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Plan
The use of symmetry

» Beautiful objects have symmetries.
» Symmetries help to reduce the search space for nice objects
» and hence make huge problems acessible to computations.

Discrete structures

strongly regular graphs
Steiner systems

block designs

latin squares

abstract projective planes
Hadamard matrices
codes

lattices
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The use of symmetry

» Beautiful objects have symmetries.
» Symmetries help to reduce the search space for nice objects
» and hence make huge problems acessible to computations.

Discrete structures

strongly regular graphs
Steiner systems

block designs

latin squares

abstract projective planes
Hadamard matrices
doubly-even self-dual codes
even unimodular lattices
Why ?
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Voyager 1981

distance Saturn-Earth
more than
1 billion kilometers

power of transmitter:
less than 60 Watt

error correction with
Golay Code QR(23)
of length 23

The best known codes
of small length

are self-dual

and doubly-even.




Doubly-even self-dual codes
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code C < F% (linear binary code of length n)
Ct={zeFy|zc:=3 " xic; =0forall ce C}dual code
self-dual C = C+

wt(c) := |{i | ¢; # 0}] weight

d(C) := min{wt(c) | 0 # ¢ € C} minimum distance

Clear: ¢:c = wt(c) (mod 2)

C doubly-even if wt(C) C 4Z

C doubly-even = C C C*

C doubly-even self-dual < C/(1) < ((1)1/(1), q) maximal

isotropic of dimension (n — 2)/2,

ale+ (1) = %Wt(c) L7 €7)2 = F,.

Fact: C = C*+ < FF% doubly-even = n € 8Z and

Aut(C)={c € S, | o(C)=C} < Alt,.



Extended Quadratic Residue Codes
Extended QR Codes, p = —1 (mod 8)
XP —1= (X - 1)g(X)h(X) € F2[X], deg(g) = deg(h) = 25*.

QR(p) := (9(X)) < Fo[X]/(XP — 1) = F}

is a code of length p and dimension 2.
extended QR-Code

A~

Q) = {(c;wt(c) +2Z) | c € QR(p)} < F5™

is a self-dual doubly-even code of length p + 1.

QR(p) is a cyclic code of length p (p | | Aut(QR(p))])-
Cyclic codes have good provable error correcting properties
and fast encoding and decoding algorithms.

Aut(Q(7)) = 2% : PSL3(2), of order 8- 168 = 263 - 7
Aut(Q(23)) = May, of order 210 .32 .5.7.11-23
p

Aut(Q(p)) = PSLa(p) for p > 23, of order (p — 1)p(p +.1)/2 (conj.).



Examples for self-dual doubly-even codes
weight enumerator pc == > 2" "1y € Clz, y],.

100 0 0 1 1 1
A 01001011
Q) : 0 01 01101
00011110

is the unique doubly-even self-dual code of length 8,

Po(@,y) = 2® + 1daty? + ¢

Q(23) (extended Golay code) unique doubly-even self-dual code of
length 24 with minimum distance > 8.

pQ(zg) = 1'24 + 7591’16y8 + 2576$12 12 + 759x8y16 + y



Application of invariant theory
weight enumerator pc == > 2" "1y € Clz, y],.

Theorem (Gleason, ICM 1970)

Let C = C* < F% be doubly-even. Then d(C) < 4 + 4[24 ]
Doubly-even self-dual codes achieving equality are called extremal.



Application of invariant theory
weight enumerator pc == > 2" "1y € Clz, y],.

Theorem (Gleason, ICM 1970)

Let C = C* < F% be doubly-even. Then d(C) < 4 + 4[24 ]
Doubly-even self-dual codes achieving equality are called extremal.
Proof:

> pe(@,y) = pe(@,iy), pe(,y) = por (2,y) = pe(*Z “7)

>0192:=<<(1) (3);5(1 i )>'

> pc € Inv(Grg2) =C pQ(7)va(23)]
> 3f € Clpgr)s Poyas)lsm such that

Fy) =14 0y* + ...+ 0ylF) 4 quytl B+ 4 L5048
> a,, > 0 forall m.



