(2) = L2(7) 3 2:3, 3:3, 7:3
A6 = L2(9) = S4(2)’ 4 2:4, 3:4, 5:5
L2(8) = R(3)’ 6 2:6, 3:6, 7:6
L2(11) 7 2:7, 3:7, 5:8, 11:8
L2(13) 8 2:9, 3:9, 7:10, 13:10
L2(17) 9 2:11, 3:11, 17:12
A7 10 2:13, 3:13, 5:14, 7:15
L2(19) 11 2:16, 3:16, 5:17, 19:18
L2(16) 12 2:19, 3:20, 5:20, 17:21

3.5.7 BrowseAtlasMap

. BrowseAtlasMap(name[, p]) (function)

Returns: nothing.
For a string name that is the identifier of the character table of a simple group from the Atlas of

Finite Groups [CCN+85], BrowseAtlasMap shows the map that describes the bicyclic extensions of
this group, see [CCN+85, Chapter 6]. If the optional argument p is not given or if p is zero then the
map for the ordinary character tables is shown, if p is a prime integer then the map for the p -modular
Brauer character tables is shown, as in [JLPW95].

Clicking on a square of the map opens the character table information for the extension in question,
by calling BrowseCTblLibInfo (3.5.2).

The GAP Character Table Library 60

Example
gap> d:= [NCurses.keys.DOWN];; r:= [NCurses.keys.RIGHT];;
gap> c:= [NCurses.keys.ENTER];;
gap> BrowseData.SetReplay(Concatenation(
> "T", # show the ATLAS table for (extensions of) M12
> "Q", # quit the ATLAS table,
> "se", # select the box of the simple group,
> c, # click the box,
> "Q", # quit the info overview for M12,
> r, d, # select the box for the bicyclic extension,
> c, # click the box,
> "Q", # quit the info overview,
> "Q")); # and quit the application.
gap> BrowseAtlasMap("M12");
gap> BrowseData.SetReplay(false);

3.5.8 DisplayAtlasMap (for the name of a simple group)

. DisplayAtlasMap(name[, p]) (function)

. DisplayAtlasMap(arec) (function)

. StringsAtlasMap(name[, p]) (function)

. StringsAtlasMap(arec) (function)

Returns: DisplayAtlasMap returns nothing, StringsAtlasMap returns either fail or the list
of strings that form the rows of the Atlas map of the group in question.

Let name be an admissible name for the character table of a simple Atlas group, and p be a prime
integer or 0 (which is the default). DisplayAtlasMap shows the map for the group and its extensions,
similar to the map shown in the Atlas. StringsAtlasMap returns the list of strings that form the rows
of this map.

Example
gap> DisplayAtlasMap("M12");
--------- ---------
| | | |
| G | | G.2 | 15
| | | |
--------- ---------
--------- ---------
| | | |
| 2.G | | 2.G.2 | 11
| | | |
--------- ---------

15 9
gap> DisplayAtlasMap("M12", 2);
--------- ---------
| | | |
| G | | G.2 | 6
| | | |
--------- ---------

6 0
gap> StringsAtlasMap("M11");
["--------- ", "| | ", "| G | 10", "| | ",

The GAP Character Table Library 61

"--------- ", " 10 "]

More generally, name can be an admissible name for a character with known
ExtensionInfoCharacterTable (3.7.3) value and such that the strings describing multiplier
and outer automorphism group in this value occur in the lists CTblLib.AtlasMapMultNames and
CTblLib.AtlasMapOutNames, respectively. If not all character tables of bicyclic extensions of the
simple group in question are available then StringsAtlasMap returns fail, and DisplayAtlasMap
shows nothing.

Example
gap> DisplayAtlasMap("S10(2)");

| |
| G | 198

198
gap> DisplayAtlasMap("L12(27)");
gap> StringsAtlasMap("L12(27)");
fail

If the abovementioned requirements are not satisfied for the character tables in question then one
can provide the necessary information via a record arec .

The following example shows the “Atlas map” for the alternating group on four points, viewed as
an extension of the trivial group by a Klein four group and a group of order three.

Example
gap> DisplayAtlasMap(rec(
> labels:= [["G", "G.3"],
> ["2.G", ""],
> ["2’.G", ""],
> ["2’’.G", ""]],
> shapes:= [["closed", "closed"],
> ["closed", "empty"],
> ["closed", "empty"],
> ["closed", "empty"]],
> labelscol:= ["1", "1"],
> labelsrow:= ["1", "1", "1", "1"],
> dashedhorz:= [false, false, true, true],
> dashedvert:= [false, false],
> showdashedrows:= true));

--------- ---------
| | | |
| G | | G.3 | 1
| | | |
--------- ---------

| |
| 2.G | 1

2’.G ---------

The GAP Character Table Library 62

2’’.G ---------

1 1

The next example shows the “Atlas map” for the symmetric group on three points, viewed as a
bicyclic extension of the trivial group by groups of the orders three and two, respectively.

Example
gap> DisplayAtlasMap(rec(
> labels:= [["G", "G.2"],
> ["3.G", "3.G.2"]],
> shapes:= [["closed", "closed"],
> ["closed", "open"]],
> labelscol:= ["1", "1"],
> labelsrow:= ["1", "1"],
> dashedhorz:= [false, false],
> dashedvert:= [false, false],
> showdashedrows:= true));
--------- ---------
| | | |
| G | | G.2 | 1
| | | |
--------- ---------
--------- --------
| | |
| 3.G | | 3.G.2 1
| | |

1 1

(Depending on the terminal capabilities, the results may look nicer than the “ASCII only” graphics
shown above.)

The following components of arec are supported.

name
a string, the name of the (simple) group;

char
the characteristic, the default is 0;

identifiers
an m by n matrix whose entries are fail or the Identifier (Reference: Identifier for tables
of marks) values of the character tables of the extensions in question;

labels
an m by n matrix whose entries are fail or the strings that shall be used as the labels of the
boxes;

shapes
an m by n matrix whose entries are the strings "closed", "open", "broken", and "empty",
describing the boxes that occur;

The GAP Character Table Library 63

labelscol
a list of length n that contains the labels to be shown below the last row of boxes, intended to
show the numbers of classes in this column of boxes;

labelsrow
a list of length m that contains the labels to be shown on the right of the last column of boxes,
intended to show the numbers of characters in this row of boxes;

dashedhorz
a list of length m with entries true (the boxes in this row shall have small height) or false (the
boxes in this row shall have normal height);

dashedvert
a list of length n with entries true (the boxes in this column shall have small width) or false
(the boxes in this column shall have normal width);

showdashedrows
true or false, the default is to show rows of “dashed” boxes in the case of ordinary tables, and
to omit them in the case of Brauer tables, as happens in the printed Atlases;

onlyasciiboxes
true (show only ASCII characters when drawing the boxes) or false (use line drawing char-
acters), the default is the value returned by CTblLib.ShowOnlyASCII;

onlyasciilabels
true (show only ASCII characters in the labels inside the boxes) or false (default, use sub-
scripts if applicable); the default is the value returned by CTblLib.ShowOnlyASCII;

specialshapes
a list of length three that describes exceptional cases (intended for the treatment of “dashed
names” and “broken boxes”, look at the values in CTblLib.AtlasMapBoxesSpecial where
this component is actually used).

3.5.9 BrowseAtlasTable

. BrowseAtlasTable(name[, p]) (function)

Returns: nothing.
BrowseAtlasTable displays the character tables of bicyclic extensions of the simple group with

the name name in a window, in the same format as the Atlas of Finite Groups [CCN+85] and the
Atlas of Brauer Characters [JLPW95] do. For that, it is necessary that these tables are known, as well
as the class fusions between them and perhaps additional information (e. g., about the existence of
certain extensions). These requirements are fulfilled if the tables are contained in the Atlas, but they
may hold also in other cases.

If a prime p is given as the second argument then the p -modular Brauer tables are shown, other-
wise (or if p is zero) the ordinary tables are shown.

Example
gap> d:= [NCurses.keys.DOWN];; r:= [NCurses.keys.RIGHT];;
gap> c:= [NCurses.keys.ENTER];;
gap> BrowseData.SetReplay(Concatenation(
> "/y", # Find the string y,

The GAP Character Table Library 64

> c, # start the search,
> "nnnn", # Find more occurrences,
> "Q")); # and quit the application.
gap> BrowseAtlasTable("A6");
gap> BrowseData.SetReplay(false);

The function uses NCurses.BrowseGeneric (Browse: NCurses.BrowseGeneric). The identifier
of the table is used as the static header. The strings X_1, X_2, . . . are used as row labels for those table
rows that contain character values, and column labels are given by centralizer orders, power map
information, and class names.

3.5.10 BrowseAtlasImprovements

. BrowseAtlasImprovements([choice]) (function)

Returns: nothing.
Called without argument or with the string "ordinary", BrowseAtlasImprovements shows the

lists of improvements to the Atlas of Finite Groups [CCN+85] that are contained in [BN95] and [Nor].
Called with the string "modular", BrowseAtlasImprovements shows the list of improvements

to the Atlas of Brauer Characters [JLPW95] that are contained in [ABC].
Called with true, the concatenation of the above lists are shown.
The overview table contains one row for each improvement, and has the following columns.

Section
the part in the Atlas to which the entry belongs (Introduction, The Groups, Additional informa-
tion, Bibliography, Appendix 1, Appendix 2),

Src 1 for entries from [BN95], 2 for entries from [Nor], and 3 for entries from [ABC],

Typ the type of the improvement, one of *** (for mathematical errors), NEW (for new information), C
(for improvements concerning grammar or notational consistency), or M (for misprints or cases
of illegibility),

Page
the page and perhaps the line in the (ordinary or modular) Atlas,

Group
the name of the simple group to which the entry belongs (empty for entries not from the section
“The Groups”),

Text
the description of the entry,

** for each entry of the type ***, the subtype of the error to which some statements in [BMO17]
refer, one of CH (character values), P (power maps, element orders, and class names), FI (fusions
and indicators), I (Introduction, Bibliography, the list showing the orders of multipliers and
outer automorphism group, and the list of Conway polynomials), MP (maps), MX (descriptions of
maximal subgroups), and G (other information about the group).

The GAP Character Table Library 65

The full functionality of the function NCurses.BrowseGeneric (Browse:
NCurses.BrowseGeneric) is available.

The following example shows the input for first restricting the list to errors (type ***), then cate-
gorizing the filtered list by the subtype of the error, and then expanding the category for the subtype
CH.

Example
gap> n:= [14, 14, 14, 14, 14, 14];; # ‘‘do nothing’’
gap> enter:= [NCurses.keys.ENTER];;
gap> BrowseData.SetReplay(Concatenation(
> "scrr", # select the ’Typ’ column,
> "f***", enter, # filter rows containing ’***’,
> "scrrrrrrsc", enter, # categorize by the error kind
> "sr", enter, # expand the ’CH’ category
> n, "Q")); # and quit
gap> BrowseAtlasImprovements();
gap> BrowseData.SetReplay(false);

3.6 Duplicates of Library Character Tables

It can be useful to deal with different instances of “the same” character table. An example is the
situation that a group G, say, contains several classes of isomorphic maximal subgroups that have
different class fusions; the attribute Maxes (3.7.1) of the character table of G then contains several
entries that belong to the same group, but the identifiers of the character tables are different.

On the other hand, it can be useful to consider only one of the different instances when one searches
for character tables with certain properties, for example using OneCharacterTableName (3.1.5).

For that, we introduce the following concept. A character table t1 is said to be a duplicate of
another character table t2 if the attribute IdentifierOfMainTable (3.6.2) returns the Identifier
(Reference: Identifier for character tables) value of t2 when it is called with t1, and we call t2 the
main table of t1. In this case, IsDuplicateTable (3.6.1) returns true for t1.

If the character table t1 is not a duplicate of any other library table then IdentifierOfMainTable
(3.6.2) returns fail for t1 and IsDuplicateTable (3.6.1) returns false.

See AllCharacterTableNames (3.1.4) for examples how to apply IsDuplicateTable (3.6.1)
in practice.

We do not promise that two library tables for which IsDuplicateTable (3.6.1) returns false are
necessarily different. (And since nonisomorphic groups may have the same character table, it would
not make sense to think about restricting a search to a subset of library tables that belong to pairwise
nonisomorphic groups.)

Currently IdentifierOfMainTable (3.6.2) does not return fail for t1 if
ConstructionInfoCharacterTable (3.7.4) is set in t1, the first entry of the attribute value is
"ConstructPermuted", and one of the following holds.

• The second entry of the ConstructionInfoCharacterTable (3.7.4) value is a list of length 1
that contains the Identifier (Reference: Identifier for character tables) value of t2.

• The SpinSym package is loaded and t1 is one of the character tables provided by this package.
These tables are not declared as permuted tables of library tables, but we want to regard them
as duplicates.

The GAP Character Table Library 66

3.6.1 IsDuplicateTable

. IsDuplicateTable(tbl) (property)

For an ordinary character table tbl from the GAP Character Table Library, this function returns
true if tbl was constructed from another library character table by permuting rows and columns, via
the attribute ConstructionInfoCharacterTable (3.7.4). Otherwise false is returned, in particular
if tbl is not a character table from the GAP Character Table Library.

One application of this function is to restrict the search with AllCharacterTableNames (3.1.4)
to only one library character table for each class of permutation equivalent tables. Note that this does
property of the search result cannot be guaranteed if private character tables have been added to the
library, see NotifyCharacterTable (4.7.5).

Example
gap> Maxes(CharacterTable("A6"));
["A5", "A6M2", "3^2:4", "s4", "A6M5"]
gap> IsDuplicateTable(CharacterTable("A5"));
false
gap> IsDuplicateTable(CharacterTable("A6M2"));
true

3.6.2 IdentifierOfMainTable

. IdentifierOfMainTable(tbl) (attribute)

If tbl is an ordinary character table that is a duplicate in the sense of the introduction to Section 3.6
then this function returns the Identifier (Reference: Identifier for character tables) value of the
main table of tbl . Otherwise fail is returned.

Example
gap> Maxes(CharacterTable("A6"));
["A5", "A6M2", "3^2:4", "s4", "A6M5"]
gap> IdentifierOfMainTable(CharacterTable("A5"));
fail
gap> IdentifierOfMainTable(CharacterTable("A6M2"));
"A5"

3.6.3 IdentifiersOfDuplicateTables

. IdentifiersOfDuplicateTables(tbl) (attribute)

For an ordinary character table tbl , this function returns the list of Identifier (Reference:
Identifier for character tables) values of those character tables from the GAP Character Table Li-
brary that are duplicates of tbl , in the sense of the introduction to Section 3.6.

Example
gap> Maxes(CharacterTable("A6"));
["A5", "A6M2", "3^2:4", "s4", "A6M5"]
gap> IdentifiersOfDuplicateTables(CharacterTable("A5"));
["A6M2", "Alt(5)"]
gap> IdentifiersOfDuplicateTables(CharacterTable("A6M2"));
[]

The GAP Character Table Library 67

3.7 Attributes for Library Character Tables

This section describes certain attributes which are set only for certain (not necessarily all) character
tables from the GAP Character Table Library. The attribute values are part of the database, there are
no methods for computing them, except for InfoText (3.7.5).

Other such attributes and properties are described in manual sections because the context
fits better. These attributes are FusionToTom (3.2.4), GroupInfoForCharacterTable (3.3.1),
KnowsSomeGroupInfo (3.3.2), IsNontrivialDirectProduct (3.3.7), DeligneLusztigNames
(3.4.2), DeligneLusztigName (3.4.3), KnowsDeligneLusztigNames (3.4.4), IsDuplicateTable
(3.6.1), and CASInfo (4.4.1).

3.7.1 Maxes

. Maxes(tbl) (attribute)

If this attribute is set for an ordinary character table tbl then the value is a list of identifiers of
the ordinary character tables of all maximal subgroups of tbl . There is no default method to compute
this value from tbl .

If the Maxes value of tbl is stored then it lists exactly one representative for each conjugacy class
of maximal subgroups of the group of tbl , and the character tables of these maximal subgroups are
available in the GAP Character Table Library, and compatible class fusions to tbl are stored on these
tables (see the example in Section 2.3.5).

Example
gap> tbl:= CharacterTable("M11");;
gap> HasMaxes(tbl);
true
gap> maxes:= Maxes(tbl);
["A6.2_3", "L2(11)", "3^2:Q8.2", "A5.2", "2.S4"]
gap> CharacterTable(maxes[1]);
CharacterTable("A6.2_3")

3.7.2 ProjectivesInfo

. ProjectivesInfo(tbl) (attribute)

If this attribute is set for an ordinary character table tbl then the value is a list of records, each
with the following components.

name
the Identifier (Reference: Identifier for character tables) value of the character table of
the covering whose faithful irreducible characters are described by the record,

chars
a list of values lists of faithful projective irreducibles; only one representative of each family of
Galois conjugates is contained in this list. and

Example
gap> ProjectivesInfo(CharacterTable("A5"));
[rec(

chars := [[2, 0, -1, E(5)+E(5)^4, E(5)^2+E(5)^3],

The GAP Character Table Library 68

[2, 0, -1, E(5)^2+E(5)^3, E(5)+E(5)^4],
[4, 0, 1, -1, -1], [6, 0, 0, 1, 1]], name := "2.A5")]

3.7.3 ExtensionInfoCharacterTable

. ExtensionInfoCharacterTable(tbl) (attribute)

Let tbl be the ordinary character table of a group G, say. If this attribute is set for tbl then the
value is a list of length two, the first entry being a string M that describes the Schur multiplier of G and
the second entry being a string A that describes the outer automorphism group of G. Trivial multiplier
or outer automorphism group are denoted by an empty string.

If tbl is a table from the GAP Character Table Library and G is (nonabelian and) simple then the
value is set. In this case, an admissible name for the character table of a universal covering group of
G (if this table is available and different from tbl) is given by the concatenation of M, ".", and the
Identifier (Reference: Identifier for character tables) value of tbl . Analogously, an admissible
name for the character table of the automorphism group of G (if this table is available and different
from tbl) is given by the concatenation of the Identifier (Reference: Identifier for character
tables) value of tbl , ".", and A.

Example
gap> ExtensionInfoCharacterTable(CharacterTable("A5"));
["2", "2"]

3.7.4 ConstructionInfoCharacterTable

. ConstructionInfoCharacterTable(tbl) (attribute)

If this attribute is set for an ordinary character table tbl then the value is a list that describes
how this table was constructed. The first entry is a string that is the identifier of the function that was
applied to the pre-table record; the remaining entries are the arguments for that function, except that
the pre-table record must be prepended to these arguments.

3.7.5 InfoText

. InfoText(tbl) (method)

This method for library character tables returns an empty string if no InfoText value is stored on
the table tbl .

Without this method, it would be impossible to use InfoText in calls to
AllCharacterTableNames (3.1.4), as in the following example.

Example
gap> AllCharacterTableNames(InfoText,
> s -> PositionSublist(s, "tests:") <> fail);;

Chapter 4

Contents of the GAP Character Table
Library

This chapter informs you about

• the currently available character tables (see Section 4.1),

• generic character tables (see Section 4.2),

• the subsets of Atlas tables (see Section 4.3) and CAS tables (see Section 4.4),

• installing the library, and related user preferences (see Section 4.5).

The following rather technical sections are thought for those who want to maintain or extend the
Character Table Library.

• the technicalities of the access to library tables (see Section 4.6),

• how to extend the library (see Section 4.7), and

• sanity checks (see Section 4.8).

4.1 Ordinary and Brauer Tables in the GAP Character Table Library

This section gives a brief overview of the contents of the GAP character table library. For the details
about, e. g., the structure of data files, see Section 4.6.

