
THE ISOMORPHISM PROBLEM FOR CYCLIC ALGEBRAS
AND APPLICATION

TIMO HANKE1

Abstract. The isomorphism problem means to decide if two given finite-
dimensional simple algebras over the same centre are isomorphic and, if so, to
construct an isomorphism between them. A solution to this problem has appli-
cations in computational aspects of representation theory, algebraic geometry
and Brauer group theory.

The paper presents an algorithm for cyclic algebras that reduces the iso-
morphism problem to field theory and thus provides a solution if certain field
theoretic problems including norm equations can be solved (this is satisfied
over number fields). A detailed example is provided which serves to construct
an explicit example of a noncrossed product division algebra.

1. Introduction

Let K be a field and let A1 and A2 be two finite-dimensional central-simple K-
algebras (Ai has no proper two-sided ideal and the centre is K). The isomorphism
problem for A1 and A2 means the problem to decide whether A1 and A2 are K-
isomorphic and, if so, to construct aK-isomorphism between them. We assume that
A1 and A2 have equal dimension, for otherwise they are trivially non-isomorphic.

The special case when A2 is a full matrix ring Mn(K) is called the splitting
problem for A1. We shall call a K-isomorphism A1 −→Mn(K) a splitting of A1.

The splitting and isomorphism problem several applications. For instance, to
compute the irreducible representations over K of a finite group G with |G| not di-
visible by char k, one can decompose the semisimple group ring KG into its simple
components2 and then solve the splitting problem for each component. As another
example, finding K-rational points on a Brauer-Severi variety V is equivalent3 to
the splitting problem for the central-simple K-algebra associated with V . The split-
ting problem also appears if one wants to compute sets of orthogonal idempotent
generators in central-simple algebras. In this paper we provide an application that
is related to explicit algebra constructions. Because various constructions make use
of automorphisms of simple algebras that are non-trivial on the centre, we study
(in section 5) the problem of extending an automorphism of the field K to an auto-
morphism of the central-simple K-algebra A, and show that this extension problem
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reduces to the isomorphism problem. A detailed example is given, which leads to
the construction of an explicit noncrossed product division algebra.

This paper solves the isomorphism problem for cyclic algebras. A cyclic algebra
is a central-simple algebra that contains a maximal subfield which is a cyclic field
extension of the centre. We always assume here that a cyclic algebra is also pre-
sented as such an algebra. For instance, if the algebra is given to us by structure
constants, it is not enough to have the theoretical information that the algebra
is cyclic. Instead, we need to know explicitly an element that generates a cyclic
maximal subfield. Over number fields, for example, every central-simple algebra is
known to be cyclic. However, it is another problem not discussed in this paper to
find a cyclic maximal subfield.

The algorithms presented here work by reducing the isomorphism problem to
norm equations. Norm equations are in general hard to solve, but algorithms are
known over number fields (e.g. Simon [13]) and of course over finite fields. Using
computer algebra systems like KASH [3] and MAGMA [2] for those norm equations,
our algorithms actually become applicable over number fields (and finite fields).
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2. Preliminaries

Let K be a field. Unless stated otherwise, all algebras are finite-dimensional K-
algebras. The tensor product ⊗ and the isomorphism ∼= without subscripts mean
tensor product and isomorphism over K, respectively. A K-algebra A is called
central-simple if A has no proper two-sided ideals and its centre Z(A) is K. The
reader is assumed to be familiar with the basic theory of central-simple algebras as
in the textbook sources Pierce [10] or Reiner [11]. A few relevant terms are briefly
recalled in the sequel.

Let A be a central-simple K-algebra. The degree of A, denoted degA, is the
square root of the dimension dimK A (the dimension is always a square). The
algebra A is called split if A ∼= Mn(K) where n = degA. The opposite algebra A◦

of A is the K-space A with multiplication redefined by a ◦ b := ba. If B is another
central-simple K-algebras of degree n then

(1) A ∼= B ⇐⇒ A⊗B◦ ∼= Mn2(K).