Application of invariant theory
weight enumerator pc == > 2" "1y € Clz, y],.

Theorem (Gleason, ICM 1970)

Let C = C* < F% be doubly-even. Then d(C) < 4 + 4[24 ]
Doubly-even self-dual codes achieving equality are called extremal.
Proof:

> pe(@,y) = pe(@,iy), pe(,y) = por (2,y) = pe(*Z “7)

10 11
>G”’2::<(0 i ¢1§<1 1)>'

> pc € Inv(Grg2) =C pQ(7)7pQ(23)]
> 3f € Clpgr)s Poyas)lsm such that

Fy) =140yt + ...+ 0y L5 a8+ L p A8 148
> a,, > 0 for all m.

Proposition

by < 0 for all m > 494 so there is no extremal code of length > 3952.



Self-dual codes and Invariant Theory

Gleason 1970, N., Rains, Sloane 2006

Codes
C

properties of C
(self-duality, doubly-even)

unstructured set
properties of C'

d(C) <4+4|3]
extremal code

Polynomials
pc

symmetries of pc
pe € Inv(G)

finitely generated ring
Inv(G) = Clpy, ..., ps

extremal weight enumerator



Automorphism groups of extremal codes

length 8 [16] 24 [32] 40 48 [72] 80 | = 3952
d(0) 4 8 |8 38 12 [16] 16
extremal | Q(7) | 2 [ Q(23) | 5 [ 16,470 | QU7 | 2 [>15] o

Automorphism group Aut(C) = {o € S, | o(C) = C}

vV VvV vV vV vV VY

Aut(Q(7)) = 23. PSLs(2)
Aut(Q(23)) = My
Length 32: PSLy(31), 2°. PSL5(2), 28.Sg, 28. PSLy(7).2, 2°.S6.
Length 40: 10,400 extremal codes with Aut = 1.

Aut(Q(47)) = PSLy(47).

d(Q(71)) = 12, d(Q(79)) = 16.
Sloane (1973): Is there a (72, 36, 16) self-dual code?
If C =C+ <F72, d(C) = 16 then Aut(C) has order < 5.
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Aut(Q(7)) = 23. PSLs(2)
Aut(Q(23)) = My
Length 32: PSLy(31), 2°. PSL5(2), 28.5s, 28. PSLy(7).2, 2°.S5.
Length 40: 10,400 extremal codes with Aut = 1.

Aut(Q(47)) = PSLy(47).

d(Q(71)) = 12, d(Q(79)) = 16.

Sloane (1973): Is there a (72, 36, 16) self-dual code?

If C = C+ <F72, d(C) = 16 then Aut(C) has order < 5.
There is no beautiful (72, 36, 16) self-dual code.




The Type of an automorphism

Definition (Conway, Pless, Huffman 1982)
Let o € S, of prime order p. Then ¢ is of Type (z, f), if o has z
p-cycles and f fixed points. zp + f = n.

» Letpbeodd, o =(1,2,..,p)(p+1,.,2p)...((z = 1)p+ 1, .., 2p).
» F} = Fix(o) L B(o) 2 F: L FZP with

1...1 0...0 0...0 0 0 0
0...0 1...1 0...0 0 0 0
0...0 0...0 1...1 0 0 0

Fix(c)=(0...0 0...0 0...0 1 0 0)
0...0 0...0 0...0 0 1 0
0...0 0...0 0...0 0 0 1
—— =~ ——
P p P

E(0) = Fix(o)t =
{1, Ty Tpg1, o T2py o T 1)ptts - -5 T2p, 0,0, 0)
Ti4 . ATy =Ty b Ty = = T T+ T = 0



Two self-dual codes of smaller length

» Let C' < F% and p an odd prime,
» o =(1,2,..,p)(p+1,..,2p)...(( — )p+1,.., 2p) € Aut(C).
» Then C = CNFix(c) ® CN E(0) =: Fixe(o) ® Ec(0).