The changes in the character table library since the first release of GAP 4 are listed in a file that
can be fetched from

https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/htm/ctbldiff.htm .
There are three different kinds of character tables in the GAP library, namely ordinary character

tables, Brauer tables, and generic character tables. Note that the Brauer table and the corresponding
ordinary table of a group determine the decomposition matrix of the group (and the decomposition
matrices of its blocks). These decomposition matrices can be computed from the ordinary and modular
irreducibles with GAP, see Section (Reference: Operations Concerning Blocks) for details. A
collection of PDF files of the known decomposition matrices of Atlas tables in the GAP Character
Table Library can also be found at

https://www.math.rwth-aachen.de/~MOC/decomposition/.

69

https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/htm/ctbldiff.htm
https://www.math.rwth-aachen.de/~MOC/decomposition/

The GAP Character Table Library 70

4.1.1 Ordinary Character Tables

Two different aspects are useful to list the ordinary character tables available in GAP, namely the
aspect of the source of the tables and that of relations between the tables.

As for the source, there are first of all two big sources, namely the Atlas of Finite Groups (see
Section 4.3) and the CAS library of character tables (see [NPP84]). Many Atlas tables are contained
in the CAS library, and difficulties may arise because the succession of characters and classes in CAS
tables and Atlas tables are in general different, so see Section 4.4 for the relations between these two
variants of character tables of the same group. A subset of the CAS tables is the set of tables of Sylow
normalizers of sporadic simple groups as published in [Ost86] this may be viewed as another source
of character tables. The library also contains the character tables of factor groups of space groups
(computed by W. Hanrath, see [Han88]) that are part of [HP89], in the form of two microfiches; these
tables are given in CAS format (see Section 4.4) on the microfiches, but they had not been part of the
“official” CAS library.

To avoid confusion about the ordering of classes and characters in a given table, authorship and so
on, the InfoText (Reference: InfoText) value of the table contains the information

origin: ATLAS of finite groups
for Atlas tables (see Section 4.3),

origin: Ostermann
for tables contained in [Ost86],

origin: CAS library
for any table of the CAS table library that is contained neither in the Atlas nor in [Ost86], and

origin: Hanrath library
for tables contained in the microfiches in [HP89].

The InfoText (Reference: InfoText) value usually contains more detailed information, for example
that the table in question is the character table of a maximal subgroup of an almost simple group. If the
table was contained in the CAS library then additional information may be available via the CASInfo
(4.4.1) value.

If one is interested in the aspect of relations between the tables, i. e., the internal structure of the
library of ordinary tables, the contents can be listed up the following way.

We have

• all Atlas tables (see Section 4.3), i. e., the tables of the simple groups which are contained in
the Atlas of Finite Groups, and the tables of cyclic and bicyclic extensions of these groups,

• most tables of maximal subgroups of sporadic simple groups (not all for the Monster group),

• many tables of maximal subgroups of other Atlas tables; the Maxes (3.7.1) value for the table
is set if all tables of maximal subgroups are available,

• the tables of many Sylow p-normalizers of sporadic simple groups; this includes the tables
printed in [Ost86] except J4N2, Co1N2, Fi22N2, but also other tables are available; more gener-
ally, several tables of normalizers of other radical p-subgroups are available, such as normalizers
of defect groups of p-blocks,

• some tables of element centralizers,

The GAP Character Table Library 71

• some tables of Sylow p-subgroups,

• and a few other tables, e. g. W(F4)

Note that class fusions stored on library tables are not guaranteed to be compatible for any two
subgroups of a group and their intersection, and they are not guaranteed to be consistent w. r. t. the
composition of maps.

4.1.2 Brauer Tables

The library contains all tables of the Atlas of Brauer Tables ([JLPW95]), and many other Brauer tables
of bicyclic extensions of simple groups which are known yet. The Brauer tables in the library contain
the information

origin: modular ATLAS of finite groups

in their InfoText (Reference: InfoText) string.

4.2 Generic Character Tables

Generic character tables provide a means for writing down the character tables of all groups in a
(usually infinite) series of similar groups, e. g., cyclic groups, or symmetric groups, or the general
linear groups GL(2,q) where q ranges over certain prime powers.

Let {Gq|q ∈ I} be such a series, where I is an index set. The character table of one fixed member
Gq could be computed using a function that takes q as only argument and constructs the table of Gq.
It is, however, often desirable to compute not only the whole table but to access just one specific
character, or to compute just one character value, without computing the whole character table.

For example, both the conjugacy classes and the irreducible characters of the symmetric group
Sn are in bijection with the partitions of n. Thus for given n it makes sense to ask for the character
corresponding to a particular partition, or just for its character value at another partition.

A generic character table in GAP allows one such local evaluations. In this sense, GAP can deal
also with character tables that are too big to be computed and stored as a whole.

Currently the only operations for generic tables supported by GAP are the specialisation
of the parameter q in order to compute the whole character table of Gq, and local evaluation
(see ClassParameters (Reference: ClassParameters) for an example). GAP does not support
the computation of, e. g., generic scalar products.

While the numbers of conjugacy classes for the members of a series of groups are usually not
bounded, there is always a fixed finite number of types (equivalence classes) of conjugacy classes;
very often the equivalence relation is isomorphism of the centralizers of the representatives.

For each type t of classes and a fixed q ∈ I, a parametrisation of the classes in t is a function that
assigns to each conjugacy class of Gq in t a parameter by which it is uniquely determined. Thus the
classes are indexed by pairs [t, pt] consisting of a type t and a parameter pt for that type.

For any generic table, there has to be a fixed number of types of irreducible characters of Gq, too.
Like the classes, the characters of each type are parametrised.

In GAP, the parametrisations of classes and characters for tables computed from generic
tables is stored using the attributes ClassParameters (Reference: ClassParameters) and
CharacterParameters (Reference: CharacterParameters).

The GAP Character Table Library 72

4.2.1 Available generic character tables

Currently, generic tables of the following groups –in alphabetical order– are available in GAP. (A
list of the names of generic tables known to GAP is LIBTABLE.GENERIC.firstnames.) We list
the function calls needed to get a specialized table, the generic table itself can be accessed by
calling CharacterTable (Reference: CharacterTable) with the first argument only; for example,
CharacterTable("Cyclic") yields the generic table of cyclic groups.

CharacterTable("Alternating", n)
the table of the alternating group on n letters,

CharacterTable("Cyclic", n)
the table of the cyclic group of order n,

CharacterTable("Dihedral", 2n)
the table of the dihedral group of order 2n,

CharacterTable("DoubleCoverAlternating", n)
the table of the Schur double cover of the alternating group on n letters (see [Noe02]),

CharacterTable("DoubleCoverSymmetric", n)
the table of the standard Schur double cover of the symmetric group on n letters (see [Noe02]),

CharacterTable("GL", 2, q)
the table of the general linear group GL(2,q), for a prime power q,

CharacterTable("GU", 3, q)
the table of the general unitary group GU(3,q), for a prime power q,

CharacterTable("P:Q", [p,q]) and CharacterTable("P:Q", [p,q,k])
the table of the Frobenius extension of the nontrivial cyclic group of odd order p by the nontrivial
cyclic group of order q where q divides pi−1 for all prime divisors pi of p; if p is a prime power
then q determines the group uniquely and thus the first version can be used, otherwise the action
of the residue class of k modulo p is taken for forming orbits of length q each on the nonidentity
elements of the group of order p,

CharacterTable("PSL", 2, q)
the table of the projective special linear group PSL(2,q), for a prime power q,

CharacterTable("SL", 2, q)
the table of the special linear group SL(2,q), for a prime power q,

CharacterTable("SU", 3, q)
the table of the special unitary group SU(3,q), for a prime power q,

CharacterTable("Suzuki", q)
the table of the Suzuki group Sz(q) = 2B2(q), for q an odd power of 2,

CharacterTable("Symmetric", n)
the table of the symmetric group on n letters,

CharacterTable("WeylB", n)
the table of the Weyl group of type Bn,

The GAP Character Table Library 73

CharacterTable("WeylD", n)
the table of the Weyl group of type Dn.

In addition to the above calls that really use generic tables, the following calls to CharacterTable
(Reference: CharacterTable) are to some extent “generic” constructions. But note that no local
evaluation is possible in these cases, as no generic table object exists in GAP that can be asked for
local information.

CharacterTable("Quaternionic", 4n)
the table of the generalized quaternionic group of order 4n,

CharacterTableWreathSymmetric(tbl, n)
the character table of the wreath product of the group whose table is tbl with the sym-
metric group on n letters, see CharacterTableWreathSymmetric (Reference: Charac-
terTableWreathSymmetric).

4.2.2 CharacterTableSpecialized

. CharacterTableSpecialized(gentbl, q) (function)

For a record gentbl representing a generic character table, and a parameter value q ,
CharacterTableSpecialized returns a character table object computed by evaluating gentbl at
q .

Example
gap> c5:= CharacterTableSpecialized(CharacterTable("Cyclic"), 5);
CharacterTable("C5")
gap> Display(c5);
C5

5 1 1 1 1 1

1a 5a 5b 5c 5d
5P 1a 1a 1a 1a 1a

X.1 1 1 1 1 1
X.2 1 A B /B /A
X.3 1 B /A A /B
X.4 1 /B A /A B
X.5 1 /A /B B A

A = E(5)
B = E(5)^2

(Also CharacterTable("Cyclic", 5) could have been used to construct the above table.)
Example

gap> HasClassParameters(c5); HasCharacterParameters(c5);
true
true
gap> ClassParameters(c5); CharacterParameters(c5);
[[1, 0], [1, 1], [1, 2], [1, 3], [1, 4]]

The GAP Character Table Library 74

[[1, 0], [1, 1], [1, 2], [1, 3], [1, 4]]
gap> ClassParameters(CharacterTable("Symmetric", 3));
[[1, [1, 1, 1]], [1, [2, 1]], [1, [3]]]

Here are examples for the “local evaluation” of generic character tables, first a character value of
the cyclic group shown above, then a character value and a representative order of a symmetric group.

Example
gap> CharacterTable("Cyclic").irreducibles[1][1](5, 2, 3);
E(5)
gap> tbl:= CharacterTable("Symmetric");;
gap> tbl.irreducibles[1][1](5, [3, 2], [2, 2, 1]);
1
gap> tbl.orders[1](5, [2, 1, 1, 1]);
2

4.2.3 Components of generic character tables

Any generic table in GAP is represented by a record. The following components are supported for
generic character table records.

centralizers
list of functions, one for each class type t, with arguments q and pt , returning the centralizer
order of the class [t, pt],

charparam
list of functions, one for each character type t, with argument q, returning the list of character
parameters of type t,

classparam
list of functions, one for each class type t, with argument q, returning the list of class parameters
of type t,

classtext
list of functions, one for each class type t, with arguments q and pt , returning a representative
of the class with parameter [t, pt] (note that this element need not actually lie in the group in
question, for example it may be a diagonal matrix but the characteristic polynomial in the group
s irreducible),

domain
function of q returning true if q is a valid parameter, and false otherwise,

identifier
identifier string of the generic table,

irreducibles
list of list of functions, in row i and column j the function of three arguments, namely q and the
parameters pt and ps of the class type t and the character type s,

isGenericTable
always true

The GAP Character Table Library 75

libinfo
record with components firstname (Identifier (Reference: Identifier for character ta-
bles) value of the table) and othernames (list of other admissible names)

matrix
function of q returning the matrix of irreducibles of Gq,

orders
list of functions, one for each class type t, with arguments q and pt , returning the representative
order of elements of type t and parameter pt ,

powermap
list of functions, one for each class type t, each with three arguments q, pt , and k, returning the
pair [s, ps] of type and parameter for the k-th power of the class with parameter [t, pt],

size
function of q returning the order of Gq,

specializedname
function of q returning the Identifier (Reference: Identifier for character tables) value of
the table of Gq,

text
string informing about the generic table

In the specialized table, the ClassParameters (Reference: ClassParameters) and
CharacterParameters (Reference: CharacterParameters) values are the lists of parameters [t, pt]
of classes and characters, respectively.

If the matrix component is present then its value implements a method to compute the com-
plete table of small members Gq more efficiently than via local evaluation; this method will
be called when the generic table is used to compute the whole character table for a given q
(see CharacterTableSpecialized (4.2.2)).

4.2.4 Example: The generic table of cyclic groups

For the cyclic group Cq = 〈x〉 of order q, there is one type of classes. The class parameters are integers
k ∈ {0, . . . ,q− 1}, the class with parameter k consists of the group element xk. Group order and
centralizer orders are the identity function q 7→ q, independent of the parameter k. The representative
order function maps the parameter pair [q,k] to q/gcd(q,k), which is the order of xk in Cq; the p-th
power map is the function mapping the triple (q,k, p) to the parameter [1,(kp mod q)].

There is one type of characters, with parameters l ∈ {0, . . . ,q−1}; for eq a primitive complex q-th
root of unity, the character values are χl(xk) = ekl

q .

Example
gap> Print(CharacterTable("Cyclic"), "\n");
rec(

centralizers := [function (n, k)
return n;

end],
charparam := [function (n)

return [0 .. n - 1];

The GAP Character Table Library 76

end],
classparam := [function (n)

return [0 .. n - 1];
end],

domain := <Category "(IsInt and IsPosRat)">,
identifier := "Cyclic",
irreducibles := [[function (n, k, l)

return E(n) ^ (k * l);
end]],

isGenericTable := true,
libinfo := rec(

firstname := "Cyclic",
othernames := []),

orders := [function (n, k)
return n / Gcd(n, k);

end],
powermap := [function (n, k, pow)

return [1, k * pow mod n];
end],

size := function (n)
return n;

end,
specializedname := function (q)

return Concatenation("C", String(q));
end,

text := "generic character table for cyclic groups")

4.2.5 Example: The generic table of the general linear group GL(2,q)

We have four types t1, t2, t3, t4 of classes, according to the rational canonical form of the elements.
t1 describes scalar matrices, t2 nonscalar diagonal matrices, t3 companion matrices of (X − ρ)2 for
nonzero elements ρ ∈ Fq, and t4 companion matrices of irreducible polynomials of degree 2 over Fq.

The sets of class parameters of the types are in bijection with nonzero elements in Fq for t1 and t3,
with the set

{{ρ,τ};ρ,τ ∈ Fq,ρ 6=0,τ 6=0,ρ 6=τ}

for t2, and with the set {{ε,εq};ε ∈ Fq2 \Fq} for t4.
The centralizer order functions are q 7→ (q2− 1)(q2− q) for type t1, q 7→ (q− 1)2 for type t2,

q 7→ q(q−1) for type t3, and q 7→ q2−1 for type t4.
The representative order function of t1 maps (q,ρ) to the order of ρ in Fq, that of t2 maps (q,{ρ,τ})

to the least common multiple of the orders of ρ and τ .
The file contains something similar to the following table.

rec(
identifier := "GL2",
specializedname := (q -> Concatenation("GL(2,", String(q), ")")),
size := (q -> (q^2-1)*(q^2-q)),
text := "generic character table of GL(2,q), see Robert Steinberg: ...",
centralizers := [function(q, k) return (q^2-1) * (q^2-q); end,

..., ..., ...],
classparam := [(q -> [0 .. q-2]), ..., ..., ...],

The GAP Character Table Library 77

charparam := [(q -> [0 .. q-2]), ..., ..., ...],
powermap := [function(q, k, pow) return [1, (k*pow) mod (q-1)]; end,

..., ..., ...],
orders:= [function(q, k) return (q-1)/Gcd(q-1, k); end,

..., ..., ...],
irreducibles := [[function(q, k, l) return E(q-1)^(2*k*l); end,

..., ..., ...],
[..., ..., ..., ...],
[..., ..., ..., ...],
[..., ..., ..., ...]],

classtext := [..., ..., ..., ...],
domain := IsPrimePowerInt,
isGenericTable := true)

4.3 Atlas Tables

The GAP character table library contains all character tables of bicyclic extensions of simple groups
that are included in the Atlas of Finite Groups ([CCN+85], from now on called Atlas), and the Brauer
tables contained in the Atlas of Brauer Characters ([JLPW95]).

These tables have the information

origin: ATLAS of finite groups

or

origin: modular ATLAS of finite groups

in their InfoText (Reference: InfoText) value, they are simply called Atlas tables further on.
For displaying Atlas tables with the row labels used in the Atlas, or for displaying decomposition

matrices, see LaTeXStringDecompositionMatrix (Reference: LaTeXStringDecompositionMa-
trix) and AtlasLabelsOfIrreducibles (4.3.6).

In addition to the information given in Chapters 6 to 8 of the Atlas which tell you how to read the
printed tables, there are some rules relating these to the corresponding GAP tables.

4.3.1 Improvements to the Atlas

For the GAP Character Table Library not the printed versions of the Atlas of Finite Groups and the
Atlas of Brauer Characters are relevant but the revised versions given by the currently three lists of
improvements that are maintained by Simon Norton. The first such list is contained in [BN95], and
is printed in the Appendix of [JLPW95]; it contains the improvements that had been known until the
“Atlas of Brauer Characters” was published. The second list contains the improvements to the Atlas
of Finite Groups that were found since the publication of [JLPW95]. It can be found in the internet,
an HTML version at

http://web.mat.bham.ac.uk/atlas/html/atlasmods.html
and a DVI version at
http://web.mat.bham.ac.uk/atlas/html/atlasmods.dvi.
The third list contains the improvements to the Atlas of Brauer Characters, HTML and PDF ver-

sions can be found in the internet at
https://www.math.rwth-aachen.de/~MOC/ABCerr.html

http://web.mat.bham.ac.uk/atlas/html/atlasmods.html
http://web.mat.bham.ac.uk/atlas/html/atlasmods.dvi
https://www.math.rwth-aachen.de/~MOC/ABCerr.html

The GAP Character Table Library 78

and
https://www.math.rwth-aachen.de/~MOC/ABCerr.pdf,
respectively.
Also some tables are regarded as Atlas tables that are not printed in the Atlas but available in

Atlas format, according to the lists of improvements mentioned above. Currently these are the tables
related to L2(49), L2(81), L6(2), O−8 (3), O+

8 (3), S10(2), and 2E6(2).3.

4.3.2 Power Maps

For the tables of 3.McL, 32.U4(3) and its covers, and 32.U4(3).23 and its covers, the power maps
are not uniquely determined by the information from the Atlas but determined only up to matrix au-
tomorphisms (see MatrixAutomorphisms (Reference: MatrixAutomorphisms)) of the irreducible
characters. In these cases, the first possible map according to lexicographical ordering was chosen,
and the automorphisms are listed in the InfoText (Reference: InfoText) strings of the tables.

4.3.3 Projective Characters and Projections

If G (or G.a) has a nontrivial Schur multiplier then the attribute ProjectivesInfo (3.7.2) of the GAP
table object of G (or G.a) is set; the chars component of the record in question is the list of values
lists of those faithful projective irreducibles that are printed in the Atlas (so-called proxy character),
and the map component lists the positions of columns in the covering for which the column is printed
in the Atlas (a so-called proxy class, this preimage is denoted by g0 in Chapter 7, Section 14 of the
Atlas).

4.3.4 Tables of Isoclinic Groups

As described in Chapter 6, Section 7 and in Chapter 7, Section 18 of the Atlas, there exist two (often
nonisomorphic) groups of structure 2.G.2 for a simple group G, which are isoclinic. The table in the
GAP Character Table Library is the one printed in the Atlas, the table of the isoclinic variant can be
constructed using CharacterTableIsoclinic (Reference: CharacterTableIsoclinic).

4.3.5 Ordering of Characters and Classes

(Throughout this section, G always means the simple group involved.)

1. For G itself, the ordering of classes and characters in the GAP table coincides with the one in
the Atlas.

2. For an automorphic extension G.a, there are three types of characters.

• If a character χ of G extends to G.a then the different extensions χ0,χ1, . . . ,χa−1 are
consecutive in the table of G.a (see [CCN+85, Chapter 7, Section 16]).

• If some characters of G fuse to give a single character of G.a then the position of that
character in the table of G.a is given by the position of the first involved character of G.

• If both extension and fusion occur for a character then the resulting characters are consec-
utive in the table of G.a, and each replaces the first involved character of G.