A maximal subfield of A shall mean a commutative subfield of A with [L : K] =
degA. The algebra A is called a crossed product if A contains a maximal subfield
that is Galois over K. Moreover, A is called cyclic (resp. bicyclic) if A contains a
maximal subfield that is cyclic (resp. bicyclic) over K.

2.1. Cyclic algebras. Suppose A is cyclic, let L be a maximal subfield cyclic over
K with Gal(L/K) = 〈σ 〉. By the Skolem-Noether theorem there is an element
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v ∈ A∗ such that vxv−1 = σ(x) for all x ∈ L. For any such v we have vn ∈ K and

A = ⊕n−1
i=0 Lv

i

as a K-space. Setting a = vn we denote this algebra by

A = (L/K, σ, a, v)

(in the literature v is usually omitted from the notation). For any integer k relatively
prime to n,

(2) (L/K, σ, a, v) = (L/K, σk, ak, vk).

We have

(3) (L/K, σ, a, v) ∼= Mn(K) ⇐⇒ a ∈ NL/K(L)

and

(4) (L/K, σ, a, v) ∼= (L/K, σ, b, w) ⇐⇒ a/b ∈ NL/K(L).

2.2. Generalized cyclic algebras. Suppose A contains a subfield L that is cyclic
over K but not necessarily a maximal subfield. Then A is called a generalized cyclic
algebra (cf. generalized crossed products in Kursov-Yanchevskĭı [9] or Tignol [14]).
Let σ generate Gal(L/K) and let B denote the centralizer CA(L). By the Skolem-
Noether theorem there is an element v ∈ A∗ such that vxv−1 = σ(x) for all x ∈ L.
For any such v we have vn ∈ B and

A = ⊕n−1
i=0 Bv

i

as a K-space. The inner automorphism Inn(v) of A restricts to an automorphism
of B which we denote σ̃ because it extends σ. Setting a = vn we write

(5) A = (B/K, σ̃, a, v).

Also by Skolem-Noether, for any extension σ̃ of σ to B there is v ∈ A∗ and a ∈ B
such that (5) holds. If we fix an extension σ̃ then

(6) (B/K, σ̃, a, v) ∼= (B/K, σ̃, b, w) ⇐⇒ a/b ∈ NL/K(L)

(a/b lies in K if a and b arise in this way). An introduction of generalized cyclic
algebras with proofs can be found in Hanke [6, § 10.4].

2.3. Bicyclic algebras. We will use for bicyclic algebras the notation that was
introduced in Amitsur-Saltman [1, § 1] for the more general abelian crossed products
(see also Jacobson [8, §4.6, pp. 174]). Suppose A is bicyclic with maximal subfield
F , and F bicyclic over K. Let G := Gal(F/K) = G1 × G2 with Gi = 〈σ 〉. Set
ni := |Gi| and n := |G| = n1n2. We denote by Fi and Li the fixed fields of
σi and σ3−i respectively. Moreover, Ni denotes the norm map of the extension
F/Fi. Clearly, Fi/K,F/Li are both cyclic with group G3−i and Li/K,F/Fi both
have group Gi. There are elements z1, z2 ∈ A∗ such that zixz

−1
i = σi(x) for all

x ∈ F, i = 1, 2. For any such z1, z2 we have

A =
n1−1⊕
i=0

n2−1⊕
j=0

Fzi
1z

j
2

as a K-space. Since A is determined up to isomorphism by the elements

b1 := zn1
1 , b2 := zn2

2 and u := z2z1z
−1
2 z−1

1 ,
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this algebra is denoted by
A = (F/K, z, u, b).

