Lattices and spherical designs.

Gabriele Nebe, RWTH Aachen

Diamant Day, Amsterdam, 30. June 2006

Definition. (Delsarte, Goethals, Seidel 1977) A finite nonempty set

$$X \subset S^{n-1} = \{x \in \mathbb{R}^n \mid (x, x) = 1\}$$

is a **spherical t-design** if for all polynomials f of degree $\leq t$

$$\frac{1}{|X|} \sum_{x \in X} f(x) = \int_{S^{n-1}} f(x) d\mu(x).$$

Since $f_{\alpha,k}: x \mapsto (x,\alpha)^k$ with $\alpha \in \mathbb{R}^n$ generate the space of homogeneous polynomials of degree k, this is equivalent to asking

$$\sum_{x \in X} (\alpha, x)^k = |X| \int_{S^{n-1}} (\alpha, x)^k d\mu(x) = \begin{cases} 0 & k \text{ odd} \\ c_k |X| (\alpha, \alpha)^{k/2} & k \text{ even} \end{cases}$$

where $c_k = \prod_{j=1}^{k/2} \frac{2j-1}{n+2j-2}$ for k = 1, ..., t.

If $X \subset S^{n-1}$ is a spherical t-design, then

$$|X| \ge {n-1+t/2 \choose t/2} + {n-2+t/2 \choose t/2-1} t$$
 even $|X| \ge 2{n-1+(t-1)/2 \choose (t-1)/2} t$ odd

If equality holds, then X is called a **tight t-design**.

Tight t-designs in S^{n-1} with $n \ge 3$ only exist for $t \le 5$ or t = 7,11. They are classified completely for $t \in \{1,2,3,11\}$ and for t = 4,5,7 up to dimension n = 104.

Examples:

$$t = 1$$
: $|X| = 2\binom{n-1}{0} = 2$, $X = \{x, -x\}$

t = 2: |X| = n + 1, simplex.

$$t = 3$$
: $|X| = 2\binom{n}{1} = 2n$, $X = \{\pm e_1, \dots, \pm e_n\}$

for ON-basis (e_1, \ldots, e_n) (cross polytope)

$$t = 7$$
: $n = 8$ and $X = Min(E_8)$, $|X| = 240$.

$$t = 7$$
: $n = 23$ and $X = Min(O_{23})$, $|X| = 4600$.

$$t = 11$$
: $n = 24$ and $X = Min(\Lambda_{24})$, $|X| = 196560$.

Definition. A lattice $L \subset \mathbb{R}^n$ is the set of all integral linear combinations of a basis

$$L = \langle b_1, \ldots, b_n \rangle_{\mathbb{Z}}.$$

The **dual lattice** is

$$L^* = \{ \alpha \in \mathbb{R}^n \mid (\alpha, x) \in \mathbb{Z} \text{ for all } x \in L \}.$$

The **minimum** of L is

$$\min(L) = \min\{(x, x) \mid 0 \neq x \in L\}$$

and we denote by

$$Min(L) := \{x \in L \mid (x, x) = min(L)\}$$

the **set of minimal vectors** in L.

L is called a **t-design lattice**, if Min(L) forms a spherical t-design and generates L.

Fact. Let $X = -X \subset S^{n-1}$ be antipodal.

Then X is a 2h-design $\Leftrightarrow X$ is a 2h + 1-design.

Proof. f homogeneous of odd degree, then f(-x) = -f(x) hence

$$\sum_{x \in X} f(x) = 0$$

for any antipodal set X.

Corollary. L is 2h-design lattice $\Leftrightarrow L$ is 2h + 1-design lattice.

The 5-design lattices L of dimension $n \leq 12$

n	L	t	Min(L)	$min(L)min(L^*)$	tight
1	\mathbb{Z}	8	2	1	
2	A_2	5	6	2/3	yes
4	D_4	5	24	1	
6	E_{6}	5	72	8/3	
6	E_{6}^{*}	5	54	8/3	
7	E_{7}	5	126	3	
7	E*	5	56	3	yes
8	E_8	7	240	4	yes
10	$K_{10}^{,}$	5	270	4	
10	$K_{10}^{,*}$	5	240	4	
12	K_{12}	5	756	16/3	

7-design lattices L of dimension $n \le 24$ (List complete (for $n \ne 23$))

n	L	t	Min(L)	$min(L)min(L^*)$	tight
1	\mathbb{Z}	8	2	1	
8	E_8	7	240	4	yes
16	۸ ₁₆	7	4320	8	
23	O ₂₃	7	4600	9	yes
23	Λ ₂₃	7	93150	12	
24	Λ ₂₄	11	196560	16	yes

No t-design lattices are known for $t \ge 12$.

Theorem. 5-design lattices are local maxima for the density function.

