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Introduction

The goal of this thesis is the application of general linear and integer programming meth-
ods to compute specific admissible weighted monomial orderings in G-algebras. More
precisely, we apply an algorithm to the relations of a non-commutative algebra designed
to compute balanced weight vectors, where the notion of balance will be specified as this
is new to the literature in this context. The work is organized as follows.
In the first section the basic theory of Gröbner bases in the commutative case is recalled.
We will begin section 2 by considering an intersection of the mathematical areas of linear
and integer programming problems and commutative algebra in terms of Gröbner bases
to ease into this topic. By combining these we focus on an interesting application of
Gröbner bases as a pure algebraic method to solve integer programming problems.
Afterwards, in section 3, we will lay the foundation for our computations later on by
investigating certain non-commutative algebras, so called G-algebras. One can think of
a G-algebra as a generalization of the commutative polynomial ring K[x1, . . . ,xn] over
a commutative field K. In general however, we regard a non-commutative K-algebra

A = K〈x1, . . . ,xn | {xjxi = cijxixj + dij}1≤i<j≤n〉,

with respect to a monomial ordering ≺. Here the coefficients cij are elements of K and
the dij are polynomials in A. For A to be a G-algebra, it resp. the monomial ordering
needs to fulfill certain conditions which concern the relations xjxi = cijxixj + dij . It
turns out that we can not only check algorithmically via linear programming methods
whether these conditions are fulfilled or not, but even compute an (admissible weighted)
monomial ordering that matches part of the conditions.
Furthermore we will shortly present two different filtrations of G-algebras in section 4.
Again weight vectors will play an important part and hence this topic yields a good
application for our results at the end of this work.
Moreover, in the utilization of our algorithm for balanced weight vectors, we will mainly
focus on a specific G-algebra, namely the (quantum) universal enveloping algebra of a
special linear Lie algebra. Hence section 5 is devoted to the corresponding theoretical
background. Here we will start with the basic structure of a Lie algebra g, but as Lie
algebras are neither commutative nor associative in general, we will embed it in its asso-
ciative universal enveloping algebra U(g). Additionally, involving a complex parameter
q to the non-commutative relations will then lead us to the so called quantum universal
enveloping algebra Uq(g).
In section 6 we will begin our computations. As a start and also a convenient way to
get a feeling for the structure and the great variety of G-algebras we will investigate
numerous examples in the context of graded G-algebras. We aim to compute weights for



the generating variables x1, . . . ,xn such that the corresponding G-algebra A is graded.
From the relations of A we will deduce a grading pattern by solving a general linear
system of equations. Additionally we will investigate the approximation of a grading for
a (commutative) polynomial in K[x1, . . . ,xn]. In the case that only the trivial grading,
that is all weights are zero, is possible, we will present an algorithm that computes all
possible highest graded parts of the polynomial that have maximal length (in number
of terms) among all other gradings.
As stated in section 3, we can compute (admissible weighted) monomial orderings for
G-algebras via linear programming methods. In section 7 we will finally discuss an al-
gorithm which is not only capable of this computation, but can be used to search for
solutions of a certain structure. More precisely we modify an algorithm designed to
compute alternative optimal solutions of an integer programming problem to give out
balanced weight vectors which induce admissible weighted monomial orderings. The so-
lutions in this work tend to have a block-structure, that is we actually focus on finding
block-orderings. To be more specific, the meaning of balance will be a combination of
symmetry of certain blocks and specific boundaries. Although the idea for this thesis
arose from the relations of a G-algebra, we kept the theory as general as possible to
make it applicable within a more general context.
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§ 1 Basics of Gröbner Bases

We will start this work by a short introduction of Gröbner bases. As we will outline the
basics of the theory of Gröbner bases, we begin with monomial orderings and essential
notations, continue with different characterizations of Gröbner bases and present Buch-
berger’s algorithm. Finally we will briefly introduce reduced Gröbner bases.
In the following section we will apply this theory to linear resp. integer programming
problems.

For this section only we fix the commutative ring R := K[x1, . . . ,xn], where K is an
arbitrary commutative field. The set of of all monomials of R, i.e.

Monn(R) := {xα1
1 · . . . · xαnn | αi ∈N, for 1 ≤ i ≤ n}

will be of special interest. Furthermore, throughout this section we may also use the
multi-index notation, that is instead of referring to an element m ∈Monn(R) as
m = xα1

1 · . . . · xαnn we will shortly write m = xα, where α ∈Nn.
A vital aspect when speaking of Gröbner bases are monomial orderings. While there
exists a natural ordering in polynomial rings of one variable, i.e. n = 1, it is very
important to distinguish between the different monomial orderings when n > 1, as this
affects every step in the computations.

(1.1) Definition
We call a total ordering ≺ on Monn(R) a monomial ordering if it fulfills the following
conditions

1. ≺ is a well-ordering on Monn(R), that is any non-empty subset of Monn(R) has
a least element with respect to ≺.

2. xα ≺ xβ implies xα+γ ≺ xβ+γ for all α, β, γ ∈Nn
0 .

(1.2) Examples
Popular examples are the lexicographical order ≺lex or the graded lexicographical order
≺glex which are defined as follows. Consider the monomials xα,xβ ∈Monn(R).

1. Then

xα ≺lex xβ ⇔ ∃ 1 ≤ i ≤ n : αi < βi and αj = βj ∀ 1 ≤ j < i.
⇔ The leftmost nonzero entry of α− β is negative.

4



Klegraf § 1 Basics of Gröbner Bases

2. For a monomial f := xα ∈ R define the total degree tdeg(f) of f to be
tdeg(f) := α1 + . . .+ αn. Then we set

xα ≺glex xβ ⇔

 tdeg(xα) < tdeg(xβ)

if tdeg(xα) = tdeg(xβ), then xα ≺lex xβ.

With respect to a monomial ordering ≺ we conclude, that for any f ∈ R \ {0} there
exists a unique expression of f of the form

f = cαx
α +

∑
β≺α

cβx
β,

where cα, cβ ∈ K \ {0} and α, β ∈Nn. Note that we have only defined ≺ on Monn(R)

so far, but regarding all of the above we might also view ≺ as an ordering on Nn.
We will use this representation of f to introduce the following notations.

(1.3) Definition
Let ∅ 6= F ⊆ R and write f ∈ F as above.
Then we term (with respect to a given monomial ordering ≺)

deg(f) := α the degree of f ,
deg(F ) := {def(f) | 0 6= f ∈ F} ⊆Nn

0 ,
lc(f) := cα the leading coefficient of f ,
lm(f) := cαx

α the leading monomial of f ,
lm(F ) := {lm(f) | f ∈ F \ {0}} the set of leading monomials of F ,
LM(F ) := 〈lm(F )〉 the ideal generated by lm(F ).

Moreover, it is well known that for any f ∈ R and for any finite subset G ⊂ R we can
divide f by G, that is we can write

f =
∑
i

higi + f̄ ,

where hi, f̄ ∈ R and gi ∈ G for all i. We have lm(f) � lm(higi) for all i and no
monomial of f̄ is contained in LM(G). We call f̄ a remainder of f with respect to G.
We may also use the notation f̄G. Note that the remainder is not unique.

(1.4) Definition (Gröbner basis)
Let I ⊂ R be an ideal in R. A subset G ⊂ R is called a Gröbner basis of I if

LM(G) = LM(I).

5
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Now consider α, β ∈Nn
0 . We define α ∨ β ∈Nn

0 by

(α ∨ β)i := max{αi, βi} for 1 ≤ i ≤ n.

Hence αi, βi ≤ (α ∨ β)i for all i. This notation allows us to give a simplified expression
of the well known S-polynomials:
Take f , g ∈ R \ {0} with deg(f) = α and deg(g) = β. We define the S-polynomial
S(f , g) ∈ R of f and g by

S(f , g) := lc(g)xα∨β−αf − lc(f)xα∨β−βg.

(1.5) Example
Fix R = R[x, y, z] and consider the lexicographical ordering, where x � y � z. Regard-
ing the monomials f1 := x2y + xz, f2 := xyz + yz and f3 := xy + y2z + 1 we have for
example

S(f1, f2) = xz2 − xyz = −xyz + xz2

or S(f2, f3) = yz − y2z2 − z = −y2z2 + yz − z.

Using the S-polynomials, we obtain an important characterization of Gröbner bases, see
[3] by Becker and Weispfenning for example.

(1.6) Proposition (Buchberger criterion)
Let I ⊂ R be an ideal in R and let G be a basis of I.
Then we have

G is a Gröbner basis of I
⇔

A remainder of S(f , g) with respect to G is zero for all f , g ∈ G.

6
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We are now able to state the Buchberger algorithm:
Let F be a non-empty finite subset of R = K[x1, . . . ,xn] \ {0}.

Algorithm 1 Buchberger algorithm
1: i := 0
2: F0 := F

3: do
4: G := Fi

5: Fi+1 := Fi ∪
{
S(f , g)Fi | f , g ∈ Fi

}
\ {0}

6: while Fi+1 6= Fi
7: return G.

(1.7) Example
Consider Example (1.5) again and set F := {f1, f2, f3}, resp. I = 〈F 〉.
Using the algorithm we might compute the Gröbner basis

G := {x+ 1, y− z, y3 − y+ 1}.

In the interests of clarity we stress that in general the Gröbner basis of an ideal is not
unique even if we fix a monomial ordering. To achieve a notion of uniqueness however
one considers reduced Gröbner bases. More precisely, we call G a reduced Gröbner basis
of an ideal I if the three following conditions hold:

1. All of the f ∈ G are monic, i.e. lc(f) = 1 for all f ∈ G.

2. G is minimal, that is for all f ∈ G it holds

def(f) /∈ deg(G \ {f}) + Nn.

3. Each f ∈ G is in normal form modulo I, that is for all f − xdeg(f) it holds

f − xdeg(f) ∈
⊕

α/∈deg(G)+Nn

Kxα.

While the first condition eliminates an obvious reason for the lack of uniqueness, the
second one assures, that no f ∈ G is redundant. The third condition makes sure, that
the leading term of any f ∈ G is not a term of any f ′ ∈ G \ {f}. Let us take up the
example from above.

7
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(1.8) Example
Each element of G := {x+ 1, y− z, y3 − y+ 1} is clearly monic. As

deg(G) = {(1, 0, 0), (0, 1, 0), (0, 3, 0)}

we conclude, that G is not minimal and therefore not reduced. A straightforward com-
putation yields, that

G′ = {x+ 1, y− z, z3 − z + 1}

is the reduced Gröbner basis of I = 〈x2y + xz,xyz + yz,xy + y2z + 1〉 with respect to
the lexicographical ordering.

While the main applications of Gröbner bases are well known, for example the ideal
membership problem, we will focus on a different scope in the following section. We will
discuss how to translate integer programming problems into the language of Gröbner
bases and use the methods hereof to solve the given problems.

8
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§ 2 Gröbner Bases and Integer Programming

Although the topic of this thesis is the application of linear resp. integer optimization
methods to non-commutative algebras, we first focus on a simple link of these two
different mathematical areas. This section is a pleasant way to ease into the merging
of those and serves as an introduction to integer programming in combination with the
theory of Gröbner bases. We have taken the work of Cox, Little and O’Shea [6] as a
basis.
Additionally we assume the regarded rings in this section to be commutative.
We will start with the basics of integer programming and outline the problems to be
solved. In order to adopt the theory of Gröbner bases to this setting we will translate it
into the language of polynomials and monomial orderings.

Let us start with a simple two-dimensional example of an integer programming problem
(shortly IP) to illustrate the typical features of this class of problems.

(2.1) Example
Consider a (very small) guitar manufacturing company producing two guitars, one elec-
tric and one acoustic. As any other company in the business it struggles to keep the
economic progress going and hence is focused on maximizing of profit.
The guitars are manufactured in a factory out of town and each month they use a truck
to supply their stores in a single ride. To keep the example easy we will only consider
two constraints. Let the first one be given by the fact that the overall basic materials
hold out for manufacturing at most 12 guitars in total per month. And second, the truck
only offers 51 cubic meters, whereas an acoustic, resp. electric, guitar takes up 6, resp.
3, cubic meters due to additional equipment and packing.
Say pe, resp. pa, denote the number of sold electric, resp. acoustic, guitars per month,
where the price is 220AC for an electric and 308AC for an acoustic guitar. The information
above translated into the language of integer programming looks like follows:

Max 220pe + 308pa
s.t. pe + pa ≤ 12 (2.1)

3pe + 6pa ≤ 51,

where pa, pe ∈ Z≥0.

Note, that pa and pe must be integers. This is a key feature of integer programming
problems. We usually want to maximize or minimize the value of a linear function `,
here `(pe, pa) = 220pe + 308pa, subject to a given set of constraints. We call ` the

9
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objective function and `(pe, pa) the objective value at the point (pa, pe). Note that the
optimal objective value of an integer programming problem is unique, whereas there may
be multiple optimal solutions yielding the same optimal objective value. The variables
in the objective function, here pe and pa, are also called decision variables. Instead
of maximizing the objective function one might also want to minimize it under certain
conditions, for example in the context of minimizing production costs.
An abstract integer programming problem takes the form

Max (or Min) c1p1 + . . . + cnpn

s.t. a11p1 + . . . + a1npn ≤ ( or ≥) b1
a21p1 + . . . + a2npn ≤ ( or ≥) b2

...
am1p1 + . . . + amnpn ≤ ( or ≥) bm

pj ∈ Z≥0,

where we assume that cj , aij , bi ∈ Z.

As one can see in the example above, an integer programming problem can have several
solutions, for example the points (5, 5) or (4, 6) also satisfy the inequalities in (2.1),
yielding the objective values 2640 and 2112. This naturally raises the question if one
can name the set of all possible (not necessarily optimal) solutions to the given problem.
Such a solution, i.e. a point P satisfying every given constraint, is called feasible.

(2.2) Definition
The feasible region of an integer programming problem is the set P of all points
P = (p1, . . . , pn)T ∈ Rn satisfying the inequalities in the statement of the problem.