The elements b1, b2, u ∈ F ∗ satisfy the relations

(7) N1(u) =
σ2(b1)
b1

, N2(u) =
b2

σ1(b2)
, bi ∈ Fi

(cf. [1, Lem. 1.2]), and the relations (7) are also sufficient for given elements
b1, b2, u ∈ F ∗ to define a bicyclic algebra (cf. [1, Thm. 1.3]). If u = 1 then (7)
imply b1, b2 ∈ K and we have the canonical decomposition

(8) (F/K, z, 1, b) ∼= (L1/K, σ1, b1, z1)⊗ (L2/K, σ2, b2, z2).

This implies that (F/K, z, 1, 1) is split.

Theorem 1. A = (F/K, z, u, b) is split if and only if there are x1, x2 ∈ F ∗ such
that

(9) N1(x1) = b1, N2(x2) = b2 and
σ2(x1)
x1

x2

σ1(x2)
= u.

Proof. Since (F/K, z, 1, 1) ∼= Mn(K) the statement is a special case of [1, Thm.
1.4]. �

3. The splitting problem

Let A be a central-simple K-algebra of degree n.

Splitting Problem. Decide whether A is split and, if so, compute an explicit splitting
of A, i.e. a K-isomorphism A −→Mn(K).

For cyclic algebras the splitting problem quite obviously reduces to the solution
of a norm equation. The point of this section is to show the same for bicyclic
algebras. However, we start with the details of the cyclic case.

Algorithm 2 (Splitting of cyclic algebra). Let A = (L/K, σ, a, v) be a cyclic
algebra of degree n. The splitting problem for A is solved as follows.

1. Fix a K-embedding ψ : L −→Mn(K) and identify L with its image
in Mn(K).

2. Compute a matrix X ∈Mn(K) such that Inn(X)|L = σ and define
b := Xn. We have b ∈ K.

3. Solve the norm equation NL/K(x) = a/b for x ∈ L. If there is no
solution then A is not split, otherwise ψ extends to an isomorphism
A −→Mn(K) by mapping v to ψ(x)X.

Proof. Step 1 amounts to computing the minimal polynomial over K of a primitive
element of L. The matrix X in step 2 exists by the Skolem-Noether theorem and is
computed using only linear algebra. For thisX we have b := Xn ∈ K andMn(K) =
(L/K, σ, b,X). Step 3. By (3), A is split if and only if a/b ∈ NL/K(L). If x ∈ L
is a solution to the equation NL/K(x) = a/b then (ψ(x)X)n = ψ(NL/K(x)b) = a.
This shows that mapping v to ψ(x)X indeed defines an extension of ψ. �

Now turn to bicyclic algebras. Let A = (F/K, z, u, b). First note that because of
the canonical isomorphism (8) we can use Algorithm 2 twice to compute a splitting
of (F/K,w, 1, 1). By Theorem 1, A splits if and only if the system of equations (9)
has a solution. Suppose this is the case and a solution to (9) is known. Then the
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proof of [1, Thm. 1.4] gives a construction of an isomorphism A −→ (F/K,w, 1, 1),
and together with a splitting of (F/K,w, 1, 1) we have a splitting of A. Thus, it
remains to solve the system (9). This covers the rest of this section.

Lemma 3 (Bicyclic Hilbert 90). Let x1, x2 ∈ F ∗ such that

N1(x1) = 1, N2(x2) = 1 and
σ2(x1)
x1

x2

σ1(x2)
= 1.

There is y ∈ F ∗ with xi = σi(y)
y , i = 1, 2.

Proof. The lemma should be compared to the more general statement [8, Prop.
4.6.30, p. 179]. Let x1 = σ1(y1)

y1
, by Hilbert’s Theorem 90. Then

σ1(x2)
x2

=
σ2(x1)
x1

=
σ2σ1(y1) · y1
σ2(y1) · σ1(y1)

=
σ1(

σ2(y1)
y1

)
σ2(y1)

y1

,

hence x2 = c · σ2(y1)
y1

for some c ∈ F ∗
1 . It follows N2(c) = 1. Let c = σ2(y2)

y2

with y2 ∈ F ∗
1 , by Hilbert’s Theorem 90. Defining y := y1y2 we get xi = σi(y)

y for
i = 1, 2. �

Proposition 4. Let (F/K, z, u, b) be split and let (x1, x2) be a solution to (9). The
set

S := {(x1
σ1(y)
y

, x2
σ2(y)
y

) | y ∈ F ∗}

is the set of all solutions to (9). In particular, for any x′1 ∈ F ∗ with N1(x′1) = b1
there is x′2 ∈ F ∗ such that (x′1, x

′
2) ∈ S.