The theory of designs provides tools to classify t-design lattices of small dimension and hence a method to find certain nice dense lattices.

Note. Local maxima for the density function are similar to rational lattices. In particular t-design lattices are rational if $t \ge 4$.

The Hermite function γ is a positive function on the space of similarity classes of n-dimensional lattices defined by

$$\gamma(L) = \frac{\min(L)}{\det(L)^{1/n}}$$

with $det(L) = vol(L)^2$ the determinant of a Grammatrix of L.

 $\gamma(L)$ is proportional to the density of the sphere packing associated with L.

 γ has only finitely many local maxima which may be characterized as those lattices L that are perfect and eutactic (Voronoi, Korkine, Zolotareff \sim 1900).

A lattice L is **eutactic**, if there are $\lambda_x > 0$ $(x \in Min(L))$ such that

$$(\alpha, \alpha) = \sum_{x \in \mathsf{Min}(L)} \lambda_x(x, \alpha)^2$$
 for all $\alpha \in \mathbb{R}^n$.

2-design lattices are eutactic with $\lambda_x = (c_2 | Min(L)|)^{-1}$ for all $x \in Min(L)$.

L is **perfect**, if the orthogonal projections

$$p_x: \alpha \mapsto (x,\alpha)x$$

along $x \in Min(L)$ span the space of all symmetric endomorphisms of \mathbb{R}^n .

4-design lattices are perfect.

(proof quite similar to above).

Bounds on the minimum of t-design lattices.

The **Bergé-Martinet-invariant** of a lattice L is

$$\gamma'(L)^2 := \gamma(L)\gamma(L^*) = \min(L)\min(L^*).$$

Theorem. If $L \subset \mathbb{R}^n$ is a 4-design lattice, then $\gamma'(L)^2 \geq (n+2)/3$. If equality holds then $(\alpha, x) \in \{0, \pm 1\}$ for all $\alpha \in \text{Min}(L^*)$ and $x \in \text{Min}(L)$.

Proof. $D_4(\alpha) - D_2(\alpha) =$

$$\sum_{x \in \mathsf{Min}(L)} (x, \alpha)^2 ((x, \alpha)^2 - 1)) = \frac{|\mathsf{Min}(L)|(\alpha, \alpha)(x, x)}{n} ((x, x)(\alpha, \alpha) \frac{3}{n + 2} - 1).$$

For $\alpha \in L^*$ this is nonnegative since $(x, \alpha) \in \mathbb{Z}$ for $x \in Min(L) \subset L$. Choosing $\alpha \in Min(L^*)$ we find

$$(\alpha, \alpha)(x, x) = \min(L) \min(L^*) = \gamma'(L)^2 \ge (n+2)/3$$
 and "=" $\Leftrightarrow D_4(\alpha) - D_2(\alpha) = 0 \Leftrightarrow (\alpha, x) \in \{0, \pm 1\} \forall x \in \text{Min}(L).$

General method: L a t-design lattice, t = 2h, $\alpha \in Min(L^*)$. Then

$$\sum_{x \in Min(L)} \prod_{j=0}^{h-1} ((x,\alpha)^2 - j^2) = \frac{|Min(L)|\gamma'(L)^2}{n} P_{n,t}(\gamma'(L)^2) \ge 0$$

where $P_{n,t}(z)$ is a polynomial of degree h-1=t/2-1 in $z=\gamma'(L)^2$.

For small t, the polynomials $P_{n,t}$ are as follows:

$$P_{n,2}(z) = 1$$

$$P_{n,4}(z) = \frac{3}{n+2}z - 1$$

$$P_{n,6}(z) = \frac{3 \cdot 5}{(n+2)(n+4)}z^2 - 5\frac{3}{n+2}z + 4$$

$$P_{n,8}(z) = \frac{3 \cdot 5 \cdot 7}{(n+2)(n+4)(n+6)}z^3 - 14\frac{3 \cdot 5}{(n+2)(n+4)}z^2 + 49\frac{3}{n+2}z - 36$$

Remark. Let L be a 6-design lattice of dimension n > 1. Then $\gamma'(L)^2 > \frac{n+2}{3}$,

Proof. If $\gamma'(L)^2 = \frac{n+2}{3}$ then $(\alpha, x) \in \{0, \pm 1\}$ for all $\alpha \in \text{Min}(L^*)$, $x \in \text{Min}(L)$. Hence $\frac{n+2}{3}$ is also a zero of $P_{n,6}(t)$ which implies that 5(n+2) = 3(n+4) whence n=1.