Note that P is allowed to be empty, i.e. in that case the problem does not have any
solution. Furthermore if P ∩Zn = ∅ we say, that the problem does not have an integer
solution. If a point P fails to satisfy the constraints it is said to be infeasible.

10
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A pleasant property of two-dimensional IP’s is that they are easy to visualize. The
feasible region of (2.1) is given by

Figure 1: Feasible region of (2.1)

The red line indicates the objective function and the point at position (7, 5) marks
the optimal solution. That this point is in fact the optimal solution will be verified
below using Gröbner bases. Note that, in general, the optimal solution of an integer
programming problem may not be one of the vertices of the feasible region, this is a
well-known fact for linear programming problems. Moreover it is easy to construct a
feasible region where no vertex is an element of Zn.

In the discussion so far we have considered integer minimization and maximization prob-
lems subject to inequalities of the form ≤ and/or ≥. This was merely useful for introduc-
tory purposes. As the following three observations will show, focussing on minimization
problems subject to equalities is sufficient to cover all problems of this class.

First, we only need to consider the problem of minimizing the linear function `, since
maximizing ` on a set of integer n-tuples is equivalent to minimizing the function −`.

Similar to the first step we can replace each inequality of the form

ai1p1 + . . .+ ainpn ≥ bi

by the equivalent form
−ai1p1 − . . .− ainpn ≤ −bi.

11
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And finally, we can rewrite each inequality as an equality by introducing a set of new
variables, called slack variables. For example, an inequality

ai1p1 + . . .+ ainpn ≤ bi

can be replaced by an equality by introducing a new variable pn+1:

ai1p1 + . . .+ ainpn + pn+1 = bi,

that is, pn+1 “takes up the slack”. These variables also appear in the objective function
however with coefficient zero.
Hence each integer programming problem can be transformed into its equivalent, the so
called standard form :

(∗) Min c1p1 + . . . + cnpn

s.t. a11p1 + . . . + a1npn = b1

a21p1 + . . . + a2npn = b2
...

am1p1 + . . . + amnpn = bm

pj ∈ Z≥0, j = 1, . . . n,

with cj , aij , bi ∈ Z, where we assume that (p1, . . . , pn) already contains all slack vari-
ables. Hence from now on when speaking of an integer programming problem we will
assume it is in standard form. For example, the standard form of (2.1) is

Min − 220pe − 308pa
s.t. pe + pa+p3 = 12

3pe + 6pa+p4 = 51

where pe, pa, p3, p4 ∈ Z≥0.

Having established the basics of integer programming, we will now translate the un-
derlying problem to the language of Gröbner bases. Therefore we have to make this a
question about polynomials rather than a system of linear equations.
As a start, we will make the assumption that all coefficients in the constraints are non-
negative, that is aij ≥ 0, bi ≥ 0.
First let us introduce a new variable zi for each equation of the standard form and
exponentiate to get a new equality

zai1pi+...+ainpni = zbii

12



Klegraf § 2 Gröbner Bases and Integer Programming

for each i = 1, . . . ,m. Next we multiply all left hand sides and all right hand sides of
these equations and rearrange the exponents to obtain the equality

n∏
j=1

(
m∏
i=1

z
aij
i

)pj
=

m∏
i=1

zbii ,

which can be used to give a characterization of the feasible region.

(2.3) Proposition
Let K be a field, and define ϕ : K[w1, . . . ,wn]→ K[z1, . . . , zm] by setting

ϕ(wj) =
m∏
i=1

z
aij
i

for each j = 1, . . . ,n, and ϕ(g(w1, . . . ,wn)) = g(ϕ(w1), . . . ,ϕ(wn)) for a general poly-
nomial g ∈ K[w1, . . . ,wn]. Then (p1, . . . , pn) is an integer point in the feasible region if
and only if ϕ maps the monomial wp1

1 w
p2
2 · · ·wpnn to the monomial zb1

1 · · · zbmm .

Proof
Let P = (p1, . . . , pn) be an integer point in the feasible region. Now set

g(w1, . . . ,wn) := wp1
1 w

p2
2 · · ·wpnn ,

then by the assumption we have

ϕ(g(w1, . . . ,wn)) = g(ϕ(w1), . . . ,ϕ(wn))

= g

(
m∏
i=1

zai1i , . . . ,
m∏
i=1

zaini

)

=

(
m∏
i=1

zai1i

)p1

· · ·
(
m∏
i=1

zaini

)pn
.

A rearrangement of the exponents and the fact that P lies in the feasible region, i.e.∑n
j=1 aijpj = bi holds for each i = 1, . . . ,m yields(

m∏
i=1

zai1i

)p1

· · ·
(
m∏
i=1

zaini

)pn
= zb1

1 · · · zbmm .

For the other direction let g be defined as above and let ϕ(wp1
1 · · ·wpnn ) = zb1

1 · · · zbmm .
Now the assertion follows by reading the equations above in another way, namely

zb1
1 · · · zbmm = ϕ(wp1

1 · · ·wpnn ) = ... =
(
m∏
i=1

zai1i

)p1

· · ·
(
m∏
i=1

zaini

)pn
,

hence ∑n
j=1 aijpj = bi has to hold for each i = 1, . . . ,m, that is P is a point in the

feasible region. �

13
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Let us take up our example. Then,

ϕ : K[w1,w2,w3,w4] → K[z1, z2]

w1 7→ z1z
3
2

w2 7→ z1z
6
2

w3 7→ z1

w4 7→ z2.

A point P = (pe, pa, p3, p4) lies in the feasible region, if

ϕ(wpe1 ,wpa2 ,wp3
3 ,wp4

4 ) = z12
1 z51

2 .

In general ϕ may not be surjective. So, to check if a given monomial in K[z1, . . . , zm] is
in the image of ϕ, i.e. if the corresponding integer program is feasible, we have to take
a closer look at ϕ.
The transformation rule in (2.3) tells us that the image of ϕ in K[z1, . . . , zm] is generated
by the fj =

∏m
i=1 z

aij
i , hence we can write

im(ϕ) = K[f1, . . . , fn] ⊂ K[z1, . . . , zm].

Now the test for membership in im(ϕ) is given by the following proposition.

(2.4) Proposition
Suppose that f1, . . . , fn ∈ K[z1, . . . , zm] are given. Fix a monomial order in
K[z1, . . . , zm,w1, . . . ,wn] with the elimination property: any monomial containing one
of the zi is greater than any monomial containing only the wj . Let G be a Gröbner basis
(GB) for the ideal

I = 〈f1 −w1, . . . , fn −wn〉 ⊂ K[z1, . . . , zm,w1, . . . ,wn]

and for each f ∈ K[z1, . . . , zm], let f̄G be the remainder of the division of f by G.
Then

a) A polynomial f satisfies f ∈ K[f1, . . . , fn] if and only if g = f̄G ∈ K[w1, . . . ,wn].

b) If f ∈ K[f1, . . . , fn] and g = f̄G ∈ K[w1, . . . wn] as in part a), then f = g(f1, . . . , fn)
giving an expression for f as a polynomial in the fj .

c) If each fj and f are monomials and f ∈ K[f1, . . . , fn], then g is also a monomial.

14
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Proof
For a proof of parts a) and b), see [6] Proposition 7 of Chapter 7, §3.
For the proof of part c), first note that each generator of I is a difference of two mono-
mials. Applying Buchberger’s algorithm to compute a Gröbner base G of I yields that
each S-polynomial is again a difference of two monomials. This is due to the fact that an
S-polynomial of two generators of I is a subtraction of two differences of two monomials,
where the leading terms cancel. The same holds for the remainder calculation. Hence
each element of G is a difference of two monomials. Furthermore, by a similar argument
the remainder of a division of a monomial by G is a again a monomial. Hence by the
assumption in part c), that is fj and f are monomials with f ∈ K[f1, . . . , fn] and taking
parts a) and b) into account, i.e. g = f̄G ∈ K[w1 . . . ,wn], the discussion above implies
that g must be a monomial. �

An alternative way to state part c) is that in the situation of Proposition (2.3), each
monomial in im(ϕ) is the image of some monomial in K[w1, . . . ,wn].

Consider the example (2.1) again, then

I = 〈z1z
3
2 −w1, z1z

6
2 −w2, z1 −w3, z2 −w4〉.

We use the lexicographical ordering with

z1 � z2 � w4 � w3 � w2 � w1

to eliminate terms involving slack variables if possible and apply Singular [9] to compute
the Gröbner basis G:

g1 := z1 −w3,
g2 := z2 −w4,
g3 := w3

4w3 −w1,
g4 := w3

4w1 −w2,
g5 := w3w2 −w2

1.

Now consider f = z12
1 z51

2 . We can use g1 and g2 to reduce f to w12
3 w

51
4 to see, that f is

in the the image of ϕ. A further reduction with respect to G yields

f̄G = w5
2w

7
1

which corresponds to (pe, pa, p3, p4) = (7, 5, 0, 0), that is the optimal solution. This
should surprise us as we have not taken the objective function into consideration. How-
ever the following will clarify this “accident”.
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Since we have only dealt with the feasibility of an integer program in the context of
Gröbner bases so far, we left out the objective function until this point. Taking the
objective function into account is usually linked to using a monomial order designed
specifically for the problem at hand.

(2.5) Definition
A monomial order ≺ on K[z1, . . . , zm,w1, . . . ,wn] is said to be adapted to an integer
programming problem (∗) if it has the following two properties:

1. Elimination:
Any monomial containing one of the z′is is greater than any monomial containing
only the wj .

2. Compatibility with ` :
Let P = (p1, . . . , pn) and P ′ = (p′1, . . . , p′n). If the monomials wP ,wP ′ satisfy
ϕ(wP ) = ϕ(wP

′
) and `(p1, . . . , pn) > `(p′1, . . . , p′n), then wp � wp

′ .

(2.6) Theorem
Consider an integer programming problem in standard form (∗). Assume all aij , bi ≥ 0
and let fj =

∏m
i=1 z

aij
i be as before. Let G be a Gröbner basis for

I = 〈f1 −w1, . . . , fn −wn〉 ⊂ K[z1, . . . , zm,w1, . . . ,wn]

with respect to any adapted monomial order. Then if f = zb1
1 · · · zbmm is in K[f1, . . . , fn],

the remainder f̄G ∈ K[w1, . . . ,wn] will give a solution of (∗) minimizing `.

Proof
Let G be a Gröbner basis for I with respect to an adapted monomial order. Assume to
the contrary that P = (p1, . . . , pn) is not a minimum of `, but ϕ(wP ) = f and wP = f̄G .
Hence there is some P ′ = (p′1, . . . , p′n) 6= P such that ϕ(wP ′

) = f and `(P ′) < `(P ).
Now for 0 6= h = wP − wP ′ we have ϕ(h) = f − f = 0. According to the following
lemma this implies h ∈ I, but then h must reduce to zero under G. However, according
to the definition of an adapted order wP � wP

′ and hence wP is the leading term of
h and already reduced with respect to G. This is a contradiction and therefore P is a
minimum of `. �
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(2.7) Lemma
Let fi ∈ K[z1, . . . , zm], i = 1, . . . ,n as above and recall the mapping

ϕ : K[w1, . . . ,wn] → K[z1, . . . , zm]
wi 7→ fi

of (2.3). Let I = 〈f1 −w1, . . . , fn −wn〉 ⊂ K[z1, . . . , zm,w1, . . . ,wn].
Then if h ∈ K[w1, . . . ,wn] satisfies ϕ(h) = 0, then h ∈ I ∩K[w1, . . . ,wn].

Proof
Let h ∈ K[w1, . . . ,wn] and replace each wi in h by wi = fi− (fi−wi), that is we consider
h as a polynomial in K[z1, . . . , zm,w1, . . . ,wn]. If we expand h after the replacement,
then we obtain a new form of h:

h = hf + t1(f1 −w1) + . . .+ tn(fn −wn),

where hf , ti ∈ K[f1, . . . , fn] for i = 1, . . . ,n. The crucial observation is that hf is the
same polynomial as h only with each wi replaced by fi. Now expand the domain of ϕ
to K[z1, . . . , zm,w1, . . . ,wn] by setting ϕ(zj) = zj for each j = 1, . . . ,m. In particular
ϕ(fi) = fi for each i = 1, . . . n. Now ϕ(h) = 0 yields

0 = ϕ(h) = ϕ(hf + t1(f1 −w1) + . . .+ tn(fn −wn)) = hf .

Replacing each fi in hf again by fi = wi + (fi −wi) and taking the observation above
into account we obtain

0 = hf = h+ t̃1(f1 −w1) + . . .+ t̃n(fn −wn),

where t̃i ∈ K[w1, . . . ,wn] for each i = 1, . . . ,n.
Hence

h = −(t̃1(f1 −w1) + . . .+ t̃n(fn −wn)) ∈ I

which proves the assertion. �
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A closer look at Theorem (2.6) reveals a GB-algorithm for solving integer programming
problems with all aij , bi ≥ 0 :

Algorithm 2 GB-Algorithm
Input: A, b from (∗) and an adapted monomial order ≺
Output : a solution of (∗), if one exists.

1: fj :=
∏m
i=1 z

cij
i

2: I := 〈f1 −w1, . . . , fn −wn〉
3: G := Gröbner basis of I with respect to ≺
4: f :=

∏m
i=1 z

bi
i

5: g := f̄G

6: if g ∈ K[w1, . . . ,wn] then
7: its exponent vector gives a solution
8: else
9: there is no solution

10: end if

Now in [6] the authors mention that there are cases where the minimum is not unique
and if so the method will only find one minimum. This is a usual concern with given
algorithms for integer programming problems. We will investigate this issue along the
discussion of balancing weights in section 7.