Proof. An easy calculation shows that any (x′1, x
′
2) ∈ S solves (9). For the con-

verse apply Lemma 3. The second statement is another application of Hilbert’s
Theorem 90. �

Algorithm 5. If (F/K, z, u, b) is split then a solution (x1, x2) to (9) is computed
as follows. Conversely, if all steps have a solution then (F/K, z, u, b) is split.

1. Solve N1(x1) = b1 for x1 ∈ F ∗.
2. Solve

σ1(x′2)
x′2

= u
x1

σ2(x1)
for x′2 ∈ F ∗.

3. Solve N2(x′′2) = b2N2(x′2) for x′′2 ∈ F ∗
1 .

4. Define x2 := x′2
−1
x′′2 .

Proof. A straight-forward calculation using (7) verifies that any (x1, x2) computed
by these steps is a solution to (9). Conversely, suppose that (F/K, z, u, b) is split
and show each step has a solution. Step 1 is obvious. Step 2 has a solution by
Hilbert’s Theorem 90 because, using (7),

N1(u
x1

σ2(x1)
) = N1(u)

b1
σ2(b1)

= 1.

Step 3: Since (F/K, z, u, b) is split by assumption, Proposition 4 shows the exis-
tence of an element x2 ∈ F ∗ with (x1, x2) ∈ S. Setting x′′2 := x2x

′
2, (9) implies

σ1(x′′2)/x′′2 = 1 and N2(x′′2) = b2N2(x′2). This shows that step 3 has a solution. �
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Algorithm 5 reduces the splitting of a bicyclic algebra to two consecutive (not
simultaneous) norm equations. The rest of the algorithm (step 2) is linear algebra.
Note that the first norm equation (step 1) lives in the larger fields F/F1 whereas
the second one (step 3) in F1/F .

Remark. The splitting problem has two parts : first to decide whether the algebra
is split, and second to compute a splitting. One could be lead to thinking that the
first part only requires to show the solvability of norm equation instead of actually
finding solutions, and that it therefore be easier. This is true for cyclic algebras
where only norm equation need to be solved. Then the Hasse norm principle can
be used (cf. [?]) to prove the solvability.

For bicyclic algebras, however, this doesn’t apply simply because the second
norm equation in the algorithm is built from a solution to the first. So at least the
first norm equation has to be solved explicitly.

Solving norm equations is very hard. For algorithms over number fields we refer
to Simon [13] and the references cited therein. These algorithms involve factoring
algebraic integers. On the hand, the splitting problem for quaternion algebras
was shown to be at least as hard as factoring integers (Rónyai [12], under the
generalized Riemann hypothesis). Since we are reducing the splitting problem to
something that is as hard as factoring integers, we will not discuss complexity issues
any further.

4. The isomorphism problem

Let A1 and A2 be central-simple K-algebras of degree n.

Isomorphism Problem. Decide whether A1 and A2 are K-isomorphic and, if so,
compute a K-isomorphism between them.

We will show in this section how the isomorphism problem reduces to the splitting
problem. To demonstrate the idea, we will first discuss general A1 and A2. When
specializing thereafter to cyclic algebras, we will see that the isomorphism problem
eventually reduces to norm equations. The following algorithm uses the equivalence
(1) to find a K-isomorphism between A1 and A2.