For an 8-design lattice $L \leq \mathbb{R}^n$, we have $\gamma'(L)^2 \geq b(n)$ where b(n) is the real root of $P_{n,8}(z)$. For a 12-design lattice $L \leq \mathbb{R}^n$, we have $\gamma'(L)^2 \geq c(n)$ where c(n) is the real root of $P_{n,12}(z)$.

n	26	32	36	40	48	50	66	72	80
$\frac{n+2}{3}$	9.33	11.33	12.66	14	16.66	17.33	22.66	24.66	27.33
b(n)	16	20.66	24	27.49	34.38	36	48	52.31	58.01
c(n)	17.88	23.35	27.24	31.16	38.54	40.29	53.64	58.53	64.99

The Hermite constant $\gamma_n := \max\{\gamma(L) \mid L \leq \mathbb{R}^n\}$ satisfies

$$\frac{1}{2\pi e} \le \frac{\gamma_n}{n} \le \frac{1.744}{2\pi e}$$

The best bound for $\gamma'(L)^2$ currently available is

$$\gamma'(L)^2 \le \gamma_n^2 \sim n^2.$$

If n tends to infinity then the real roots of $P_{n,t}$ are approximately n, yielding

$$n \lesssim \gamma'(L)^2 \lesssim n^2$$

for a t-design lattice $L \leq \mathbb{R}^n$ which does not give a contradiction to the possible existence of such lattices for arbitrarily big t.

Towards a classification of t-design lattices.

Let L be a t-design lattice with t=2h even. For $\alpha\in L^*$ and $i\in\mathbb{N}$ put

$$N_i(\alpha) := \{x \in \mathsf{Min}(L) \mid (x, \alpha) = i\}.$$

If $N_i(\alpha) = \emptyset$ for all i > h then

$$|N_h(\alpha)| = \frac{1}{h \cdot (t-1)!} \sum_{x \in Min(L)} \prod_{j=0}^{h-1} ((x,\alpha)^2 - j^2) = 0$$

$$\frac{|\operatorname{Min}(L)|(\alpha,\alpha)(x,x)}{nh\cdot(t-1)!}P_{n,t}((\alpha,\alpha)(x,x))$$

and there are similar expressions for $|N_i(\alpha)|$ for $0 \le i \le h$.

Theorem. If $(\alpha, x) \in \{0, \pm 1, \dots, \pm h\}$ for all $x \in Min(L)$ then

$$\sum_{x \in N_h(\alpha)} x = \frac{|N_h(\alpha)|h}{(\alpha, \alpha)} \alpha.$$

Proof. For $\gamma \in \mathbb{R}^n$

$$\sum_{x \in Min(L)} (x, \gamma)(x, \alpha) \prod_{j=1}^{h-1} ((x, \alpha)^2 - j^2) = c \sum_{x \in N_h(\alpha)} (x, \gamma) = c'(\alpha, \gamma).$$

This implies that $\sum_{x \in N_h(\alpha)} x = \frac{c'}{c} \alpha$ where one gets the constant by taking the scalar product with α .

Let $X\subset S^{n-1}$ be a spherical t-design then for all $k\leq t$ and all $\alpha\in\mathbb{R}^n$

$$(D_k)(\alpha)$$
:
$$\sum_{x \in X} (\alpha, x)^k = \begin{cases} 0 & k \text{ odd} \\ c_k |X|(\alpha, \alpha)^{k/2} & k \text{ even} \end{cases}$$

where $c_k = \prod_{j=1}^{k/2} \frac{2j-1}{n+2j-2}$.

Substituting $\alpha=\xi_1\alpha_1+\xi_2\alpha_2$ in (D_k) and comparing coefficients we find that for all $i,j\in\mathbb{N}$ with $i+j\leq t$ there is a polynomial $p_{i,j}$ such that for all $\alpha,\beta\in\mathbb{R}^n$

$$(D_{ij})(\alpha,\beta): \sum_{x \in X} (x,\alpha)^i (x,\beta)^j = p_{i,j}((\alpha,\alpha),(\beta,\beta),(\alpha,\beta))$$

Theorem. Let L be a t-design lattice with t=2h even and let $\alpha \in L^*$ such that $(\alpha, x) \in \{0, \pm 1, \dots, \pm (h-d)\}$ for all $x \in \text{Min}(L)$. Then the projection of $N_{h-d}(\alpha)$ onto α^{\perp} is a 2d+1-design.

Proof. (idea) For $j \in \{0, \dots d\}$ consider

$$\sum_{x \in N_{h-d}(\alpha)} (x,\beta)^{2j} = c \sum_{x \in Min(L)} \prod_{i=0}^{h-d-1} ((x,\alpha)^2 - i^2)(x,\beta)^{2j}$$

which is a linear combination of the $p_{2\ell,2j}$ with $\ell+j\leq h$.

Corollary. Let $L \subset \mathbb{R}^n$ be a 6-design lattice with $\gamma'(L)^2 = 8$ scaled such that $\min(L) = 2$, $\min(L^*) = 4$.

