Symmetries of discrete structures

Gabriele Nebe

Lehrstuhl D für Mathematik

ÖMG-DMV meeting 2017

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Plan

The use of symmetry

- Beautiful objects have symmetries.
- Symmetries help to reduce the search space for nice objects
- and hence make huge problems acessible to computations.

Discrete structures

- strongly regular graphs
- Steiner systems
- block designs
- latin squares
- abstract projective planes
- Hadamard matrices
- codes
- lattices

Plan

The use of symmetry

- Beautiful objects have symmetries.
- Symmetries help to reduce the search space for nice objects
- and hence make huge problems acessible to computations.

Discrete structures

- strongly regular graphs
- Steiner systems
- block designs
- latin squares
- abstract projective planes
- Hadamard matrices
- doubly-even self-dual codes
- even unimodular lattices
- ► Why ?

Voyager 1981

distance Saturn-Earth more than 1 billion kilometers

power of transmitter: less than 60 Watt

error correction with Golay Code $\mathrm{QR}(23)$ of length 23

The best known codes of small length are self-dual and doubly-even.

Doubly-even self-dual codes

- code $C \leq \mathbb{F}_2^n$ (linear binary code of length n)
- $C^{\perp} = \{x \in \mathbb{F}_2^n \mid x \cdot c := \sum_{i=1}^n x_i c_i = 0 \text{ for all } c \in C\}$ dual code
- self-dual $C = C^{\perp}$
- $\operatorname{wt}(c) := |\{i \mid c_i \neq 0\}|$ weight
- ► $d(C) := \min\{\operatorname{wt}(c) \mid 0 \neq c \in C\}$ minimum distance
- Clear: $c \cdot c \equiv wt(c) \pmod{2}$
- C doubly-even if $wt(C) \subseteq 4\mathbb{Z}$
- C doubly-even $\Rightarrow C \subseteq C^{\perp}$
- C doubly-even self-dual ⇔ C/⟨1⟩ ≤ (⟨1⟩[⊥]/⟨1⟩, q) maximal isotropic of dimension (n − 2)/2,

$$q(c + \langle \mathbf{1} \rangle) = \frac{1}{2} \operatorname{wt}(c) + 2\mathbb{Z} \in \mathbb{Z}/2\mathbb{Z} = \mathbb{F}_2.$$

▶ Fact: $C = C^{\perp} \leq \mathbb{F}_2^n$ doubly-even $\Rightarrow n \in 8\mathbb{Z}$ and

$$\operatorname{Aut}(C) = \{ \sigma \in S_n \mid \sigma(C) = C \} \le \operatorname{Alt}_n.$$

Extended Quadratic Residue Codes

Extended QR Codes, $p \equiv -1 \pmod{8}$

$$X^p - 1 = (X - 1)g(X)h(X) \in \mathbb{F}_2[X], \deg(g) = \deg(h) = \frac{p-1}{2}$$

$$\operatorname{QR}(p) := (\overline{g(X)}) \le \mathbb{F}_2[X]/(X^p - 1) \cong \mathbb{F}_2^p$$

is a code of length p and dimension $\frac{p+1}{2}$. extended QR-Code

$$\hat{\mathbf{Q}}(p) := \{ (c, \operatorname{wt}(c) + 2\mathbb{Z}) \mid c \in \operatorname{QR}(p) \} \le \mathbb{F}_2^{p+1}$$

is a self-dual doubly-even code of length p + 1.

QR(p) is a cyclic code of length p ($p \mid |Aut(QR(p))|$). Cyclic codes have good provable error correcting properties and fast encoding and decoding algorithms.

$$\begin{aligned} &\operatorname{Aut}(\hat{\mathbf{Q}}(7)) = 2^3 : \operatorname{PSL}_3(2), \text{ of order } 8 \cdot 168 = 2^6 \cdot 3 \cdot 7 \\ &\operatorname{Aut}(\hat{\mathbf{Q}}(23)) = M_{24}, \text{ of order } 2^{10} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11 \cdot 23 \\ &\operatorname{Aut}(\hat{\mathbf{Q}}(p)) = \operatorname{PSL}_2(p) \text{ for } p > 23, \text{ of order } (p-1)p(p+1)/2 \text{ (conj.).} \end{aligned}$$

Examples for self-dual doubly-even codes

weight enumerator $p_C := \sum_{c \in C} x^{n - wt(c)} y^{wt(c)} \in \mathbb{C}[x, y]_n$.

is the unique doubly-even self-dual code of length 8,

$$p_{\hat{\mathbf{Q}}(7)}(x,y) = x^8 + 14x^4y^4 + y^8$$

 $\hat{Q}(23)$ (extended Golay code) unique doubly-even self-dual code of length 24 with minimum distance ≥ 8 .

$$p_{\hat{Q}(23)} = x^{24} + 759x^{16}y^8 + 2576x^{12}y^{12} + 759x^8y^{16} + y^{24}$$

Application of invariant theory

weight enumerator $p_C := \sum_{c \in C} x^{n - wt(c)} y^{wt(c)} \in \mathbb{C}[x, y]_n$.