Remark 6. An isomorphism ϕ : A1 ⊗ A◦
2 −→ Mn2(K) is equivalent to a pair

(ϕ1, ϕ2) where ϕ1 : A1 −→ Mn2(K) is a K-embedding and ϕ2 : A2 −→ Mn2(K)
is a K-anti-embedding such that ϕ1(A1) is the centralizer CMn2 (K)(ϕ2(A2)). Of
course, ϕ1, ϕ2 are obtained from ϕ by composition with the canonical embedding
ε1 : A1 −→ A1 ⊗A◦

2 and anti-embedding ε1 : A2 −→ A1 ⊗A◦
2, respectively.

Algorithm 7. Given a pair (ϕ1, ϕ2) as in Remark 6. Then K-isomorphisms χ :
A1 −→ A2 and χ′ : A2 −→ A1 are computed as follows.

1. Fix a K-basis of A1 and identify Mn2(K) with EndK(A1).
2. Choose a matrix X ∈ Mn2(K) such that Inn(X) ◦ ϕ1 = λ, the

left-regular representation of A1.
3. Set ϕ′2 := Inn(X) ◦ ϕ2. Then ϕ′2(A2) = ρ(A1), where ρ is the

right-regular representation of A1.
4. Define χ := ϕ′2

−1 ◦ ρ : A1 −→ A2 and χ′ := ρ−1 ◦ ϕ′2 : A2 −→ A1.

Proof. The left-regular representation

λ : A1 −→ EndK(A1), a 7−→ λa, λa(x) := ax
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is a K-algebra isomorphism and the right-regular representation

ρ : A1 −→ EndK(A1), a 7−→ ρa, ρa(x) := xa

is a K-algebra anti-isomorphism. The matrix X in step 2 exists by the Skolem-
Noether theorem and its computation is equivalent to finding the solution to a
linear equation system. It follows

ϕ′2(A2) = CMn2 (K)(Xϕ1(A1)X−1) = CMn2 (K)(λ(A1)) = ρ(A1).

Since ρ and ϕ′2 are both anti, χ and χ′ as defined in step 4 are isomorphisms. �

Algorithm 7 shows that the isomorphism problem for A1 and A2 is constructively
equivalent to the splitting problem for A1 ⊗A◦

2. Our approach to the isomorphism
problem is based on this reduction.

Remark. It is certainly quite inefficient to reduce a problem about algebras of
dimension n to one in dimension n2. On the other hand, it is doubtful if one can
improve on this complexity because the two problems are actually equivalent.

Over number fields another approach to the first part of the isomorphism prob-
lem would be by computing and comparing the local invariants (Hasse invariants).
However, it is not clear how to compute all invariants.

Now turn to the isomorphism problem for two cyclic algebras

A1 = (L1/K, σ1, a1, v1) and A2 = (L2/K, σ2, a2, v2)

of degree n. Consider L1, L2 as subfields of some common overfield. We distinguish
two special cases and the general case.
Special case 1 : L1

∼=K L2. Let χ : L1 −→ L2 be a K-isomorphism. Obviously,
χσ1χ

−1 = σi
2 for some i relatively prime to n. Replacing v2 with vi

2 we can assume
by (2) that χσ1χ

−1 = σ2. Then, by (4),

A1
∼= A2 ⇐⇒ a1/a2 ∈ NL2/K(L2).

This equivalence is constructive : if x ∈ L2 is an element with NL2/K(x) = a1/a2

then mapping v1 7−→ xv2 extends χ to a K-isomorphism A1 −→ A2. The iso-
morphism problem for A1 and A2 is thus reduced to finding a solution to a norm
equation in the field extension L2/K.
Special case 2 : L1 ∩ L2 = K. We reduce this case with Algorithm 7 to the
splitting of A1 ⊗ A◦

2. Since L1 ∩ L2 = K, the Galois extensions L1/K,L2/K are
linearly disjoint, i.e. L1⊗K L2 is a field. Moreover, L1⊗L2 is a maximal subfield of
A1⊗A◦

2 and has bicyclic Galois group over K. Hence, A1⊗A◦
2 is a bicyclic algebra.

