Localisation of D-modules

Markus Lange-Hegermann

December 10, 2007

Introduction and Motivation

(1) The Annihilator (2) The Generator Conclusion

Notation

- K computable field of characteristic 0 contained in $\mathbb C$
- $R_n := K[\underline{x}] := K[x_1, .., x_n]$ the polynomial ring in n indeterminates
- $D_n:=R\langle\underline{\partial}
 angle:=R_n\langle\partial_1,..,\partial_n
 angle$ be the n-th Weyl algebra

Introduction and Motivation

(1) The Annihilator (2) The Generator Conclusion

Aim and Motivation

- Let $f \in R_n$ and M a holonomic (left) D_n -module $M \cong D_n/I$ for a left ideal I in D_n
- Compute $M[f^{-1}] := R_n[f^{-1}] \otimes_{R_n} M$
- Can be generalised to M only being holonomic on $K^n \setminus \mathcal{V}(f)$
- "localise away" non-holonomic locus
- Generalisation to last weeks with $M = R_n$

Introduction and Motivation

(1) The Annihilator (2) The Generator Conclusion

Plan

- ullet Want to find a generator $f^a\otimes 1$ and its annihilator
- Call this generator $f^s \otimes 1 \otimes 1 \in f^s \otimes_K R_n[f^{-1}, s] \otimes_{R_n} M$
- (1) Compute $J^{I}(f^{s}) := \operatorname{Ann}_{D_{n}[s]}(f^{s} \otimes 1 \otimes 1)$
- (2) Compute a suitable number $a \in K$ for substituting s by a
 - \underline{x} operates by left multiplication on the right factor

•
$$\partial_i \bullet (f^s \otimes \frac{g(x,s)}{f^k} \otimes Q) =$$

 $f^s \otimes \frac{sg(x,s)f_i}{f^{k+1}} \otimes Q + f^s \otimes \partial_i(\frac{g(x,s)}{f^k}) \otimes Q + f^s \otimes \frac{g(x,s)}{f^k} \otimes \partial_i Q$
• $f_i := \frac{\partial f}{\partial x_i}.$

Idea Getting many Generators Intersecting away

(1) The Annihilator

Aim of this section: Compute $J^I(f^s):= {\sf Ann}_{D_n[s]}(f^s\otimes 1\otimes 1)$

Idea Getting many Generators Intersecting away

Idea

• Extend
$$D_n[s]$$
 to $D_{n+1} := D_n \langle t, \partial_t \rangle$
• $t \bullet (f^s \otimes \frac{g(x,s)}{f^k} \otimes Q) := f^s \otimes \frac{g(x,s+1)f}{f^k} \otimes Q$
• $\partial_t \bullet (f^s \otimes \frac{g(x,s)}{f^k} \otimes Q) := f^s \otimes \frac{-sg(x,s-1)}{f^{k+1}} \otimes Q$
• Try to compute $J_{n+1}^I(f^s) := \operatorname{Ann}_{D_{n+1}}(f^s \otimes 1 \otimes 1)$
• "Intersect" this with $D_n[s]$

•
$$-\partial_t t$$
 acts by s , so $D_n[s] \hookrightarrow D_{n+1}$

Idea Getting many Generators Intersecting away

Getting many Generators

•
$$\phi: D_{n+1} \xrightarrow{\sim} D_{n+1}: x_i \mapsto x_i, t \mapsto t - f, \partial_i \mapsto \partial_i + f_i \partial_t, \partial_t \mapsto \partial_t$$

• Lemma: Let I be f -saturated. Then

$$J_{n+1}^{I}(f^{s}) =_{D_{n+1}} \langle \phi(I), t - f \rangle$$

holds.

Idea Getting many Generators Intersecting away

Intersecting away

- Input: Left ideal I of D_{n+1}
- Output: $J = I \cap D_n[s] = I \cap D_n[-\partial_t t]$
- Weight vector w on $D_{n+1}[y_1, y_2]$ by $w(t) = 1, w(\partial_t) = -1, w(x_i) = w(\partial_i) = 0, w(y_1) = 1, w(y_2) = -1$
- Homogenize I by y_1 according to w
- Compute Gröbner basis \tilde{J} of this ideal and $1-y_1y_2$ eliminating y_1 and y_2
- Take elements of \tilde{J} not having y_1 or y_2 and multiply them with appropriate powers of t and ∂_t to give them a w-degree of 0
- Return these elements
- The above lemma in combination with this algorithm gives the solution to this section's problem.

Bernstein Polynomial Determine the Exponent

Aim of this section:

Compute a suitable number $a \in K$ to get a generator and to substitute s by a in last section's result

Bernstein Polynomial Determine the Exponent

Bernstein Polynomial

• Bernstein polynomial $b_f^I(s) \in K[s]$: the monic generator for all $b \in K[s]$, s.t. exists $Q(s) \in D_n[s]$ with:

$$b(s) \bullet (f^s \otimes 1 \otimes 1) = Q(s) \bullet (f^s \otimes f \otimes 1) = Q(s) f \bullet (f^s \otimes 1 \otimes 1)$$

Fix Q^I_f(s) as operator with above properties
Idea: Q^I_f(s) is some kind of "inverse" for f

Bernstein Polynomial Determine the Exponent

Computing the Bernstein Polynomial

- Input: $f \in R_n$ and f-saturated holonomic ideal $I \trianglelefteq D_n$
- Output: $b_f^I(s)$
- Compute $J^{I}(f^{s})$ by means of section 1
- Compute the monic generator of $_{D_n[s]}\langle f, J^I(f^s)\rangle \cap K[s]$

Bernstein Polynomial Determine the Exponent

Determine the Exponent

Theorem: M = D_n/I holonomic and a ∈ K^{*}, such that no element of {a − 1, a − 2, ..} is root of b^I_f(s), then:

 $f^{a} \otimes_{K} R_{n}[f^{-1}] \otimes_{R_{n}} M$ $\cong D_{n} \bullet (f^{a} \otimes 1 \otimes 1)$ $\cong (D_{n}[s]/J^{I}(f^{s}))|_{s=a}$

• Take a as smallest negative integer root of $b_f^I(s)$. If no such number exists, then a := -1

Final Algorithm

- \bullet Input: $f\in R_n,\ M=D_n/I$ holonomic and $f\mbox{-saturated}$
- Output: $J \leq D_n$ and $a \in \mathbb{Z}$ with $R_n[f^{-1}] \otimes_{R_n} M \cong D_n/J$ generated by $f^a \otimes 1$.
- Determine $J^{I}(f^{s})$ as in section 1
- Determine $b_f^I(s)$ as in section 2
- Find the smallest integer root a of $b_f^I(s)$. If not exist, a:=-1
- Replace s by a in each generator of $J^{I}(f^{s}) \rightsquigarrow J$

Final words:

