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Definition. (Delsarte, Goethals, Seidel 1977)
A finite nonempty set

Xcsl={zeR"|(z,2) =1}

is a spherical t-design if for all polynomials f of degree <t
= xz)du(x).
|X|zf<> [y F@)dn(e)

Since fo T (z,a)* with a € R® generate the space of homo-
geneous polynomials of degree k, this is equivalent to asking

k odd

k_ k _J0
w;((oz a:) = |X| 1(Oé7£13) d,U(x) — { ck|X|(Oz,Oz)k/2 k even

where ¢, = Hf/21 ni92]1 for k=1,.



If X c S 1 is a spherical t-design, then

X|> (n—i/gtp) n (n;/22-|;t1/2> / even

X| > 2(”‘%:({5)‘/2)/2) t odd

If equality holds, then X is called a tight t-design.

Tight t-designs in S™—1 with n > 3 only exist for t < 5 or ¢t =
7,11. They are classified completely for t € {1,2,3,11} and for
t=4,5,7 up to dimension n = 104.

Examples:

t=1: [X|=2("g") =2 X = {=, -}

t=2: | X|=n++1, simplex.

t=3: |X =2(§L) = 2n, X = {+eq,...,ten}

for ON-basis (e1,...,en) (Cross polytope)

t=7: n=28 and X = Min(FEg), |X| = 240.

t=7: n=23 and X = Min(0O»3), |X| = 4600.

t =11: n =24 and X = Min(NAy), |X| = 196560.




Definition. A lattice L C R" is the set of all integral linear
combinations of a basis

L= {(b1,...,bn)7.
T he dual lattice is
L*={aeR"|(a,z) € Z for all z € L}.
The minimum of L is
min(L) = min{(z,xz) | 0 #x € L}
and we denote by
Min(L) :={x € L | (x,z) = min(L)}

the set of minimal vectors in L.

L is called a t-design lattice, if Min(L) forms a spherical t-design
and generates L.



Fact. Let X = —X c S™1 be antipodal.
Then X is a 2h-design < X is a 2h + 1-design.

Proof. f homogeneous of odd degree, then f(—xz) = —f(x) hence
> f@)=0
reX

for any antipodal set X.

Corollary. L is 2h-design lattice < L is 2h + 1-design lattice.



The 5-design lattices L of dimension n < 12

n| L t | [IMin(L)| | min(L) min(L*) | tight
1 Z. 00 2 1

2| A> | 5 6 2/3 yes
4| Dy | 5 24 1

6| Eg | 5 72 8/3

6| Ef | 5 54 8/3

7| E7 | 5 126 3

7| EZ |5 56 3 yes
8| Eg | 7 240 4 yes
10 | Kjp | 5 270 4

10 | Kyg | 5| 240 4

12| K15 | 5 756 16/3




7-design lattices L of dimension n < 24
(List complete (for n #= 23))

L t | IMin(L)| | min(L) min(L*) | tight
1| Z o0 2 1
8| Eg | 7 240 4 yes
16 | A | 7 4320 8
23 | O3 | 7 4600 9 yes
23| Aoz | 7 | 93150 12
24 | Aog | 11| 196560 16 yes

No ¢-design lattices are known for ¢t > 12.




Theorem. 5-design lattices are local maxima for the density
function.

The theory of designs provides tools to classify t-design lattices
of small dimension and hence a method to find certain nice dense
lattices.

Note. Local maxima for the density function are similar to ratio-
nal lattices. In particular t-design lattices are rational if t > 4.



The Hermite function ~ is a positive function on the space of
similarity classes of n-dimensional lattices defined by

min(L)
det(L)1/n
with det(L) = vol(L)? the determinant of a Grammatrix of L.

v(L) =

~(L) is proportional to the density of the sphere packing associ-
ated with L.

~ has only finitely many local maxima which may be characterized
as those lattices L that are perfect and eutactic
(Voronoi, Korkine, Zolotareff ~ 1900).