Note that we have only dealt with a special case of integer programming problems so far
as we assumed the coefficients aij and bi to be non-negative. What changes if we drop
these restrictions on aij and bi ?
On one side, it is easy to see that there are no changes in the interpretation of the
integer programs. However since negative coefficients aij lead to negative exponents in
the corresponding polynomials, it is also obvious, that the theory of Gröbner bases above
is not directly applicable in this case. Instead of starting again from the top one can fix
this problem by considering the well known Laurent polynomials, see [6], chapter 8.
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§ 3 Non-commutative Algebras

As a student, one might prefer to work on commutative rings or algebras due to arising
“difficulties” which come along with the lack of commutativity. However, at a closer look
the study of non-commutative rings is more natural as for an arbitrary ring its chance
to be non-commutative is quite great. For example, each commutative ring R yields a
list of non-commutative rings, for instance the matrix ring Mn(R) where n ∈N, which
plays a very important part even in the basics of linear algebra. Further prominent
examples are the division ring of quaternions H by Hamilton or any free K-ring along
with rings, resp. algebras, with relations which will be presented in more detail below.
An indicator of the “size” of commutativity for a given arbitrary ring R is the center of
the ring Z(R). It consists exactly of those elements which commute with all elements
of R, that is Z(R) = {a ∈ R | ar = ra ∀r ∈ R}. In the case when R is commutative it
obviously holds R = Z(R). Considering the free K-ring R = K〈x, y〉 for example, one
concludes Z(R) = K and hence view R as a K-algebra.
Examining non-commutative rings, resp. algebras, in detail would go beyond the scope of
this work and therefore we will outline important facts when necessary. In view of Gröb-
ner bases however, we wish to stress at this point the importance to distinguish between
left, right and two-sided ideals or for that matter the division of an element by another.
A detailed treatment of non-commutative Gröbner bases is given by Levandovskyy in
[15]. It is also, along with [1] by Andres, a basis of the following subsections.

G-algebras

In this section we will investigate non-commutative algebras, especially G-algebras. As a
start consider the free monoid Monn generated by the indeterminates x1, . . . ,xn, i.e.

Monn := {xi1 · . . . · xik | k ∈N0 and 1 ≤ ij ≤ n for 1 ≤ j ≤ k}.

We will call the elements of Monn words or monomials. If we take the set of all finite
linear combinations of the elements ofMonn over a field K, we obtain the free associative
K− algebra

Fn := K〈x1, . . . ,xn〉 = spanK(Monn)

with concatenation as multiplication. The empty word is given by 1 ∈ K.
Considering the elements of Monn, resp. Fn, is usually linked to the need for a corre-
sponding ordering ≺.
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(3.1) Definition
We call a total ordering ≺ on Monn a well-ordering, if each non-empty subset of Monn
contains a least element with respect to ≺.

(3.2) Definition
We call a total ordering ≺ on Monn a monomial ordering, if the following conditions
are satisfied:

i) ≺ is a well-ordering.

ii) For all m1,m2 ∈Monn it holds:

m1 ≺ m2 implies p1 ·m1 · p2 ≺ p1 ·m2 · p2 ∀ p1, p2 ∈Monn.

iii) For all m1,m2 ∈Monn it holds:

m1 = p1 ·m2 · p2 6= m2 with p1, p2 ∈Monn implies m2 ≺ m1.

(3.3) Examples
1. The lexicographical ordering ≺lp for example is a monomial ordering, which is

defined by

xα ≺lp xβ ⇔ ∃ 1 ≤ i ≤ n : αi < βi and αj = βj ∀ 1 ≤ j < i.

2. The degree reverse lexicographical ordering ≺dp is defined as follows:
We say xα ≺dp xβ if and only if ∑n

i=1 αi <
∑n
i=1 βi or

∑n
i=1 αi =

∑n
i=1 βi and the

last non-zero entry of β − α is negative.

3. Additionally to these “standard” monomial orderings it is very common and par-
ticularly of interest for this work to consider weighted monomial orderings. For this
one combines a monomial ordering ≺ and a fixed, so called weight vector ω ∈ Rn

≥0.
The resulting weighted monomial ordering ≺ω is defined by

xα ≺ω xβ ⇔


∑n
i=1 ωiαi <

∑n
i=1 ωiβi

or ∑n
i=1 ωiαi =

∑n
i=1 ωiβi and xα ≺ xβ.

With respect to a monomial ordering ≺ on Monn any f ∈ Fn \ {0} can be uniquely
written as

f = c ·m+ f ′

with c ∈ K \ {0}, m ∈ Monn and f ′ ∈ Fn, where f ′ consists of monomials m′ ∈ Monn
with m′ ≺ m.
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Hence we can introduce the following notations:

1. lm(f) := m is termed the leading monomial of f .

2. lc(f) := c is termed the leading coefficient of f .

(3.4) Remark
In view of the following definition of a G-algebra we recall the well-known fact, that
any finitely generated associative K-algebra A can be viewed as a quotient of Fn by a
two-sided Ideal I, that is A ∼= Fn/I. The ideal I contains information about the given
relations of A (examples follow below) and is hence termed the ideal of relations of A.
Furthermore we proceed on the assumption that I is finitely generated.

Now it is time to introduce the notion of a G-algebra.

(3.5) Definition
Let A be an associative K-algebra in n indeterminates x1, . . . ,xn with respect to the
relations

xjxi = cij · xixj + dij ∀1 ≤ i � j ≤ n (1)

where cij ∈ K \ {0} and dij ∈ spanK{xα1
1 xα2

2 · . . . · xαnn | αi ∈N0, 1 ≤ i ≤ n}.
We call A a G-algebra, if the following two conditions hold:

a) Ordering condition :
There exists a monomial ordering ≺ on Monn satisfying xixj ≺ xjxi, such that
dij = 0 or lm(dij) ≺ xixj holds for all 1 ≤ i � j ≤ n.

b) Non-degeneracy condition :
The polynomial

NDCijk := cikcjkdijxk − xkdij + cjkxjdik − cijdikxj + djkxi − cijcikxidjk

vanishes on A for all 1 ≤ i � j � k ≤ n.

To put it simply, the non-degeneracy condition assures associativity on A with respect
to the given relations. More precisely, (xkxj)xi = xk(xjxi) is equivalent to

0 = (xkxj)xi − xk(xjxi)
= cikcjkdijxk − xkdij + cjkxjdik − cijdikxj + djkxi − cijcikxidjk
= NDCijk.
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In general when speaking of a G-algebra we usually fix a monomial ordering ≺.
An essential part of this work is the investigation of these orderings, especially weighted
orderings as we will see later on.

With the recall above in mind, the corresponding ideal of relations in the definition of a
G-algebra is I = 〈xjxi − cij · xixj − dij〉.
Let us take a look at a few examples.

(3.6) Examples (G-algebra)
i) A trivial example is given by the commutative polynomial ring K[x1, . . . ,xn].

ii) An easy non-commutative example is given by the so called quasi-commutative
K-algebra

K〈x1, . . . ,xn | xjxi = cijxixj for 1 ≤ i < j ≤ n〉,

where cij ∈ K for all 1 ≤ i < j ≤ n.

iii) A famous example of a G-algebra is the n-th polynomial Weyl algebra:

Dn := K〈x1, . . . xn, ∂1, . . . , ∂n | xjxi = xixj , ∂j∂i = ∂i∂j ,
∂jxi = xi∂j + δij for 1 ≤ i, j ≤ n〉.

G-algebras were first introduced in the literature, at least under this name, by J. Apel in
his dissertation [2], however without the non-degeneracy condition which is due to the
work of Mora in [16]. They are also called algebras of solvable type by Kandri-Rody and
Weispfenning in [14]. Yet another name for a G-algebra is the so called PBW algebra,
see [5] by Bueso et al. for example, which presents a further important characterization
of G-algebras via the Poincaré-Birkhoff-Witt-basis (shortly PBW basis):
Recall that elements of Monn are called monomials. Consider the subset of standard
monomials

SMn := {xα1
i1 · x

α2
i2 · . . . · x

αr
ir | 1 ≤ i1 � i2 � . . . � ir ≤ n, αk ≥ 0}.

If the set of standard monomials forms a K-basis of an algebra A = Fn/I, then A is
said to have a PBW basis (in the indeterminates x1, . . . ,xn).
There is a strong connection to G-algebras.

(3.7) Proposition (see [15])
Let A be a K-algebra in the variables x1, . . . ,xn subject to the relations in (1). Suppose
the ordering condition holds as well. Then the non-degeneracy condition holds if and
only if A has a PBW basis (in x1, . . . ,xn).
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Considering the definition of a PBW algebra by Bueso in [5] we see it is similar to that
of a G-algebra, except that the non-degeneracy condition is replaced by the requirement
of a PBW basis. The proposition above hence proves that these definitions are in fact
equivalent.
In other words, each G-algebra has a PBW basis, therefore any f ∈ A can be written as
a linear combination of standard monomials, that is

f =
∑
α
cα · xα1

1 · . . . · xαnn

where cα ∈ K and α = (α1, . . . ,αn) ∈N0.
We might also use the multi-index-notation and simply write f =

∑
α cαx

α.

In view of the new approach to G-algebras let us redefine some already introduced
definitions.
(3.8) Definition
Let A = K〈x1, . . . ,xn | xjxi = cijxixj + dij for 1 ≤ i ≤ j ≤ n〉 be a G-algebra as stated
in (3.5) and let ≺ be a well-ordering on the PBW basis {xα | α ∈Nn

0} of A.
Then ≺ is called a monomial ordering if

xα ≺ xβ implies xα+γ ≺ xβ+γ for all α, β, γ ∈Nn
0 .

Since any f ∈ A \ {0} can be uniquely written as f = cαx
α +

∑
β 6=α cβx

β for a given
monomial ordering ≺ with cα, cβ ∈ K and cα 6= 0 such that f = cαx

α or xβ ≺ xα for
all β 6= α we are able to introduce the . . .

. . . leading monomial of f : lm(f) := xα

. . . leading coefficient of f : lc(f) := cα.

Furthermore we call ≺ an admissible ordering if it satisfies the following condition:

lm(dij) ≺ xixj for all 1 ≤ i � j ≤ n with dij 6= 0.

Note that admissible orderings are well-orderings by definition. To avoid any confusion
we mention that whenever we speak of an ordering on a G-algebra, we mean a monomial
ordering on the PBW basis, which is also admissible.
As monomial orderings on G-algebras can be seen as restrictions of monomial orders on
Monn to the set of standard monomials SMn, it is easy to verify that the two definitions
(3.2) and (3.8) coincide.

In order to translate the previous setting to the point of view of integer programming
we need some preparation.
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(3.9) Definition
Let R be a commutative ring and let A be a (not necessarily commutative) polynomial
algebra over R in indeterminates x1, . . . ,xn. Additionally let f =

∑
α∈Nn

0
cαx

α ∈ A \ {0}
be a polynomial involving only standard polynomials with cα ∈ R and only finitely many
cα 6= 0.

1) The set of multi-indices

N (f) := {α ∈Nn
0 | cα 6= 0}

is called the Newton diagram of f .

2) The weighted (total) degree of f with respect to the weight ω = (ω1, . . . ,ωn)T ∈ Rn

is defined to be
degω(f) := max

{
n∑
i=1

ωiαi | αi ∈ N (f)

}
.

For the zero polynomial we set N (0) := ∅ and degω(0) := −∞ for any ω ∈ Rn.

(3.10) Example
Consider the algebra

A = K〈x, y, z | yx = xy+ y2, zx = xz + z3, zy = yz + z2〉.

Then we have N (xy + y2) = {(1, 1, 0), (0, 2, 0)}, N (xz + z3) = {(1, 0, 1), (0, 0, 3)}
and N (yz + z2) = {(0, 1, 1), (0, 0, 2)}.

Given an ordering on an algebra A with relations as in (1) it is possible to construct an
admissible ordering such that the non-degeneracy condition is fulfilled. The following re-
sult by Bueso, Gómez-Torrecillas and Lobillo [4] gives an algorithm to check whether
an algebra is a G-algebra. Moreover it yields a first application of integer program-
ming methods to G-algebras and contains an interesting result for weighted monomial
orderings.
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(3.11) Proposition
Let

A = K〈x1, . . . ,xn | xjxi = cijxixj + dij for 1 ≤ i ≤ j ≤ n〉

with cij ∈ K \ {0} and dij as in (3.5) such that the non-degeneracy condition is fulfilled.
Further set

B :=
⋃

1≤i<j≤n
{α− ei − ej | α ∈ N (dij)}.

Then there exists an ordering ≺ satisfying the ordering condition (i.e. A is a G-algebra)
if and only if the linear programming problem

Min
n∑
j=1

ωj

s.t. ωj ≥ 1, j = 1, . . . ,n (2)
bT · ω ≤ −1, b ∈ B

has a solution. Moreover, given a (not necessarily admissible) monomial well-ordering
≺ on A , each solution ω of (2) gives rise to an admissible weighted degree ordering ≺ω
by setting

xα ≺ω xβ if degω(x
α) < degω(x

β)

or degω(x
α) = degω(x

β) and xα ≺ xβ.

Note that the proposition implies that for any G-algebra there exists an admissible
weighted degree ordering. A more detailed analysis of these orderings will follow in the
following sections.

(3.12) Example
Consider again the algebra from the example above, that is

A = K〈x, y, z | yx = xy+ y2, zx = xz + z3, zy = yz + z2〉.

The ordering condition is fulfilled if and only if x � y, x � z and y � z. The lexico-
graphical ordering with x � y � z has this property. Furthermore, applying Proposition
(3.11), any solution of the integer programming problem

Min ωx + ωy + ωz

s.t. − ωx + ωy ≤ −1
−ωx + 2ωz ≤ −1
−ωy + ωz ≤ −1
ωx,ωy,ωz ≥ 1,
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yields an admissible weighted degree ordering. The vector ω = (ωx,ωy,ωz) = (3, 2, 1)
for example is such a solution, that is, given a monomial well-ordering ≺, the induced
ordering ≺(3,2,1) is admissible.

Elimination of variables

We would like to point out another relation between the theory of Gröbner bases and
linear programming problems. This is one of the main applications of Gröbner bases,
namely the intersection of a given ideal with a given subalgebra, where the subalgebra
is generated by a set of indeterminates. This is also known as elimination of variables.
The key result of this subsection is due to García García, García Miranda and Lobillo
in [11], which yields an interface to linear programming.

Consider a G-algebra A = 〈x1, . . . ,xn | {xjxi = cijxixj + dij}1≤i<j≤n 〉.
In contrast to the commutative case one has to be more considerate with respect to the
regarded subalgebra, that is even if the subalgebra is generated by a proper subset of
the variables x1, . . . ,xn, it is not automatically a proper subalgebra of A.