3. Similarly, there are different types of classes for an automorphic extension G.a, as follows.

https://www.math.rwth-aachen.de/~MOC/ABCerr.pdf

The GAP Character Table Library 79

• If some classes collapse then the resulting class replaces the first involved class of G.

• For a > 2, any proxy class and its algebraic conjugates that are not printed in the Atlas are
consecutive in the table of G.a; if more than two classes of G.a have the same proxy class
(the only case that actually occurs is for a = 5) then the ordering of non-printed classes is
the natural one of corresponding Galois conjugacy operators ∗k (see [CCN+85, Chapter 7,
Section 19]).

• For a1, a2 dividing a such that a1 ≤ a2, the classes of G.a1 in G.a precede the classes
of G.a2 not contained in G.a1. This ordering is the same as in the Atlas, with the only
exception U3(8).6.

4. For a central extension M.G, there are two different types of characters, as follows.

• Each character can be regarded as a faithful character of a factor group m.G, where m
divides M. Characters with the same kernel are consecutive as in the Atlas, the ordering
of characters with different kernels is given by the order of precedence 1,2,4,3,6,12 for
the different values of m.

• If m > 2, a faithful character of m.G that is printed in the Atlas (a so-called proxy char-
acter) represents two or more Galois conjugates. In each Atlas table in GAP, a proxy
character always precedes the non-printed characters with this proxy. The case m = 12 is
the only one that actually occurs where more than one character for a proxy is not printed.
In this case, the non-printed characters are ordered according to the corresponding Galois
conjugacy operators ∗5, ∗7, ∗11 (in this order).

5. For the classes of a central extension we have the following.

• The preimages of a G-class in M.G are subsequent, the ordering is the same as that of the
lifting order rows in [CCN+85, Chapter 7, Section 7].

• The primitive roots of unity chosen to represent the generating central element (i. e., the
element in the second class of the GAP table) are E(3), E(4), E(6)^5 (= E(2)*E(3)),
and E(12)^7 (= E(3)*E(4)), for m = 3, 4, 6, and 12, respectively.

6. For tables of bicyclic extensions m.G.a, both the rules for automorphic and central extensions
hold. Additionally we have the following three rules.

• Whenever classes of the subgroup m.G collapse in m.G.a then the resulting class replaces
the first involved class.

• Whenever characters of the subgroup m.G collapse fuse in m.G.a then the result character
replaces the first involved character.

• Extensions of a character are subsequent, and the extensions of a proxy character precede
the extensions of characters with this proxy that are not printed.

• Preimages of a class of G.a in m.G.a are subsequent, and the preimages of a proxy class
precede the preimages of non-printed classes with this proxy.

4.3.6 AtlasLabelsOfIrreducibles

. AtlasLabelsOfIrreducibles(tbl[, short]) (function)

The GAP Character Table Library 80

Let tbl be the (ordinary or Brauer) character table of a bicyclic extension of a simple group
that occurs in the Atlas of Finite Groups [CCN+85] or the Atlas of Brauer Characters [JLPW95].
AtlasLabelsOfIrreducibles returns a list of strings, the i-th entry being a label for the i-th irre-
ducible character of tbl .

The labels have the following form. We state the rules only for ordinary characters, the rules for
Brauer characters are obtained by replacing χ by ϕ .

First consider only downward extensions m.G of a simple group G. If m ≤ 2 then only labels of
the form χi occur, which denotes the i-th ordinary character shown in the Atlas.

The labels of faithful ordinary characters of groups m.G with m≥ 3 are of the form χi, χ∗i , or χ∗ki ,
which means the i-th character printed in the Atlas, the unique character that is not printed and for
which χi acts as proxy (see [CCN+85, Chapter 7, Sections 8 and 19]), and the image of the printed
character χi under the algebraic conjugacy operator ∗k, respectively.

For groups m.G.a with a > 1, the labels of the irreducible characters are derived from the labels
of the irreducible constituents of their restrictions to m.G, as follows.

1. If the ordinary irreducible character χi of m.G extends to m.G.a then the a′ extensions are
denoted by χi,0,χi,1, . . . ,χi,a′ , where χi,0 is the character whose values are printed in the Atlas.

2. The label χi1+i2+···+ia means that a different characters χi1 ,χi2 , . . . ,χia of m.G induce to an irre-
ducible character of m.G.a with this label.

If either true or the string "short" is entered as the second argument then the label has the
short form χi1+. Note that i2, i3, . . . , ia can be read off from the fusion signs in the Atlas.

3. Finally, the label χi1, j1+i2, j2+···+ia′ , ja′ means that the characters χi1 ,χi2 , . . . ,χia′ of m.G extend
to a group that lies properly between m.G and m.G.a, and the extensions χi1, j1 ,χi2, j2 , . . .χia′ , ja′
induce to an irreducible character of m.G.a with this label.

If true or the string "short" was entered as the second argument then the label has the short
form χi, j+.

Example
gap> AtlasLabelsOfIrreducibles(CharacterTable("3.A7.2"));
["\\chi_{1,0}", "\\chi_{1,1}", "\\chi_{2,0}", "\\chi_{2,1}",

"\\chi_{3+4}", "\\chi_{5,0}", "\\chi_{5,1}", "\\chi_{6,0}",
"\\chi_{6,1}", "\\chi_{7,0}", "\\chi_{7,1}", "\\chi_{8,0}",
"\\chi_{8,1}", "\\chi_{9,0}", "\\chi_{9,1}", "\\chi_{17+17\\ast 2}",
"\\chi_{18+18\\ast 2}", "\\chi_{19+19\\ast 2}",
"\\chi_{20+20\\ast 2}", "\\chi_{21+21\\ast 2}",
"\\chi_{22+23\\ast 8}", "\\chi_{22\\ast 8+23}"]

gap> AtlasLabelsOfIrreducibles(CharacterTable("3.A7.2"), "short");
["\\chi_{1,0}", "\\chi_{1,1}", "\\chi_{2,0}", "\\chi_{2,1}",

"\\chi_{3+}", "\\chi_{5,0}", "\\chi_{5,1}", "\\chi_{6,0}",
"\\chi_{6,1}", "\\chi_{7,0}", "\\chi_{7,1}", "\\chi_{8,0}",
"\\chi_{8,1}", "\\chi_{9,0}", "\\chi_{9,1}", "\\chi_{17+}",
"\\chi_{18+}", "\\chi_{19+}", "\\chi_{20+}", "\\chi_{21+}",
"\\chi_{22+}", "\\chi_{23+}"]

4.3.7 Examples of the Atlas Format for GAP Tables

We give three little examples for the conventions stated in Section 4.3, listing both the Atlas format
and the table displayed by GAP.

The GAP Character Table Library 81

First, let G be the trivial group. We consider the cyclic group C6 of order 6. It can be viewed in
several ways, namely

• as a downward extension of the factor group C2 which contains G as a subgroup, or equivalently,
as an upward extension of the subgroup C3 which has a factor group isomorphic to G:

3.G 3.G.2

G G.2

; @ ; ; @

1 1
p power A
p’ part A
ind 1A fus ind 2A

χ1 + 1 : ++ 1

ind 1 fus ind 2
3 6
3 6

χ2 o2 1 : oo2 1

2 1 1 1 1 1 1
3 1 1 1 1 1 1

1a 3a 3b 2a 6a 6b
2P 1a 3b 3a 1a 3b 3a
3P 1a 1a 1a 2a 2a 2a

X.1 1 1 1 1 1 1
X.2 1 1 1 -1 -1 -1
X.3 1 A /A 1 A /A
X.4 1 A /A -1 -A -/A
X.5 1 /A A 1 /A A
X.6 1 /A A -1 -/A -A

A = E(3)
= (-1+ER(-3))/2 = b3

X.1, X.2 extend χ1. X.3, X.4 extend the proxy character χ2. X.5, X.6 extend the not printed
character with proxy χ2. The classes 1a, 3a, 3b are preimages of 1A, and 2a, 6a, 6b are preim-
ages of 2A.

• as a downward extension of the factor group C3 which contains G as a subgroup, or equivalently,
as an upward extension of the subgroup C2 which has a factor group isomorphic to G:

2.G 2.G.3

G G.3

; @ ; ; @

1 1
p power A
p’ part A
ind 1A fus ind 3A

χ1 + 1 : +oo 1

ind 1 fus ind 3
2 6

χ2 + 1 : +oo 1

2 1 1 1 1 1 1
3 1 1 1 1 1 1

1a 2a 3a 6a 3b 6b
2P 1a 1a 3b 3b 3a 3a
3P 1a 2a 1a 2a 1a 2a

X.1 1 1 1 1 1 1
X.2 1 1 A A /A /A
X.3 1 1 /A /A A A
X.4 1 -1 1 -1 1 -1
X.5 1 -1 A -A /A -/A
X.6 1 -1 /A -/A A -A

A = E(3)
= (-1+ER(-3))/2 = b3

X.1 to X.3 extend χ1, X.4 to X.6 extend χ2. The classes 1a and 2a are preimages of 1A, 3a and
6a are preimages of the proxy class 3A, and 3b and 6b are preimages of the not printed class
with proxy 3A.

• as a downward extension of the factor groups C3 and C2 which have G as a factor group:

The GAP Character Table Library 82

6.G

3.G

2.G

G

; @

1
p power
p’ part
ind 1A

χ1 + 1

ind 1
2

χ2 + 1

ind 1
3
3

χ3 o2 1

ind 1
6
3
2
3
6

χ4 o2 1

2 1 1 1 1 1 1
3 1 1 1 1 1 1

1a 6a 3a 2a 3b 6b
2P 1a 3a 3b 1a 3a 3b
3P 1a 2a 1a 2a 1a 2a

X.1 1 1 1 1 1 1
X.2 1 -1 1 -1 1 -1
X.3 1 A /A 1 A /A
X.4 1 /A A 1 /A A
X.5 1 -A /A -1 A -/A
X.6 1 -/A A -1 /A -A

A = E(3)
= (-1+ER(-3))/2 = b3

X.1, X.2 correspond to χ1,χ2, respectively; X.3, X.5 correspond to the proxies χ3, χ4, and X.4,
X.6 to the not printed characters with these proxies. The factor fusion onto 3.G is given by [
1, 2, 3, 1, 2, 3], that onto G.2 by [1, 2, 1, 2, 1, 2].

• as an upward extension of the subgroups C3 or C2 which both contain a subgroup isomorphic to
G:

G G.2 G.3 G.6

; @ ; ; @ ; ; @ ; ; @

1 1 1 1
p power A A AA
p’ part A A AA
ind 1A fus ind 2A fus ind 3A fus ind 6A

χ1 + 1 : ++ 1 : +oo 1 :+oo+oo 1

2 1 1 1 1 1 1
3 1 1 1 1 1 1

1a 2a 3a 3b 6a 6b
2P 1a 1a 3b 3a 3b 3a
3P 1a 2a 1a 1a 2a 2a

X.1 1 1 1 1 1 1
X.2 1 -1 A /A -A -/A
X.3 1 1 /A A /A A
X.4 1 -1 1 1 -1 -1
X.5 1 1 A /A A /A
X.6 1 -1 /A A -/A -A

A = E(3)
= (-1+ER(-3))/2 = b3

The GAP Character Table Library 83

The classes 1a, 2a correspond to 1A, 2A, respectively. 3a, 6a correspond to the proxies 3A, 6A,
and 3b, 6b to the not printed classes with these proxies.

The second example explains the fusion case. Again, G is the trivial group.

6.G

3.G

2.G

G

6.G.2

3.G.2

2.G.2

G.2

; @ ; ; @

1 1
p power A
p’ part A
ind 1A fus ind 2A

χ1 + 1 : ++ 1

ind 1 fus ind 2
2 2

χ2 + 1 : ++ 1

ind 1 fus ind 2
3
3

χ3 o2 1 * +

ind 1 fus ind 2
6 2
3
2
3
6

χ4 o2 1 * +

3.G.2

2 1 . 1
3 1 1 .

1a 3a 2a
2P 1a 3a 1a
3P 1a 1a 2a

X.1 1 1 1
X.2 1 1 -1
X.3 2 -1 .

6.G.2

2 2 1 1 2 2 2
3 1 1 1 1 . .

1a 6a 3a 2a 2b 2c
2P 1a 3a 3a 1a 1a 1a
3P 1a 2a 1a 2a 2b 2c

Y.1 1 1 1 1 1 1
Y.2 1 1 1 1 -1 -1
Y.3 1 -1 1 -1 1 -1
Y.4 1 -1 1 -1 -1 1
Y.5 2 -1 -1 2 . .
Y.6 2 1 -1 -2 . .

The tables of G, 2.G, 3.G, 6.G and G.2 are known from the first example, that of 2.G.2 will be
given in the next one. So here we print only the GAP tables of 3.G.2∼= D6 and 6.G.2∼= D12.

In 3.G.2, the characters X.1, X.2 extend χ1; χ3 and its non-printed partner fuse to give X.3, and
the two preimages of 1A of order 3 collapse.

In 6.G.2, Y.1 to Y.4 are extensions of χ1, χ2, so these characters are the inflated characters from
2.G.2 (with respect to the factor fusion [1, 2, 1, 2, 3, 4]). Y.5 is inflated from 3.G.2 (with
respect to the factor fusion [1, 2, 2, 1, 3, 3]), and Y.6 is the result of the fusion of χ4 and its
non-printed partner.

For the last example, let G be the elementary abelian group 22 of order 4. Consider the following
tables.

The GAP Character Table Library 84

2.G 2.G.3

G G.3

; @ @ @ @ ; ; @

4 4 4 4 1
p power A A A A
p’ part A A A A
ind 1A 2A 2B 2C fus ind 3A

χ1 + 1 1 1 1 : +oo 1

χ2 + 1 1 -1 -1 . + 0

χ3 + 1 -1 1 -1 .

χ4 + 1 -1 -1 1 .

ind 1 4 4 4 fus ind 3
2 6

χ5 - 2 0 0 0 : -oo 1

G.3

2 2 2 . .
3 1 . 1 1

1a 2a 3a 3b
2P 1a 1a 3b 3a
3P 1a 2a 1a 1a

X.1 1 1 1 1
X.2 1 1 A /A
X.3 1 1 /A A
X.4 3 -1 . .

A = E(3)
= (-1+ER(-3))/2 = b3

2.G

2 3 3 2 2 2

1a 2a 4a 4b 4c
2P 1a 1a 2a 1a 1a
3P 1a 2a 4a 4b 4c

X.1 1 1 1 1 1
X.2 1 1 1 -1 -1
X.3 1 1 -1 1 -1
X.4 1 1 -1 -1 1
X.5 2 -2 . . .

2.G.3

2 3 3 2 1 1 1 1
3 1 1 . 1 1 1 1

1a 2a 4a 3a 6a 3b 6b
2P 1a 1a 2a 3b 3b 3a 3a
3P 1a 2a 4a 1a 2a 1a 2a

X.1 1 1 1 1 1 1 1
X.2 1 1 1 A A /A /A
X.3 1 1 1 /A /A A A
X.4 3 3 -1
X.5 2 -2 . 1 1 1 1
X.6 2 -2 . A -A /A -/A
X.7 2 -2 . /A -/A A -A

A = E(3)
= (-1+ER(-3))/2 = b3

In the table of G.3∼= A4, the characters χ2, χ3, and χ4 fuse, and the classes 2A, 2B and 2C collapse.
For getting the table of 2.G∼= Q8, one just has to split the class 2A and adjust the representative orders.
Finally, the table of 2.G.3 ∼= SL2(3) is given; the class fusion corresponding to the injection 2.G ↪→
2.G.3 is [1, 2, 3, 3, 3], and the factor fusion corresponding to the epimorphism 2.G.3→ G.3
is [1, 1, 2, 3, 3, 4, 4].

The GAP Character Table Library 85

4.4 CAS Tables

One of the predecessors of GAP was CAS (Character Algorithm System, see [NPP84]), which had
also a library of character tables. All these character tables are available in GAP except if stated
otherwise in the file doc/ctbldiff.pdf. This sublibrary has been completely revised before it was
included in GAP, for example, errors have been corrected and power maps have been completed.

Any CAS table is accessible by each of its CAS names (except if stated otherwise in
doc/ctbldiff.pdf), that is, the table name or the filename used in CAS.

4.4.1 CASInfo

. CASInfo(tbl) (attribute)

Let tbl be an ordinary character table in the GAP library that was (up to permutations of classes
and characters) contained already in the CAS table library. When one fetches tbl from the library,
one does in general not get the original CAS table. Namely, in many cases (mostly Atlas tables,
see Section 4.3), the identifier of the table (see Identifier (Reference: Identifier for character
tables)) as well as the ordering of classes and characters are different for the CAS table and its GAP
version.

Note that in several cases, the CAS library contains different tables of the same group, in particular
these tables may have different names and orderings of classes and characters.

The CASInfo value of tbl , if stored, is a list of records, each describing the relation between tbl
and a character table in the CAS library. The records have the components

name
the name of the CAS table,

permchars and permclasses
permutations of the Irr (Reference: Irr) values and the classes of tbl , respectively, that must
be applied in order to get the orderings in the original CAS table, and

text
the text that was stored on the CAS table (which may contain incorrect statements).

Example
gap> tbl:= CharacterTable("m10");
CharacterTable("A6.2_3")
gap> HasCASInfo(tbl);
true
gap> CASInfo(tbl);
[rec(name := "m10", permchars := (3,5)(4,8,7,6), permclasses := (),

text := "names: m10\norder: 2^4.3^2.5 = 720\nnumber of c\
lasses: 8\nsource: cambridge atlas\ncomments: point stabilizer of \
mathieu-group m11\ntest: orth, min, sym[3]\n")]

The class fusions stored on tables from the CAS library have been computed anew with GAP; the
text component of such a fusion record tells if the fusion map is equal to that in the CAS library, up
to the permutation of classes between the table in CAS and its GAP version.

The GAP Character Table Library 86

Example
gap> First(ComputedClassFusions(tbl), x -> x.name = "M11");
rec(map := [1, 2, 3, 4, 5, 4, 7, 8], name := "M11",

text := "fusion is unique up to table automorphisms,\nthe representa\
tive is equal to the fusion map on the CAS table")

4.5 Customizations of the GAP Character Table Library

4.5.1 Installing the GAP Character Table Library

To install the package unpack the archive file in a directory in the pkg directory of your local copy
of GAP 4. This might be the pkg directory of the GAP 4 home directory, see Section (Reference:
Installing a GAP Package) for details. It is however also possible to keep an additional pkg directory
in your private directories, see (Reference: GAP Root Directories). The latter possibility must be
chosen if you do not have write access to the GAP root directory.

The package consists entirely of GAP code, no external binaries need to be compiled.
For checking the installation of the package, you should start GAP and call

Example
gap> ReadPackage("ctbllib", "tst/testinst.g");

If the installation is o. k. then true is printed, and the GAP prompt appears again; otherwise the
output lines tell you what should be changed.

More testfiles are available in the tst directory of the package.
PDF and HTML versions of the package manual are available in the doc directory of the package.

4.5.2 Unloading Character Table Data

Data files from the GAP Character Table Library may be read only once during a GAP session –this
is efficient but requires memory– or the cached data may be erased as soon as a second data file is to
be read –this requires less memory but is usually less efficient.

One can choose between these two possibilities via the user preference "UnloadCTblLibFiles"
of the CTblLib package, see UserPreference (Reference: UserPreference). The default value
of this preference is true, that is, the contents of only one data file is kept in memory. Call
SetUserPreference("CTblLib", "UnloadCTblLibFiles", false); if you want to change
this behaviour.

4.5.3 Changing the display format of several functions

The way how the functions DisplayAtlasContents (3.5.6), DisplayAtlasInfo (AtlasRep: Dis-
playAtlasInfo), DisplayAtlasMap (3.5.8), and DisplayCTblLibInfo (3.5.1) show tabular informa-
tion can be customized via the user preference "DisplayFunction" of the AtlasRep package, see
Section (AtlasRep: User preference DisplayFunction).

4.5.4 User preference MagmaPath

This preference describes the path for calling MAGMA. An empty string (the default) means that
MAGMA is not available.

This preference is used by CharacterTableComputedByMagma (6.5.3).

The GAP Character Table Library 87

4.6 Technicalities of the Access to Character Tables from the Library

4.6.1 Data Files of the GAP Character Table Library

The data files of the GAP Character Table Library reside in the data directory of the package CTblLib.
The filenames start with ct (for “character table”), followed by either o (for “ordinary”), b (for

“Brauer”), or g (for “generic”), then a description of the contents (up to 5 characters, e. g., alter for
the tables of alternating and related groups), and the suffix .tbl.

The file ctbdescr.tbl contains the known Brauer tables corresponding to the ordinary tables in
the file ctodescr.tbl.

Each data file of the table library is supposed to consist of

1. comment lines, starting with a hash character # in the first column,

2. an assignment to a component of LIBTABLE.LOADSTATUS, at the end of the file, and

3. function calls of the form

• MBT(name,data) (“make Brauer table”),

• MOT(name,data) (“make ordinary table”),

• ALF(f rom, to,map), ALF(f rom, to,map, textlines) (“add library fusion”),

• ALN(name, listo f names) (“add library name”), and

• ARC(name,component,compdata) (“add record component”).

Here name must be the identifier value of the ordinary character table corresponding to the table
to which the command refers; data must be a comma separated sequence of GAP objects; f rom
and to must be identifier values of ordinary character tables, map a list of positive integers,
textlines and listo f names lists list of strings, component a string, and compdata any GAP
object.

MOT, ALF, ALN, and ARC occur only in files containing ordinary character tables, and MBT occurs
only in files containing Brauer tables.

Besides the above calls, the data in files containing ordinary and Brauer tables may contain only
the following GAP functions. (Files containing generic character tables may contain calls to arbitrary
GAP library functions.)

ACM, Concatenation (Reference: concatenation of lists), E (Reference: E), EvalChars,
GALOIS, Length (Reference: Length), ShallowCopy (Reference: ShallowCopy), TENSOR, and
TransposedMat (Reference: TransposedMat).

The function CTblLib.RecomputeTOC in the file gap4/maketbl.g of the CTblLib package ex-
pects the file format described above, and to some extent it checks this format.

The function calls may be continued over several lines of a file. A semicolon is assumed to be the
last character in its line if and only if it terminates a function call.

Names of character tables are strings (see Chapter (Reference: Strings and Characters)), i. e.,
they are enclosed in double quotes; strings in table library files must not be split over several lines, be-
cause otherwise the function CTblLib.RecomputeTOC may get confused. Additionally, no character
table name is allowed to contain double quotes.

There are three different ways how the table data can be stored in the file.

The GAP Character Table Library 88

Full ordinary tables
are encoded by a call to the function MOT, where the arguments correspond to the relevant at-
tribute values; each fusion into another library table is added by a call to ALF, values to be stored
in components of the table object are added with ARC, and admissible names are notified with
ALN. The argument of MOT that encodes the irreducible characters is abbreviated as follows. For
each subset of characters that differ just by multiplication with a linear character or by Galois
conjugacy, only the first one is given by its values, the others are replaced by [TENSOR,[i,j]]
(which means that the character is the tensor product of the i-th and the j-th character in the
list) or [GALOIS,[i,j]] (which means that the character is obtained from the i-th character by
applying GaloisCyc(., j) to it).

Brauer tables
are stored relative to the corresponding ordinary tables; attribute values that can be computed
by restricting from the ordinary table to p-regular classes are not stored, and instead of the
irreducible characters the files contain (inverses of) decomposition matrices or Brauer trees for
the blocks of nonzero defect.

Ordinary construction tables
have the attribute ConstructionInfoCharacterTable (3.7.4) set, with value a list that con-
tains the name of the construction function used and the arguments for a call to this function; the
function call is performed by CharacterTable (Reference: CharacterTable) when the table
is constructed (not when the file containing the table is read). One aim of this mechanism is to
store structured character tables such as tables of direct products and tables of central extensions
of other tables in a compact way, see Chapter 5.

4.6.2 LIBLIST

. LIBLIST (global variable)

GAP’s knowledge about the ordinary character tables in the GAP Character Table Library is given
by several JSON format files that get evaluated when the file gap4/ctprimar.g (the “primary file” of
the character table library) is read. These files can be produced from the data files, see Section 4.6.1.

The information is stored in the global variable LIBLIST, which is a record with the following
components.

firstnames
the list of Identifier (Reference: Identifier for character tables) values of the ordinary
tables,

files
the list of filenames containing the data of ordinary tables,

filenames
a list of positive integers, value j at position i means that the table whose identifier is the i-th in
the firstnames list is contained in the j-th file of the files component,

fusionsource
a list containing at position i the list of names of tables that store a fusion into the table whose
identifier is the i-th in the firstnames list,

The GAP Character Table Library 89

allnames
a list of all admissible names of ordinary library tables,

position
a list that stores at position i the position in firstnames of the identifier of the table with the
i-th admissible name in allnames,

simpleinfo
a list of triples [m,name,a] describing the tables of simple groups in the library; name is the
identifier of the table, m.name and name.a are admissible names for its Schur multiplier and
automorphism group, respectively, if these tables are available at all,

sporadicSimple
a list of identifiers of the tables of the 26 sporadic simple groups, and

GENERIC
a record with information about generic tables (see Section 4.2).

4.6.3 LibInfoCharacterTable

. LibInfoCharacterTable(tblname) (function)

is a record with the components

firstName
the Identifier (Reference: Identifier for character tables) value of the library table for
which tblname is an admissible name, and

fileName
the name of the file in which the table data is stored.

If no such table exists in the GAP library then fail is returned.
If tblname contains the substring "mod" then it is regarded as the name of a Brauer table. In this

case the result is computed from that for the corresponding ordinary table and the characteristic. So if
the ordinary table exists then the result is a record although the Brauer table in question need not be
contained in the GAP library.

Example
gap> LibInfoCharacterTable("S5");
rec(fileName := "ctoalter", firstName := "A5.2")
gap> LibInfoCharacterTable("S5mod2");
rec(fileName := "ctbalter", firstName := "A5.2mod2")
gap> LibInfoCharacterTable("J5");
fail

4.7 How to Extend the GAP Character Table Library

GAP users may want to extend the character table library in different respects.

The GAP Character Table Library 90

• Probably the easiest change is to add new admissible names to library tables, in or-
der to use these names in calls of CharacterTable (3.1.2). This can be done using
NotifyNameOfCharacterTable (4.7.1).

• The next kind of changes is the addition of new fusions between library tables. Once a fusion
map is known, it can be added to the library file containing the table of the subgroup, using the
format produced by LibraryFusion (4.7.2).

• The last kind of changes is the addition of new character tables to the GAP character table
library. Data files containing tables in library format (i. e., in the form of calls to MOT or MBT)
can be produced using PrintToLib (4.7.4).

If you have an ordinary character table in library format which you want to add to the table
library, for example because it shall be accessible via CharacterTable (3.1.2), you must notify
this table, i. e., tell GAP in which file it can be found, and which names shall be admissible for
it. This can be done using NotifyCharacterTable (4.7.5).

4.7.1 NotifyNameOfCharacterTable

. NotifyNameOfCharacterTable(firstname, newnames) (function)

notifies the strings in the list newnames as new admissible names for the library table with
Identifier (Reference: Identifier for character tables) value firstname . If there is already
another library table for which some of these names are admissible then an error is signaled.

NotifyNameOfCharacterTable modifies the global variable LIBLIST (4.6.2).
Example

gap> CharacterTable("private");
fail
gap> NotifyNameOfCharacterTable("A5", ["private"]);
gap> a5:= CharacterTable("private");
CharacterTable("A5")

One can notify alternative names for character tables inside data files, using the function
ALN instead of NotifyNameOfCharacterTable. The idea is that the additional names of ta-
bles from those files can be ignored which are controlled by CTblLib.RecomputeTOC. There-
fore, ALN is set to Ignore before the file is read with CTblLib.ReadTbl, otherwise ALN is set to
NotifyNameOfCharacterTable.

4.7.2 LibraryFusion

. LibraryFusion(name, fus) (function)

For a string name that is an Identifier (Reference: Identifier for character tables) value of
an ordinary character table in the GAP library, and a record fus with the components

name
the identifier of the destination table, or this table itself,

map the fusion map, a list of image positions,

The GAP Character Table Library 91

text (optional)
a string describing properties of the fusion, and

specification (optional)
a string or an integer,

LibraryFusion returns a string whose printed value can be used to add the fusion in question to the
library file containing the data for the table with identifier name .

If name is a character table then its Identifier (Reference: Identifier for character tables)
value is used as the corresponding string.

Example
gap> s5:= CharacterTable("S5");
CharacterTable("A5.2")
gap> fus:= PossibleClassFusions(a5, s5);
[[1, 2, 3, 4, 4]]
gap> fusion:= rec(name:= s5, map:= fus[1], text:= "unique");;
gap> Print(LibraryFusion("A5", fusion));
ALF("A5","A5.2",[1,2,3,4,4],[
"unique"
]);

4.7.3 LibraryFusionTblToTom

. LibraryFusionTblToTom(name, fus) (function)

For a string name that is an Identifier (Reference: Identifier for character tables) value of
an ordinary character table in the GAP library, and a record fus with the components

name
the identifier of the destination table of marks, or this table itself,

map the fusion map, a list of image positions,

text (optional)
a string describing properties of the fusion, and

perm (optional)
a permutation,

LibraryFusionTblToTom returns a string whose printed value can be used to add the fusion in ques-
tion to the library file containing the data for the table with identifier name .

The meaning of the component perm is as follows. Let prim be the primitive permutation
characters obtained by computing the PermCharsTom (Reference: PermCharsTom via fusion
map) value of the tables of marks, taking the sublist at the positions in the first component of the
MaximalSubgroupsTom (Reference: MaximalSubgroupsTom) value of the tables of marks, and re-
stricting these lists via the map component. Permuting prim with the perm component via Permuted
(Reference: Permuted) yields the list of permutation characters obtained by inducing the trivial char-
acters of the subgroups given by the Maxes (3.7.1) value of the character table. If the component
perm is not present and if the character table has the attribute Maxes (3.7.1) set then the two ways of
computing the primitive permutation characters yield the same list.

The GAP Character Table Library 92

If name is a character table then its Identifier (Reference: Identifier for character tables)
value is used as the corresponding string.

Example
gap> tbl:= CharacterTable("A5");
CharacterTable("A5")
gap> tom:= TableOfMarks("A5");
TableOfMarks("A5")
gap> fus:= PossibleFusionsCharTableTom(tbl, tom);
[[1, 2, 3, 5, 5]]
gap> fusion:= rec(name:= tom, map:= fus[1], text:= "unique");;
gap> Print(LibraryFusionTblToTom("A5", fusion));
ARC("A5","tomfusion",rec(name:="A5",map:=[1,2,3,5,5],text:=[
"unique"
]));

4.7.4 PrintToLib

. PrintToLib(file, tbl) (function)

prints the (ordinary or Brauer) character table tbl in library format to the file file.tbl (or to
file if this has already the suffix .tbl).

If tbl is an ordinary table then the value of the attribute NamesOfFusionSources (Reference:
NamesOfFusionSources) is ignored by PrintToLib, since for library tables this information is ex-
tracted from the source files (see Section 4.6.1).

The names of data files in the GAP Character Table Library begin with cto (for ordinary tables)
or ctb (for corresponding Brauer tables), see Section 4.6. This is supported also for private extensions
of the library, that is, if the filenames are chosen this way and the ordinary tables in the cto files are
notified via NotifyCharacterTable (4.7.5) then the Brauer tables will be found in the ctb files.
Alternatively, if the filenames of the files with the ordinary tables do not start with cto then GAP
expects the corresponding Brauer tables in the same file as the ordinary tables.

Example
gap> PrintToLib("private", a5);

The above command appends the data of the table a5 to the file private.tbl; the first lines
printed to this file are

MOT("A5",
[
"origin: ATLAS of finite groups, tests: 1.o.r., pow[2,3,5]"
],
[60,4,3,5,5],
[,[1,1,3,5,4],[1,2,1,5,4],,[1,2,3,1,1]],
[[1,1,1,1,1],[3,-1,0,-E(5)-E(5)^4,-E(5)^2-E(5)^3],
[GALOIS,[2,2]],[4,0,1,-1,-1],[5,1,-1,0,0]],
[(4,5)]);
ARC("A5","projectives",["2.A5",[[2,0,-1,E(5)+E(5)^4,E(5)^2+E(5)^3],
[GALOIS,[1,2]],[4,0,1,-1,-1],[6,0,0,1,1]],]);
ARC("A5","extInfo",["2","2"]);

The GAP Character Table Library 93

4.7.5 NotifyCharacterTable

. NotifyCharacterTable(firstname, filename, othernames) (function)

notifies a new ordinary table to the library. This table has Identifier (Reference: Identifier for
character tables) value firstname , it is contained (in library format, see PrintToLib (4.7.4)) in the
file with name filename (without suffix .tbl), and the names contained in the list othernames are
admissible for it.

If the initial part of filename is one of ~/, / or ./ then it is interpreted as an absolute path.
Otherwise it is interpreted relative to the data directory of the CTblLib package.

NotifyCharacterTable modifies the global variable LIBLIST (4.6.2) for the current GAP ses-
sion, after having checked that there is no other library table yet with an admissible name equal to
firstname or contained in othernames .

For example, let us change the name A5 to icos wherever it occurs in the file private.tbl that
was produced above, and then notify the “new” table in this file as follows. (The name change is
needed because GAP knows already a table with name A5 and would not accept to add another table
with this name.)

Example
gap> NotifyCharacterTable("icos", "private", []);
gap> icos:= CharacterTable("icos");
CharacterTable("icos")
gap> Display(icos);
icos

2 2 2 . . .
3 1 . 1 . .
5 1 . . 1 1

1a 2a 3a 5a 5b
2P 1a 1a 3a 5b 5a
3P 1a 2a 1a 5b 5a
5P 1a 2a 3a 1a 1a

X.1 1 1 1 1 1
X.2 3 -1 . A *A
X.3 3 -1 . *A A
X.4 4 . 1 -1 -1
X.5 5 1 -1 . .

A = -E(5)-E(5)^4
= (1-ER(5))/2 = -b5

So the private table is treated as a library table. Note that the table can be accessed only if it has
been notified in the current GAP session. For frequently used private tables, it may be reasonable to
put the NotifyCharacterTable statements into your gaprc file (see (Reference: The gap.ini and
gaprc files)), or into a file that is read via the gaprc file.

The GAP Character Table Library 94

4.7.6 NotifyCharacterTables

. NotifyCharacterTables(list) (function)

notifies several new ordinary tables to the library. The argument list must be a dense list in
which each entry is a lists of the form [firstname, filename, othernames], with the same
meaning as the arguments of NotifyCharacterTable (4.7.5).

4.8 Sanity Checks for the GAP Character Table Library

The fact that the GAP Character Table Library is designed as an open database (see Chapter 1) makes
it especially desirable to have consistency checks available which can be run automatically whenever
new data get added.

The file tst/testall.g of the package contains Test (Reference: Test) statements for exe-
cuting a collection of such sanity checks; one can run them by calling ReadPackage("CTblLib",
"tst/testall.g"). If no problem occurs then GAP prints only lines starting with one of the fol-
lowing.

Example
+ Input file:
+ GAP4stones:

The examples in the package manual form a part of the tests, they are collected in the file
tst/docxpl.tst of the package.

The following tests concern only ordinary character tables. In all cases, let tbl be the ordinary
character table of a group G, say. The return value is false if an error occurred, and true otherwise.

CTblLib.Test.InfoText(tbl)
checks some properties of the InfoText (Reference: InfoText) value of tbl, if available. Cur-
rently it is not recommended to use this value programmatically. However, one can rely on the
following structure of this value for tables in the GAP Character Table Library.

• The value is a string that consists of \n separated lines.

• If a line of the form “maximal subgroup of grpname” occurs, where grpname is the name
of a character table, then a class fusion from the table in question to that with name
grpname is stored.

• If a line of the form “nth maximal subgroup of grpname” occurs then additionally the
name grpnameMn is admissible for tbl. Furthermore, if the table with name grpname has
a Maxes (3.7.1) value then tbl is referenced in position n of this list.

CTblLib.Test.RelativeNames(tbl[, tblname])
checks some properties of those admissible names for tbl that refer to a related group H, say.
Let name be an admissible name for the character table of H. (In particular, name is not an
empty string.) Then the following relative names are considered.

nameMn
G is isomorphic with the groups in the n-th class of maximal subgroups of H. An example

The GAP Character Table Library 95

is "M12M1" for the Mathieu group M11. We consider only cases where name does not
contain the letter x. For example, 2xM12 denotes the direct product of a cyclic group of
order two and the Mathieu group M12 but not a maximal subgroup of “2x”. Similarly,
3x2.M22M5 denotes the direct product of a cyclic group of order three and a group in the
fifth class of maximal subgroups of 2.M22 but not a maximal subgroup of “3x2.M22”.

nameNp
G is isomorphic with the normalizers of the Sylow p-subgroups of H. An example is
"M24N2" for the (self-normalizing) Sylow 2-subgroup in the Mathieu group M24.

nameNcnam
G is isomorphic with the normalizers of the cyclic subgroups generated by the elements in
the class with the name cnam of H. An example is "O7(3)N3A" for the normalizer of an
element in the class 3A of the simple group O7(3).

nameCcnam
G is isomorphic with the groups in the centralizers of the elements in the class with the
name cnam of H. An example is "M24C2A" for the centralizer of an element in the class
2A in the Mathieu group M24.

In these cases, CTblLib.Test.RelativeNames checks whether a library table with the admis-
sible name name exists and a class fusion to tbl is stored on this table.

In the case of Sylow p-normalizers, it is also checked whether G contains a normal Sylow p-
subgroup of the same order as the Sylow p-subgroups in H. If the normal Sylow p-subgroup of
G is cyclic then it is also checked whether G is the full Sylow p-normalizer in H. (In general
this information cannot be read off from the character table of H).

In the case of normalizers (centralizers) of cyclic subgroups, it is also checked whether H really
normalizes (centralizes) a subgroup of the given order, and whether the class fusion from tbl to
the table of H is compatible with the relative name.

If the optional argument tblname is given then only this name is tested. If there is only one
argument then all admissible names for tbl are tested.

CTblLib.Test.FindRelativeNames(tbl)
runs over the class fusions stored on tbl. If tbl is the full centralizer/normalizer of a cyclic
subgroup in the table to which the class fusion points then the function proposes to make the
corresponding relative name an admissible name for tbl.

CTblLib.Test.PowerMaps(tbl)
checks whether all p-th power maps are stored on tbl, for prime divisors p of the order of G, and
whether they are correct. (This includes the information about uniqueness of the power maps.)

CTblLib.Test.TableAutomorphisms(tbl)
checks whether the table automorphisms are stored on tbl, and whether they are correct. Also
all available Brauer tables of tbl are checked.

CTblLib.Test.CompatibleFactorFusions(tbl)
checks whether triangles and quadrangles of factor fusions from tbl to other library tables com-
mute (where the entries in the list CTblLib.IgnoreFactorFusionsCompatibility are ex-
cluded from the tests), and whether the factor fusions commute with the actions of correspond-
ing outer automorphisms.

The GAP Character Table Library 96

CTblLib.Test.FactorsModPCore(tbl)
checks, for all those prime divisors p of the order of G such that G is not p-solvable, whether
the factor fusion to the character table of G/Op(G) is stored on tbl.

Note that if G is not p-solvable and Op(G) is nontrivial then we can compute the p-modular
Brauer table of G if that of the factor group G/Op(G) is available. The availability of this table
is indicated via the availability of the factor fusion from tbl.