A lattice L is eutactic, if there are Ay > 0 (z € Min(L)) such
that
(o, x) = Z Ao(z, )? for all a € R™.
xeMin(L)
2-design lattices are eutactic with Az = (co| Min(L)|)~1 for all
x € Min(L).
L is perfect, if the orthogonal projections

pr i a— (z,a)x

along x € Min(L) span the space of all symmetric endomorphisms
of R",

4-design lattices are perfect.

(proof quite similar to above).



Bounds on the minimum of ¢-design lattices.

The Bergé-Martinet-invariant of a lattice L is

v (L)? := y(L)y(L*) = min(L) min(L*).

Theorem. If L C R™ is a 4-design lattice, then ~/(L)2 > (n+2)/3.
If equality holds then (a,z) € {0,£1} for all a« € Min(L*) and
x € Min(L).

Proof. Ds(a) — Da(a) =

Min(L : : 3
> () ((@,0)?-1) = PN (o 0) 2
xeMin(L) n n +
For o € L* this is nonnegative since (z,a) € Z for x € Min(L) C L.

Choosing a eMin(L*) we find

(o, @) (z,2) = min(L) min(L*) = 7/(L)* > (n+ 2)/3
and “=" & D4(a) — Dy(a) =0 < (a,z) € {0,£1}Vx € Min(L).

~1).



General method: L a t-design lattice, t = 2h, a € Min(L*). Then

— | Min(L)|7,(L)2Pn,t(,y/(L)2) >0

h—1
> M@=

zeMin(L) j=0
where P, ;(z) is a polynomial of degree h —1=1¢/2 -1 in
z = ~'(L)2.

For small ¢, the polynomials P, ; are as follows:

Pn,Q(Z) 1
Pn,4(2) n_:?_—QZ —1

— 3-5 2 3
Pn76(z) T (n+2)(n+4)z o 5n+QZ +4

— 3.-5-7
Pag(2) = Gaayinta)ike)®

3.5 2 3
Aty (nray? T 495327 — 36



Remark. Let L be a 6-design lattice of dimension n > 1. Then
Y(L)2 > E2,

Proof. If /(L)% = ”TH then (a,x) € {0,£1} for all a € Min(L*),
x € Min(L). Hence ”3—2 is also a zero of P, ¢(t) which implies
that 5(n 4+ 2) = 3(n+ 4) whence n = 1.



For an 8-design lattice L < R"™, we have ~/(L)? > b(n)
where b(n) is the real root of P, g(z).

For a 12-design lattice L < R"™, we have ~/(L)?2 > ¢(n)
where c(n) is the real root of P, 12(2).

n 26 32 36 40 48 50 66 72 80

nt2 933 11.33 12.66 14 16.66 17.33 22.66 24.66 27.33
b(n) 16 20.66 24 27.49 34.38 36 48 52.31 58.01

c(n) 17.88 23.35 27.24 31.16 38.54 40.29 53.64 58.53 64.99



The Hermite constant ~, := max{~y(L) | L < R"} satisfies
1 1.744
<<

2me n 2me

The best bound for 4/(L)? currently available is

2 2 2
v (L)* < 45 ~ n”.

If n tends to infinity then the real roots of P, ; are approximately
n, yielding

n S+(L)? < n?

for a t-design lattice L < R"™ which does not give a contradiction
to the possible existence of such lattices for arbitrarily big t.



Towards a classification of ¢t-design lattices.

Let L be a t-design lattice with ¢t = 2h even. Fora € L* and 1 € N
put

N;(a) :={x € Min(L) | (z,a) = i}.
If N;(a) =0 for all © > h then

1

h—1
h-(t—1)! SN Il ()2 =52 =

xeMin(L) 7=0

[Np(a)| =

| Min(L)|(a, @)(z, z)
nh-(t—1)! Pn (o, ) (z,2))

and there are similar expressions for |N;(«)| for 0 < i < h.




Theorem. If (a,z) € {0,%1,...,+h} for all z € Min(L) then
Z — |Np(a)|h

Q.
€N, () (aa Oz)

Proof. For v € R"

h—1
Z (3377)(511704) H ((xaa)z _j2) — C Z (x77) — C’(a77)°
1

zeMin(L) J €Ny (o)

This implies that >, cn, (o) = %’oz where one gets the constant
by taking the scalar product with o.