(3.13) Example
Consider the G-algebra

A = K〈x, y, z | yx = xy+ z, zx = xz + x, zy = yz + y〉,

subject to the lexicographical order x � y � z. Here the subalgebra generated only by
x and y equals A. This is due to the first relation, that is z = yx− xy ∈ K〈x, y〉.

Hence a more detailed definition of the regarded subalgebra is necessary.

(3.14) Definition
Let A = 〈x1, . . . ,xn | xjxi = cixixj + dij for 1 ≤ i < j ≤ n〉 be a G-algebra and
I = {i1, . . . , ik} ⊂ {1, . . . ,n} an index set with ij < ij+1 for j = 1, . . . , k − 1. Let A′
denote the corresponding subalgebra of A with respect to I, that is A′ is generated by
xi1 , . . . ,xik .
Then

a) A′ is called admissible if dia,ib involves only standard monomials in xi1 , . . . ,xik for
i1 ≤ ia < ib ≤ ik.
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b) If A′ is an admissible subalgebra of A, an admissible ordering ≺ on A with the
property lm(f) ∈ A′ implies f ∈ A′ for allf ∈ A \ {0} is called an (admissible)
elimination ordering for {xi | i /∈ I}. Moreover, if the subalgebra A′′ generated by
{xi | i /∈ I} is also admissible, we call an elimination ordering for {xi | i /∈ I} an
elimination ordering for A′′.

As A′ inherits its structure from A it is multiplicatively closed and hence a sub-G-
algebra.

There is an interesting consequence for Gröbner bases ([15]):

(3.15) Lemma
Let A be a G-algebra, A′ an admissible subalgebra of A and I ⊆ A a left ideal. If G is a
Gröbner basis of I with respect to an elimination ordering ≺ for the variables of A not
contained in A′, then G∩A′ is a Gröbner basis of I ∩A′ with respect to ≺.

Proof
Let f ∈ I ∩ A′ ⊆ I. Since G is a Gröbner basis of I, there exists g ∈ G such that
lm(g)|lm(f). Because lm(f) ∈ A′, so is lm(g). By definition of the elimination ordering,
lm(g) ∈ A′ implies g ∈ A′. But then it follows from G ∩A′ ⊆ I ∩A′ that G ∩A′ is a
Gröbner basis of I ∩A′. �

However, while one can always take the lexicographical ordering as an elimination
ordering in the commutative case, the existence of elimination orderings in the non-
commutative case is not guaranteed as we will see in the next example.

(3.16) Example
For

A = K〈x, y | yx = xy+ y2〉,

we have A′ = K[x] as an admissible subalgebra. For an admissible ordering ≺ on A

though, which has so satisfy y ≺ x, it holds lm(x+ y) = x ∈ K[x], but x+ y /∈ K[x].
Hence there is no elimination ordering for y on A.

So, for a given subalgebra A′ we wish to decide whether it is admissible and if so how
we can show the existence of or even compute an elimination ordering for the variables
of A not contained in A′. These questions are answered by the following theorem by
García García, García Miranda and Lobillo, see [11].
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(3.17) Theorem
Let

A = K〈x1, . . . ,xn | xjxi = cijxixj + dij for 1 ≤ i ≤ j ≤ n〉

be a G-algebra. Further, set

B :=
⋃

1≤i<j≤n
{ei + ej − α | α ∈ N (dij)}

and let I = {i1, . . . , ik} ⊆ {1, . . . ,n}. Then the subalgebra generated by {xj | j ∈ I}
is admissible and there exists an elimination ordering for {xi | i /∈ I} if and only if the
linear programming problem

Min ∑n
j=1 ωj

s.t. ωj ≥ 1, j /∈ I
ωj = 0, j ∈ I

bTω ≥ 0, b ∈ B,

has a solution. Moreover, given an admissible ordering ≺ on A , each solution ω of the
above linear program gives rise to a weighted degree elimination ordering ≺ω by setting

xα ≺ω xβ if degω(x
α) ≺ degω(x

β)

or degω(x
α) = degω(x

β) and xα ≺ xβ.

Let us take a look at a few examples.

(3.18) Example
Consider Example (3.12) again and say we want to eliminate z. As

A = K〈x, y, z | yx = xy+ y2, zx = xz + z3, zy = yz + z2〉,

applying Theorem (3.17) leads to the linear programming problem

Min ωx + ωy + ωz

s.t. ωx = 0
ωy = 0
ωz ≥ 1

−ωx + ωy ≥ 0
−ωx + 2ωz ≥ 0
−ωy + ωz ≥ 0
ωx,ωy,ωz ≥ 1,
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where the set of constraints is equivalent to the following

ωx = 0
ωy = 0
ωz ≥ 1

2ωz ≥ 0,

which has obviously the optimal solution (ωx,ωy,ωz) = (0, 0, 1) and in particular, we
can eliminate z.
(3.19) Example
Consider the G-algebra

A = 〈x, y, z | yx = xy− z, zx = xz + 2x, zy = yz − 2y〉.

Despite which variables we want to eliminate, we will always have to take the following
constraints into account

−ωx − ωy + ωz ≥ 0
−ωz ≥ 0.

Hence any subset of the variables containing z and in particular z itself can not be
eliminated as this implies to add the constraint ωz ≥ 1 to the ones given above, which
leads to infeasibility. Therefore ωz = 0 (if we want to eliminate other variables) and the
remaining candidates for an elimination are x and y but as one can easily see, setting
ωx ≥ 1 and/or ωy ≥ 1 contradicts −ωx − ωy ≥ 0. Hence there exists no elimination
ordering in A.

As stated above, the usual monomial ordering in the commutative case, i.e. the lexi-
cographical ordering, is, in general, not admissible in the non-commutative case, here
one typically uses a block-ordering. More precisely, the generating variables are di-
vided into a number different blocks and for each block one chooses a monomial order-
ing. For instance we can divide the variables x1, . . . ,xn into the two blocks x1, . . . ,xr
and xr+1, . . . ,xn and fix the block ordering ((x1, . . . ,xr)dp, (xr+1, . . . ,xn)lp). Here two
monomials are compared first by the first block ordering (x1, . . . ,xr)dp and in case of a
tie one takes the next block ordering into account and so on. Of course, one can also
define a block ordering by a sequence of weighted monomial orderings.
In order to contribute to this topic in terms of a pattern of grading and balancing of
weights for the considered weight vectors so far we will first have to introduce basics of
filtrations and gradings as well as Lie algebras and universal enveloping algebras.
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§ 4 Filtrations of G-algebras

This section is based on Levandovskyy [15]. We will present the basics of filtrations and
present two different methods to filter a G-algebra. In doing so we will again encounter
weight vectors. While we keep this section strictly theoretical we will focus on explicit
computations and applications in section 7.

(4.1) Definition
An algebra A is called filtered if for every non-negative integer i there is a subspace Ai
such that

1) Ai ⊆ Aj if i ≤ j

2) Ai ·Aj ⊆ Ai+j

3) A =
⋃∞
i=0Ai.

The set {Ai | i ∈N} is called a filtration of A.

(4.2) Definition
An associated graded algebra Gr(A) of a filtered algebra A is defined to be

Gr(A) =
∞⊕
i=1

Gi where Gi = Ai/Ai−1 and A−1 = 0,

with the induced multiplication

(ai +Ai−1) · (aj +Aj−1) = ai · aj +Ai+j−1.

There are two different kinds of filtrations on A:

Weighted degree filtration

Let ≺ω be a weighted degree ordering on A, i.e. there is an n-tuple of strictly positive
weights ω = (ω1, . . . ,ωn) and some ordering ≺ on A.
Then

α ≺ω β ⇔
n∑
i=1

ωiβi <
n∑
i=1

ωiαi or, if
n∑
i=1

ωiβi =
n∑
i=1

ωiαi, then α ≺ β.

Assume that ω1 ≥ . . . ≥ ωn and all the weights are positive integers. Let us define
degω(xα) := ω1α1 + . . . ωnαn and call it weighted degree function on A. For any poly-
nomial f ∈ A, we define degω(f) := degω(lm(f)). Note that degω(xα) = 0 ⇔ α = 0.
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Further note, that in a G-algebra the term lm(f) needs to be treated more carefully, as
for the product of two polynomials f and g, it does not hold lm(fg) = lm(f)lm(g) in
general. This is due to the fact that a product of two monomials does usually not result
in a monomial but in a polynomial. However we have lm(fg) = lm(lm(f)lm(g)).
A first property of the weighted degree function is given by the following lemma.
(4.3) Lemma
Let f and g be two polynomials in A.
Then

degω(fg) = degω(f) + degω(g).

Proof
Let us first consider two monomials xα,xβ. Then we have

degω(x
αxβ) = degω(x

α+β) =
n∑
i=1

ωi(αi + βi) = degω(x
α) + degω(x

β). (2)

Taking two polynomials f and g and keeping the above discussion about the leading
monomial in mind we conclude on one hand

degω(fg) = degω(lm(fg)) = degω(lm(lm(f)lm(g))).

Using the definion of the weighted degree function several times yields on the other hand

degω(f) + degω(g) = degω(lm(f)) + degω(lm(g))
(2)
= degω(lm(f)lm(g))

= degω(lm(lm(f)lm(g))),

where the last equality is again due to the definition on degω(·). Combining the above
yields the assertion. �

Let us construct the first method to filter a G-algebra.
Say Ai is the K-vector space generated by {m ∈ Monn(A) | degω(m) ≤ i}. Hence
A0 = K and

Aωn =

K⊕Kxn, ωn−1 > ωn

K⊕⊕n
m=1 Kxm, ω1 = . . . = ωn.

Therefore it holds

∀ 0 ≤ i < j Ai ⊆ Aj ⊆ A and A =
∞⋃
i=0

Ai.

Moreover, Lemma (4.3) implies Ai ·Aj ⊆ Ai+j .
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(4.4) Example
Let us pick up the G-algebra given in Example (3.12). Here we have already computed
for the G-algebra

A = K〈x, y, z | yx = xy+ y2, zx = xz + z3, zy = yz + z2〉

the weighted degree ordering ≺(3,2,1), where ≺=≺lp.
Now Ai = K〈m ∈Monn(A) | deg(3,2,1)(m) ≤ i〉, that is A0 = K, A1 = K⊕Kz, A2 =

A1 ⊕Ky, A3 = A2 ⊕Kx⊕Kzy, . . . .

Next consider the sets Gi = Ai/Ai−1, which consist of all weighted homogeneous ele-
ments of weighted degree i in A and G0 = A0 = K. By Levandovskyy [15], we have the
following.

(4.5) Lemma
Suppose we have an algebra A, where ∀ i < j degω(dij) < degω(xixj) = ωi+ωj . Denote
x̄i = xi +Ai−1, then

Grdegω(A) =
∞⊕
i=1

Gi = K〈x̄1, . . . , x̄n | x̄j x̄i = cij x̄ix̄j for all j > i〉,

that is Grdegω(A) is isomorphic to a quasi-commutative ring in n indeterminates.

Filtration by a monomial ordering

Here let ≺ be any monomial well-ordering on A.
For α ∈Nn set

x≺α := {xβ ∈ A | xβ ≺ xα}

and let Aα be the K-vector space Aα := spanK(x≺α ∪ {xα}).
We see that Aα is finitely generated only if there are finitely many xβ with xβ ≺ xα, i.e.
≺ is finitely supported. Furthermore it is easy to see that A0 = K and

∀ β < α it holds Aβ ⊂ Aα ⊂ A and A =
⋃

α∈Nn

Aα.

Moreover, since lm(xαxβ) = xα+β we have Aα ·Aβ ⊆ Aα+β.
Taken together the above, A is a filtered algebra, but as we consider Nn instead of N,
we call it a multi-filtration, that is A is a multi-filtered algebra.
In order to display the associated graded algebra we first set

σ(α) := max<{γ | γ < α}
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with σ(0) = ∅.
Then for α ∈Nn we have Gα = Aα/Aσ(α) = {xα} and it follows

Gr≺(A) =
⊕
α∈Nn

Gα ∼= K〈x̄1, . . . , x̄n | x̄j x̄i = cij x̄ix̄j for all j > i〉,

where x̄i = xi +Aσ(ei) and ei ∈Nn is the i-th standard basis vector.

While the following section on Lie algebras and the (quantum) universal enveloping
algebra of a Lie algebra yields a theoretical application for these filtrations, the upcoming
sections afterwards also add a practical approach via the specific computation of weight
vectors.
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§ 5 Lie Algebras and
(Quantum) Universal Enveloping Algebras

As an application of our results we are going to take a look at different kinds of Lie alge-
bras. Particularly interesting for our computations later on will be the the Lie algebra
sl3 as well as its (quantum) universal enveloping algebra U(sl3) resp. Uq(sl3). Hence we
focus on these in the given examples. For a detailed treatment of Lie algebras however
we refer the reader to the work by Dixmier [10].

Lie Algebras

Again let K be a commutative field.

(5.1) Definition
A Lie algebra over a field K is a K-vector space g together with a map

[·, ·] : g× g→ g, (x, y) 7→ [x, y],

termed Lie bracket, such that

(1) [x, y] is K-bilinear in x and y

(2) [x,x] = 0 ∀x ∈ g

(3) [x, [y, z]] + [y, [z,x]] + [z, [x, y]] = 0 ∀x, y, z ∈ g

(5.2) Remark
Properties (1) and (2) imply that [y,x] = −[x, y] for all x, y ∈ g. Property (3) is also
known as the Jacoby identity, the idea of which is to get a replacement of the notion of
associativity, since in general a Lie algebra is neither commutative nor associative.