Fixc (o) ={(cp...CcpCap...Cop...Cop...CopCopi1...Cp) € C}=
—_——— —— ——
P P P
7(Fixc(0)) = {(cpCap - CopCapii ... n) €FZT | ¢ € Fixe(o)}

» and C*+ = C+ NFix(o) ® C+ N E(0).

Theorem
If C = C+ then n(Fixc(0)) < Fj*f is self-dual and E¢ (o) is
(Hermitian) self-dual in E(o).

Method: Classify possibilities for 7(Fixc (o)) and Ec (o) and check if
C =Fixc(o) @ Ec(o) is extremal.



C = C*+ < FP? extremal, G = Aut(C).

Theorem (Conway, Huffmann, Pless, Bouyuklieva,
O’Brien, Willems, Feulner, Borello, Yorgov, N., ..)
Let C < F7? be an extremal doubly even code,

G := Aut(C) :={o € S72 | 0(C) = C}, o € G of prime order p.
If p =2 or p = 3 then ¢ has no fixed points. (B)

If p =5 or p="7then ¢ has 2 fixed points. (CHPB)

G contains no element of prime order > 7. (BYFN)

G has no subgroup S3, D1, C3 x C5. (BFN)

If p=2then C is a free Fz(c)-module. (N)

G has no subgroup Cig, C4 X Ca, Qs. (N)

G % Alty, G % Dg, G % Cy x Cy x Cs (BN)

G contains no element of order 6. (Borello)

and hence |G| < 5.

G contains no element of order 4. (YY)
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Existence of an extremal code of length 72 is still open.



Alty = (a, b, s) > (a,b) = Vj, (Borello, N. 2013)

Example: C' = C1+ < F7? extremal = no Alts < Aut(C).




Alty = (a, b, s) > (a,b) = Vy, (Borello, N. 2013)

Example: C = C+ < F72 extremal = no Alty < Aut(C).

3 poss.

FixL(a

bDl

» C=C

Fix{b) (@)

41 poss.

1
D /D =V
— Fix(s)+E(s)
dim 20,20,22

(a,b,s) =
Alt4

(a,b)=V4

(b)



Extremal binary codes: Summary

» C = C+ <y doubly-even = 8 | nand d(C) < 4 + 4|

» all known extremal codes of length n = 24m:

n C Aut(C) d(C)
24 Q(23) Moy 8
48 Q47) PSLy(47) 12
7 ? <5 16

» minimum distance of extended QR-Codes:

n
d
de:r:t

72 80 104 128 152 168
12 16 20 20 20 24
16 16 20 24 28 32

n

24

]



Extremal ternary codes

» C=Ct<F;=4|nandd(C)<3+3[2%]
» all known extremal codes of length n = 12m:

n C  Aut(C) d
12 Q12 2.M12 6
24 Q24 CQ X PSL2(23) 9
24 P24 (CQ X SLQ(ll))2 9
36 P36 (04 X PSLQ(I?)).Q 12
48 Q48 02 X PSL2(47) 15
48 P48 (CQ X SL2(23))2 15
60 QGO Cg X PSL2(59) 18
60 PGO (04 X PSL2(29))2 18
60 Vgo SLy(29) 18

length 12, 24: all classified

length 36: all other codes have Aut(C) = C, or trivial

length 48: all other codes have | Aut(C)| divides 48

length 72: extremal weight enumerator has negative coefficient

vV v v v



Lattices and sphere packings

> A
goa0ss;
‘v‘A ‘Ov A‘
0209020
094 %o«o
o ﬁq 0

Hexagonal Circle Packing

0 =1+6q+6¢>+6¢*+12¢" +6¢° +....



Dense sphere packings

v

Classical problem to find densest sphere packings:
Dimension 2: Gaul3 (lattices), Fejes Téth (general)
Dimension 3: Kepler conjecture, proven by T.C. Hales
Dimension 8 and 24: Maryna Viazovska et al. (2016):

Es-lattice packing and Leech lattice packing are the
densest sphere packings in dimension 8 and 24

» Other dimensions: open

v

v

v

v

Eg and Leech are even unimodular lattices



Even unimodular lattices

Definition

» A lattice L in Euclidean n-space (R", (,)) is the Z-span of an
R-basis .
L={> ab;|a € ZL}.

