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Plan
The use of symmetry

I Beautiful objects have symmetries.
I Symmetries help to reduce the search space for nice objects
I and hence make huge problems acessible to computations.

Discrete structures

I strongly regular graphs
I Steiner systems
I block designs
I latin squares
I abstract projective planes
I Hadamard matrices
I codes
I lattices
I ...
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Discrete structures

I strongly regular graphs
I Steiner systems
I block designs
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I abstract projective planes
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I doubly-even self-dual codes
I even unimodular lattices
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Voyager 1981
distance Saturn-Earth
more than
1 billion kilometers

power of transmitter:
less than 60 Watt

error correction with
Golay Code QR(23)
of length 23

The best known codes
of small length
are self-dual
and doubly-even.



Doubly-even self-dual codes
I code C ≤ Fn2 (linear binary code of length n)
I C⊥ = {x ∈ Fn2 | x·c :=

∑n
i=1 xici = 0 for all c ∈ C} dual code

I self-dual C = C⊥

I wt(c) := |{i | ci 6= 0}| weight
I d(C) := min{wt(c) | 0 6= c ∈ C} minimum distance
I Clear: c·c ≡ wt(c) (mod 2)

I C doubly-even if wt(C) ⊆ 4Z
I C doubly-even⇒ C ⊆ C⊥

I C doubly-even self-dual⇔ C/〈1〉 ≤ (〈1〉⊥/〈1〉, q) maximal
isotropic of dimension (n− 2)/2,

q(c+ 〈1〉) =
1

2
wt(c) + 2Z ∈ Z/2Z = F2.

I Fact: C = C⊥ ≤ Fn2 doubly-even⇒ n ∈ 8Z and

Aut(C) = {σ ∈ Sn | σ(C) = C} ≤ Altn .



Extended Quadratic Residue Codes
Extended QR Codes, p ≡ −1 (mod 8)

Xp − 1 = (X − 1)g(X)h(X) ∈ F2[X], deg(g) = deg(h) = p−1
2 .

QR(p) := (g(X)) ≤ F2[X]/(Xp − 1) ∼= Fp2

is a code of length p and dimension p+1
2 .

extended QR-Code

Q̂(p) := {(c,wt(c) + 2Z) | c ∈ QR(p)} ≤ Fp+1
2

is a self-dual doubly-even code of length p+ 1.

QR(p) is a cyclic code of length p (p | |Aut(QR(p))|).
Cyclic codes have good provable error correcting properties
and fast encoding and decoding algorithms.

Aut(Q̂(7)) = 23 : PSL3(2), of order 8 · 168 = 26 · 3 · 7
Aut(Q̂(23)) = M24, of order 210 · 33 · 5 · 7 · 11 · 23
Aut(Q̂(p)) = PSL2(p) for p > 23, of order (p− 1)p(p+ 1)/2 (conj.).



Examples for self-dual doubly-even codes
weight enumerator pC :=

∑
c∈C x

n−wt(c)ywt(c) ∈ C[x, y]n.

Q̂(7) :


1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0


is the unique doubly-even self-dual code of length 8,

pQ̂(7)(x, y) = x8 + 14x4y4 + y8

Q̂(23) (extended Golay code) unique doubly-even self-dual code of
length 24 with minimum distance ≥ 8.

pQ̂(23) = x24 + 759x16y8 + 2576x12y12 + 759x8y16 + y24



Application of invariant theory
weight enumerator pC :=

∑
c∈C x

n−wt(c)ywt(c) ∈ C[x, y]n.

Theorem (Gleason, ICM 1970)

Let C = C⊥ ≤ Fn2 be doubly-even. Then d(C) ≤ 4 + 4b n24c
Doubly-even self-dual codes achieving equality are called extremal.

Proof:
I pC(x, y) = pC(x, iy), pC(x, y) = pC⊥(x, y) = pC(x+y√

2
, x−y√

2
)

I G192 := 〈
(

1 0
0 i

)
, 1√

2

(
1 1
1 −1

)
〉.