For our purposes the Lie bracket [x, y] in the definition above will denote

[x, y] = xy− yx,

which we will also refer to as the canonical Lie bracket.
Via the induced mapping, any K-algebra can be given a Lie algebra structure.
Let V be a finite dimensional vector space over a field K, and End(V ) the algebra of
endomorphisms of V . We will denote the Lie algebra of End(V ), that is End(V ) endowed
with the canonical Lie bracket, by gl(V ) also known as the general Lie algebra. To see
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that gl(V ) actually is a Lie algebra one has to check the properties (1)− (3). While (1)
and (2) are immediate, property (3) requires some calculation which is straightforward
and will not be displayed here.
Let dimK(V ) = n. In view of explicit calculations later on, it is more convenient to
interpret gl(V ) as the set of all square matrices of order n with elements in K. Hence
we have the canonical base of gl(n, K) = gl(V ), namely {Eij | 1 ≤ i, j ≤ n} where Eij
denotes the matrix with all entries equal to zero except for the entry at position (i, j),
which equals 1. Furthermore we can give an explicit expression of the Lie bracket

[Eij ,Ekl] = δjkEil − δilEkj

where δij is the Kronecker delta.

(5.3) Definition
Let g be a Lie algebra as above. A subspace h ⊆ g is called a Lie subalgebra of g, if it
is closed with respect to the Lie bracket [·, ·] on g. That is, for any h1,h2 ∈ h it holds
[h1,h2] ∈ h.

Moreover we call a Lie subalgebra i of g an ideal of g if

[x, y] ∈ i for all x ∈ g, y ∈ i.

For instance the set of the x ∈ gl(V ) whose trace tr(x) is zero is an ideal of gl(V ) and
denoted by sl(V ). In particular, sl(V ) itself is a Lie algebra.
Using the notation gl(n, K) as we did above, we refer to the corresponding Lie algebra
of Mn(K), the algebra of square matrices of order n with elements in K. The notation
sl(n, K) is self-explanatory.

Let us take a look at important examples.

(5.4) Examples
1. sl2

The Lie algebra sl(2, K) will be denoted by sl2. The elements

e =

(
0 1
0 0

)
= E12, f =

(
0 0
1 0

)
= E21, h =

(
1 0
0 −1

)
= E11 −E22

form a basis of sl2. We have

[h, e] = 2e, [h, f ] = −2f , [e, f ] = h.
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2. sl3
One can develop a basis of the vector space sl3 from the one of sl2, namely

e1,2 = E12, e1,3 = E13, e2,3 = E23,
f1,2 = E21, f1,3 = E31, f2,3 = E32

and

h1 =


1 0 0
0 −1 0
0 0 0

 , h2 =


0 0 0
0 1 0
0 0 −1

 .

A general structure of the basis of sln+1 is given by

ei,j = Eij , fi,j = Eji for 1 ≤ i < j ≤ n+ 1 (3)
and hi = Eii −Ei+1i+1 for 1 ≤ i ≤ n,

see [19] for example.

As mentioned before, the general Lie algebra lacks associativity. Hence many known
results of associative algebras are not directly applicable to Lie algebras in this setting.
This problem leads us to the universal enveloping algebra of a Lie algebra.

Universal Enveloping Algebras

An explicit construction and analysis of the universal enveloping algebra of a Lie alge-
bra along with a proof of the famous Poincaré-Birkhoff-Witt-Theorem (shortly PBW-
Theorem), which we will also make use of, can be found for example in Introduction to
Lie Algebras and Representation Theory, [13].
Furthermore, along with an abstract view of universal enveloping algebras, we will also
focus on a constructive way as this is more convenient for calculations.

Consider two Lie algebras, g1 and g2. Then a morphism of Lie algebras is a K-linear
map ϕ : g1 → g2, which is compatible with the Lie-brackets of g1 and g2, that is

ϕ([x, y]) = [ϕ(x),ϕ(y)]

for all x, y ∈ g1.

In view of the following definition recall, that any K-algebra can be viewed as a Lie
algebra via the canonical Lie-bracket.
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(5.5) Definition
Let U be an associative K-algebra and g a Lie algebra. One calls U a universal enveloping
algebra for g if it is endowed with a morphism of Lie algebras ϕ : g → U (w.r.t. the
canonical Lie-bracket on U) satisfying the following universal property:
For any K-algebra V and any morphism of Lie algebras ψ : g→ V (w.r.t. the canonical
Lie-bracket on V ) there exists a unique K-algebra morphism θ : U → V such that the
diagram

g
ϕ //

ψ
&&

U

θ
��
V

commutes.

Obviously U is unique up to unique isomorphism: replace V in the diagram above by
any associative K-algebra U ′ with the same property as U . Then there exists besides
θ : U → U ′ also a unique K-algebra morphism θ′ : U ′ → U and hence we can construct
an isomorphism φ : U → U ′ via φ = θ′ ◦ θ. Hence we will denote the universal enveloping
algebra for a Lie algebra g by U(g).
To see that U(g) actually always exists, one can construct it in the following way, for
details see Dixmier [10] for example. Let a K-basis of g be given by {xj | j ∈ J},
where J is an index set. Then by setting U(g) as the quotient of the free K-algebra
K〈xj | xj ∈ J〉 by the ideal I generated by the elements of the form

xixj − xjxi − [xi,xj ]

we obtain an associative K-algebra satisfying the requirements of a universal enveloping
algebra for g.
Surprisingly, we even have the following result.

(5.6) Theorem (PBW-Theorem, [10])
Let (x1, . . . ,xn) be any ordered basis of a finite dimensional Lie algebra g over a field
K. Then

{xl11 · · ·xlnn | l1, . . . , ln ∈N0}

is a basis for U(g).

For a Lie algebra g over K we see immediately on one side that U(g) is a domain and on
the other side, that the mapping ϕ : g→ U(g) with respect to the canonical Lie-bracket
on U(g) is injective, hence U(g) envelops g.
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(5.7) Examples
Let us take on the examples from above. The PBW-Theorem tells us, that a basis of

1. U(sl2) is given by {fmhlen | n,m, l ∈N0} and

2. U(sl3) is given by {fm1
1,2 f

m2
1,3 f

m3
2,3 h

l1
1 h

l2
2 e

n1
1,2e

n2
1,3e

n3
2,3 | mi, li,ni ∈N0}.

This result is of great importance for explicit calculations in section 7, where we will
use these bases with the corresponding relations to construct explicit admissible weight
vectors allowing us to view these algebras as G-algebras. Doing so we mainly focus on
the algebras in the following subsection which present what we have considered so far
in a more general context.

Quantum Universal Enveloping Algebras

In what follows we deal with a more general treatment of the universal enveloping alge-
bra of a Lie algebra, the so called quantum universal enveloping algebra of a Lie algebra
over K = C. Simply speaking we additionally take a fixed parameter q ∈ C into account
that takes part in the relations of a non-commutative algebra A.

We will start with a typical example, not quite in the context of Lie algebras.
For 0 6= q ∈ C the quantum plane Oq(C2) is defined by

Oq(C2) := C〈x, y〉/Iq,

where Iq is the two-sided ideal generated by yx− qxy. Here we have another simple
example of a G-algebra.
This concept can of course be generalized to Oq(Cn) = C〈x1, . . . ,xn〉/Iq, where q
contains the parameters qij subject to the relations xjxi = qijxixj and Iq is the corre-
sponding ideal generated by the elements xjxi − qijxixj .

In the context of Lie algebras we will start with Uq(sl2). Again we consider the canonical
Lie-bracket.
(5.8) Definition
Let 0 6= q ∈ C such that q4 6= 1. We define Uq(sl2) to be the quotient of the free
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C-algebra C〈e, f , k, k−1〉 and the two-sided ideal corresponding to the relations

kek−1 = q2e

kfk−1 = q−2f

[e, f ] =
k2 − k−2

q2 − q−2

kk−1 = k−1k = 1.

Note that this is not a generalization of U(sl2) meaning that replacing q with specific
value does not lead us back to U(sl2).
We will continue with a detailed analysis of Uq(sl3). For this let us first review the
universal enveloping algebra of sl3.

(5.9) Example (U(sl3))
Instead of the representation of this algebra given in Example (5.7), we will draw on the
one given in Singular::Plural (ncalg.lib) [12]
The universal enveloping algebra of the Lie algebra sl3 of 3× 3 traceless matrices is
generated by

xα,xβ,xγ , yα, yβ, yγ ,hα,hβ
subject to the relations

[xα,xβ ] = xγ , [xα, yα] = hα, [xα, yγ ] = −yβ,
[xα,hα] = −2xα, [xα,hβ ] = xα, [xβ, yβ ] = hβ,
[xβ, yγ ] = yα, [xβ,hα] = xβ, [xβ,hβ ] = −2xβ,
[xγ , yα] = −xβ, [xγ , yγ ] = hα + hβ, [xγ , yβ ] = xα,
[xγ ,hα] = −xγ , [xγ ,hβ ] = −xγ , [yα, yβ ] = xα,
[yα,hα] = 2yα, [yα,hβ ] = −yα, [yβ,hα] = −yβ,
[yβ,hβ ] = 2yβ, [yγ ,hα] = yγ , [yγ ,hβ ] = yγ ,

where [x, y] := xy− yx.
For those familiar with the notion of Cartan matrices, the relations above correspond to
the Cartan matrix

A2 =

(
2 −1
−1 2

)
.

As a fact this correspondence is unique, hence we will as well use the notation Uq(A2).
What we did not mention so far is that our treatment of a universal enveloping algebra
of a Lie algebra is a spacial case of the one given by Serre resp. the famous Chevalley-
Serre relations. A detailed and more general attempt can for instance be found in [19]
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by Yamane. However the knowledge of Cartan matrices in this context only affects the
explicit construction of some examples and, as before, not the underlying theory of this
work or the results of our upcoming computations.
In fact, besides A2, we will only take the Cartan matrix

B2 =

(
2 −2
−1 2

)

into account.

To be more specific, we will at least present how to obtain the given relations from a
Cartan matrix of type An = (aij)ni,j=1 in general. In this work we only consider the case
n = 2. First set

aij =


2, if i = j,
−1, if |i− j| = 1,

0, otherwise.

Similar to the structure of sln given in (3) one can prove for U(sln), see [19],

U(sln) = K〈xi,hi, yi | 1 ≤ i � n〉/I,

where the two-sided ideal I is represented by the relations

hihj − hjhi = xiyj − yjxi = 0
xiyi − yixi = hi

hixj − xjhi = ajixj

hjyi − yihj = −ajiyj

and
(ad(xi))

1−aji(xj) = 0 resp. (ad(yi))1−aji(yj) = 0 (4)
for i 6= j, where ad(·)(·) is defined via

ad(x)(y) = xy− yx.

Hence the equations (4) can be thought of an interlacing of the canonical Lie-bracket
and can be written as

1−aij∑
k=1

(−1)k
(

1− aij
k

)
x

1−aij−k
i xjx

k
i = 0

1−aij∑
k=1

(−1)k
(

1− aij
k

)
y

1−aij−k
i yjy

k
i = 0.
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(5.10) Remark
One has to be careful with the given expression of the generating variables of U(sl3).
For instance in the example above one can also write

xα = e1,2, xβ = e2,3, xγ = e1,3,
yα = f1,2, yβ = f2,3, yγ = f1,3,
hα = h1, hβ = h2.

where ei,j , fi,j and hi are given in (5.4). However we want to draw a clear line in view
of the following examples to avoid confusion. There we will also encounter generators
denoted by eij for example, but we wish to stress that eij 6= ei,j .

Now we will take this a few steps further by considering the quantum universal enveloping
algebra Uq(sl3). Following [17] Example 3.4 where the general case Uq(sln+1) is treated,
we focus on sl3 as the underlying Lie algebra. See also [19] for details, especially for the
construction of the generating variables below in context of a Cartan matrix. Again we
focus on relations corresponding to A2 at first.
Now, let q be a complex number, such that q8 6= 1. Instead of examining Uq(sl3) directly,
that is taking the C-basis

fn1
12 , fn2

13 , fn3
23 , k`11 , k`22 , em1

12 , em2
13 , em3

23

with ni,mi ∈N and `i ∈ Z, it is sometimes more convenient or even necessary to avoid
negative exponents and consider Vq(sl3). The algebra Vq(sl3) results from Uq(sl3) by
setting li := k−1

i and regard the generators

f12, f13, f23, k1, k2, l1, l2, e12, e13, e23

subject to the relations:

e13e12 = q−2e12e13, f13f12 = q−2f12f13,
e23e12 = q2e12e23 − qe13, f23f12 = q2f12f23 − qf13,
e23e13 = q−2e13e23, f23f13 = q−2f13f23,

e12f12 = f12e12 +
(k2

1 − l21)
(q2 − q−2)

, e12k1 = q−2k1e12,

k1f12 = q−2f12k1, e12k2 = qk2e12,
k2f12 = qf12k2, e12f13 = e12f13 + qf23k

2
1,

e13k1 = q−1k1e13, k1f13 = q−2f13k1,
e12f23 = e12f23, e13k2 = q−2k2e13,
k2f13 = q−1f13k2, e13f12 = e13f12 − q−1l21e23,
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e23k1 = qk1e23, k1f23 = qf23k1,

e13f13 = e13f13 −
k2

1k
2
2 − l21l22

q2 − q−2 , e23k2 = q−2k2e23,

k2f23 = q−2f23k2, e12l1 = q2l1e12,
l1f12 = q2f12l1, e13f23 = e13f23 + qk2

2e12,
e12l2 = q−1l2e12, l2f12 = q−1f12l2,
e23f12 = e23f12, e13l1 = ql1e13,
l1f13 = qf13l1, e23f13 = e23f13 − q−1f12l

2
2,

e13l2 = ql2e13, l2f13 = qf13l2,
e23l1 = q−1l1e23, l1f23 = q−1f23l1,

e23f23 = e23f23 +
k2

2 − l22
q2 − q−2 , e23l2 = q2l2e23,

l2f23 = q2f23l2, l1k1 = l1k1,
l2k1 = l2k1, k2k1 = k2k1,
l1k2 = l1k2, l2k2 = l2k2, l2l1 = l2l1.

Following [5] Chapter 7, one may verify that a C-basis of Vq(sl3) is given by

fn1
12 , fn2

13 , fn3
23 , ka1

1 , ka2
2 , lb1

1 , lb2
2 , em1

12 , em2
13 , em3

23

where mi,ni, aj , bj ∈N.
By Yamane [19] we can write Uq(sl3) as homomorphic image of Vq(sl3):
Setting I = 〈k1l1 − 1, k2l2 − 1〉 as a left ideal, we obtain

Uq(sl3) ∼= Vq(sl3)/I.

Using a different Cartan matrix yields other corresponding relations of course, however
the results maintain the same.

The long list of relations above is not only displayed to show the complexity of the un-
derlying structure but is actually very useful in view of Theorem (3.11) for the following
sections. Among other we will discuss the computation of weight vectors that will lead
to Uq(A2),Vq(A2),Uq(B2) or Vq(B2) being graded in the upcoming section. In section
7 we additionally focus on weight vectors for filtrations, admissible weighted monomial
orderings and elimination orderings.
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§ 6 The Pattern of Grading

Consider a non-commutative algebra

A := K〈x1, . . . ,xn | [xj ,xi] = dij for 1 ≤ i < j ≤ n〉,

where K is a field and dij is an element of spanK{xα1
1 · · · xαnn | αi ∈N0, 1 ≤ i ≤ n}.

Usually we deal with relations of the form yx = cxy + d(x, y) where c ∈ K, but since
we are focusing on weighted orderings in this section and deg(c) = 0 for any c ∈ K \ {0}
with respect to any monomial ordering, we will set each c = 1 for ease of notation.
Hence the term [xj ,xi] = dij in the definition of A is sufficient for our purposes.
Furthermore the dij take the form

dij =
∑
l

dijl

where dijl ∈Monn with lc(dijl) = 1 for each l, since we are interested in the support of
the polynomials dijl, that is in terms with coefficient 6= 0. As before we have to make
some assumptions on the weighted orderings.

(6.1) Definition
A weighted monomial ordering ≺ω for a weight vector ω is called admissible if

xixj �ω dijl

for each 1 ≤ i < j ≤ n and each l. More precisely

ωi + ωj ≥ maxl{degω(dijl)}

has to hold for each 1 ≤ i < j ≤ n and each l.
We will also refer to such an ω as an admissible weight vector and call the set of all
admissible weight vectors the feasible region.

We are particularly interested in a specific subset of the admissible weighted monomial
orderings, namely those that will lead to A being a graded algebra. In the notation of
the previous definition this means that we are looking for admissible weight vectors ω
that satisfy the equations

ωi + ωj = degω(dijl)

for each 1 ≤ i < j ≤ n and each l.

Let us take up again some of the previous examples.
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(6.2) Examples
a) Weyl algebra

For A = K〈x, ∂ | ∂x = x∂ + 1〉 any admissible weight vector ω = (ωx,ω∂) has to
satisfy

ωx + ω∂ ≥ 0.

Hence the feasible region is given by

Figure 2: Grading of the Weyl algebra

The red line indicates the weight vector ω = (ωx,−ωx), that is for ωx = −ω∂ the
Weyl algebra is graded.

b) Shift algebra
For A = K〈k, s | sk = ks+ s〉 any admissible weight vector ω = (ωk,ωs) has to
satisfy

ωk + ωs ≥ ωs ⇔ ωk ≥ 0, ωs arbitrary

and here the feasible region is given by
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Figure 3: Grading of the Shift algebra

The red line indicates the weight vector ω = (0,ωs), that is for ωk = 0 the Shift
algebra is graded.

c) In both examples above the weight vectors that led to a graded algebra were given
by the border of the feasible region. This is not true in general though. Consider the
algebra

A = K〈x, y | yx = xy+ x+ y〉.

Here an admissible weight vector ω = (ωx,ωy) has to satisfy

ωx + ωy ≥ ωx and ωx + ωy ≥ ωy,

and hence the feasible region is given by the intersection of the two planes

{(ωx,ωy) | ωx ∈ R,ωy ≥ 0 and {(ωx,ωy) | ωx ≥ 0,ωy ∈ R},

that is the positive quadrant:
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Figure 4: Grading of A

However it is easy to see, that the only possible grading of A is given by the trivial
one, that is ω = (0, 0).

The main issue of this section is to determine a pattern of those weight vectors that
imply a grading of the given algebra A in the set of all weight vectors in the feasible
region. One might deduce the following from the given examples:
(6.3) Observation
Consider any admissible weight vector ω for a given algebra A. Then each relation
[xj ,xi] = dij in the definition of A gives us a set of constraints with respect to ω, i.e.

ωi + ωj ≥ max
l
{degω(dijl)}.

As ω leads to A being a graded algebra if and only if

ωi + ωj = degω(dijl)

for each 1 ≤ i < j ≤ n and each l, we obtain a system of linear equations in the variables
ω1, . . . ,ωn. Solving this system leads us to those weight vectors in question.
Geometrically speaking, these weight vectors are given by the intersection of all equa-
tions bounding the feasible region. This intersection can either result in a single point, a
line, a plane ... etc., depending on the number of generators of A and the corresponding
relations.
Furthermore, note that the trivial grading, i.e. ω = 0, is always possible. Hence each
border of the feasible region has to cross the origin and whenever the intersection of all
borders result in a single point, this has to be the origin.

46



Klegraf § 6 The Pattern of Grading

In the examples of (6.2) we have seen all possible outcomes for the two-dimensional case
(where A is non-commutative), i.e. there is only one restriction, yielding a line, or there
are two restrictions yielding one line each which intersect at the origin.
Let us continue with some examples of higher dimension:

(6.4) Examples
d) U(sl2)

Here A = K〈e, f ,h | [e, f ] = h, [e,h] = −2e, [f ,h] = 2f〉 and for ω = (ωe,ωf ,ωh)
we have to consider the inequalities

ωe + ωf ≥ ωh

ωe + ωh ≥ ωe

ωf + ωh ≥ ωf .

which are equivalent to ωe + ωf ≥ ωh and ωh ≥ 0. Hence the feasible region is given
by

Figure 5: Grading of U(sl2)
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The red line, i.e. the intersection of the two red planes which represent the borders of
the two inequalities, indicates the weight vector (ωe,−ωe, 0) , that is for ωf = −ωe
and ωh = 0 the algebra U(sl2) is graded.

e) U(sl3)
Using the the relations presented in Example (5.9) we conclude similar to the previous
example

ω = (ωxα ,ωxβ ,ωxγ ,ωyα ,ωyβ ,ωyγ ,ωhα ,ωhβ )
= (t, −2t, −t, −t, 2t, t, 0, 0),

where t ∈ R, that is the set of all admissible weight vectors, that will lead to U(sl3)
being graded are (again) on one straight line. Furthermore note, that here we also
have ωxj = −ωyj .

f) Let A = K〈 x, y, z | yx = qxy + z, zx = qxz + z3, yz = qzy + y2〉, where q ∈ K∗.
Here the system of inequalities to be considered is given by

ωx + ωy ≥ ωz

ωx + ωz ≥ 3ωx ⇔ ωz ≥ 2ωx
ωz + ωy ≥ 2ωy ⇔ ωz ≥ ωy

Replacing each inequality by an equality yields a linear system of three irredundant
equations in three indeterminates, hence the origin ω = (0, 0, 0) is the single solution
and therefore the only possible grading of A is the trivial one.

g) The Quantum coordinate K-algebra of 2× 2 matrices Oq(M2(K))

Let A = Oq(M2(K)) := K〈a, b, c, d〉/Iq, where Iq is generated by the elements
corresponding to the relations:

ba = qab , ca = qac

cb = qbc , da = ad+ (q+ q−1)bc

db = qbd , dc = qcd

with 0 6= q ∈ K. Note that the structure corresponds to the one given at the
beginning of subsection 5 of the previous section. Now there is only one inequality
defining the feasible region, i.e. ωa + ωd ≥ ωb + ωc. Hence the feasible region is
4-dimensional, which gives us a 3-dimensional object containing the weight vectors
ω = (ωa,ωb,ωc,ωd) which will lead to A being graded, namely those that satisfy
ωd = ωb + ωc − ωa.
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Additionally let us examine some more complicated examples, namely the quantum
universal algebras described in previous section.

(6.5) Examples
h) Vq(A2) vs. Uq(A2)

Consider the relations of section 5 on page 41 and set the weight vector ω to

ω = (ωf12 ,ωf13 ,ωf23 ,ωk1 ,ωk2 ,ωl1 ,ωl2 ,ωe12 ,ωe13 ,ωe23).

We go straight to the resulting system of equalities

ωe12 + ωe23 = ωe13 , ωf12 + ωf23 = ωf13 ,
ωe12 + ωf12 = 2ωk1 , ωe23 + ωf23 = 2ωk2 ,
ωe12 + ωf12 = 2ωl1 , ωe23 + ωf23 = 2ωl2 ,
ωe23 + ωf13 = ωf12 + 2ωl2 , ωe12 + ωf13 = 2ωk1 + ωf23 ,
ωe13 + ωf13 = 2ωk1 + 2ωk2 , ωe13 + ωf23 = 2ωk2 + ωe12 ,
ωe13 + ωf12 = 2ωl1 + ωe23 , ωe13 + ωf13 = 2ωl1 + 2ωl2 ,

the solution of which is

ωV A2 = (ωf12 ,ωf13 ,ωf23 ,ωk1 ,ωk2 ,ωl1 ,ωl2 ,ωe12 ,ωe13 ,ωe23)

= (a− b, a, b, c, d, c, d, b− a+ 2c, 2c+ 2d− a, 2d− b),

where a, b, c, d ∈ R.
Solving the similar system of equations corresponding to Uq(A2) however, that is
adding the equalities

ωli = −ωki for i = 1, 2,

to the ones above, yields the weight vector

ωUA2 = (ωf12 ,ωf13 ,ωf23 ,ωk1 ,ωk2 ,ωl1 ,ωl2 ,ωe12 ,ωe13 ,ωe23)

= (a− b, a, b, 0, 0, 0, 0, b− a, −a, −b),

where a, b ∈ R.
Hence we conclude that ωUA2 results from ωV A2 by setting c = d = 0 and notice
further the similarity to e), that is ωfij = −ωeij .

i) Vq(B2) vs. Uq(B2)

As indicated in a previous section we will now take a different Cartan matrix into
account, namely B2, see §5, Example (5.9). To avoid the listing of yet another large
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system of inequalities we refer to the paper [4] Example 4.4 as well as [8] for details.
Here we follow the notation given in [4] and set

ω = (ωf1 ,ωf12 ,ωf122 ,ωf2ωk1 ,ωk2 ,ωl1 ,ωl2 ,ωe1 ,ωe12 ,ωe122 ,ωe2).

The weight vectors that will lead to Vq(B2) resp. Uq(B2) being graded are

ωV B2 = (−u+ s, s, s+ u, u, 0, t+ u, 0, t+ u, u− s, t+ u− s, 2t+ u− s, t)

respectively

ωUB2 = (−u+ s, s, s+ u, u, 0, 0, 0, 0, u− s, −s,−u− s,−u).

Again we register ωUB2 as a special case of ωV B2 by setting t = −u.

A best almost Grading

For this subsection we switch for once to the commutative case and setR := K[x1, . . . ,xn],
where K is a commutative field.
As we have seen in some examples above, it is not always possible to compute weights,
which will lead to a non-trivial grading of a given polynomial f . Hence one might ask,
what is the best approximation of a grading?
More precisely, given a commutative polynomial

f =
k∑
i=1

cimi ∈ R (5)

with ci ∈ K \ {0} and mi ∈ Monn(R) we wish to find the best almost grading of f ,
that is the highest graded part of f which has maximal length among all other gradings.
Here we define the length of a polynomial f to be the number of contained terms in f ,
i.e. for f in (5) we have lenght(f) = k.

(6.6) Example
Let R = R[x, y] and consider f = x4 + y5 + xy4. As the system {4ωx = 5ωy, 4ωx =

ωx + 4ωy, 5ωy = ωx + 4ωy} which is equivalent to {4ωx = 5ωy, 3ωx = 4ωy,ωy = ωx}
has the only solution ωx = ωy = 0 we look for a almost grading of length ≤ 2.
Obviously we can find weights to grade x4 + y5, for instance ωx = 4t,ωy = 5t, where
t is an arbitrary parameter. For x4 + y5 to be the highest graded part we also have to
take the inequalities 4ωx ≥ ωx + 4ωy and 5ωy ≥ ωx + 4ωy into account and obtain the
solution (ωx,ωy) = (t, 4/5t), with t < 0.
Of course we could also consider x4 + xy4 as highest graded part or y5 + xy4. We
conclude that the best almost grading is not unique in general and notice that we are
faced again with geometric questions as in the previous subsection.
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The goal of this subsection is to formulate an algorithm, that produces for a polynomial
f ∈ R = K[x1, . . . ,xn] all best almost gradings that have length greater or equal to 2.
We first recall the definition of the Newton diagram N (f) of f =

∑
α∈N cαx

α, i.e.

N (f) := {α ∈Nn
0 | cα 6= 0}.

By using this notation for a monomialm = xα = xα1
1 · · ·xαnn and setting ω = (ω1, . . . ,ωn),

we can express the induced equations for a grading of m1 +m2 with m1,m2 ∈Monn(R)

by
〈N (m1),ω〉 = 〈N (m2),ω〉,

where 〈·, ·〉 denotes the standard scalar product.

The idea of the algorithm is as follows:
Compute as usual the system of equations S, which can then be used to decide whether
f can be graded or not. In case f can be graded as a whole, we can calculate the
corresponding weights as usual and are done. If the only possible grading for f is the
trivial one, i.e. ω = 0, we can use the set S to find step by step those equations which
abort the full grading of f . Here S yields |S| new sets S′1, . . . ,S′|S|, each of which results
from S by leaving out the i-th equation and hence have a cardinality of |S| − 1 each.
The new systems S′i are then again solved and tested for a non-trivial solution. Each
system S′i with a non-trivial solution yields a grading of maximal length among all other
gradings and is hence a candidate for a best almost grading. For this we have to check
whether and if so under which conditions this grading is of highest degree. This is done
by taking the corresponding inequalities similar to Example 6.6 into account.