=1
Q : R" = Ry, Q(x) := 1(z, z) associated quadratic form
Lis called evenif Q(¢) € Z forall ¢ € L.
min(L) := min{Q(¥) | 0 # £ € L} minimum of L.
The dual lattice is

vV vV v Vv

L# .= {z € R" | (z,¢) € Zforall £ € L}
» L is called unimodular if L = L#.

Even unimodular lattices L correspond to regular positive definite
integral quadratic forms Q : L — Z.



Even lattices and Modular forms

... Hecke, Hilbert, Siegel (1900-1970)

Quebbemann (1995)

Lattices

properties of L
(even, unimodular)
unstructured set
properties of L

min(L) <1+ LQ—ZJ
extremal lattices

_>

Holomorphic functions
O, (Theta series)

symmetries of ©,
O € Inv(G)

finitely generated ring
Inv(G) = Clpy, ..., ps

extremal modular forms



Extremal lattices and extremal modular forms

L extremal < min(L) = 1+ | 2|

f® =14240¢+ ... = 0p,.

FCY =14196,560¢% + ... = 0,,,.

FB2 =14146,880¢% 4 ... = 0y,.

fH0 =1439,600¢> +...=0.

FU =14 52,416,000¢° + ... = Opyg 0,0
) =1+6,218,175,600¢* + ... = Or.,.
B0 =1 41,250,172,000¢* + ... = O, -

Extremal even unimodular lattices L< R™

n 81|24 32 40 48 | 72 | 80 | > 163,264
min(L) | 1| 2 2 2 3 [ 4 | 4
number
extremal [ 1| 1 | >107 | >10° | >4 | >1 | >4 0
lattices




Extremal even unimodular lattices in jump dimensions

L extremal even unimodular lattice of dimension 24m

» All() # {¢ € L | Q(¢) = a} form spherical 11-designs.

» local maximum of the density function on the space of all
24m-dimensional lattices.



Extremal even unimodular lattices in jump dimensions

L extremal even unimodular lattice of dimension 24m

» All() # {¢ € L | Q(¢) = a} form spherical 11-designs.

» local maximum of the density function on the space of all
24m-dimensional lattices.

» If m =1, then L = Ay, is unique (Leech lattice).

» The 196.560 minimal vectors of the Leech lattice form the unique
tight spherical 11-design and realise the maximal kissing number
in dimension 24.

» Ao, yields densest sphere packing in 24 dimensions
(H.Cohn, A.Kumar, SD.Miller, D.Radchenko, M.Viazovska)



Extremal even unimodular lattices in jump dimensions

L extremal even unimodular lattice of dimension 24m

» All() # {¢ € L | Q(¢) = a} form spherical 11-designs.

» local maximum of the density function on the space of all
24m-dimensional lattices.

» If m =1, then L = Ay, is unique (Leech lattice).

» The 196.560 minimal vectors of the Leech lattice form the unique
tight spherical 11-design and realise the maximal kissing number
in dimension 24.

» Ao, yields densest sphere packing in 24 dimensions
(H.Cohn, A.Kumar, SD.Miller, D.Radchenko, M.Viazovska)

» For m = 2, 3 these lattices are the densest known lattices and
realise the maximal known kissing number.



Notion of Equivalence

Codes Lattices
C=D < LM<
do€8,,0(C)=D Jdo € O,(R),0(L) =M
all transformations all transformations
preserving Hamming distance | preserving inner product
Aut(C) = Stabg, (C) Aut(L) = Stabo, (L)




Notion of Equivalence

Codes Lattices
C=D < LM<
do € Sp,0(C)=D Jo € O,(R),0(L) =M
all transformations all transformations
preserving Hamming distance | preserving inner product
Aut(C) = Stabg, (C) Aut(L) = Stabo, (L)

» Size of equivalence class ~ | Aut |~*
» Small equivalence class ~ big stabiliser
» Interesting objects have large automorphism groups ?



Extremal even unimodular lattices in jump dimensions
The extremal theta series

fPY =14196,560¢% + ... =0,,,.
U8 =1+452,416,000¢° + ... = Op,q, -
f7 =1+6,218,175,600¢* + ... = Or.,.

The automorphism groups

Aut(Agy) = 2.Co; order  8315553613086720000
= 222395472 .11 .13-23

Aut(Pysp) = (SL2(23) x S3) : 2 order 72864 = 253%11-23
Aut(Pyg,) = SLo(47) order 103776 = 2°3-23-47
Aut(Pys,) = (SLa(13)Y SLa(5)).22  order 524160 = 2735 - 7- 13
Aut(Pygm) = (C5 x Cy5) : (DgYCy)  order 1200 = 243 52

Aut(T'72) = (SLy(25) x PSLy(7)) : 2 order 5241600 = 2832527 - 13



The Type of an automorphism.
How many extremal lattices in dimension 487

Use automorphisms to classify extremal even unimodular lattices of
dimension 48 and 72.

Let L < R™ be some even unimodular lattice and ¢ € Aut(L) of prime
order p. The fixed lattice

F:=Fixp(o) ={veL|ov=v}<L

has dimension d, and ¢ acts on M := Er (o) := F* as a pth root of
unity, son =d+ z(p — 1).

F#* 1L M#*>L=L%*>F_1M>pL
with det(F) = |F#/F| = |M# /M| = det(M) = p*

Definition: p — (z,d) — s is called the Type of o.

Proposition: s < min(d, z) and z — s is even.



48-dimensional extremal lattices

Theorem (Kirschmer, N. 2013-2017)

Let L be an extremal even unimodular lattice of dimension 48 and p
be a prime dividing | Aut(L)|. Then p = 47,23 or p < 13.

Type Fix(o) E(o) example class.
7-(1,2)-1 unique unique Py, yes
23 (2,4)-2 unique 2 Pygq, Pagp yes
3-(4,0)-0 {0} at least 1 Pisn,
1-(4,8)-4 unique at least 1 Pis,
7-(8,0)-0 {0} at least 1 Pys,
7-(7,6)-5 VTAY not known not known
5-(12,0)-0 {0} at least 2 Pign, Pism
5-(10,8)-8 V/5E5 at least 1 Pigm
5-(8,1 6)-8 [2 Altlo]lﬁ Aso Pigm yes
p=3 6 possible types
2-(24,24)-24 NI V2Aay Pyg,,
2-(24,24)-24 V2024 V2054 Pygn, Pigp, Pigm




Large automorphisms of extremal lattices
Definition

o € Aut(L) is called large, if u, has an irreducible factor ®, of degree
d=¢(a) > 3 dim(L).

Remark

Let o € Aut(Aa4) be large. Then
a|23|33|35[39|40 |52 |56 |60 |84
d|[22 |20 |24 |24 |16 |24 | 24 | 16 | 24

Theorem (N. 2013-2014)

Let L be an extremal unimodular lattice of dimension n = 48 or
n="72,0 € Aut(L) large.
Then n = 48 and

a| 120 | 132 | 69 47 65 104

d 32 40 44 46 48 48
L | Pugn | Pasp | Pasp | Pasq | Pasn | Pasn
orn =72, L =T and either a = 91 (d = 72) or a = 168 (d = 48).
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» Yes, as we already assumed a certain structure.
» Yes, as we experience symmetry for small situations.
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» Yes, as we already assumed a certain structure.
» Yes, as we experience symmetry for small situations.
» No in large dimension.



Do good objects have symmetry ?
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Yes, as we already assumed a certain structure.

Yes, as we experience symmetry for small situations.

No in large dimension.

Depending on definition of good:

Measure of quality motivated by technical applications.
These applications can make use of additional structure.

Random even lattice L < R'% given by Gram matrix.
Cannot determine its minimum, nor use it for error correction.

» Exists hardcoded decoding for the Leech lattice.
» Might be extended to I'75.