I pC ∈ Inv(G192) = C[pQ̂(7), pQ̂(23)]
I ∃!f ∈ C[pQ̂(7), pQ̂(23)]8m such that

f(1, y) = 1 + 0y4 + . . .+ 0y4bm3 c + amy
4bm3 c+4 + bmy

4bm3 c+8 + . . .

I am > 0 for all m.

Proposition

bm < 0 for all m ≥ 494 so there is no extremal code of length ≥ 3952.
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Self-dual codes and Invariant Theory

Gleason 1970, N., Rains, Sloane 2006

Codes Polynomials
C 7→ pC

properties of C → symmetries of pC
(self-duality, doubly-even) pC ∈ Inv(G)

unstructured set finitely generated ring

properties of C ⇐ Inv(G) = C[p1, . . . , ps]
d(C) ≤ 4 + 4b n

24
c

extremal code → extremal weight enumerator



Automorphism groups of extremal codes

length 8 16 24 32 40 48 72 80 ≥ 3952
d(C) 4 4 8 8 8 12 16 16

extremal Q̂(7) 2 Q̂(23) 5 16, 470 Q̂(47) ? ≥ 15 0

Automorphism group Aut(C) = {σ ∈ Sn | σ(C) = C}

I Aut(Q̂(7)) = 23.PSL3(2)

I Aut(Q̂(23)) = M24

I Length 32: PSL2(31), 25.PSL5(2), 28.S8, 28.PSL2(7).2, 25.S6.
I Length 40: 10,400 extremal codes with Aut = 1.
I Aut(Q̂(47)) = PSL2(47).
I d(Q̂(71)) = 12, d(Q̂(79)) = 16.
I Sloane (1973): Is there a (72, 36, 16) self-dual code?
I If C = C⊥ ≤ F72

2 , d(C) = 16 then Aut(C) has order ≤ 5.

I There is no beautiful (72, 36, 16) self-dual code.
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The Type of an automorphism
Definition (Conway, Pless, Huffman 1982)

Let σ ∈ Sn of prime order p. Then σ is of Type (z, f), if σ has z
p-cycles and f fixed points. zp+ f = n.

I Let p be odd, σ = (1, 2, .., p)(p+ 1, .., 2p)...((z − 1)p+ 1, .., zp).

I Fn2 = Fix(σ) ⊥ E(σ) ∼= Fz+f2 ⊥ Fz(p−1)
2 with

Fix(σ) = 〈

1 . . . 1 0 . . . 0 . . . 0 . . . 0 0 0 . . . 0
0 . . . 0 1 . . . 1 . . . 0 . . . 0 0 0 . . . 0
0 . . . 0 0 . . . 0 . . . 1 . . . 1 0 0 . . . 0
0 . . . 0 0 . . . 0 . . . 0 . . . 0 1 0 . . . 0
0 . . . 0 0 . . . 0 . . . 0 . . . 0 0 1 . . . 0
0 . . . 0︸ ︷︷ ︸
p

0 . . . 0︸ ︷︷ ︸
p

. . . 0 . . . 0︸ ︷︷ ︸
p

0 0 . . . 1

〉

E(σ) = Fix(σ)⊥ =
{(x1, . . . , xp, xp+1, . . . , x2p, . . . , x(z−1)p+1, . . . , xzp, 0, . . . , 0) |
x1 + . . .+ xp = xp+1 + . . .+ x2p = . . . = x(z−1)p+1 + . . .+ xzp = 0}



Two self-dual codes of smaller length

I Let C ≤ Fn2 and p an odd prime,
I σ = (1, 2, .., p)(p+ 1, .., 2p)...((z − 1)p+ 1, .., zp) ∈ Aut(C).
I Then C = C ∩ Fix(σ)⊕ C ∩ E(σ) =: FixC(σ)⊕ EC(σ).

