Localisation of D-modules

Markus Lange-Hegermann

December 10, 2007

Notation

- K computable field of characteristic 0 contained in \mathbb{C}
- $R_{n}:=K[\underline{x}]:=K\left[x_{1}, . ., x_{n}\right]$ the polynomial ring in n indeterminates
- $D_{n}:=R\langle\underline{\partial}\rangle:=R_{n}\left\langle\partial_{1}, . ., \partial_{n}\right\rangle$ be the n-th Weyl algebra

Aim and Motivation

- Let $f \in R_{n}$ and M a holonomic (left) D_{n}-module $M \cong D_{n} / I$ for a left ideal I in D_{n}
- Compute $M\left[f^{-1}\right]:=R_{n}\left[f^{-1}\right] \otimes_{R_{n}} M$
- Can be generalised to M only being holonomic on $K^{n} \backslash \mathcal{V}(f)$
- "localise away" non-holonomic locus
- Generalisation to last weeks with $M=R_{n}$

Plan

- Want to find a generator $f^{a} \otimes 1$ and its annihilator
- Call this generator $f^{s} \otimes 1 \otimes 1 \in f^{s} \otimes_{K} R_{n}\left[f^{-1}, s\right] \otimes_{R_{n}} M$
(1) Compute $J^{I}\left(f^{s}\right):=\operatorname{Ann}_{D_{n}[s]}\left(f^{s} \otimes 1 \otimes 1\right)$
(2) Compute a suitable number $a \in K$ for substituting s by a
- \underline{x} operates by left multiplication on the right factor
- $\partial_{i} \bullet\left(f^{s} \otimes \frac{g(x, s)}{f^{k}} \otimes Q\right)=$ $f^{s} \otimes \frac{s g(\underline{x}, s) f_{i}}{f^{k+1}} \otimes Q+f^{s} \otimes \partial_{i}\left(\frac{g(\underline{x}, s)}{f^{k}}\right) \otimes Q+f^{s} \otimes \frac{g(x, s)}{f^{k}} \otimes \partial_{i} Q$
- $f_{i}:=\frac{\partial f}{\partial x_{i}}$.

(1) The Annihilator

Aim of this section:
Compute $J^{I}\left(f^{s}\right):=\operatorname{Ann}_{D_{n}[s]}\left(f^{s} \otimes 1 \otimes 1\right)$

Idea

- Extend $D_{n}[s]$ to $D_{n+1}:=D_{n}\left\langle t, \partial_{t}\right\rangle$
- $t \bullet\left(f^{s} \otimes \frac{g(x, s)}{f^{k}} \otimes Q\right):=f^{s} \otimes \frac{g(x, s+1) f}{f^{k}} \otimes Q$
- $\partial_{t} \bullet\left(f^{s} \otimes \frac{g(x, s)}{f^{k}} \otimes Q\right):=f^{s} \otimes \frac{-s g(\underline{x}, s-1)}{f^{k+1}} \otimes Q$
- Try to compute $J_{n+1}^{I}\left(f^{s}\right):=\operatorname{Ann}_{D_{n+1}}\left(f^{s} \otimes 1 \otimes 1\right)$
- "Intersect" this with $D_{n}[s]$
- $-\partial_{t} t$ acts by s, so $D_{n}[s] \hookrightarrow D_{n+1}$

Getting many Generators

- $\phi: D_{n+1} \xrightarrow{\sim} D_{n+1}: x_{i} \mapsto x_{i}, t \mapsto t-f, \partial_{i} \mapsto \partial_{i}+f_{i} \partial_{t}, \partial_{t} \mapsto \partial_{t}$
- Lemma: Let I be f-saturated. Then

$$
J_{n+1}^{I}\left(f^{s}\right)={ }_{D_{n+1}}\langle\phi(I), t-f\rangle
$$

holds.

Intersecting away

- Input: Left ideal I of D_{n+1}
- Output: $J=I \cap D_{n}[s]=I \cap D_{n}\left[-\partial_{t} t\right]$
- Weight vector w on $D_{n+1}\left[y_{1}, y_{2}\right]$ by $w(t)=1, w\left(\partial_{t}\right)=$ $-1, w\left(x_{i}\right)=w\left(\partial_{i}\right)=0, w\left(y_{1}\right)=1, w\left(y_{2}\right)=-1$
- Homogenize I by y_{1} according to w
- Compute Gröbner basis \tilde{J} of this ideal and $1-y_{1} y_{2}$ eliminating y_{1} and y_{2}
- Take elements of \tilde{J} not having y_{1} or y_{2} and multiply them with appropriate powers of t and ∂_{t} to give them a w-degree of 0
- Return these elements
- The above lemma in combination with this algorithm gives the solution to this section's problem.

(2) The Generator

Aim of this section:
Compute a suitable number $a \in K$ to get a generator and to substitute s by a in last section's result

Bernstein Polynomial

- Bernstein polynomial $b_{f}^{I}(s) \in K[s]$: the monic generator for all $b \in K[s]$, s.t. exists $Q(s) \in D_{n}[s]$ with:

$$
b(s) \bullet\left(f^{s} \otimes 1 \otimes 1\right)=Q(s) \bullet\left(f^{s} \otimes f \otimes 1\right)=Q(s) f \bullet\left(f^{s} \otimes 1 \otimes 1\right)
$$

- Fix $Q_{f}^{I}(s)$ as operator with above properties
- Idea: $\frac{Q_{f}^{I}(s)}{b_{f}^{I}(s)}$ is some kind of "inverse" for f

Computing the Bernstein Polynomial

- Input: $f \in R_{n}$ and f-saturated holonomic ideal $I \unlhd D_{n}$
- Output: $b_{f}^{I}(s)$
- Compute $J^{I}\left(f^{s}\right)$ by means of section 1
- Compute the monic generator of ${ }_{D_{n}[s]}\left\langle f, J^{I}\left(f^{s}\right)\right\rangle \cap K[s]$

Determine the Exponent

- Theorem: $M=D_{n} / I$ holonomic and $a \in K^{*}$, such that no element of $\{a-1, a-2, .$.$\} is root of b_{f}^{I}(s)$, then:

$$
\begin{aligned}
& f^{a} \otimes_{K} R_{n}\left[f^{-1}\right] \otimes_{R_{n}} M \\
& \cong D_{n} \bullet\left(f^{a} \otimes 1 \otimes 1\right) \\
& \cong\left(D_{n}[s] / J^{I}\left(f^{s}\right)\right)_{\left.\right|_{s=a}}
\end{aligned}
$$

- Take a as smallest negative integer root of $b_{f}^{I}(s)$. If no such number exists, then $a:=-1$

Final Algorithm

- Input: $f \in R_{n}, M=D_{n} / I$ holonomic and f-saturated
- Output: $J \unlhd D_{n}$ and $a \in \mathbb{Z}$ with $R_{n}\left[f^{-1}\right] \otimes_{R_{n}} M \cong D_{n} / J$ generated by $f^{a} \otimes 1$.
- Determine $J^{I}\left(f^{s}\right)$ as in section 1
- Determine $b_{f}^{I}(s)$ as in section 2
- Find the smallest integer root a of $b_{f}^{I}(s)$. If not exist, $\mathrm{a}:=-1$
- Replace s by a in each generator of $J^{I}\left(f^{s}\right) \rightsquigarrow J$

Final words:

 \rightarrow Thanks For Your Attention \leftarrow