The splitting problem for A1 ⊗A◦
2 reduces to norm equations by Algorithm 5.

Remark 8. The opposite algebra A◦
2 is identified with (L2/K, σ2, a

−1
2 , w) and an

anti-isomorphism A2 −→ A◦
2 is defined by λvi

2 7−→ w−iλ for all λ ∈ L2.

Remark. If the degree n is a prime then we are in one of the special cases.

General case. Let L0 = L1 ∩ L2 and consider the centralizers B1 = CA1(L0)
and B2 = CA2(L0). If A1

∼= A2 then B1
∼=L0 B2 so we can first solve the iso-

morphism problem for B1 and B2 over L0 with special case 2. Assuming that
an L0-isomorphism χ : B1 −→ B2 is computed we identify B1 and B2 under χ
and simply write B for both of them. Fix an extension σ̃ of σ to B. There are
w1 ∈ A∗

1, w2 ∈ A∗
2 and b1, b2 ∈ B∗ such that

A = (B/K, σ̃1, b1, w1) and A2 = (B/K, σ̃2, b2, w2).
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The elements w1, w2 are predicted by the Skolem-Noether theorem and are com-
putable with linear algebra. We proceed as in special case 1 but for generalized
cyclic algebras. By (6),

A1
∼= A2 ⇐⇒ b1/b2 ∈ NL0/K(L0).

The equivalence is constructive : if x ∈ L0 is an element with NL0/K(x) = b1/b2
then mapping w1 7−→ xw2 defines a K-isomorphism A1 −→ A2. The isomorphism
problem for A1 and A2 is thus completely reduced to finding solutions to norm
equations.

5. Application : extending field automorphisms to simple algebras

Let A be a central-simple K-algebra and let σ ∈ Aut(K) be an automorphism
of finite order.

Extension Problem. Decide whether σ extends to an automorphism of A and, if so,
compute an extension.

It is convenient to reformulate this problem using the algebra σ−1A which is
obtained from A by redefining the K-action as λ ◦ a := σ−1(λ)a for all λ ∈ K.
Then σ extends to A if and only if A and σ−1A are isomorphic as K-algebras.
In fact, any K-algebra isomorphism σ−1A −→ A becomes an extension of σ after
identifying σ−1A as a ring (not a K-algebra) with A. The extension problem is
therefore just a special case of the isomorphism problem. If A is cyclic then σ−1A
is also cyclic, hence, by the results of the preceding sections, the extension problem
for cyclic algebras reduces to norm equations.

Remark. To clarify the identification of σ−1A and A as rings let A = (L/K, τ, a, v).
Fix an extension of σ to some Galois closure containing L and call it also σ. Then

σ−1A = (σL/K, στσ−1, σa, w).

The ring identity map A −→ σ−1A is defined by σ : L −→ σL and v 7−→ w.

We finish with a detailed example for the solution of the extension problem. Let
K be the cubic number field

K = Q(α), Irr(α,Q) = x3 + x2 − 2x− 1,

of discriminant 49 (the maximal real subfield of the 7-th cyclotomic field). It is
Gal(K/Q) = 〈σ 〉 with

σ(α) = −α2 − α+ 1.
Let L be the cubic extension

L = K(θ), Irr(θ,K) = x3 + (α− 2)x2 + (−α− 1)x+ 1,

which is cyclic and has Gal(L/K) = 〈 τ 〉 with

τ(θ) = −θ2 + (−α+ 1)θ + 2.

In the following we will solve the extension problem for σ and the cyclic algebra

D = (L/K, τ, a, v), a = 2(α2 − α− 2).