FixC(σ) = {(cp . . . cp︸ ︷︷ ︸
p

c2p . . . c2p︸ ︷︷ ︸
p

. . . czp . . . czp︸ ︷︷ ︸
p

czp+1 . . . cn) ∈ C} ∼=

π(FixC(σ)) = {(cpc2p . . . czpczp+1 . . . cn) ∈ Fz+f2 | c ∈ FixC(σ)}

I and C⊥ = C⊥ ∩ Fix(σ)⊕ C⊥ ∩ E(σ).

Theorem
If C = C⊥ then π(FixC(σ)) ≤ Fz+f2 is self-dual and EC(σ) is
(Hermitian) self-dual in E(σ).

Method: Classify possibilities for π(FixC(σ)) and EC(σ) and check if
C = FixC(σ)⊕ EC(σ) is extremal.



C = C⊥ ≤ F72
2 extremal, G = Aut(C).

Theorem (Conway, Huffmann, Pless, Bouyuklieva,
O’Brien, Willems, Feulner, Borello, Yorgov, N., ..)

Let C ≤ F72
2 be an extremal doubly even code,

G := Aut(C) := {σ ∈ S72 | σ(C) = C}, σ ∈ G of prime order p.
I If p = 2 or p = 3 then σ has no fixed points. (B)
I If p = 5 or p = 7 then σ has 2 fixed points. (CHPB)
I G contains no element of prime order ≥ 7. (BYFN)
I G has no subgroup S3, D10, C3 × C3. (BFN)
I If p = 2 then C is a free F2〈σ〉-module. (N)
I G has no subgroup C10, C4 × C2, Q8. (N)
I G 6∼= Alt4, G 6∼= D8, G 6∼= C2 × C2 × C2 (BN)
I G contains no element of order 6. (Borello)
I and hence |G| ≤ 5.
I G contains no element of order 4. (YY)

Existence of an extremal code of length 72 is still open.



Alt4 = 〈a, b, s〉D 〈a, b〉 = V4, (Borello, N. 2013)
Example: C = C⊥ ≤ F72

2 extremal⇒ no Alt4 ≤ Aut(C).



Alt4 = 〈a, b, s〉D 〈a, b〉 = V4, (Borello, N. 2013)
Example: C = C⊥ ≤ F72

2 extremal⇒ no Alt4 ≤ Aut(C).

D

T

C=C

T
D

D

T

D V

41 poss.

Fix (ab)
C

Fix (b)
C

Fix (a)
C

Fix(s)+E(s)

3 poss.

(a,b)=V4

(a,b,s) =
Alt4

(a) (ab) (b)

dim 20,20,22



Extremal binary codes: Summary

I C = C⊥ ≤ Fn2 doubly-even⇒ 8 | n and d(C) ≤ 4 + 4b n24c
I all known extremal codes of length n = 24m:

n C Aut(C) d(C)

24 Q̂(23) M24 8

48 Q̂(47) PSL2(47) 12
72 ? ≤ 5 16

I minimum distance of extended QR-Codes:

n 72 80 104 128 152 168
d 12 16 20 20 20 24
dext 16 16 20 24 28 32



Extremal ternary codes
I C = C⊥ ≤ Fn3 ⇒ 4 | n and d(C) ≤ 3 + 3b n12c
I all known extremal codes of length n = 12m:

n C Aut(C) d(C)
12 Q12 2.M12 6
24 Q24 C2 × PSL2(23) 9
24 P24 (C2 × SL2(11)).2 9
36 P36 (C4 × PSL2(17)).2 12
48 Q48 C2 × PSL2(47) 15
48 P48 (C2 × SL2(23)).2 15
60 Q60 C2 × PSL2(59) 18
60 P60 (C4 × PSL2(29)).2 18
60 V60 SL2(29) 18

I length 12, 24: all classified
I length 36: all other codes have Aut(C) = C4 or trivial
I length 48: all other codes have |Aut(C)| divides 48

I length 72: extremal weight enumerator has negative coefficient



Lattices and sphere packings
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Hexagonal Circle Packing

θ = 1 + 6q + 6q3 + 6q4 + 12q7 + 6q9 + . . . .



Dense sphere packings

I Classical problem to find densest sphere packings:
I Dimension 2: Gauß (lattices), Fejes Tóth (general)
I Dimension 3: Kepler conjecture, proven by T.C. Hales
I Dimension 8 and 24: Maryna Viazovska et al. (2016):
I E8-lattice packing and Leech lattice packing are the

densest sphere packings in dimension 8 and 24
I Other dimensions: open

E8 and Leech are even unimodular lattices



Even unimodular lattices

Definition

I A lattice L in Euclidean n-space (Rn, (, )) is the Z-span of an
R-basis

L = {
n∑
i=1

aibi | ai ∈ Z}.

I Q : Rn → R≥0, Q(x) := 1
2 (x, x) associated quadratic form

I L is called even if Q(`) ∈ Z for all ` ∈ L.
I min(L) := min{Q(`) | 0 6= ` ∈ L} minimum of L.
I The dual lattice is

L# := {x ∈ Rn | (x, `) ∈ Z for all ` ∈ L}

I L is called unimodular if L = L#.

Even unimodular lattices L correspond to regular positive definite
integral quadratic forms Q : L→ Z.



Even lattices and Modular forms

... Hecke, Hilbert, Siegel (1900-1970)
Quebbemann (1995)

Lattices Holomorphic functions
L 7→ ΘL (Theta series)

properties of L → symmetries of ΘL

(even, unimodular) ΘL ∈ Inv(G)

unstructured set finitely generated ring

properties of L ⇐ Inv(G) = C[p1, . . . , ps]
min(L) ≤ 1 + b n

24
c

extremal lattices → extremal modular forms



Extremal lattices and extremal modular forms

L extremal⇔ min(L) = 1 + b n24c

f (8) = 1 + 240q + . . . = θE8
.

f (24) = 1 + 196, 560q2 + . . . = θΛ24
.

f (32) = 1 + 146, 880q2 + . . . = θL.
f (40) = 1 + 39, 600q2 + . . . = θL.
f (48) = 1 + 52, 416, 000q3 + . . . = θP48pqnm .
f (72) = 1 + 6, 218, 175, 600q4 + . . . = θΓ72

.
f (80) = 1 + 1, 250, 172, 000q4 + . . . = θM80

.

Extremal even unimodular lattices L≤ Rn

n 8 24 32 40 48 72 80 ≥ 163,264
min(L) 1 2 2 2 3 4 4
number
extremal 1 1 ≥ 107 ≥ 1051 ≥ 4 ≥ 1 ≥ 4 0
lattices



Extremal even unimodular lattices in jump dimensions

L extremal even unimodular lattice of dimension 24m

I All ∅ 6= {` ∈ L | Q(`) = a} form spherical 11-designs.
I local maximum of the density function on the space of all

24m-dimensional lattices.

I If m = 1, then L = Λ24 is unique (Leech lattice).
I The 196.560 minimal vectors of the Leech lattice form the unique

tight spherical 11-design and realise the maximal kissing number
in dimension 24.

I Λ24 yields densest sphere packing in 24 dimensions
(H.Cohn, A.Kumar, SD.Miller, D.Radchenko, M.Viazovska)

I For m = 2, 3 these lattices are the densest known lattices and
realise the maximal known kissing number.
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Notion of Equivalence

Codes Lattices

C ∼= D ⇔ L ∼= M ⇔
∃σ ∈ Sn, σ(C) = D ∃σ ∈ On(R), σ(L) = M

all transformations all transformations
preserving Hamming distance preserving inner product

Aut(C) = StabSn(C) Aut(L) = StabOn(L)

I Size of equivalence class ∼ |Aut |−1

I Small equivalence class ∼ big stabiliser
I Interesting objects have large automorphism groups ?
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Extremal even unimodular lattices in jump dimensions
The extremal theta series
f (24) = 1 + 196, 560q2 + . . . = θΛ24 .
f (48) = 1 + 52, 416, 000q3 + . . . = θP48pqnm .
f (72) = 1 + 6, 218, 175, 600q4 + . . . = θΓ72

.

The automorphism groups
Aut(Λ24) ∼= 2.Co1 order 8315553613086720000

= 222395472 · 11 · 13 · 23

Aut(P48p) ∼= (SL2(23)× S3) : 2 order 72864 = 253211 · 23

Aut(P48q) ∼= SL2(47) order 103776 = 253 · 23 · 47

Aut(P48n) ∼= (SL2(13)Y SL2(5)).22 order 524160 = 27325 · 7 · 13

Aut(P48m) ∼= (C5 × C15) : (D8YC4) order 1200 = 243 52

Aut(Γ72) ∼= (SL2(25)× PSL2(7)) : 2 order 5241600 = 2832527 · 13



The Type of an automorphism.
How many extremal lattices in dimension 48?

Use automorphisms to classify extremal even unimodular lattices of
dimension 48 and 72.

Let L ≤ Rn be some even unimodular lattice and σ ∈ Aut(L) of prime
order p. The fixed lattice

F := FixL(σ) := {v ∈ L | σv = v} ≤ L

has dimension d, and σ acts on M := EL(σ) := F⊥ as a pth root of
unity, so n = d+ z(p− 1).

F# ⊥M# ≥ L = L# ≥ F ⊥M ≥ pL

with det(F ) = |F#/F | = |M#/M | = det(M) = ps

Definition: p− (z, d)− s is called the Type of σ.

Proposition: s ≤ min(d, z) and z − s is even.



48-dimensional extremal lattices

Theorem (Kirschmer, N. 2013-2017)

Let L be an extremal even unimodular lattice of dimension 48 and p
be a prime dividing |Aut(L)|. Then p = 47, 23 or p ≤ 13.

Type Fix(σ) E(σ) example class.
47-(1,2)-1 unique unique P48q yes
23-(2,4)-2 unique 2 P48q, P48p yes
13-(4,0)-0 {0} at least 1 P48n

11-(4,8)-4 unique at least 1 P48p

7-(8,0)-0 {0} at least 1 P48n

7-(7,6)-5
√

7A#
6 not known not known

5-(12,0)-0 {0} at least 2 P48n, P48m

5-(10,8)-8
√

5E8 at least 1 P48m

5-(8,16)-8 [2.Alt10]16 Λ32 P48m yes
p=3 6 possible types

2-(24,24)-24
√

2Λ24

√
2Λ24 P48n

2-(24,24)-24
√

2O24

√
2O24 P48n, P48p, P48m



Large automorphisms of extremal lattices
Definition
σ ∈ Aut(L) is called large, if µσ has an irreducible factor Φa of degree
d = ϕ(a) > 1

2 dim(L).

Remark
Let σ ∈ Aut(Λ24) be large. Then

a 23 33 35 39 40 52 56 60 84
d 22 20 24 24 16 24 24 16 24

Theorem (N. 2013-2014)

Let L be an extremal unimodular lattice of dimension n = 48 or
n = 72, σ ∈ Aut(L) large.
Then n = 48 and

a 120 132 69 47 65 104
d 32 40 44 46 48 48
L P48n P48p P48p P48q P48n P48n

or n = 72, L = Γ72 and either a = 91 (d = 72) or a = 168 (d = 48).



Do good objects have symmetry ?



Do good objects have symmetry ?

I Yes, as we already assumed a certain structure.
I Yes, as we experience symmetry for small situations.
I No in large dimension.
I Depending on definition of good:
I Measure of quality motivated by technical applications.
I These applications can make use of additional structure.
I Random even lattice L ≤ R100 given by Gram matrix.

Cannot determine its minimum, nor use it for error correction.
I Exists hardcoded decoding for the Leech lattice.
I Might be extended to Γ72.
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