CTblLib.Test.Fusions(tbl)
checks the class fusions that are stored on the table tbl: No duplicates shall occur,
each subgroup fusion or factor fusion is tested using CTblLib.Test.SubgroupFusion or
CTblLib.Test.FactorFusion, respectively, and a fusion to the table of marks for tbl is tested
using CTblLib.Test.FusionToTom.

CTblLib.Test.Maxes(tbl)
checks for those character tables tbl that have the Maxes (3.7.1) set whether the character tables
with the given names are really available, that they are ordered w.r.t. non-increasing group order,
and that the fusions into tbl are stored.

CTblLib.Test.ClassParameters(tbl)
checks the compatibility of class parameters of alternating and symmetric groups (partitions
describing cycle structures), using the underlying group stored in the corresponding table of
marks.

CTblLib.Test.TablesOfSymmetricGroup(n)
checks that the class parameters and character parameters of the two character tables of the
symmetric group of degree n (from the Atlas and from the SpinSym package) are consistent.
The interesting values of n are in [5 .. 13].

CTblLib.Test.Constructions(tbl)
checks the ConstructionInfoCharacterTable (3.7.4) status for the table tbl: If this attribute
value is set then tests depending on this value are executed; if this attribute is not set then it is
checked whether a description of tbl via a construction would be appropriate.

CTblLib.Test.ExtensionInfo(tbl)
checks whether the attribute ExtensionInfoCharacterTable (3.7.3) is known for all non-
abelian simple character tables that are not duplicates.

CTblLib.Test.GroupForGroupInfo(tbl)
checks that the entries in the list returned by GroupInfoForCharacterTable (3.3.1) fit to the
character table tbl.

The following tests concern only modular character tables. In all cases, let modtbl be a Brauer
character table of a group G, say.

CTblLib.Test.BlocksInfo(modtbl)
checks whether the decomposition matrices of all blocks of the Brauer table modtbl are integral,
as well as the inverses of their restrictions to basic sets.

The GAP Character Table Library 97

CTblLib.Test.TensorDecomposition(modtbl)
checks whether the tensor products of irreducible Brauer characters of the Brauer table modtbl
decompose into Brauer characters.

CTblLib.Test.Indicators(modtbl)
checks the 2-nd indicators of the Brauer table modtbl: The indicator of a Brauer character is zero
iff it has at least one nonreal value. In odd characteristic, the indicator of an irreducible Brauer
character is equal to the indicator of any ordinary irreducible character that contains it as a
constituent, with odd multiplicity. In characteristic two, we test that all nontrivial real irreducible
Brauer characters have even degree, and that irreducible Brauer characters with indicator−1 lie
in the principal block.

CTblLib.Test.FactorBlocks(modtbl)
If the Brauer table modtbl is encoded using references to tables of factor groups then we must
make sure that the irreducible characters of the underlying ordinary table and the factors in
question are sorted compatibly. (Note that we simply take over the block information about the
factors, without applying an explicit mapping.)

4.9 Maintenance of the GAP Character Table Library

It is of course desirable that the information in the GAP Character Table Library is consistent with
related data. For example, the ordering of the classes of maximal subgroups stored in the Maxes (3.7.1)
list of the character table of a group G, say, should correspond to the ordering shown for G in the Atlas
of Finite Groups [CCN+85], to the ordering of maximal subgroups used for G in the AtlasRep, and to
the ordering of maximal subgroups in the table of marks of G. The fact that the related data collections
are developed independently makes it difficult to achieve this kind of consistency. Sometimes it is
unavoidable to “adjust” data of the GAP Character Table Library to external data.

An important issue is the consistency of class fusions. Usually such fusions are determined only up
to table automorphisms, and one candidate can be chosen. However, other conditions such as known
Brauer tables may restrict the choice. The point is that there are class fusions which predate the avail-
ability of Brauer tables in the Character Table Library (in fact many of them have been inherited from
the table library of the CAS system), but they are not compatible with the Brauer tables. For example,
there are four possible class fusion from M23 into Co3, which lie in one orbit under the relevant groups
of table automorphisms; two of these maps are not compatible with the 3-modular Brauer tables of
M23 and Co3, and unfortunately the class fusion that was stored on the CAS tables –and that was
available in version 1.0 of the GAP Character Table Library– was one of the not compatible maps.
One could argue that the class fusion has older rights, and that the Brauer tables should be adjusted
to them, but the Brauer tables are published in the Atlas of Brauer Characters [JLPW95], which is an
accepted standard.

Chapter 5

Functions for Character Table
Constructions

The functions described in this chapter deal with the construction of character tables from other char-
acter tables. So they fit to the functions in Section (Reference: Constructing Character Tables
from Others). But since they are used in situations that are typical for the GAP Character Table
Library, they are described here.

An important ingredient of the constructions is the description of the action of a group auto-
morphism on the classes by a permutation. In practice, these permutations are usually chosen from
the group of table automorphisms of the character table in question, see AutomorphismsOfTable
(Reference: AutomorphismsOfTable).

Section 5.1 deals with groups of the structure M.G.A, where the upwards extension G.A acts
suitably on the central extension M.G. Section 5.2 deals with groups that have a factor group of type
S3. Section 5.3 deals with upward extensions of a group by a Klein four group. Section 5.4 deals
with downward extensions of a group by a Klein four group. Section 5.6 describes the construction
of certain Brauer tables. Section 5.7 deals with special cases of the construction of character tables of
central extensions from known character tables of suitable factor groups. Section 5.8 documents the
functions used to encode certain tables in the GAP Character Table Library.

Examples can be found in [Breb] and [Bref].

5.1 Character Tables of Groups of Structure M.G.A

For the functions in this section, let H be a group with normal subgroups N and M such that H/N is
cyclic, M≤N holds, and such that each irreducible character of N that does not contain M in its kernel
induces irreducibly to H. (This is satisfied for example if N has prime index in H and M is a group
of prime order that is central in N but not in H.) Let G = N/M and A = H/N, so H has the structure
M.G.A. For some examples, see [Bre11].

5.1.1 PossibleCharacterTablesOfTypeMGA

. PossibleCharacterTablesOfTypeMGA(tblMG, tblG, tblGA, orbs, identifier) (func-

tion)

Let H, N, and M be as described at the beginning of the section.

98

The GAP Character Table Library 99

Let tblMG , tblG , tblGA be the ordinary character tables of the groups M.G = N, G, and G.A =
H/M, respectively, and orbs be the list of orbits on the class positions of tblMG that is induced by
the action of H on M.G. Furthermore, let the class fusions from tblMG to tblG and from tblG to
tblGA be stored on tblMG and tblG , respectively (see StoreFusion (Reference: StoreFusion)).

PossibleCharacterTablesOfTypeMGA returns a list of records describing all possible ordinary
character tables for groups H that are compatible with the arguments. Note that in general there may
be several possible groups H, and it may also be that “character tables” are constructed for which no
group exists.

Each of the records in the result has the following components.

table
a possible ordinary character table for H, and

MGfusMGA
the fusion map from tblMG into the table stored in table.

The possible tables differ w. r. t. some power maps, and perhaps element orders and table automor-
phisms; in particular, the MGfusMGA component is the same in all records.

The returned tables have the Identifier (Reference: Identifier for character tables) value
identifier . The classes of these tables are sorted as follows. First come the classes contained in
M.G, sorted compatibly with the classes in tblMG , then the classes in H \M.G follow, in the same
ordering as the classes of G.A\G.

5.1.2 BrauerTableOfTypeMGA

. BrauerTableOfTypeMGA(modtblMG, modtblGA, ordtblMGA) (function)

Let H, N, and M be as described at the beginning of the section, let modtblMG and modtblGA
be the p-modular character tables of the groups N and H/M, respectively, and let ordtblMGA be the
p-modular Brauer table of H, for some prime integer p. Furthermore, let the class fusions from the
ordinary character table of modtblMG to ordtblMGA and from ordtblMGA to the ordinary character
table of modtblGA be stored.

BrauerTableOfTypeMGA returns the p-modular character table of H.

5.1.3 PossibleActionsForTypeMGA

. PossibleActionsForTypeMGA(tblMG, tblG, tblGA) (function)

Let the arguments be as described for PossibleCharacterTablesOfTypeMGA (5.1.1).
PossibleActionsForTypeMGA returns the set of orbit structures Ω on the class positions of tblMG
that can be induced by the action of H on the classes of M.G in the sense that Ω is the set of orbits
of a table automorphism of tblMG (see AutomorphismsOfTable (Reference: AutomorphismsOfT-
able)) that is compatible with the stored class fusions from tblMG to tblG and from tblG to tblGA .
Note that the number of such orbit structures can be smaller than the number of the underlying table
automorphisms.

Information about the progress is reported if the info level of InfoCharacterTable (Reference:
InfoCharacterTable) is at least 1 (see SetInfoLevel (Reference: InfoLevel)).

The GAP Character Table Library 100

5.2 Character Tables of Groups of Structure G.S3

5.2.1 CharacterTableOfTypeGS3

. CharacterTableOfTypeGS3(tbl, tbl2, tbl3, aut, identifier) (function)

. CharacterTableOfTypeGS3(modtbl, modtbl2, modtbl3, ordtbls3, identifier) (func-

tion)

Let H be a group with a normal subgroup G such that H/G ∼= S3, the symmetric group on three
points, and let G.2 and G.3 be preimages of subgroups of order 2 and 3, respectively, under the natural
projection onto this factor group.

In the first form, let tbl , tbl2 , tbl3 be the ordinary character tables of the groups G, G.2,
and G.3, respectively, and aut be the permutation of classes of tbl3 induced by the action of H
on G.3. Furthermore assume that the class fusions from tbl to tbl2 and tbl3 are stored on tbl
(see StoreFusion (Reference: StoreFusion)). In particular, the two class fusions must be compatible
in the sense that the induced action on the classes of tbl describes an action of S3.

In the second form, let modtbl , modtbl2 , modtbl3 be the p-modular character tables of the
groups G, G.2, and G.3, respectively, and ordtbls3 be the ordinary character table of H.

CharacterTableOfTypeGS3 returns a record with the following components.

table
the ordinary or p-modular character table of H, respectively,

tbl2fustbls3
the fusion map from tbl2 into the table of H, and

tbl3fustbls3
the fusion map from tbl3 into the table of H.

The returned table of H has the Identifier (Reference: Identifier for character tables) value
identifier . The classes of the table of H are sorted as follows. First come the classes contained
in G.3, sorted compatibly with the classes in tbl3 , then the classes in H \G.3 follow, in the same
ordering as the classes of G.2\G.

In fact the code is applicable in the more general case that H/G is a Frobenius group F = KC with
abelian kernel K and cyclic complement C of prime order, see [Bref]. Besides F = S3, e. g., the case
F = A4 is interesting.

5.2.2 PossibleActionsForTypeGS3

. PossibleActionsForTypeGS3(tbl, tbl2, tbl3) (function)

Let the arguments be as described for CharacterTableOfTypeGS3 (5.2.1).
PossibleActionsForTypeGS3 returns the set of those table automorphisms
(see AutomorphismsOfTable (Reference: AutomorphismsOfTable)) of tbl3 that can be
induced by the action of H on the classes of tbl3 .

Information about the progress is reported if the info level of InfoCharacterTable (Reference:
InfoCharacterTable) is at least 1 (see SetInfoLevel (Reference: InfoLevel)).

The GAP Character Table Library 101

5.3 Character Tables of Groups of Structure G.22

The following functions are thought for constructing the possible ordinary character tables of a group
of structure G.22 from the known tables of the three normal subgroups of type G.2.

5.3.1 PossibleCharacterTablesOfTypeGV4

. PossibleCharacterTablesOfTypeGV4(tblG, tblsG2, acts, identifier[,
tblGfustblsG2]) (function)

. PossibleCharacterTablesOfTypeGV4(modtblG, modtblsG2, ordtblGV4[,
ordtblsG2fusordtblG4]) (function)

Let H be a group with a normal subgroup G such that H/G is a Klein four group, and let G.21,
G.22, and G.23 be the three subgroups of index two in H that contain G.

In the first version, let tblG be the ordinary character table of G, let tblsG2 be a list containing
the three character tables of the groups G.2i, and let acts be a list of three permutations describing
the action of H on the conjugacy classes of the corresponding tables in tblsG2 . If the class fusions
from tblG into the tables in tblsG2 are not stored on tblG (for example, because the three tables are
equal) then the three maps must be entered in the list tblGfustblsG2 .

In the second version, let modtblG be the p-modular character table of G, modtblsG be the list of
p-modular Brauer tables of the groups G.2i, and ordtblGV4 be the ordinary character table of H. In
this case, the class fusions from the ordinary character tables of the groups G.2i to ordtblGV4 can be
entered in the list ordtblsG2fusordtblG4 .

PossibleCharacterTablesOfTypeGV4 returns a list of records describing all possible (ordinary
or p-modular) character tables for groups H that are compatible with the arguments. Note that in gen-
eral there may be several possible groups H, and it may also be that “character tables” are constructed
for which no group exists. Each of the records in the result has the following components.

table
a possible (ordinary or p-modular) character table for H, and

G2fusGV4
the list of fusion maps from the tables in tblsG2 into the table component.

The possible tables differ w.r.t. the irreducible characters and perhaps the table automorphisms; in
particular, the G2fusGV4 component is the same in all records.

The returned tables have the Identifier (Reference: Identifier for character tables) value
identifier . The classes of these tables are sorted as follows. First come the classes contained in G,
sorted compatibly with the classes in tblG , then the outer classes in the tables in tblsG2 follow, in
the same ordering as in these tables.

5.3.2 PossibleActionsForTypeGV4

. PossibleActionsForTypeGV4(tblG, tblsG2) (function)

Let the arguments be as described for PossibleCharacterTablesOfTypeGV4 (5.3.1).
PossibleActionsForTypeGV4 returns the list of those triples [π1,π2,π3] of permutations for which

The GAP Character Table Library 102

a group H may exist that contains G.21, G.22, G.23 as index 2 subgroups which intersect in the index
4 subgroup G.

Information about the progress is reported if the level of InfoCharacterTable (Reference: In-
foCharacterTable) is at least 1 (see SetInfoLevel (Reference: InfoLevel)).

5.4 Character Tables of Groups of Structure 22.G

The following functions are thought for constructing the possible ordinary or Brauer character tables
of a group of structure 22.G from the known tables of the three factor groups modulo the normal order
two subgroups in the central Klein four group.

Note that in the ordinary case, only a list of possibilities can be computed whereas in the mod-
ular case, where the ordinary character table is assumed to be known, the desired table is uniquely
determined.

5.4.1 PossibleCharacterTablesOfTypeV4G

. PossibleCharacterTablesOfTypeV4G(tblG, tbls2G, id[, fusions]) (function)

. PossibleCharacterTablesOfTypeV4G(tblG, tbl2G, aut, id) (function)

Let H be a group with a central subgroup N of type 22, and let Z1, Z2, Z3 be the order 2 subgroups
of N.

In the first form, let tblG be the ordinary character table of H/N, and tbls2G be a list of length
three, the entries being the ordinary character tables of the groups H/Zi. In the second form, let tbl2G
be the ordinary character table of H/Z1 and aut be a permutation; here it is assumed that the groups
Zi are permuted under an automorphism σ of order 3 of H, and that σ induces the permutation aut
on the classes of tblG .

The class fusions onto tblG are assumed to be stored on the tables in tbls2G or tbl2G , respec-
tively, except if they are explicitly entered via the optional argument fusions .

PossibleCharacterTablesOfTypeV4G returns the list of all possible character tables for H in
this situation. The returned tables have the Identifier (Reference: Identifier for character tables)
value id .

5.4.2 BrauerTableOfTypeV4G

. BrauerTableOfTypeV4G(ordtblV4G, modtbls2G) (function)

. BrauerTableOfTypeV4G(ordtblV4G, modtbl2G, aut) (function)

Let H be a group with a central subgroup N of type 22, and let ordtblV4G be the ordinary char-
acter table of H. Let Z1, Z2, Z3 be the order 2 subgroups of N. In the first form, let modtbls2G be
the list of the p-modular Brauer tables of the factor groups H/Z1, H/Z2, and H/Z3, for some prime
integer p. In the second form, let modtbl2G be the p-modular Brauer table of H/Z1 and aut be a
permutation; here it is assumed that the groups Zi are permuted under an automorphism σ of order 3
of H, and that σ induces the permutation aut on the classes of the ordinary character table of H that
is stored in ordtblV4G .

The class fusions from ordtblV4G to the ordinary character tables of the tables in modtbls2G or
modtbl2G are assumed to be stored.

BrauerTableOfTypeV4G returns the p-modular character table of H.

The GAP Character Table Library 103

5.5 Character Tables of Subdirect Products of Index Two

The following function is thought for constructing the (ordinary or Brauer) character tables of certain
subdirect products from the known tables of the factor groups and normal subgroups involved.

5.5.1 CharacterTableOfIndexTwoSubdirectProduct

. CharacterTableOfIndexTwoSubdirectProduct(tblH1, tblG1, tblH2, tblG2,
identifier) (function)

Returns: a record containing the character table of the subdirect product G that is described by
the first four arguments.

Let tblH1 , tblG1 , tblH2 , tblG2 be the character tables of groups H1, G1, H2, G2, such that H1
and H2 have index two in G1 and G2, respectively, and such that the class fusions corresponding to
these embeddings are stored on tblH1 and tblH1 , respectively.

In this situation, the direct product of G1 and G2 contains a unique subgroup G of index two that
contains the direct product of H1 and H2 but does not contain any of the groups G1, G2.

The function CharacterTableOfIndexTwoSubdirectProduct returns a record with the follow-
ing components.

table
the character table of G,

H1fusG
the class fusion from tblH1 into the table of G, and

H2fusG
the class fusion from tblH2 into the table of G.

If the first four arguments are ordinary character tables then the fifth argument identifier must
be a string; this is used as the Identifier (Reference: Identifier for character tables) value of the
result table.

If the first four arguments are Brauer character tables for the same characteristic then the fifth
argument must be the ordinary character table of the desired subdirect product.

5.5.2 ConstructIndexTwoSubdirectProduct

. ConstructIndexTwoSubdirectProduct(tbl, tblH1, tblG1, tblH2, tblG2,
permclasses, permchars) (function)

ConstructIndexTwoSubdirectProduct constructs the irreducible characters of the ordinary
character table tbl of the subdirect product of index two in the direct product of tblG1 and
tblG2 , which contains the direct product of tblH1 and tblH2 but does not contain any of
the direct factors tblG1 , tblG2 . W. r. t. the default ordering obtained from that given by
CharacterTableDirectProduct (Reference: CharacterTableDirectProduct), the columns and
the rows of the matrix of irreducibles are permuted with the permutations permclasses and
permchars , respectively.

The GAP Character Table Library 104

5.5.3 ConstructIndexTwoSubdirectProductInfo

. ConstructIndexTwoSubdirectProductInfo(tbl[, tblH1, tblG1, tblH2, tblG2]) (func-

tion)

Returns: a list of constriction descriptions, or a construction description, or fail.
Called with one argument tbl , an ordinary character table of the group G, say,

ConstructIndexTwoSubdirectProductInfo analyzes the possibilities to construct
tbl from character tables of subgroups H1, H2 and factor groups G1, G2, using
CharacterTableOfIndexTwoSubdirectProduct (5.5.1). The return value is a list of records
with the following components.

kernels
the list of class positions of H1, H2 in tbl ,

kernelsizes
the list of orders of H1, H2,

factors
the list of Identifier (Reference: Identifier for character tables) values of the GAP library
tables of the factors G2, G1 of G by H1, H2; if no such table is available then the entry is fail,
and

subgroups
the list of Identifier (Reference: Identifier for character tables) values of the GAP library
tables of the subgroups H2, H1 of G; if no such tables are available then the entries are fail.

If the returned list is empty then either tbl does not have the desired structure as a subdirect
product, or tbl is in fact a nontrivial direct product.