With the extension σ̃ we can then form the twisted Laurent series ring D((x; σ̃)),
i.e. the ring of all formal series

∑
i≥k dixi, k ∈ Z, with multiplication of monomials

dxi · d′xj = dσ̃i(d′)xi+j . Then D((x; σ̃)) is a division algebra of degree 9 over
the power series field Q((t)). The D in this example is the division algebra from
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Hanke [7] with the property that D does not contain a maximal subfield that
is Galois over Q (we also say “D does not contain an absolute Galois splitting
field”). It is also shown in [7] that this particular property implies that D((x; σ̃))
is a noncrossed product. When σ̃ is computed we have thus constructed a fully
explicit noncrossed product example over Q((t)). Once σ̃ is known, the existence of
noncrossed products (a proof of which formerly required the use of deep local-global
principles) can now be verified by direct computation in this explicit example.

In order to solve the extension problem for D and σ we solve the isomorphism
problem for D and σ−1D. We have σ−1D = (σL/K, στσ−1, σa, w) where

σL = K(η), Irr(η,K) = x3 + (−α2 − α− 1)x2 + (α2 + α− 2)x+ 1,

στσ−1(η) = −η2 + (α2 + α)η + 2,

σ(a) = 2(α2 + 2α− 1)

Of course, Irr(η,K) is obtained from Irr(θ,K) by applying σ to each coefficient.
Since L∩σL = K we are in the special case 2 of the isomorphism problem. This

means we have to write D⊗σ−1D◦ as a bicyclic algebra with respect to the maximal
subfield L⊗K σL, and then solve the splitting problem for it with Algorithm 5. By
(8) and Remark 8, D ⊗ σ−1D◦ is canonically isomorphic to the bicyclic algebra

C := (F/K, z, 1, b)

where

L1 = F2 = L, σ1 := τ, b1 := a = 2(α2 − α− 2),

L2 = F1 = σL, σ2 := στσ−1, b2 := σa−1 =
1
14

(α2 + 3α− 3)

and F = L1L2. The canonical embedding and anti-embedding of Remark 6 are
given by

ε1 : D −→ C, λvi 7−→ λzi
1, ε2 : σ−1D −→ C, µwi 7−→ µzi

2

for all λ ∈ L, µ ∈ σL. Now we apply Algorithm 5 to split C.
Step 1. A solution that was found with the computer algebra system MAGMA is

x1 =
1
2

(
(−7α2 + 9α+ 4) + 2(−2α2 + 6α− 1)η + (α2 − 6α+ 4)η2

+ (14α2 − 12α− 9)θ + (20α2 − 7α− 14)ηθ + (−12α2 + 3α+ 12)η2θ

+(−3α2 + 3α+ 2)θ2 + (−7α2 − α+ 5)ηθ2 + (4α2 − 5)η2θ2
)
.

Computation time was a few minutes (less than 10) on a 800 MHz processor.
Step 2. As a solution to a linear equation system one finds

x′2 =
1
28

(
(81α2 − 261α− 173) + (194α2 + 428α+ 132)η + (−70α2 − 98α− 21)η2

+ (−19α2 − 120α+ 8)θ + (287α2 − 266α− 196)ηθ + (−92α2 + 130α+ 45)η2θ

+(7α2 + 70α+ 14)θ2 + (−202α2 − 179α− 24)ηθ2 + (63α2 + 28α+ 7)η2θ2
)
.

Step 3. Exceptionally in this example, the element

b2N2(x′2) =
1
56

(−1601α2 + 693α+ 609)
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lies in K. We compute as a cubic root :

x′′2 =
1
14

(−19α2 − α− 6).

Step 4. Finally, we get

x2 =
1
14

(
(−8α2 − 3α+ 10) + (−2α2 − 13α− 1)η + (2α2 + 6α− 6)η2

+ (−3α2 + 5α+ 2)θ + (6α2 − 10α+ 10)ηθ + (−2α2 + α− 1)η2θ

+(2α2 − α− 6)θ2 + (α2 + 10α− 3)ηθ2 + (−α2 − 3α+ 3)η2θ2
)
.