Let X ¢ S 1 be a spherical t-design then for all £k < t and all
a € R"

(Dp)(a) i Y (a,2)* =

rxeX

_ =k/2 2j-—1
Where Ck — H]:]_ n—I—JQﬁ

0 k odd
ci| X |(o, 2)k/2 k even

Substituting a = £1a1 + £2a5 in (D) and comparing coefficients
we find that for all 7,5 € N with : 4+ 7 <t there is a polynomial Pi.j
such that for all o, 8 € R™

(D’Lj)(a76) : Z (33,04)7’(3’:,6)] — pi,j((aaa)7 (676)7 (O%B))

rxeX



Theorem. Let L be a t-design lattice with ¢t = 2h even and let
a € L* such that (o, z) € {0,+1,...,£(h —d)} for all z € Min(L).
Then the projection of Nj,_4(a) onto at is a 2d 4 1-design.

Proof. (idea) For j € {0,...d} consider

h—d—1

> @Y =c Y I ((ma)?=i*)(=,p%

zEN}_q(a) zeMin(L) 1=0
which is a linear combination of the pyy>; with £4 5 < h.

Corollary. Let L C R™ be a 6-design lattice with ~/(L)? = 8 scaled
such that min(L) = 2, min(L*) = 4.

Then n =16 and for all o € Min(L*)

No(a) ={zj,a—z;| 1 <i< 15} and (No(a), o) = Die.



Proof. a € Min(L*), z € Min(L) = (a,z) € {0,£1,+2}.

Hence P,¢((a,a)(z,z)) = P,6(8) = 0 which yields n = 8 or
n = 16. Since vg = 2 the only possibility is that n = 16.

For x € No(a) let T :=z — ﬁa € at. Then for all z,y € No(a)
we get

1 T =1y
<0 zFy

since x and y are minimal vectors of a lattice. Hence Ns(«a) is
a set of vectors of length 1 in an n — 1-dimensional space such
that distinct vectors have non-positive inner products. T herefore
IN>(a)| < 2(n —1). Since No(a) is a 3-design, we find that
|INo>(a)| > 2(n— 1) and hence equality holds and Ny(«) is a cross
polytope ( (Z,y) =0 if T #= +7).

(z,7) = (z,y) -1 = {




This gives the Grammatrix of No(«a).

Grammatrix for (z1,...,215, @)
(2 1 ... 1 2)
1 2 ... 1 2
1 1 ... 2 2

\ 2 2 ... 2 4



Theorem. The 16-dimensional 6-design-lattices are similar
to the Barnes-Wall lattice.

Proof follows from

Lemma. Let L be a 6-design lattice of dimension 16. Then
Y (L)? =8.

together with the Corollary above:

Corollary. Let L C R™ be a 6-design lattice with 7/(L)2 = 8 Then
n = 16 and for all a € Min(L*)

L D (Na(a),0) = Dye.



General strategy: If L is a 2h-design lattice and a € Min(L*) then
for1<j3<h

- - S 2k—1
S (@) =y (@ Min()] ] ¢ 27
zeMin(L) k=1 M — 2k 12

_ [Min(L)|y/(L)?

n

1

/ 2
(2h — 1)! Pni(v'(L)*) € 2Z

h—1
S I )% =352)
zeMin(L) j=0
and
1 2(h_1)/2 2 .2\2 2
12 Yo () I ((z,0)°=59)° = | Min(L)|p, p(v'(L)F) € 2Z
xeMin(L) j=1
are even non-negative integers.



Proof of Lemma. Put r :=~/(L)2. Then

re@Q and r < 7%6 < 9.163.

Bounds on kissing numbers yield s := |Min(L)| < 8160.
For a € Min(L*) the sum

Y (an)?((a2)? - 1) =

12 xeMin(L)

12. 16(6 -1

2 2
is a positive integer < slg}%(%@' — 1) <0.0252s.
Going through all possibilities for

(s,a) € [1632,8160] x [1,0.0252s]

using the fact that r is a positive rational solution of

satisfying integrality conditions above (with h = 3) the only pos-
sibility is r = 8.