(6.7) Remark
Since the best almost grading of a polynomial f is not unique in general, we will use
the notation grω(f) to describe those terms of f which will be the best almost grading
with respect to ω. For example, for f = x4 + y5 + xy4 and ω = (ωx,ωy) = (t, 4/5t),
where t < 0, we have grω(f) = x4 + y5. In the algorithm we will also use the notation
grS′(f). Furthermore we will denote the resulting best almost grading xt+ yt+ xtyt by
bagω(f) and the corresponding highest graded part xt + yt by hgpω(f). In particular,
for grω(f) =

∑
β cβx

β1
1 · · ·xβnn we have hgpω(f) =

∑
β cβx

β1ω1
1 · · ·xβnωnn .

Let us have a look at the algorithm. Without loss of generality and for simplicity we
assume all terms of f to be monic and not constant.
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Algorithm 3 Computation of all possible highest graded parts of f of lenght ≥ 2.
1: procedure HGP(Polynomial f in variables x1 . . . ,xn)
2: M := Mon(f); . contains all terms of f
3: S := ∅, W := V ector(ω1, . . . ,ωn); . Weights for the variables x1 . . . ,xn
4: for (m1,m2) ∈M ×M with m1 6= m2 do
5: S := S ∪ {〈N (m1),W 〉 = 〈N (m2),W 〉};
6: end for
7: ω∗ := solution of S; . ω∗ = (ω∗1, . . . ,ω∗n)
8: if ω∗ 6= 0 then
9: return bagω(f); . the grading of f by ω∗.

10: else
11: SL := [],Candidates := [];
12: if |S| = 1 then
13: return The highest graded part of f has lenght 1.
14: end if
15: for eq ∈ S do
16: add the set S′ := S \ {eq} to the list SL;
17: ω∗S′ := solution of S′;
18: if ω∗S′ 6= 0 then
19: grS′(f) := corresponding terms of f that can be graded;
20: add the tuple CS′ := (S′,ω∗S′ , grS′(f)) to the list Candidates;
21: end if
22: end for
23: HG := [];
24: for CS′ ∈ Candidates do
25: V := Mon(grS′(f)), NV := Mon(f) \ V ;
26: for (m1,m2) ∈ V ×NV do
27: S′ := S′ ∪ {〈N (m1),W 〉 ≥ 〈N (m2),W 〉};
28: end for
29: ω∗S′ := solution of S′;
30: if ω∗S′ 6= 0 then
31: bagS′(f) := best almost grading of f w.r.t. S′.
32: add CS′ := (S′,ω∗S′ , grS′(f), bagS′(f),hgpS′(f)) to the list HG;
33: end if
34: end for
35: while HG = [] do
36: repeat lines 12-34 for each S′ in SL; . that is replace S in above by S′
37: end while
38: end if
39: return HG;
40: end procedure
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Termination:
The algorithm terminates due to lines 35 - 37. More precisely, if f is a monomial or even
a sum of two monomials then the termination follows as f can be graded and otherwise
we can assume |S| ≥ 2. With each pass of the while-loop the cardinality of the sets S′
decreases by one and hence at least when HG is still empty while all S′ contain only
one equation the if query in line 12 terminates the algorithm.
Correctness:
The correctness of the algorithm is provided by the fact, that, whenever f cannot be
graded, we start with the set S and always compute a grading of maximal length first
in lines 18 - 21 and afterwards check in lines 24 - 34 if this can also be of highest degree
among all other terms. If no such grading exists, we will display that there are only
those possible of length 1.

An implementation of the algorithm in MAPLE and applying it to Example (6.6)
yields

(ωx,ωy) grω(f) bagω(f) hgpω(f)

(t, 4t
5 ), t < 0 x4 + y5 x4t + y4t + xty4t x4t + y4t

(t, 3t
4 ), t > 0 x4 + xy4 x4t + y

15t
4 + xty3t x4t + xty3t

(t, t), t > 0 y5 + xy4 x4t + y5t + xty4t y5t + xty4t

We deduce from this easy example, that with an increase in the number of consid-
ered terms and/or variables in a polynomial the problem at hand gets complicated very
quickly.

(6.8) Remark
Besides the fact, that we can compute a best almost grading of a polynomial f , we also
obtain information about how long it is, i.e. lenght(grω(f)).

We will continue our calculations in the following section, however in a different context.
Simply speaking we will not focus on gradings any longer but rather specifically designed
solutions for integer programming problems which arise from the relations of a non-
commutative algebra.
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§ 7 Balancing of Weights

Given an algebra A = K〈x1, . . . ,xn | {xjxi = cijxixj + dij}1≤i<j≤n〉 we have seen in
Theorem (3.11) how to interpret the problem of deciding whether a weighted monomial
ordering ≺ω is admissible is equivalent to solving the system of inequalities

ωi + ωj ≥ max
l
{degω(dijl)} (6)

for 1 ≤ i < j ≤ n and each l. In this section we are going to elaborate on this topic
by analyzing the structure of ω. More precisely we focus on algorithms that pick out
balanced weight vectors, where we have to specify the meaning of balance.

Alternative Solutions

As mentioned in a previous section, the broad range of well known algorithms to solve
linear, reps. integer programming problems lack the output of possibly alternative solu-
tions. As this is an important part in order to find specifically designed solutions though
we will discuss a few methods to attack this issue.

In their paper “Finding multiple solutions to general integer linear programs” [18] Tsai,
Lin and Hu proposed a method of how to find alternative optimal solutions for a given
integer program. The basic idea is to compute an optimal solution (if it exists) using an
appropriate algorithm for the given problem and then cut out this solution by extending
the constraints such that the computed solution is no longer part of the feasible region.
Furthermore another constraint is added which fixes the value of the objective function
to the value of the optimal solution. Solving this new problem then yields an alternative
optimal solution to the first one.
Considering the problem (6), we are not searching for alternative optimal but rather
alternative feasible solutions. Hence the following part slightly differs compared to their
treatment of the problem.
The first step is to introduce the new constraints, that cut out a given solution of the
feasible region:
Say ω∗ = (ω∗1, . . . ,ω∗n) is a solution to (6). Adding the constraint

n∑
k=0
|ωk − ω∗k| ≥ 1
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to the set of the given constraints in (6) then cuts out the interior of a n-dimensional
cube with edge length 1 and center ω∗. However, this is no linear constraint, hence it
has to be linearized to match our model.

(7.1) Proposition ([18], Proposition 2)
Let αj ∈ {0, 1},Wj ≥ 0 and M is a large constant, then

n∑
j=0
|ωj − ω∗j | ≥ 1 ⇔


(i) 0 ≤ Wj − ωj + ω∗j ≤M · (1− αj), j = 1, . . . ,n
(ii) 0 ≤ Wj − ω∗j + ωj ≤M · αj , j = 1, . . . ,n
(iii)

∑n
j=1Wj ≥ 1.

Proof
First let us prove ”⇐ ”:
Let (i), (ii) and (iii) be given.
If ωj − ω∗j > 0 for some j, then (ii) implies αj = 1 and hence by (i) it follows

|ωj − ω∗j | = Wj .

If ωj − ω∗j < 0 for some j, then (i) implies αj = 0 and hence by (ii) it follows

|ωj − ω∗j | = Wj .

Additionally if ωj = ω∗j for some j then (i) and (ii) imply Wj = 0, that is |ωj − ω∗j | =
Wj . Summarizing the above yields ∑n

j=0 |ωj − ω∗j | =
∑n
j=1Wj and in particular

n∑
j=0
|ωj − ω∗j | ≥ 1⇔

n∑
j=1

Wj ≥ 1.

The other direction ” ⇒ ” follows in the same matter since ∑n
j=0 |ωj − ω∗j | ≥ 1 implies

that there is some j, such that ωj 6= ω∗j , hence Wj and αj can be chosen accordingly to
satisfy (i), (ii) and (iii). �

(7.2) Remark
Linearizing the inequality ∑n

j=0 |ωj − ω∗j | ≥ 1 in this way yields 4n+ 2 additional con-
straints and requires 2n more variables, whereas the feasible region decreases insignifi-
cantly in general. Therefore the runtime per iteration of the algorithm increases with
each step.
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In the following we will present a pseudo-code of the algorithm in question. Note, that
we do not fix the objective value of the optimal solution and hence search for feasible,
not necessarily optimal solutions. Given an integer programming problem with objective
function f and a set of constraints C, we will now present a basic version of the algorithm.
Note that we bound the maximal number of computed alternative solutions by an integer
runs ∈ N. It also assures the termination of the algorithm whereas the correctness is
provided by Proposition 7.1.

Algorithm 4 Basic Algorithm for Alternative Solutions
1: procedure AltSol(f , C :: set, runs :: posint)
2: ω∗ :=optimal solution of the original IP with obj. function f and constraints C.
3: r:= 1
4: M»0 . Set a value for M in Prop.7.1
5: S:= ∅
6: while r ≤ runs do
7: S := S ∪ {0 ≤ Wj + ωj − ω∗j | j = 1, . . . ,n} . Add the new constraints
8: S := S ∪ {Wj + ωi − ω∗i ≤M · aj | j = 1, . . . ,n}
9: S := S ∪ {0 ≤ Wj + ω∗j − ωj | j = 1, . . . ,n}

10: S := S ∪ {Wj + ω∗j − ωj ≤M · (1− aj) | j = 1, . . . ,n}
11: S := S ∪ {1 ≤ ∑n

z=1Wj}
12: S := S ∪ {Wj ≥ 0 | j = 1, . . . ,n}
13: NewC := C ∪ S;
14: ω∗ :=optimal solution of the IP with obj. function f and constraints NewC,
15: where the aj are set as binary variables.
16: r:= r+1;
17: output: ω∗ and objective value.
18: end while
19: end procedure

However the performance of the algorithm strongly relies on the performance of the
algorithm chosen to solve the arising integer programming problems. So far we have
not talked about the different techniques for solving linear, resp. integer programming
problems but since we would like to apply Proposition (7.1) to various examples, a few
words are in order.
The classical approach to linear programming problems, i.e. the Simplex algorithm, was
given by Dantzig [7]. However it is not directly applicable for the problem at hand, as
we focus on integer programming problems. Further methods include the interior point
algorithm by Karmarkar or the big M method which is a modification of the simplex
algorithm.
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We are going to use a specifically designed technique for integer programming problems,
i.e. the branch and bound method which will be outlined in the following subsection.

Branch and Bound

The idea of the branch and bound method is fairly simple. We will explain the basic
steps first and go into detail by examining a two-dimensional example afterwards.
One first solves the relaxation of the integer programming problem, that is we assume
the decision variables to be elements of R instead of Z, which yields a linear program-
ming problem (LP). If the solution (ω∗1, . . . ,ω∗n) is integer-valued, it coincides with the
solution of the IP and we are done. If the solution is not integer-valued, that is ∃ i with
ω∗i /∈ Z, we will split the IP into two carefully chosen LP’s, that is we split the feasible
region into two disjoined regions, neither of which contains (ω∗1, . . . ,ω∗n). Each of these
regions corresponds to a new LP, which arises from the original LP by adding new con-
straints, i.e. we have a branching. We actually branch on a specific ωi. The occurring
LP’s are then again solved. If an arising solution is integer-valued, it is a candidate for
the optimal solution of the original IP and no further branching is needed, i.e. it bounds
the domain of ωi to be regarded in this branching. If not, we have another branching
and the process repeats itself. At some point all possible cases were considered and we
get an optimal solution.

Let us now demonstrate the process along a two-dimensional example. Given an integer
programming problem (IP), for example

Max ω1 + ω2

s.t. 2ω1 + ω2 ≤ 11,
ω1 + 5ω2 ≤ 21,

ω1,ω2 ≥ 0,
ω1,ω2 ∈ Z,

we first compute the solution of the relaxation using the Simplex algorithm and obtain
(ω∗1,ω∗2) = (34

9 , 31
9 ) /∈ Z2.
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Figure 6: Feasible region of the original IP

Since the solution is not integer-valued, we have to choose a variable to branch on, say
ω1. We will divide the feasible region into two disjoint regions by adding new constraints,
namely ω1 ≤ b34

9 c = 3 and ω1 ≥ d34
9 e = 4 that is we consider two new LP’s :

LP1 : Max ω1 + ω2

s.t. 2ω1 + ω2 ≤ 11,
ω1 + 5ω2 ≤ 21,

ω1,ω2 ≥ 0
ω1 ≤ 3

ω1,ω2 ∈ R

and

LP2 : Max ω1 + ω2

s.t. 2ω1 + ω2 ≤ 11,
ω1 + 5ω2 ≤ 21,

ω1,ω2 ≥ 0
ω1 ≥ 4

ω1,ω2 ∈ R.
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Figure 7: Decomposition of the original feasible region

Solving the LP’s yield the solutions (3, 18
5 ) and (4, 3) respectively. We see that the second

solution (4, 3) with objective value 7 is integer-valued and hence no further branching
is needed since adding even more constraints cannot result in finding a better solution.
The solution (ω1,ω2) = (3, 4) is hence a candidate for the optimal solution. Considering
the first solution we note, that ω1 = 3 ∈ Z and we cannot branch on ω1 again. Hence
we branch on ω2 and obtain analogously to the previous step the LP’s :

Max ω1 + ω2

s.t. 2ω1 + ω2 ≤ 11,
ω1 + 5ω2 ≤ 21,

ω1,ω2 ≥ 0
ω1 ≤ 3
ω2 ≤ 3

ω1,ω2 ∈ R
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and
Max ω1 + ω2

s.t. 2ω1 + ω2 ≤ 11,
ω1 + 5ω2 ≤ 21,

ω1,ω2 ≥ 0
ω1 ≤ 3
ω2 ≥ 4

ω1,ω2 ∈ R

which yield the solutions (3, 3) and (1, 4) with objective value 6 resp. 5. Note, that this
second step was unnecessary in fact since the resulting solutions, that is the objective
values, were bounded by 3+ 18

5 which is already smaller than 7. We displayed it however
to demonstrate the idea of the method.
Furthermore the process is completed and we see that (ω1,ω2) = (3, 4) is the optimal
integer solution.
Additionally one might want to take the solution of the relaxation of the original IP
and round it to get an integer-valued solution. Although it would work in this example,
it is only by accident and is not successful in general. Rounding might even yield an
infeasible solution.