Called with five arguments, the ordinary character tables of G, H1, G1, H2, G2,
ConstructIndexTwoSubdirectProductInfo returns a list that can be used as the
ConstructionInfoCharacterTable (3.7.4) value for the character table of G from the other
four character tables using CharacterTableOfIndexTwoSubdirectProduct (5.5.1); if this is not
possible then fail is returned.

5.6 Brauer Tables of Extensions by p-regular Automorphisms

As for the construction of Brauer character tables from known tables, the functions
PossibleCharacterTablesOfTypeMGA (5.1.1), CharacterTableOfTypeGS3 (5.2.1), and
PossibleCharacterTablesOfTypeGV4 (5.3.1) work for both ordinary and Brauer tables. The
following function is designed specially for Brauer tables.

5.6.1 IBrOfExtensionBySingularAutomorphism

. IBrOfExtensionBySingularAutomorphism(modtbl, act) (function)

Let modtbl be a p-modular Brauer table of the group G, say, and suppose that the group H, say,
is an upward extension of G by an automorphism of order p.

The second argument act describes the action of this automorphism. It can be either a permutation
of the columns of modtbl , or a list of the H-orbits on the columns of modtbl , or the ordinary character

The GAP Character Table Library 105

table of H such that the class fusion from the ordinary table of modtbl into this table is stored. In all
these cases, IBrOfExtensionBySingularAutomorphism returns the values lists of the irreducible
p-modular Brauer characters of H.

Note that the table head of the p-modular Brauer table of H, in general without the
Irr (Reference: Irr) attribute, can be obtained by applying CharacterTableRegular
(Reference: CharacterTableRegular) to the ordinary character table of H, but
IBrOfExtensionBySingularAutomorphism can be used also if the ordinary character table
of H is not known, and just the p-modular character table of G and the action of H on the classes of
G are given.

5.7 Character Tables of Coprime Central Extensions

5.7.1 CharacterTableOfCommonCentralExtension

. CharacterTableOfCommonCentralExtension(tblG, tblmG, tblnG, id) (function)

Let tblG be the ordinary character table of a group G, say, and let tblmG and tblnG be the
ordinary character tables of central extensions m.G and n.G of G by cyclic groups of prime orders m
and n, respectively, with m 6= n. We assume that the factor fusions from tblmG and tblnG to tblG
are stored on the tables. CharacterTableOfCommonCentralExtension returns a record with the
following components.

tblmnG
the character table t, say, of the corresponding central extension of G by a cyclic group of order
mn that factors through m.G and n.G; the Identifier (Reference: Identifier for character
tables) value of this table is id ,

IsComplete
true if the Irr (Reference: Irr) value is stored in t, and false otherwise,

irreducibles
the list of irreducibles of t that are known; it contains the inflated characters of the factor groups
m.G and n.G, plus those irreducibles that were found in tensor products of characters of these
groups.

Note that the conjugacy classes and the power maps of t are uniquely determined by the input
data. Concerning the irreducible characters, we try to extract them from the tensor products of charac-
ters of the given factor groups by reducing with known irreducibles and applying the LLL algorithm
(see ReducedClassFunctions (Reference: ReducedClassFunctions) and LLL (Reference: LLL)).

5.8 Construction Functions used in the Character Table Library

The following functions are used in the GAP Character Table Library, for encoding table constructions
via the mechanism that is based on the attribute ConstructionInfoCharacterTable (3.7.4). All
construction functions take as their first argument a record that describes the table to be constructed,
and the function adds only those components that are not yet contained in this record.

The GAP Character Table Library 106

5.8.1 ConstructMGA

. ConstructMGA(tbl, subname, factname, plan, perm) (function)

ConstructMGA constructs the irreducible characters of the ordinary character table tbl of a group
m.G.a where the automorphism a (a group of prime order) of m.G acts nontrivially on the central
subgroup m of m.G. subname is the name of the subgroup m.G which is a (not necessarily cyclic)
central extension of the (not necessarily simple) group G, factname is the name of the factor group
G.a. Then the faithful characters of tbl are induced from m.G.

plan is a list, each entry being a list containing positions of characters of m.G that form an orbit
under the action of a (the induction of characters is encoded this way).

perm is the permutation that must be applied to the list of characters that is obtained on appending
the faithful characters to the inflated characters of the factor group. A nonidentity permutation occurs
for example for groups of structure 12.G.2 that are encoded via the subgroup 12.G and the factor
group 6.G.2, where the faithful characters of 4.G.2 shall precede those of 6.G.2, as in the Atlas.

Examples where ConstructMGA is used to encode library tables are the tables of 3.F3+.2 (sub-
group 3.F3+, factor group F3+.2) and 121.U4(3).22 (subgroup 121.U4(3), factor group 61.U4(3).22).

5.8.2 ConstructMGAInfo

. ConstructMGAInfo(tblmGa, tblmG, tblGa) (function)

Let tblmGa be the ordinary character table of a group of structure m.G.a where the factor group
of prime order a acts nontrivially on the normal subgroup of order m that is central in m.G, tblmG be
the character table of m.G, and tblGa be the character table of the factor group G.a.

ConstructMGAInfo returns the list that is to be stored in the library version of tblmGa : the first
entry is the string "ConstructMGA", the remaining four entries are the last four arguments for the call
to ConstructMGA (5.8.1).

5.8.3 ConstructGS3

. ConstructGS3(tbls3, tbl2, tbl3, ind2, ind3, ext, perm) (function)

. ConstructGS3Info(tbl2, tbl3, tbls3) (function)

ConstructGS3 constructs the irreducibles of an ordinary character table tbls3 of type G.S3 from
the tables with names tbl2 and tbl3 , which correspond to the groups G.2 and G.3, respectively.
ind2 is a list of numbers referring to irreducibles of tbl2 . ind3 is a list of pairs, each referring to
irreducibles of tbl3 . ext is a list of pairs, each referring to one irreducible character of tbl2 and
one of tbl3 . perm is a permutation that must be applied to the irreducibles after the construction.

ConstructGS3Info returns a record with the components ind2, ind3, ext, perm, and list, as
are needed for ConstructGS3.

5.8.4 ConstructV4G

. ConstructV4G(tbl, facttbl, aut) (function)

Let tbl be the character table of a group of type 22.G where an outer automorphism of order 3
permutes the three involutions in the central 22. Let aut be the permutation of classes of tbl induced

The GAP Character Table Library 107

by that automorphism, and facttbl be the name of the character table of the factor group 2.G. Then
ConstructV4G constructs the irreducible characters of tbl from that information.

5.8.5 ConstructProj

. ConstructProj(tbl, irrinfo) (function)

. ConstructProjInfo(tbl, kernel) (function)

ConstructProj constructs the irreducible characters of the record encoding the ordinary char-
acter table tbl from projective characters of tables of factor groups, which are stored in the
ProjectivesInfo (3.7.2) value of the smallest factor; the information about the name of this fac-
tor and the projectives to take is stored in irrinfo .

ConstructProjInfo takes an ordinary character table tbl and a list kernel of class positions
of a cyclic kernel of order dividing 12, and returns a record with the components

tbl a character table that is permutation isomorphic with tbl , and sorted such that classes that differ
only by multiplication with elements in the classes of kernel are consecutive,

projectives
a record being the entry for the projectives list of the table of the factor of tbl by kernel ,
describing this part of the irreducibles of tbl , and

info
the value of irrinfo that is needed for constructing the irreducibles of the tbl component of
the result (not the irreducibles of the argument tbl !) via ConstructProj.

5.8.6 ConstructDirectProduct

. ConstructDirectProduct(tbl, factors[, permclasses, permchars]) (function)

The direct product of the library character tables described by the list factors of table names is
constructed using CharacterTableDirectProduct (Reference: CharacterTableDirectProduct),
and all its components that are not yet stored on tbl are added to tbl .

The ComputedClassFusions (Reference: ComputedClassFusions) value of tbl is enlarged by
the factor fusions from the direct product to the factors.

If the optional arguments permclasses , permchars are given then the classes and characters of
the result are sorted accordingly.

factors must have length at least two; use ConstructPermuted (5.8.11) in the case of only one
factor.

5.8.7 ConstructCentralProduct

. ConstructCentralProduct(tbl, factors, Dclasses[, permclasses, permchars])
(function)

The library table tbl is completed with help of the table obtained by taking the direct product of
the tables with names in the list factors , and then factoring out the normal subgroup that is given by
the list Dclasses of class positions.

The GAP Character Table Library 108

If the optional arguments permclasses , permchars are given then the classes and characters of
the result are sorted accordingly.

5.8.8 ConstructSubdirect

. ConstructSubdirect(tbl, factors, choice) (function)

The library table tbl is completed with help of the table obtained by taking the direct product of
the tables with names in the list factors , and then taking the table consisting of the classes in the list
choice .

Note that in general, the restriction to the classes of a normal subgroup is not sufficient for de-
scribing the irreducible characters of this normal subgroup.

5.8.9 ConstructWreathSymmetric

. ConstructWreathSymmetric(tbl, subname, n[, permclasses, permchars]) (function)

The wreath product of the library character table with identifier value subname with the symmet-
ric group on n points is constructed using CharacterTableWreathSymmetric (Reference: Char-
acterTableWreathSymmetric), and all its components that are not yet stored on tbl are added to
tbl .

If the optional arguments permclasses , permchars are given then the classes and characters of
the result are sorted accordingly.

5.8.10 ConstructIsoclinic

. ConstructIsoclinic(tbl, factors[, nsg[, centre]][, permclasses, permchars])
(function)

constructs first the direct product of library tables as given by the list factors of admissible
character table names, and then constructs the isoclinic table of the result.

If the argument nsg is present and a record or a list then CharacterTableIsoclinic
(Reference: CharacterTableIsoclinic) gets called, and nsg (as well as centre if present) is passed
to this function.

In both cases, if the optional arguments permclasses , permchars are given then the classes and
characters of the result are sorted accordingly.

5.8.11 ConstructPermuted

. ConstructPermuted(tbl, libnam[, permclasses, permchars]) (function)

The library table tbl is computed from the library table with the name libnam , by permuting the
classes and the characters by the permutations permclasses and permchars , respectively.

So tbl and the library table with the name libnam are permutation equivalent. With the more
general function ConstructAdjusted (5.8.12), one can derive character tables that are not necessarily
permutation equivalent, by additionally replacing some defining data.

The two permutations are optional. If they are missing then the lists of irreducible characters and
the power maps of the two character tables coincide. However, different class fusions may be stored

The GAP Character Table Library 109

on the two tables. This is used for example in situations where a group has several classes of isomor-
phic maximal subgroups whose class fusions are different; different character tables (with different
identifiers) are stored for the different classes, each with appropriate class fusions, and all these tables
except the one for the first class of subgroups can be derived from this table via ConstructPermuted.

5.8.12 ConstructAdjusted

. ConstructAdjusted(tbl, libnam, pairs[, permclasses, permchars]) (function)

The defining attribute values of the library table tbl are given by the attribute values described by
the list pairs and –for those attributes which do not appear in pairs– by the attribute values of the
library table with the name libnam , whose classes and characters have been permuted by the optional
permutations permclasses and permchars , respectively.

This construction can be used to derive a character table from another library table (the one with
the name libnam) that is not permutation equivalent to this table. For example, it may happen that
the character tables of a split and a nonsplit extension differ only by some power maps and element
orders. In this case, one can encode one of the tables via ConstructAdjusted, by prescribing just
the power maps in the list pairs .

If no replacement of components is needed then one should better use ConstructPermuted
(5.8.11), because the system can then exploit the fact that the two tables are permutation equivalent.

5.8.13 ConstructFactor

. ConstructFactor(tbl, libnam, kernel) (function)

The library table tbl is completed with help of the library table with name libnam , by factoring
out the classes in the list kernel .

Chapter 6

Interfaces to Other Data Formats for
Character Tables

This chapter describes data formats for character tables that can be read or created by GAP. Currently
these are the formats used by

• the CAS system (see 6.1),

• the MOC system (see 6.2),

• GAP 3 (see 6.3),

• the so-called Cambridge format (see 6.4), and

• the MAGMA system (see 6.5).

6.1 Interface to the CAS System

The interface to CAS (see [NPP84]) is thought just for printing the CAS data to a file. The function
CASString (6.1.1) is available mainly in order to document the data format. Reading CAS tables is
not supported; note that the tables contained in the CAS Character Table Library have been migrated
to GAP using a few sed scripts and C programs.

6.1.1 CASString

. CASString(tbl) (function)

is a string that encodes the CAS library format of the character table tbl . This string can be
printed to a file which then can be read into the CAS system using its get command (see [NPP84]).

The used line length is the first entry in the list returned by SizeScreen (Reference: SizeScreen).
Only the known values of the following attributes are used. ClassParameters (Reference:

ClassParameters) (for partitions only), ComputedClassFusions (Reference: Computed-
ClassFusions), ComputedIndicators (Reference: ComputedIndicators), ComputedPowerMaps
(Reference: ComputedPowerMaps), ComputedPrimeBlocks (Reference: ComputedPrime-
Blockss), Identifier (Reference: Identifier for character tables), InfoText (Reference: In-
foText), Irr (Reference: Irr), OrdersClassRepresentatives (Reference: OrdersClassRepre-
sentatives), Size (Reference: Size), SizesCentralizers (Reference: SizesCentralisers).

110

The GAP Character Table Library 111

Example
gap> Print(CASString(CharacterTable("Cyclic", 2)), "\n");
’C2’
00/00/00. 00.00.00.
(2,2,0,2,-1,0)
text:
(#computed using generic character table for cyclic groups#),
order=2,
centralizers:(
2,2
),
reps:(
1,2
),
powermap:2(
1,1
),
characters:
(1,1
,0:0)
(1,-1
,0:0);
/// converted from GAP

6.2 Interface to the MOC System

The interface to MOC (see [HJLP]) can be used to print MOC input. Additionally it provides an
alternative representation of (virtual) characters.

The MOC 3 code of a 5 digit number in MOC 2 code is given by the following list. (Note that the
code must contain only lower case letters.)

ABCD for 0ABCD
a for 10000
b for 10001 k for 20001
c for 10002 l for 20002
d for 10003 m for 20003
e for 10004 n for 20004
f for 10005 o for 20005
g for 10006 p for 20006
h for 10007 q for 20007
i for 10008 r for 20008
j for 10009 s for 20009
tAB for 100AB
uAB for 200AB
vABCD for 1ABCD
wABCD for 2ABCD
yABC for 30ABC
z for 31000

The GAP Character Table Library 112

Note that any long number in MOC 2 format is divided into packages of length 4, the first (!) one
filled with leading zeros if necessary. Such a number with decimals d1,d2, . . . ,d4n+k is the sequence
0d1d2d3d4 . . .0d4n−3d4n−2d4n−1d4nd4n+1 . . .d4n+k where 0≤ k≤ 3, the first digit of x is 1 if the number
is positive and 2 if the number is negative, and then follow (4− k) zeros.

Details about the MOC system are explained in [HJLP], a brief description can be found in [LP91].

6.2.1 MAKElb11

. MAKElb11(listofns) (function)

For a list listofns of positive integers, MAKElb11 prints field information for all number fields
with conductor in this list.

The output of MAKElb11 is used by the MOC system; Calling MAKElb11([3 .. 189])
will print something very similar to Richard Parker’s file lb11.

Example
gap> MAKElb11([3, 4]);

3 2 0 1 0
4 2 0 1 0

6.2.2 MOCTable

. MOCTable(gaptbl[, basicset]) (function)

MOCTable returns the MOC table record of the GAP character table gaptbl .
The one argument version can be used only if gaptbl is an ordinary (G.0) table. For Brauer (G.p)

tables, one has to specify a basic set basicset of ordinary irreducibles. basicset must then be a
list of positions of the basic set characters in the Irr (Reference: Irr) list of the ordinary table of
gaptbl .

The result is a record that contains the information of gaptbl in a format similar to the MOC 3
format. This record can, e. g., easily be printed out or be used to print out characters using MOCString
(6.2.3).

The components of the result are

identifier
the string MOCTable(name) where name is the Identifier (Reference: Identifier for
character tables) value of gaptbl ,

GAPtbl
gaptbl ,

prime
the characteristic of the field (label 30105 in MOC),

centralizers
centralizer orders for cyclic subgroups (label 30130)

orders
element orders for cyclic subgroups (label 30140)

The GAP Character Table Library 113

fieldbases
at position i the Parker basis of the number field generated by the character values of the i-th
cyclic subgroup. The length of fieldbases is equal to the value of label 30110 in MOC.

cycsubgps
cycsubgps[i] = j means that class i of the GAP table belongs to the j-th cyclic subgroup of
the GAP table,

repcycsub
repcycsub[j] = i means that class i of the GAP table is the representative of the j-th cyclic
subgroup of the GAP table. Note that the representatives of GAP table and MOC table need
not agree!

galconjinfo
a list [r1,c1,r2,c2, . . . ,rn,cn] which means that the i-th class of the GAP table is the ci-th con-
jugate of the representative of the ri-th cyclic subgroup on the MOC table. (This is used to
translate back to GAP format, stored under label 30160)

30170
(power maps) for each cyclic subgroup (except the trivial one) and each prime divisor of the rep-
resentative order store four values, namely the number of the subgroup, the power, the number
of the cyclic subgroup containing the image, and the power to which the representative must be
raised to yield the image class. (This is used only to construct the 30230 power map/embedding
information.) In 30170 only a list of lists (one for each cyclic subgroup) of all these values is
stored, it will not be used by GAP.

tensinfo
tensor product information, used to compute the coefficients of the Parker base for tensor prod-
ucts of characters (label 30210 in MOC). For a field with vector space basis (v1,v2, . . . ,vn), the
tensor product information of a cyclic subgroup in MOC (as computed by fct) is either 1 (for
rational classes) or a sequence

nx1,1y1,1z1,1x1,2y1,2z1,2 . . .x1,m1y1,m1z1,m10x2,1y2,1z2,1x2,2y2,2z2,2 . . .x2,m2y2,m2z2,m20 . . .zn,mn0

which means that the coefficient of vk in the product(
n

∑
i=1

aivi

)(
n

∑
j=1

b jv j

)

is equal to
mk

∑
i=1

xk,iayk,ibzk,i .

On a MOC table in GAP, the tensinfo component is a list of lists, each containing exactly the
sequence mentioned above.

invmap
inverse map to compute complex conjugate characters, label 30220 in MOC.

The GAP Character Table Library 114

powerinfo
field embeddings for p-th symmetrizations, p a prime integer not larger than the largest element
order, label 30230 in MOC.

30900
basic set of restricted ordinary irreducibles in the case of nonzero characteristic, all ordinary
irreducibles otherwise.

6.2.3 MOCString

. MOCString(moctbl[, chars]) (function)

Let moctbl be a MOC table record, as returned by MOCTable (6.2.2). MOCString returns a string
describing the MOC 3 format of moctbl .

If a second argument chars is specified, it must be a list of MOC format characters as returned by
MOCChars (6.2.6). In this case, these characters are stored under label 30900. If the second argument
is missing then the basic set of ordinary irreducibles is stored under this label.