Then n = 16 and for all $\alpha \in Min(L^*)$

$$N_2(\alpha) = \{x_i, \alpha - x_i \mid 1 \le i \le 15\}$$
 and $\langle N_2(\alpha), \alpha \rangle \cong D_{16}$.

Proof. $\alpha \in \text{Min}(L^*)$, $x \in \text{Min}(L) \Rightarrow (\alpha, x) \in \{0, \pm 1, \pm 2\}$. Hence $P_{n,6}((\alpha, \alpha)(x, x)) = P_{n,6}(8) = 0$ which yields n = 8 or n = 16. Since $\gamma_8 = 2$ the only possibility is that n = 16.

For $x \in N_2(\alpha)$ let $\overline{x} := x - \frac{2}{(\alpha, \alpha)}\alpha \in \alpha^{\perp}$. Then for all $x, y \in N_2(\alpha)$ we get

$$(\overline{x}, \overline{y}) = (x, y) - 1 =$$

$$\begin{cases} 1 & x = y \\ \le 0 & x \ne y \end{cases}$$

since x and y are minimal vectors of a lattice. Hence $\overline{N_2(\alpha)}$ is a set of vectors of length 1 in an n-1-dimensional space such that distinct vectors have non-positive inner products. Therefore $|\overline{N_2(\alpha)}| \leq 2(n-1)$. Since $N_2(\alpha)$ is a 3-design, we find that $|N_2(\alpha)| \geq 2(n-1)$ and hence equality holds and $\overline{N_2(\alpha)}$ is a cross polytope ($(\overline{x}, \overline{y}) = 0$ if $\overline{x} \neq \pm \overline{y}$).

This gives the Grammatrix of $N_2(\alpha)$.

Grammatrix for $(x_1, \ldots, x_{15}, \alpha)$

$$\begin{pmatrix} 2 & 1 & \dots & 1 & 2 \\ 1 & 2 & \dots & 1 & 2 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ 1 & 1 & \dots & 2 & 2 \\ 2 & 2 & \dots & 2 & 4 \end{pmatrix}$$

Theorem. The 16-dimensional 6-design-lattices are similar to the Barnes-Wall lattice.

Proof follows from

Lemma. Let L be a 6-design lattice of dimension 16. Then $\gamma'(L)^2=8$.

together with the Corollary above:

Corollary. Let $L \subset \mathbb{R}^n$ be a 6-design lattice with $\gamma'(L)^2 = 8$ Then n=16 and for all $\alpha \in \text{Min}(L^*)$

$$L\supset \langle N_2(\alpha),\alpha\rangle\cong D_{16}.$$

General strategy: If L is a 2h-design lattice and $\alpha \in \text{Min}(L^*)$ then for 1 < j < h

$$\sum_{x \in \mathsf{Min}(L)} (x, \alpha)^{2j} = \gamma'(L)^{2j} | \, \mathsf{Min}(L) | \, \prod_{k=1}^j \frac{2k-1}{n-2k+2} \in 2\mathbb{Z}$$

$$\frac{1}{(2h-1)!} \sum_{x \in \mathsf{Min}(L)} \prod_{j=0}^{h-1} ((x,\alpha)^2 - j^2) = \frac{|\mathsf{Min}(L)| \gamma'(L)^2}{n} P_{n,t}(\gamma'(L)^2) \in 2\mathbb{Z}$$

and

$$\frac{1}{h!^2} \sum_{x \in \mathsf{Min}(L)} (x, \alpha)^2 \prod_{j=1}^{(h-1)/2} ((x, \alpha)^2 - j^2)^2 = |\mathsf{Min}(L)| p_{n,h}(\gamma'(L)^2) \in 2\mathbb{Z}$$

are even non-negative integers.

Proof of Lemma. Put $r := \gamma'(L)^2$. Then $r \in \mathbb{Q}$ and $r \le \gamma_{16}^2 \le 9.163$.

Bounds on kissing numbers yield $s := |\operatorname{Min}(L)| \le 8160$. For $\alpha \in \operatorname{Min}(L^*)$ the sum

$$\frac{1}{12} \sum_{x \in Min(L)} (\alpha, x)^2 ((\alpha, x)^2 - 1) = \frac{sr}{12 \cdot 16} (\frac{r}{6} - 1)$$

is a positive integer $\leq s \frac{\gamma_{16}^2}{12\cdot 16} (\frac{\gamma_{16}^2}{6} - 1) \leq 0.0252s$. Going through all possibilities for

$$(s,a) \in [1632,8160] \times [1,0.0252s]$$

using the fact that r is a positive rational solution of

$$\frac{sr}{12n}(\frac{3r}{n+2}-1)-a=0$$

satisfying integrality conditions above (with h=3) the only possibility is r=8.