However if the feasible region is unbounded, this method may not terminate. Note, that
the feasible regions we have considered so far in our examples of the previous sections
were unbounded. We can easily solve this problem in our case however, since we are
looking for specifically designed solutions and hence artificially bound the intervals of
the decision variables and therefore bound the feasible region.

Finding the Balance

Now it is time to link all of the above and apply the algorithm, which translates
Proposition (7.1) and yields alternative solutions to an integer programming problem.
We used MAPLE to implement the algorithm. Note that the LPSolve command of
the Optimization package in MAPLE uses the branch and bound method. One can
set the maximum range of branches per iteration by setting a value for the option
depthlimit = n.
Furthermore note that the termination of the algorithm is either determined by runs,
the maximal number of alternative solutions to be computed or by the LPSolve com-
mand when a constructed integer programming problem in an iteration is infeasible. In
the latter case an error message “no feasible solution found” will be displayed. More-
over, the option depthlimit in the LPSolve command plays a role in finding a solution as
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described in the subsection Branch and Bound as well as in the context of the runtime
of the algorithm. Here we suggest the reader to test different parameters to get a good
sense for it. Additionally as most problems considered above are unbounded we chose
to control the termination of the algorithm by the parameter runs.

(7.3) Example
To “assure” the algorithm works properly, we consider as a first example the corre-
sponding IP of the guitar manufacturing company from the beginning of section 2, that
is

Max 220pe + 308pa
s.t. pe + pa ≤ 12

3pe + 6pa ≤ 51.

We obtain the solutions (7, 5), (8, 4), (5, 6), . . . along with a descending chain of objective
values.

Figure 8: Feasible region for alternative solutions

The graphic shows the the first computed alternative solution (8, 4), after the cube of
edge length 1 and interior (7, 5) has been cut out.
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We will discuss how to use the algorithm to point it in the direction of computing pos-
sibly balanced solutions. Note that we do not require the IP to have multiple optimal
solutions. Whether the i-th alternative solution is optimal or not can easily be deduced
from comparing its objective value with the objective value of the first solution given by
the algorithm.
Now we wish to apply the algorithm to the theory presented in the previous sections.
However we will not use the basic algorithm, but focus on different additional features
depending on the structural requirements of our desired solution. So far we have basi-
cally dealt, in the context of G-algebras, with computing weight vectors that will lead
to an admissible weighted monomial ordering, filtrations and the (quantum) universal
enveloping algebra of a Lie algebra. From the viewpoint of balancing weights we will
focus in the following on

1) predefined regions
2) symmetry (of certain blocks) and
3) minimal upper boundaries.

By “predefined regions” we mean setting a priori boundaries thereby avoiding the in-
convenience of an unbounded integer programming problem. One can either add further
constraints to the set C in Algorithm 3 or build a procedure into the algorithm which
sets boundaries for all or certain blocks of the decision variables, thereby forcing the
algorithm to look for solutions in a predefined area which may intersect the feasible
region. Here the output of alternative solutions comes in quite handy as we can set the
boundaries rather loosely and do not have to alter the set borders very often in case
these were too strict and led to infeasibility.
Additionally the LPSolve command in MAPLE allows us to set an initial point influ-
encing where to start the computation. A balanced initial point may hence be helpful.

Let us now take on an example which is more adjusted to our setting.

(7.4) Example
We consider again the quantum enveloping algebra Uq(A2) and, of course, the connection
to Vq(A2). As before, we regard Yamane’s bases for these algebras (see [19]), i.e. for
Uq(A2) we have

{fγkβeα | α, γ ∈N3, β ∈ Z2},

where eα = eα1
12 e

α2
13 e

α3
23 , kβ = kβ1

1 kβ2
2 and fγ = fγ1

12 f
γ2
13 f

γ3
23 . In [4] the need for a weight

vector
ω = (ωf12 ,ωf13 ,ωf23 ,ωk1 ,ωk2 ,ωl1 ,ωl2 ,ωe12 ,ωe13 ,ωe23)
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for Vq(A2) is given that makes Vq(A2) a G-algebra, which can be computed as a solution
of the corresponding integer programming problem, where we minimize the objective
function:

f(ω) = ωf12 + ωf13 + ωf23 + ωk1 + ωk2 + ωl1 + ωl2 + ωe12 + ωe13 + ωe23

subject to the constraints

ωe12 ≥ 1, ωe13 ≥ 1, ωe23 ≥ 1,
ωf12 ≥ 1, ωf13 ≥ 1, ωf23 ≥ 1,
ωk1 ≥ 1, ωk2 ≥ 1, ωl1 ≥ 1, ωl2 ≥ 1,

−ωe12 + ωe13 − ωe23 ≤ −1, −ωf12 + ωf13 − ωf23 ≤ −1,
2ωk1 − ωe12 − ωf12 ≤ −1, 2ωk2 − ωe23 − ωf23 ≤ −1,
2ωl1 − ωe12 − ωf12 ≤ −1, 2ωl2 − ωe23 − ωf23 ≤ −1,

ωf12 + 2ωl2 − ωe23 − ωf13 ≤ −1, 2ωk1 + ωf23 − ωe12 − ωf13 ≤ −1,
2ωk1 + 2ωk2 − ωe13 − ωf13 ≤ −1, 2ωk2 + ωe12 − ωe13 − ωf23 ≤ −1,
2ωl1 + ωe23 − ωe13 − ωf12 ≤ −1, 2ωl1 + 2ωl2 − ωe13 − ωf13 ≤ −1,

see Theorem (3.11) for its construction.
In addition to their solution

ω = (ωf12 ,ωf13 ,ωf23 ,ωk1 ,ωk2 ,ωl1 ,ωl2 ,ωe12 ,ωe13 ,ωe23)

= (3, 5, 3, 1, 1, 1, 1, 1, 1, 1)

our algorithm yields among other the alternative solutions

(3, 4, 2, 1, 1, 1, 1, 1, 2, 2),
(2, 4, 3, 1, 1, 1, 1, 2, 2, 1),

or (2, 3, 2, 1, 1, 1, 1, 2, 3, 2).

Furthermore, by solving the corresponding integer programming problem for Uq(A2),
that is we replace the inequalities ωli ≥ 1 by ωli = −ωki for i = 1, 2, we obtain for
example the solution

(2, 3, 2, 1, 1,−1,−1, 2, 3, 2).

What can we conclude so far?

1) The search for alternative solutions enables the possibility for specifically designed
solutions, for example symmetric ones as we have seen in the previous example.
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2) Additionally we can set borders for the variables, that is we can determine the smallest
c ∈ N such that ωi ≤ c for all i, that is the minimal upper boundary as mentioned
above.

The second point actually arises from another issue. Imagine the only optimal solution
of an IP takes the form ω = (149, 4, 11, 6). Here the approach of a priori restrictions for
the variables may turns out tedious. Hence regarding this solution serves as a starting
point. Taking the usual objective function we note that the objective value has to be
greater than or equal to 149 + 4 + 11 + 6 = 170. Therefore trying to find a balanced
solution by lowering the value for ω1 by d ∈ N results in raising the values of ω2,ω3
and ω4 in total at least by d, which gives us a better sense of where to look for balanced
solutions. Of course the algorithm cannot construct balanced solutions if there are none,
hence this has to be viewed as an approximation towards a balance. In such a case we
can build a while-loop into the algorithm which lowers the upper boundary for ω1 step
by step using the constraints as long as the resulting IP’s remain feasible.

For example:

while “IP feasible” do
m :=max(ω∗)
am :=argmax(ω∗)
NewC := NewC ∪ {ωam ≤ m− 1};
ω∗ :=optimal solution of the IP with obj. function f and constraints NewC,

where the aj are set as binary variables.
output: ω∗ and objective value.

end while

Hence we are able to extend the theory from section 3 in the way that we are not only
capable to compute any solution, but one with a certain structure that can also be
applied in the context of filtrations in section 4. We have already seen weight vectors
which can be used for a weighted degree filtration in the previous example. Furthermore,
although we did not mention it before, the weight vector ω corresponding to Vq(A2), i.e.
(2, 3, 2, 1, 1, 1, 1, 2, 3, 2) is bounded by 3 in the meaning of point 2) above. More precisely
there exists no solution ω such that ωi ≤ 2 for all i. Regarding Uq(A2) however, we can
consider two cases

i) The first one, namely ωki = −ωli 6= 0, we have already taken into account above,
i.e. ω = (2, 3, 2, 1, 1,−1,−1, 2, 3, 2). Again the solution is bounded by 3.

64



Klegraf § 7 Balancing of Weights

ii) The second case is ωki = ωli = 0 and here we are able to lower the boundary and
obtain the weight vector ω = (1, 1, 1, 0, 0, 0, 0, 1, 1, 1). Obviously we can not achieve
a lower boundary.

Let’s regard B2 as underlying Cartan matrix again.

(7.5) Example
We refer the reader to [4], Example 4.4 for details of the relations and will proceed in a
manner analogue to the previous example and set

ω = (ωf1 ,ωf12 ,ωf122 ,ωf2ωk1 ,ωk2 ,ωl1 ,ωl2 ,ωe1 ,ωe12 ,ωe122 ,ωe2).

In [4] the authors obtained the weight vector

ω = (1, 1, 2, 2, 1, 1, 1, 1, 4, 9, 15, 7)

which is neither balanced nor symmetric in any form and hence yields a good starting
point for the application of our algorithm. First we focused on finding a symmetric
solution while keeping the upper boundary as small as possible. Here we obtained the
weight vector

ω = (3, 6, 10, 5, 1, 1, 1, 1, 3, 6, 10, 5).

Moreover, we are able to lower the boundary from 10 to 9 by leaving out the symmetry
condition and get among other the solution

ω = (3, 5, 8, 4, 1, 1, 1, 1, 2, 5, 9, 5).

Considering the two cases for Uq(B2), we obtain the following:

i) ωki = −ωli 6= 0 :
Again we get the same solution as for Vq(B2) where only the signs of ωli change
from positive to negative, i.e. ω = (3, 6, 10, 5, 1, 1,−1,−1, 3, 6, 10, 5), if we
want to keep the symmetry and ω = (3, 5, 8, 4, 1, 1,−1,−1, 2, 5, 9, 5) if not,
yielding the same boundary as for Vq(A2).

ii) ωki = ωli = 0 :
Here we can lower the upper boundary even further and obtain the symmetric
solution

ω = (2, 3, 5, 3, 0, 0, 0, 0, 2, 3, 5, 3).

Moreover leaving out the symmetry condition does not result in finding a lower
boundary and hence the solution is bounded by 5.

Furthermore, note that all of the computed solutions were also optimal ones.
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(7.6) Observation
Examining the last examples we have seen an idea of the word balance, namely the
decomposition of the weight vector ω into different blocks which are bounded for them-
selves and possibly symmetric to each other.

(7.7) Remark
In terms of elimination of variables for G-algebras described in section 3, subsection 3,
we wish to point out, that the existence of elimination orderings can easily be checked
by replacing each inequality of the form bTω ≤ −1 by bTω ≤ 0 and ωj ≥ 1 by ωj = 0 for
the variables not to be eliminated. Of course the theory and algorithm described above
can be applied here to find balanced weight vectors for elimination orderings.

Considering Vq(A2) or Uq(A2) for example we deduce, that there exist elimination or-
derings in the case we want to eliminate {e12, e13, e23}, {e12, e13} or {e13, e23} but the
elimination of e12 and e23 is not possible. As one might suspect, the same holds for the
fij . Moreover, we have already seen a weight vector leading to the elimination of all the
eij and fij , namely ω = (1, 1, 1, 0, 0, 0, 0, 1, 1, 1).

Although we kept our computations of weights mainly within the context of a quantum
universal enveloping algebra of a Lie algebra, we wish to stress that this was merely
for demonstrating the features of the underlying algorithm. The theory however applies
to general integer programming and hence might prove useful in various mathematical
aspects.

(7.8) Observation
As we have seen, the computation of balanced - or more structured - weights is indeed
possible, but in general could not be made into a completely automatic procedure. That
is, one has to work with the concrete non-commutative algebra and combine algorithms
with human insight.
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Conclusions and Future Directions

In this thesis we have seen naturally arising connections mostly between non-commutative
algebras and the theory of integer programming. We designed algorithms and techniques
for finding balanced solutions for integer programming problems within the context of
G-algebras as well as for gradings resp. best almost gradings.
We have shown various roles weight vectors play in regarding monomial orderings in
G-algebras, however the developed methods in this work for the computation of these
weight vectors apply to a more general context. Furthermore, our theory for balanced
weights is only applicable for integer programming problems. i.e. in Z. By cutting out
a cube with edge length one and an integer interior point, we decrease the number of
possibly integer solutions only by one, whereas in Q we actually cut out a whole “cube
of solutions”. Hence studying balanced solutions over Q is still an interesting question.
As an application of these weight vectors we considered a grading or filtration of a G-
algebra.
Within the study of a grading for a non-commutative algebra

A = 〈x1, . . . ,xn | {xjxi = cijxixj + dij}1≤i<j≤n〉

we noticed a pattern resulting from the corresponding ideal of relations. In geometric
terms, the relations of A in combination with the condition for an admissible ordering
describe a feasible region for those weight vectors that induce an admissible weighted
monomial ordering. The intersection of all borders of this region yields a geometric
object which contains all weight vectors, that can be used to find a grading for A.
Here we mainly focused on quantum universal enveloping algebras of special linear Lie
algebras for our calculations, as these yield interesting examples due to their complex
structure. More precisely, in view of a balance, we were able to improve existing weights
for Uq(A2) and Uq(B2), but our methods do not depend on the choice of the correspond-
ing Cartan matrix. Furthermore, our calculations gave rise to a reasonable characteri-
zation of a balanced weight vector ω in the first place. For this one has to keep in mind,
that only an approximation of balance is possible in general. What stood the test was
finding tight boundaries for ω on one hand and on the other hand decomposing ω into
several blocks which are possibly symmetric to each other.
While we shortly elaborated on elimination orderings as well, we think that among other
an interesting application of our work lies in the study of the well-known Gröbner Walk.
Here, the computation of weights is a vital aspect and the option of possibly balancing
these weights might find a useful purpose.
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