Example
gap> moca5:= MOCTable(CharacterTable("A5"));
rec(30170 := [[], [2, 2, 1, 1], [3, 3, 1, 1], [4, 5, 1, 1]]

,
30900 := [[1, 1, 1, 1, 0], [3, -1, 0, 0, -1],

[3, -1, 0, 1, 1], [4, 0, 1, -1, 0], [5, 1, -1, 0, 0]],
GAPtbl := CharacterTable("A5"), centralizers := [60, 4, 3, 5],
cycsubgps := [1, 2, 3, 4, 4],
fieldbases :=

[CanonicalBasis(Rationals), CanonicalBasis(Rationals),
CanonicalBasis(Rationals),
Basis(NF(5,[1, 4]), [1, E(5)+E(5)^4])], fields := [],

galconjinfo := [1, 1, 2, 1, 3, 1, 4, 1, 4, 2],
identifier := "MOCTable(A5)",
invmap := [[1, 1, 0], [1, 2, 0], [1, 3, 0],

[1, 4, 0, 1, 5, 0]], orders := [1, 2, 3, 5],
powerinfo :=

[,
[[1, 1, 0], [1, 1, 0], [1, 3, 0],

[1, 4, -1, 5, 0, -1, 5, 0]],
[[1, 1, 0], [1, 2, 0], [1, 1, 0],

[1, 4, -1, 5, 0, -1, 5, 0]],,
[[1, 1, 0], [1, 2, 0], [1, 3, 0], [1, 1, 0, 0]]],

prime := 0, repcycsub := [1, 2, 3, 4],
tensinfo :=

[[1], [1], [1],
[2, 1, 1, 1, 1, 2, 2, 0, 1, 1, 2, 1, 2, 1, -1, 2, 2, 0]])

gap> str:= MOCString(moca5);;
gap> str{[1..68]};
"y100y105ay110fey130t60edfy140bcdfy150bbbfcabbey160bbcbdbebecy170ccbb"
gap> moca5mod3:= MOCTable(CharacterTable("A5") mod 3, [1 .. 4]);;
gap> MOCString(moca5mod3){ [1 .. 68] };
"y100y105dy110edy130t60efy140bcfy150bbfcabbey160bbcbdbdcy170ccbbdfbby"

The GAP Character Table Library 115

6.2.4 ScanMOC

. ScanMOC(list) (function)

returns a record containing the information encoded in the list list . The components of the
result are the labels that occur in list . If list is in MOC 2 format (10000-format), the names of
components are 30000-numbers; if it is in MOC 3 format the names of components have yABC-format.

6.2.5 GAPChars

. GAPChars(tbl, mocchars) (function)

Let tbl be a character table or a MOC table record, and mocchars be either a list of MOC format
characters (as returned by MOCChars (6.2.6)) or a list of positive integers such as a record component
encoding characters, in a record produced by ScanMOC (6.2.4).

GAPChars returns translations of mocchars to GAP character values lists.

6.2.6 MOCChars

. MOCChars(tbl, gapchars) (function)

Let tbl be a character table or a MOC table record, and gapchars be a list of (GAP format)
characters. MOCChars returns translations of gapchars to MOC format.

Example
gap> scan:= ScanMOC(str);
rec(y050 := [5, 1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 1, 0, 0],

y105 := [0], y110 := [5, 4], y130 := [60, 4, 3, 5],
y140 := [1, 2, 3, 5], y150 := [1, 1, 1, 5, 2, 0, 1, 1, 4],
y160 := [1, 1, 2, 1, 3, 1, 4, 1, 4, 2],
y170 := [2, 2, 1, 1, 3, 3, 1, 1, 4, 5, 1, 1],
y210 := [1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 0, 1, 1, 2, 1, 2, 1, -1, 2,

2, 0], y220 := [1, 1, 0, 1, 2, 0, 1, 3, 0, 1, 4, 0, 1, 5, 0],
y230 := [2, 1, 1, 0, 1, 1, 0, 1, 3, 0, 1, 4, -1, 5, 0, -1, 5, 0],
y900 := [1, 1, 1, 1, 0, 3, -1, 0, 0, -1, 3, -1, 0, 1, 1, 4, 0, 1,

-1, 0, 5, 1, -1, 0, 0])
gap> gapchars:= GAPChars(moca5, scan.y900);
[[1, 1, 1, 1, 1], [3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3],

[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4], [4, 0, 1, -1, -1],
[5, 1, -1, 0, 0]]

gap> mocchars:= MOCChars(moca5, gapchars);
[[1, 1, 1, 1, 0], [3, -1, 0, 0, -1], [3, -1, 0, 1, 1],

[4, 0, 1, -1, 0], [5, 1, -1, 0, 0]]
gap> Concatenation(mocchars) = scan.y900;
true

6.3 Interface to GAP 3

The following functions are used to read and write character tables in GAP 3 format.

The GAP Character Table Library 116

6.3.1 GAP3CharacterTableScan

. GAP3CharacterTableScan(string) (function)

Let string be a string that contains the output of the GAP 3 function PrintCharTable. In other
words, string describes a GAP record whose components define an ordinary character table object
in GAP 3. GAP3CharacterTableScan returns the corresponding GAP 4 character table object.

The supported record components are given by the list GAP3CharacterTableData (6.3.3).

6.3.2 GAP3CharacterTableString

. GAP3CharacterTableString(tbl) (function)

For an ordinary character table tbl , GAP3CharacterTableString returns a string that when read
into GAP 3 evaluates to a character table corresponding to tbl . A similar format is printed by the
GAP 3 function PrintCharTable.

The supported record components are given by the list GAP3CharacterTableData (6.3.3).
Example

gap> tbl:= CharacterTable("Alternating", 5);;
gap> str:= GAP3CharacterTableString(tbl);;
gap> Print(str);
rec(
centralizers := [60, 4, 3, 5, 5],
fusions := [rec(map := [1, 3, 4, 7, 7], name := "Sym(5)")],
identifier := "Alt(5)",
irreducibles := [
[1, 1, 1, 1, 1],
[4, 0, 1, -1, -1],
[5, 1, -1, 0, 0],
[3, -1, 0, -E(5)-E(5)^4, -E(5)^2-E(5)^3],
[3, -1, 0, -E(5)^2-E(5)^3, -E(5)-E(5)^4]
],
orders := [1, 2, 3, 5, 5],
powermap := [, [1, 1, 3, 5, 4], [1, 2, 1, 5, 4], , [1, 2, 3, 1, \
1]],
size := 60,
text := "computed using generic character table for alternating groups\
",
operations := CharTableOps)
gap> scan:= GAP3CharacterTableScan(str);
CharacterTable("Alt(5)")
gap> TransformingPermutationsCharacterTables(tbl, scan);
rec(columns := (), group := Group([(4,5)]), rows := ())

6.3.3 GAP3CharacterTableData

. GAP3CharacterTableData (global variable)

The GAP Character Table Library 117

This is a list of pairs, the first entry being the name of a component in a GAP 3 character table
and the second entry being the corresponding attribute name in GAP 4. The variable is used by
GAP3CharacterTableScan (6.3.1) and GAP3CharacterTableString (6.3.2).

6.4 Interface to the Cambridge Format

The following functions deal with the so-called Cambridge format, in which the source data of
the character tables in the Atlas of Finite Groups [CCN+85] and in the Atlas of Brauer Charac-
ters [JLPW95] are stored. Each such table is stored on a file of its own. The line length is at most 78,
and each item of the table starts in a new line, behind one of the following prefixes.

#23 a description and the name(s) of the simple group

#7 integers describing the column widths

#9 the symbols ; and @, denoting columns between tables and columns that belong to conjugacy
classes, respectively

#1 the symbol | in columns between tables, and centralizer orders otherwise

#2 the symbols p (in the first column only), power (in the second column only, which belongs to
the class of the identity element), | in other columns between tables, and descriptions of the
powers of classes otherwise

#3 the symbols p’ (in the first column only), part (in the second column only, which belongs to
the class of the identity element), | in other columns between tables, and descriptions of the
p-prime parts of classes otherwise

#4 the symbols ind and fus in columns between tables, and class names otherwise

#5 either | or strings composed from the symbols +, -, o, and integers in columns where the lines
starting with #4 contain ind; the symbols :, ., ? in columns where these lines contain fus;
character values or | otherwise

#6 the symbols |, ind, and, and fus in columns between tables; the symbol | and element orders
of preimage classes in downward extensions otherwise

#8 the last line of the data, may contain the date of the last change

#C comments.

6.4.1 CambridgeMaps

. CambridgeMaps(tbl) (function)

For a character table tbl , CambridgeMaps returns a record with the following components.

names
a list of strings denoting class names,

The GAP Character Table Library 118

power
a list of strings, the i-th entry encodes the p-th powers of the i-th class, for all prime divisors p
of the group order,

prime
a list of strings, the i-th entry encodes the p-prime parts of the i-th class, for all prime divisors
p of the group order.

The meaning of the entries of the lists is defined in [CCN+85, Chapter 7, Sections 3–5]).
CambridgeMaps is used for example by Display (Reference: Display for a character table) in

the case that the powermap option has the value "ATLAS".
Note that the value of the names component may differ from the class names of the character table

shown in the Atlas of Finite Groups; an example is the character table of the group J1.
Example

gap> CambridgeMaps(CharacterTable("A5"));
rec(names := ["1A", "2A", "3A", "5A", "B*"],

power := ["", "A", "A", "A", "A"],
prime := ["", "A", "A", "A", "A"])

gap> CambridgeMaps(CharacterTable("A5") mod 2);
rec(names := ["1A", "3A", "5A", "B*"],

power := ["", "A", "A", "A"], prime := ["", "A", "A", "A"])

6.4.2 StringOfCambridgeFormat

. StringOfCambridgeFormat(tblnames[, p]) (function)

Let tblnames be a matrix of identifiers of ordinary character tables, which describe the bicyclic
extensions of a simple group from the Atlas of Finite Groups. The class fusions between the character
tables must be stored on the tables.

If the required information is available then StringOfCambridgeFormat returns a string that
encodes an approximation of the Cambridge format file for the simple group in question (whose iden-
tifier occurs in the upper left corner of tblnames). Otherwise, that is, if some character table or class
fusion is missing, fail is returned.

If a prime integer p is given as a second argument then the result describes p -modular character
tables, otherwise the ordinary character tables are described by the result.

Differences to the original format may occur for irrational character values; the descriptions of
these values have been chosen deliberately for the original files, it is not obvious how to compute
these descriptions from the character tables in question.

Example
gap> str:= StringOfCambridgeFormat([["A5", "A5.2"],
> ["2.A5", "2.A5.2"]]);;
gap> Print(str);
#23 ? A5
#7 4 4 4 4 4 4 4 4 4 4 4
#9 ; @ @ @ @ @ ; ; @ @ @
#1 | 60 4 3 5 5 | | 6 2 3
#2 p power A A A A | | A A AB
#3 p’ part A A A A | | A A AB
#4 ind 1A 2A 3A 5A B* fus ind 2B 4A 6A

The GAP Character Table Library 119

#5 + 1 1 1 1 1 : ++ 1 1 1
#5 + 3 -1 0 -b5 * . + 0 0 0
#5 + 3 -1 0 * -b5 . | | | |
#5 + 4 0 1 -1 -1 : ++ 2 0 -1
#5 + 5 1 -1 0 0 : ++ 1 -1 1
#6 ind 1 4 3 5 5 fus ind 2 8 6
#6 | 2 | 6 10 10 | | | 8 6
#5 - 2 0 -1 b5 * . - 0 0 0
#5 - 2 0 -1 * b5 . | | | |
#5 - 4 0 1 -1 -1 : oo 0 0 i3
#5 - 6 0 0 1 1 : oo 0 i2 0
#8
gap> str:= StringOfCambridgeFormat([["A5", "A5.2"],
> ["2.A5", "2.A5.2"]], 3);;
gap> Print(str);
#23 A5 (Mod 3)
#7 4 4 4 4 4 4 4 4 4
#9 ; @ @ @ @ ; ; @ @
#1 | 60 4 5 5 | | 6 2
#2 p power A A A | | A A
#3 p’ part A A A | | A A
#4 ind 1A 2A 5A B* fus ind 2B 4A
#5 + 1 1 1 1 : ++ 1 1
#5 + 3 -1 -b5 * . + 0 0
#5 + 3 -1 * -b5 . | | |
#5 + 4 0 -1 -1 : ++ 2 0
#6 ind 1 4 5 5 fus ind 2 8
#6 | 2 | 10 10 | | | 8
#5 - 2 0 b5 * . - 0 0
#5 - 2 0 * b5 . | | |
#5 - 6 0 1 1 : oo 0 i2
#8
gap> StringOfCambridgeFormat([["L10(11)"]], 0);
fail

The global option OmitDashedRows can be used to control whether the two-line description of
“dashed” row portions (concerning tables of, e. g., 2′.Sz(8)) are omitted (value true) or shown (value
false). The default is to show information about dashed row portions in the case of ordinary tables,
and to omit this information for Brauer tables.

6.5 Interface to the MAGMA System

This interface is intended to convert character tables given in MAGMA’s (see [CP96]) display format
into GAP character tables.

The function BosmaBase (6.5.1) is used for the translation of irrational values; this function may
be of interest independent of the conversion of character tables.

The GAP Character Table Library 120

6.5.1 BosmaBase

. BosmaBase(n) (function)

For a positive integer n that is not congruent to 2 modulo 4, BosmaBase returns the list of expo-
nents i for which E(n)^i belongs to the canonical basis of the n -th cyclotomic field that is defined in
[Bos90, Section 5].

As a set, this basis is defined as follows. Let P denote the set of prime divisors of n and n
= ∏p∈P np. Let el = E(l) for any positive integer l, and {e j

m1} j∈J ⊗{ek
m2
}k∈K = {e j

m1 · ek
m2
} j∈J,k∈K

for any positive integers m1, m2. (This notation is the same as the one used in the description of
ZumbroichBase (Reference: ZumbroichBase).)

Then the basis is
Bn =

⊗
p∈P

Bnp

where
Bnp = {ek

np
;0≤ k ≤ ϕ(np)−1};

here ϕ denotes Euler’s function, see Phi (Reference: Phi).
Bn consists of roots of unity, it is an integral basis (that is, exactly the integral elements in Qn have

integral coefficients w.r.t. Bn, cf. IsIntegralCyclotomic (Reference: IsIntegralCyclotomic)), and
for any divisor m of n that is not congruent to 2 modulo 4, Bm is a subset of Bn.

Note that the list l, say, that is returned by BosmaBase is in general not a set. The ordering of the
elements in l fits to the coefficient lists for irrational values used by MAGMA’s display format.

Example
gap> b:= BosmaBase(8);
[0, 1, 2, 3]
gap> b:= Basis(CF(8), List(b, i -> E(8)^i));
Basis(CF(8), [1, E(8), E(4), E(8)^3])
gap> Coefficients(b, Sqrt(2));
[0, 1, 0, -1]
gap> Coefficients(b, Sqrt(-2));
[0, 1, 0, 1]
gap> b:= BosmaBase(15);
[0, 5, 3, 8, 6, 11, 9, 14]
gap> b:= List(b, i -> E(15)^i);
[1, E(3), E(5), E(15)^8, E(5)^2, E(15)^11, E(5)^3, E(15)^14]
gap> Coefficients(Basis(CF(15), b), EB(15));
[-1, -1, 0, 0, -1, -2, -1, -2]
gap> BosmaBase(48);
[0, 3, 6, 9, 12, 15, 18, 21, 16, 19, 22, 25, 28, 31, 34, 37]

6.5.2 GAPTableOfMagmaFile (for a file)

. GAPTableOfMagmaFile(file, identifier) (function)

. GAPTableOfMagmaFile(str, identifier[, "string"]) (function)

In the first form, let file be the name of a file that contains a character table in MAGMA’s
display format, and identifier be a string. GAPTableOfMagmaFile returns the corresponding GAP
character table, with Identifier (Reference: Identifier for tables of marks) value identifier .

The GAP Character Table Library 121

In the second form, str must be a string that describes the contents of a file as described for the
first form, and the third argument must be the string "string".

Example
gap> tmpdir:= DirectoryTemporary();;
gap> file:= Filename(tmpdir, "magmatable");;
gap> str:= "\
> Character Table of Group G\n\
> --------------------------\n\
> \n\
> ---------------------------\n\
> Class | 1 2 3 4 5\n\
> Size | 1 15 20 12 12\n\
> Order | 1 2 3 5 5\n\
> ---------------------------\n\
> p = 2 1 1 3 5 4\n\
> p = 3 1 2 1 5 4\n\
> p = 5 1 2 3 1 1\n\
> ---------------------------\n\
> X.1 + 1 1 1 1 1\n\
> X.2 + 3 -1 0 Z1 Z1#2\n\
> X.3 + 3 -1 0 Z1#2 Z1\n\
> X.4 + 4 0 1 -1 -1\n\
> X.5 + 5 1 -1 0 0\n\
> \n\
> Explanation of Character Value Symbols\n\
> --------------------------------------\n\
> \n\
> # denotes algebraic conjugation, that is,\n\
> #k indicates replacing the root of unity w by w^k\n\
> \n\
> Z1 = (CyclotomicField(5: Sparse := true)) ! [\n\
> RationalField() | 1, 0, 1, 1]\n\
> ";;
gap> FileString(file, str);;
gap> tbl:= GAPTableOfMagmaFile(file, "MagmaA5");;
gap> Display(tbl);
MagmaA5

2 2 2 . . .
3 1 . 1 . .
5 1 . . 1 1

1a 2a 3a 5a 5b
2P 1a 1a 3a 5b 5a
3P 1a 2a 1a 5b 5a
5P 1a 2a 3a 1a 1a

X.1 1 1 1 1 1
X.2 3 -1 . A *A
X.3 3 -1 . *A A
X.4 4 . 1 -1 -1
X.5 5 1 -1 . .

The GAP Character Table Library 122

A = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5

gap> tbl2:= GAPTableOfMagmaFile(str, "MagmaA5", "string");;
gap> Irr(tbl) = Irr(tbl2);
true
gap> str:= "\
> Character Table of Group G\n\
> --------------------------\n\
> \n\
> ------------------------------\n\
> Class | 1 2 3 4 5 6\n\
> Size | 1 1 1 1 1 1\n\
> Order | 1 2 3 3 6 6\n\
> ------------------------------\n\
> p = 2 1 1 4 3 3 4\n\
> p = 3 1 2 1 1 2 2\n\
> ------------------------------\n\
> X.1 + 1 1 1 1 1 1\n\
> X.2 + 1 -1 1 1 -1 -1\n\
> X.3 0 1 1 J-1-J-1-J J\n\
> X.4 0 1 -1 J-1-J 1+J -J\n\
> X.5 0 1 1-1-J J J-1-J\n\
> X.6 0 1 -1-1-J J -J 1+J\n\
> \n\
> \n\
> Explanation of Character Value Symbols\n\
> --------------------------------------\n\
> \n\
> J = RootOfUnity(3)\n\
> ";;
gap> FileString(file, str);;
gap> tbl:= GAPTableOfMagmaFile(file, "MagmaC6");;
gap> Display(tbl);
MagmaC6

2 1 1 1 1 1 1
3 1 1 1 1 1 1

1a 2a 3a 3b 6a 6b
2P 1a 1a 3b 3a 3a 3b
3P 1a 2a 1a 1a 2a 2a

X.1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 -1
X.3 1 1 A /A /A A
X.4 1 -1 A /A -/A -A
X.5 1 1 /A A A /A
X.6 1 -1 /A A -A -/A

A = E(3)
= (-1+Sqrt(-3))/2 = b3

The GAP Character Table Library 123

The MAGMA output for the above two examples is obtained by the following commands.
Example

> G1 := Alt(5);
> CT1 := CharacterTable(G1);
> CT1;
> G2:= CyclicGroup(6);
> CT2:= CharacterTable(G2);
> CT2;

6.5.3 CharacterTableComputedByMagma

. CharacterTableComputedByMagma(G, identifier) (function)

For a permutation group G and a string identifier , CharacterTableComputedByMagma calls
the MAGMA system for computing the character table of G , and converts the output into GAP format
(see GAPTableOfMagmaFile (6.5.2)). The returned character table has the Identifier (Reference:
Identifier for tables of marks) value identifier .

If the MAGMA system is not available then fail is returned. The availability of MAGMA is
determined by calling MAGMA where the path for this call is given by the user preference MagmaPath
of the package CTblLib; if the value of this preference is empty or if MAGMA cannot be called via
this path then MAGMA is regarded as not available.

If the attribute ConjugacyClasses (Reference: ConjugacyClasses attribute) of G is set before
the call of CharacterTableComputedByMagma then the columns of the returned character table fit to
the conjugacy classes that are stored in G .