This completes Algorithm 5. At this point we have shown that C splits, hence σ
extends to D. We continue to use (x1, x2) to compute an extension of σ. First,
since (x1, x2) is a solution to (9), we obtain an isomorphism ϕ : C −→ M9(K)
according to Theorem 1. This ϕ can be computed as described after Algorithm 5.
Two images are printed here only to give an expression on how complicated the
matrices get :

ϕ(θ) =

0BBBBBBBBBBB@

0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
−1 0 0 α + 1 0 0 −α + 2 0 0
0 −1 0 0 α + 1 0 0 −α + 2 0
0 0 −1 0 0 α + 1 0 0 −α + 2

1CCCCCCCCCCCA

ϕ(z1) =
1

2
·

0BBBBBBBBBBBBB@

−3α2 + 9α + 3 −12α2 − 2α + 1 5α2 − α − 2 −17α2 + 13α + 11

−5α2 + α + 2 −α2 + 6α α2 − 2α − 2 −8α2 + 5α + 5

−α2 + 2α + 2 −3α2 + 2α −α − 4 −6α2 + α + 4

5α2 − 10α − 8 3α2 + 12α + 6 −2α2 − 3α −4α2 − 3α + 6

2α2 + 3α 5α2 − 8α − 5 −3α2 + α + 3 4α2 − 5α − 1

3α2 − α − 3 −α2 + 3α + 5 −α2 − 5α − 1 −3α2 − 3α

19α2 + α − 11 −23α2 − 3α + 3 5α2 − α + 1 −31α2 + 15α + 28

−5α2 + α − 1 18α2 − 5α − 8 −7α2 + 3 2α2 − 8α + 2

7α2 − 3 −8α2 + 5α + 5 −9α − 5 −14α2 + 8

−13α2 + 11α + 6 8α2 − 5α − 5 5α2 − 5α − 4 7α2 + α − 2 −4α2 + 3

−12α2 + 10α + 6 6α2 − α − 4 4α2 − 3 2α2 − 4α + 2 −2α2 + 1

−4α2 + 3α − 2 2α2 + 9α + 1 2α2 − 1 3α2 + α − 1 −3α2 − 5α + 3

14α2 − 9α − 6 −4α2 + 5α + 1 2α2 + 4α − 1 −5α2 − α − 1 α2 − α + 1

−5α2 + 3 3α2 + 3α −α2 + α − 1 α2 + 2α + 2 −α2 − 2α − 1

4α2 − 8α − 4 4α2 + 12α + 6 α2 + 2α + 1 3α − 1 −3α2 − 6α − 1

22α2 − 20α − 14 −2α2 + 8α − 2 7α2 − 6α − 9 −2α2 + 11α + 5 −α2 − 4α + 1

−29α2 + 19α + 16 14α2 − 8 α2 + 4α − 1 6α2 − 6α − 3 −4α2 − α + 2

10α2 − 14α − 14 5α2 + 25α + 8 4α2 + α − 2 −α2 + 6α + 4 −4α2 − 11α − 2

1CCCCCCCCCCCCCA

Using Algorithm 7 with ϕ1 = ϕ ◦ ε1 and ϕ2 = ϕ ◦ ε2 we continue to compute a
K-isomorphism χ′ : σ−1D −→ D to be defined by

χ
′
(η) = (1, θ, θ

2
) ·

1

673
·

0@303α2 − 154α − 276 314α2 + 218α − 326 −48α2 + 151α + 157

390α2 + 708α − 855 40α2 − 238α + 430 −397α2 − 27α + 275

−106α2 + 25α + 543 −128α2 − 46α − 30 135α2 + 38α − 63

1A ·

0@ 1
v

v2

1A .

and

χ
′
(w) = (1, θ, θ

2
) ·

0@0 α2 + α 0
0 −α + 1 0
0 −1 0

1A ·

0@ 1
v

v2

1A =
“
(α

2
+ α) + (−α + 1)θ − θ

2
”

v.

The resulting extension σ̃ of σ is

σ̃ : D −→ D, θ 7−→ χ′(η), v 7−→ χ′(w).
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