Example
gap> if CTblLib.IsMagmaAvailable() then
> g:= MathieuGroup(24);
> ccl:= ConjugacyClasses(g);
> t:= CharacterTableComputedByMagma(g, "testM24");
> if t = fail then
> Print("#E Magma did not compute a character table.\n");
> elif (not HasConjugacyClasses(t)) or
> (ConjugacyClasses(t) <> ccl) then
> Print("#E The conjugacy classes do not fit.\n");
> elif TransformingPermutationsCharacterTables(t,
> CharacterTable("M24")) = fail then
> Print("#E Inconsistency of character tables?\n");
> fi;
> fi;

Chapter 7

Utility Functions Provided by the
CTblLib Package

This chapter describes GAP functions that are provided by the CTblLib package but that might be of
general interest.

For the moment, there are just two features to describe, the generation of Atlas irrationalities from
cyclotomic integers (see Section 7.1), and the generation of information about the group structure
from identifiers of character tables (see Section 7.2).

7.1 Write Character Values in Terms of Atomic Atlas Irrationalities

7.1.1 CTblLib.StringOfAtlasIrrationality

. CTblLib.StringOfAtlasIrrationality(cyc) (function)

Returns: a string that describes the cyclotomic integer cyc .
This function is intended for expressing the cyclotomic integer cyc as a linear combination of

so-called “atomic Atlas irrationalities” (see [CCN+85, p. xxvii]), with integer coefficients.
Often there is no “optimal” expression of that kind for cyc , and this function uses certain heuristics

for finding a not too bad expression. Concerning the character tables in the Atlas of Finite Groups
[CCN+85], an explicit mapping between the values which are computed by this function and the
descriptions that are shown in the book is available, see CTblLib.IrrationalityMapping. Such a
mapping is not yet available for the character tables from the Atlas of Brauer Characters [JLPW95],
this function is only experimental for these tables, it is likely to be changed in the future.

CTblLib.StringOfAtlasIrrationality is used by BrowseAtlasTable (3.5.9).
Example

gap> values:= List(["e31", "y’24+3", "r2+i", "r2+i2"],
> AtlasIrrationality);;
gap> List(values, CTblLib.StringOfAtlasIrrationality);
["e31", "y’24+3", "z8-&3+i", "2z8"]

The implementation uses the following heuristics for computing a description of the cyclotomic
integer cyc with conductor N, say.

• If N is not squarefree the let N0 be the squarefree part of N, split cyc into the sum of its odd
squarefree part and its non-squarefree part, and consider the two values separately; note that

124

The GAP Character Table Library 125

the odd squarefree part is well-defined by the fact that the basis of the N-th cyclotomic field
given by ZumbroichBase (Reference: ZumbroichBase) contains all primitive N0-th roots of
unity. Also note that except for quadratic irrationalities (where N is squarefree), all roots of
unity that are involved in the representation of atomic irrationalities w. r. t. this basis have the
same multiplicative order.

• If cyc is a multiple of a root of unity then write it as such, i. e., as a string involving zN .

• Otherwise, if cyc lies in a quadratic number field then write it as a linear combination of an
integer. Usually the string involves rN , iN , or bN , but also multiples of bM may occur, where M
is a –not squarefree– multiple of N.

• Otherwise, find a large cyclic subgroup of the stabilizer of cyc inside the Galois group over the
Rationals –this subgroup defines an atomic irrationality– and express cyc as a linear combina-
tion of the orbit sums. In the worst case, there is no nontrivial stabilizer, and we find only a
description as a sum of roots of unity.

There is of course a lot of space for improvements. For example, one could use the Bosma basis
representation (see BosmaBase (6.5.1)) of cyc for splitting the value into a sum of values from strictly
smaller cyclotomic fields, which would be useful at least if their conductors are coprime. Note that the
Bosma basis of the N-th cyclotomic field has the property that it is a union of bases for the cyclotomic
fields with conductor dividing N. Thus one can easily find out that

√
5+
√

7 can be written as a sum
of two values in terms of 5-th and 7-th roots of unity. In non-coprime situations, this argument fails.
For example, one can still detect that

√
15+

√
21 involves only 15-th and 21-th roots of unity, but it is

not obvious how to split the value into the two parts.

7.2 Create a String that Describes the Group Structure

7.2.1 StructureDescriptionCharacterTableName

. StructureDescriptionCharacterTableName(name) (function)

For a string name that is an admissible name of a character table,
StructureDescriptionCharacterTableName returns a string that is intended as a descrip-
tion of the structure of the underlying group.

Note that many identifiers of character tables (see Identifier (Reference: Identifier for char-
acter tables)) do not describe the group structure in an appropriate way. One reason for choosing such
identifiers on purpose is that several character tables for isomorphic groups can be contained in the
library, because the groups have different class fusions into another group. For example, the Mathieu
group M12 contains two classes of subgroups isomorphic with M11, and the identifiers of the character
tables corresponding to these subgroups are "M11" and "M12M2", respectively.

Example
gap> StructureDescriptionCharacterTableName("M12M2");
"M11"

References

[ABC] Improvements to the ATLAS of Brauer Characters.
https://www.math.rwth-aachen.de/homes/MOC/ABCerr.html. 64

[BGL+10] T. Breuer, R. M. Guralnick, A. Lucchini, A. Maróti, and G. P. Nagy. Hamiltonian cycles
in the generating graphs of finite groups. Bull. London Math. Soc., 42(4):621–633, 2010.
22

[BL23] T. Breuer and F. Lübeck. Browse, ncurses interface and browsing applications, Version
1.8.21. https://www.math.rwth-aachen.de/~Browse, Mar 2023. GAP package. 7,
14, 44, 49, 53

[BMO17] T. Breuer, G. Malle, and E. A. O’Brien. Reliability and reproducibility of Atlas informa-
tion. In M. Bhargava, R. Guralnick, G. Hiss, K. Lux, and P. H. Tiep, editors, Finite simple
groups: thirty years of the atlas and beyond, volume 694 of Contemp. Math., page 21–31.
Amer. Math. Soc., Providence, RI, 2017. 11, 13, 64

[BMW20] T. Breuer, K. Magaard, and R. A. Wilson. Verification of the ordinary character table of
the Baby Monster. J. Algebra, 561:111–130, 2020. 6

[BN95] T. Breuer and S. P. Norton. Improvements to the Atlas, page 297–327. Volume 11 of
London Mathematical Society Monographs. New Series [JLPW95], 1995. Appendix 2 by
T. Breuer and S. Norton, Oxford Science Publications. 64, 77

[Bos90] W. Bosma. Canonical bases for cyclotomic fields. Appl. Algebra Engrg. Comm. Comput.,
1(2):125–134, 1990. 120

[Brea] T. Breuer. Ambiguous class fusions in the GAP character table library.
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/
manual.pdf. 22

[Breb] T. Breuer. Constructing character tables of central extensions in GAP.
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/
manual.pdf. 98

[Brec] T. Breuer. Constructing the ordinary character tables of some Atlas groups using character
theoretic methods. arXiv:1604.00754. 6

[Bred] T. Breuer. Permutation Characters in GAP. https://www.math.rwth-aachen.de/
~Thomas.Breuer/ctbllib/doc2/manual.pdf. 22

126

https://www.math.rwth-aachen.de/homes/MOC/ABCerr.html
https://www.math.rwth-aachen.de/~Browse
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf
https://export.arxiv.org/abs/1604.00754
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf

The GAP Character Table Library 127

[Bree] T. Breuer. GAP computations concerning probabilistic generation of finite simple groups.
arXiv:0710.3267. 6, 22

[Bref] T. Breuer. Using table automorphisms for constructing character tables in
GAP. https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/
manual.pdf. 22, 98, 100

[Bre11] T. Breuer. Computing character tables of groups of type M.G.A. LMS J. Comput. Math.,
14:173–178, 2011. 98

[CCN+85] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. Atlas of finite
groups. Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary
characters for simple groups, With computational assistance from J. G. Thackray. 7, 13,
17, 18, 21, 24, 25, 34, 35, 36, 38, 40, 53, 56, 58, 59, 63, 64, 77, 78, 79, 80, 97, 117, 118,
124

[CH05] M. Claßen-Houben. Jordan-Zerlegung der Charaktere für die GAP-Charaktertafeln der
endlichen Gruppen vom Lie-Typ. Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch
Westfälische Technische Hochschule, Aachen, Germany, 2005. 16, 52

[CP96] J. J. Cannon and C. Playoust. An introduction to algebraic programming in Magma.
http://www.math.usyd.edu.au:8000/u/magma, 1996. 119

[Dan06] S. Dany. Berechnung von Charaktertafeln zentraler Erweiterungen ausgewählter Grup-
pen. Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische
Hochschule, Aachen, Germany, 2006. 16

[DLP23] H. Dietrich, M. Lee, and T. Popiel. The maximal subgroups of the monster.
arXiv:2304.14646, 2023. 8

[GAP21] GAP – Groups, Algorithms, and Programming, Version 4.11.1.
https://www.gap-system.org, Mar 2021. 6

[GR] R. M. Guralnick and G. R. Robinson. Commuting involutions and elementary abelian
subgroups of simple groups. arXiv:2012.08693. 31

[Han88] W. Hanrath. Irreduzible Darstellungen von Raumgruppen. Dissertation, Rheinisch West-
fälische Technische Hochschule, Aachen, Germany, 1988. 70

[HJLP] G. Hiss, C. Jansen, K. Lux, and R. A. Parker. Computational Modular Character Theory.
http://www.math.rwth-aachen.de/~MOC/CoMoChaT/. 7, 111, 112

[HP89] D. F. Holt and W. Plesken. Perfect groups. Oxford Mathematical Monographs. The
Clarendon Press Oxford University Press, New York, 1989. With an appendix by W.
Hanrath, Oxford Science Publications. 70

[JLPW95] C. Jansen, K. Lux, R. Parker, and R. Wilson. An atlas of Brauer characters, volume 11
of London Mathematical Society Monographs. New Series. The Clarendon Press Oxford
University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton, Oxford
Science Publications. 7, 11, 53, 56, 58, 59, 63, 64, 71, 77, 80, 97, 117, 124, 126

https://export.arxiv.org/abs/0710.3267
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf
https://www.math.rwth-aachen.de/~Thomas.Breuer/ctbllib/doc2/manual.pdf
http://www.math.usyd.edu.au:8000/u/magma
https://arxiv.org/abs/2304.14646
https://www.gap-system.org
http://export.arxiv.org/abs/2012.08693
http://www.math.rwth-aachen.de/~MOC/CoMoChaT/

The GAP Character Table Library 128

[LN18] F. Lübeck and M. Neunhöffer. GAPDoc, a Meta Package for GAP Documentation,
Version 1.6.2. https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc, Oct
2018. GAP package. 14, 16

[LOST10] M. W. Liebeck, E. A. O’Brien, A. Shalev, and P. H. Tiep. The Ore conjecture. J. Eur.
Math. Soc. (JEMS), 12(4):939–1008, 2010. 27

[LP91] K. Lux and H. Pahlings. Computational aspects of representation theory of finite groups.
In G. O. Michler and C. M. Ringel, editors, Representation theory of finite groups and
finite-dimensional algebras (Bielefeld, 1991), volume 95 of Progr. Math., page 37–64,
Basel, 1991. Birkhäuser. 7, 112

[LP10] K. Lux and H. Pahlings. Representations of groups, volume 124 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, Cambridge, 2010. A computational
approach. 29

[MNP19] T. Merkwitz, L. Naughton, and G. Pfeiffer. TomLib, the gap library of tables of marks,
Version 1.2.9. https://gap-packages.github.io/tomlib, Oct 2019. GAP package.
19, 46, 50

[Nav98] G. Navarro. Characters and blocks of finite groups, volume 250 of London Mathematical
Society Lecture Note Series. Cambridge University Press, Cambridge, 1998. 29

[Noe02] F. Noeske. Zur Darstellungstheorie der Schurschen Erweiterungen symmetrischer Grup-
pen. Diplomarbeit, Lehrstuhl D für Mathematik, Rheinisch Westfälische Technische
Hochschule, 2002. 16, 72

[Nor] S. P. Norton. Improvements to the ATLAS–II. http://brauer.maths.qmul.ac.uk/
Atlas/info/fullatlasmods.html. 64

[NPP84] J. Neubüser, H. Pahlings, and W. Plesken. CAS; design and use of a system for the
handling of characters of finite groups. In M. D. Atkinson, editor, Computational group
theory (Durham, 1982), page 195–247, London, 1984. Academic Press. 7, 70, 85, 110

[Ost86] T. Ostermann. Charaktertafeln von Sylownormalisatoren sporadischer einfacher Grup-
pen. Technical report, Universität Essen, Essen, 1986. 70

[WPN+22] R. A. Wilson, R. A. Parker, S. Nickerson, J. N. Bray, and T. Breuer. At-
lasRep, a GAP Interface to the Atlas of Group Representations, Version 2.1.6.
https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep, Oct 2022. GAP
package. 15

https://www.math.rwth-aachen.de/~Frank.Luebeck/GAPDoc
https://gap-packages.github.io/tomlib
http://brauer.maths.qmul.ac.uk/Atlas/info/fullatlasmods.html
http://brauer.maths.qmul.ac.uk/Atlas/info/fullatlasmods.html
https://www.math.rwth-aachen.de/~Thomas.Breuer/atlasrep

Index

AllCharacterTableNames, 43
alternating groups

character table, 71
AtlasLabelsOfIrreducibles, 79
AtlasStabilizer, 51

BosmaBase, 120
BrauerTable

for a string, and a prime integer, 42
BrauerTableOfTypeMGA, 99
BrauerTableOfTypeV4G

for one factor and an autom., 102
for three factors, 102

BrowseAtlasContents, 58
BrowseAtlasImprovements, 64
BrowseAtlasMap, 59
BrowseAtlasTable, 63
BrowseCommonIrrationalities, 56
BrowseCTblLibDifferences, 57
BrowseCTblLibInfo, 54

for a character table, 54
for a name, 54

CambridgeMaps, 117
CAS

format, 110
tables, 110

CASInfo, 85
CASString, 110
character

unipotent, 51
character tables

ATLAS, 77
CAS, 80, 85
generic, 71
library of, 69

CharacterTable
for a string, 42
for a table of marks, 47

CharacterTableComputedByMagma, 123
CharacterTableForGroupInfo, 50
CharacterTableOfCommonCentral-

Extension, 105
CharacterTableOfIndexTwoSubdirect-

Product, 103
CharacterTableOfTypeGS3, 100

for Brauer tables, 100
CharacterTableSpecialized, 73
ConstructAdjusted, 109
ConstructCentralProduct, 107
ConstructDirectProduct, 107
ConstructFactor, 109
ConstructGS3, 106
ConstructGS3Info, 106
ConstructIndexTwoSubdirectProduct, 103
ConstructIndexTwoSubdirectProductInfo,

104
ConstructionInfoCharacterTable, 68
ConstructIsoclinic, 108
ConstructMGA, 106
ConstructMGAInfo, 106
ConstructPermuted, 108
ConstructProj, 107
ConstructProjInfo, 107
ConstructSubdirect, 108
ConstructV4G, 106
ConstructWreathSymmetric, 108
CTblLib, 1
CTblLib.StringOfAtlasIrrationality, 124
cyclic groups

character table, 71

DeligneLusztigName, 53
DeligneLusztigNames, 52
dihedral groups

character table, 71
DisplayAtlasContents, 59
DisplayAtlasMap

129

The GAP Character Table Library 130

for a record, 60
for the name of a simple group, 60

DisplayCTblLibInfo
for a character table, 54
for a name, 54

duplicate character table, 65

ExtensionInfoCharacterTable, 68

FusionCharTableTom, 47
FusionToTom, 47

GAP3CharacterTableData, 116
GAP3CharacterTableScan, 116
GAP3CharacterTableString, 116
GAPChars, 115
GAPTableOfMagmaFile

for a file, 120
for a string, 120

generic character tables, 69
GroupForGroupInfo, 50
GroupForTom, 50
GroupInfoForCharacterTable, 48

IBrOfExtensionBySingularAutomorphism,
104

IdentifierOfMainTable, 66
IdentifiersOfDuplicateTables, 66
InfoText, 68
IsDuplicateTable, 66
IsNontrivialDirectProduct, 51

KnowsDeligneLusztigNames, 53
KnowsSomeGroupInfo, 49

LibInfoCharacterTable, 89
LIBLIST, 88
library of character tables, 69, 77, 80, 85
library tables, 69

add, 89
generic, 71

LibraryFusion, 90
LibraryFusionTblToTom, 91

MAKElb11, 112
Maxes, 67
MOCChars, 115
MOCString, 114
MOCTable, 112

NameOfEquivalentLibraryCharacterTable,
46

NameOfLibraryCharacterTable, 48
NamesOfEquivalentLibraryCharacter-

Tables, 46
NotifyCharacterTable, 93
NotifyCharacterTables, 94
NotifyNameOfCharacterTable, 90

OneCharacterTableName, 45

PossibleActionsForTypeGS3, 100
PossibleActionsForTypeGV4, 101
PossibleActionsForTypeMGA, 99
PossibleCharacterTablesOfTypeGV4, 101

for Brauer tables, 101
PossibleCharacterTablesOfTypeMGA, 98
PossibleCharacterTablesOfTypeV4G, 102

for conj. ordinary tables, and an autom., 102
PrintToLib, 92
ProjectivesInfo, 67

ScanMOC, 115
selection function

for character tables, 43
spin groups

character table, 71
StringAtlasContents, 59
StringCTblLibInfo

for a character table, 54
for a name, 54

StringOfCambridgeFormat, 118
StringsAtlasMap

for a record, 60
for the name of a simple group, 60

StructureDescriptionCharacterTable-
Name, 125

Suzuki groups
character table, 71

symmetric groups
character table, 71

TableOfMarks
for a character table from the library, 46

tables
add to the library, 89
generic, 71
library, 77, 80, 85

The GAP Character Table Library 131

library of, 69

UnipotentCharacter, 52
user preferences

DisplayFunction, 86
MagmaPath, 86
UnloadCTblLibFiles, 86

Weyl groups
character table, 71

	Introduction to the GAP Character Table Library
	History of the GAP Character Table Library
	What's New in CTblLib, Compared to Older Versions?
	Acknowledgements

	Tutorial for the GAP Character Table Library
	Concepts used in the GAP Character Table Library
	Accessing a Character Table from the Library
	Examples of Using the GAP Character Table Library

	The User Interface to the GAP Character Table Library
	Accessing Data of the CTblLib Package
	The Interface to the TomLib Package
	The Interface to GAP's Group Libraries
	Unipotent Characters of Finite Groups of Lie Type
	Browse Applications Provided by CTblLib
	Duplicates of Library Character Tables
	Attributes for Library Character Tables

	Contents of the GAP Character Table Library
	Ordinary and Brauer Tables in the GAP Character Table Library
	Generic Character Tables
	Atlas Tables
	CAS Tables
	Customizations of the GAP Character Table Library
	Technicalities of the Access to Character Tables from the Library
	How to Extend the GAP Character Table Library
	Sanity Checks for the GAP Character Table Library
	Maintenance of the GAP Character Table Library

	Functions for Character Table Constructions
	Character Tables of Groups of Structure M.G.A
	Character Tables of Groups of Structure G.S3
	Character Tables of Groups of Structure G.22
	Character Tables of Groups of Structure 22.G
	Character Tables of Subdirect Products of Index Two
	Brauer Tables of Extensions by p-regular Automorphisms
	Character Tables of Coprime Central Extensions
	Construction Functions used in the Character Table Library

	Interfaces to Other Data Formats for Character Tables
	Interface to the CAS System
	Interface to the MOC System
	Interface to GAP 3
	Interface to the Cambridge Format
	Interface to the MAGMA System

	Utility Functions Provided by the CTblLib Package
	Write Character Values in Terms of Atomic Atlas Irrationalities
	Create a String that Describes the Group Structure

	References
	Index