Theorem (Gleason, ICM 1970)

Let $C = C^{\perp} \leq \mathbb{F}_2^n$ be doubly-even. Then $d(C) \leq 4 + 4\lfloor \frac{n}{24} \rfloor$ Doubly-even self-dual codes achieving equality are called extremal.

(日) (日) (日) (日) (日) (日) (日)

Application of invariant theory

weight enumerator
$$p_C := \sum_{c \in C} x^{n - wt(c)} y^{wt(c)} \in \mathbb{C}[x, y]_n$$
.

Theorem (Gleason, ICM 1970)

Let $C = C^{\perp} \leq \mathbb{F}_2^n$ be doubly-even. Then $d(C) \leq 4 + 4\lfloor \frac{n}{24} \rfloor$ Doubly-even self-dual codes achieving equality are called extremal.

Proof:

$$\begin{array}{l} \bullet \ p_C(x,y) = p_C(x,iy), \ p_C(x,y) = p_{C^{\perp}}(x,y) = p_C(\frac{x+y}{\sqrt{2}},\frac{x-y}{\sqrt{2}}) \\ \bullet \ G_{192} := \langle \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \rangle. \\ \bullet \ p_C \in \operatorname{Inv}(G_{192}) = \mathbb{C}[p_{\hat{Q}(7)}, p_{\hat{Q}(23)}] \\ \bullet \ \exists ! f \in \mathbb{C}[p_{\hat{Q}(7)}, p_{\hat{Q}(23)}]_{8m} \text{ such that} \\ f(1,y) = 1 + 0y^4 + \ldots + 0y^{4\lfloor \frac{m}{3} \rfloor} + a_m y^{4\lfloor \frac{m}{3} \rfloor + 4} + b_m y^{4\lfloor \frac{m}{3} \rfloor + 8} + \ldots \\ \bullet \ a_m > 0 \text{ for all } m. \end{array}$$

Application of invariant theory

weight enumerator
$$p_C := \sum_{c \in C} x^{n - wt(c)} y^{wt(c)} \in \mathbb{C}[x, y]_n$$
.

Theorem (Gleason, ICM 1970)

Let $C = C^{\perp} \leq \mathbb{F}_2^n$ be doubly-even. Then $d(C) \leq 4 + 4\lfloor \frac{n}{24} \rfloor$ Doubly-even self-dual codes achieving equality are called extremal.

Proof:

▶
$$a_m > 0$$
 for all m .

Proposition

 $b_m < 0$ for all $m \ge 494$ so there is no extremal code of length ≥ 3952 .

Self-dual codes and Invariant Theory

(日) (日) (日) (日) (日) (日) (日)

Automorphism groups of extremal codes

length	8	16	24	32	40	48	72	80	≥ 3952
d(C)	4	4	8	8	8	12	16	16	
extremal	$\hat{Q}(7)$	2	$\hat{Q}(23)$	5	16,470	$\hat{Q}(47)$?	≥ 15	0

Automorphism group $Aut(C) = \{ \sigma \in S_n \mid \sigma(C) = C \}$

- $Aut(\hat{Q}(7)) = 2^3 . PSL_3(2)$
- $\operatorname{Aut}(\hat{\mathbf{Q}}(23)) = M_{24}$
- ▶ Length 32: $PSL_2(31)$, 2^5 . $PSL_5(2)$, $2^8.S_8$, 2^8 . $PSL_2(7).2$, $2^5.S_6$.
- Length 40: 10,400 extremal codes with Aut = 1.
- $\operatorname{Aut}(\hat{Q}(47)) = \operatorname{PSL}_2(47).$
- $d(\hat{\mathbf{Q}}(71)) = 12, \, d(\hat{\mathbf{Q}}(79)) = 16.$
- ▶ Sloane (1973): Is there a (72, 36, 16) self-dual code?
- If $C = C^{\perp} \leq \mathbb{F}_2^{72}$, d(C) = 16 then $\operatorname{Aut}(C)$ has order ≤ 5 .

Automorphism groups of extremal codes

length	8	16	24	32	40	48	72	80	≥ 3952
d(C)	4	4	8	8	8	12	16	16	
extremal	$\hat{Q}(7)$	2	$\hat{Q}(23)$	5	16,470	$\hat{Q}(47)$?	≥ 15	0

Automorphism group $Aut(C) = \{ \sigma \in S_n \mid \sigma(C) = C \}$

- $Aut(\hat{Q}(7)) = 2^3 . PSL_3(2)$
- $\operatorname{Aut}(\hat{\mathbf{Q}}(23)) = M_{24}$
- ▶ Length 32: $PSL_2(31)$, 2^5 . $PSL_5(2)$, $2^8.S_8$, 2^8 . $PSL_2(7).2$, $2^5.S_6$.
- Length 40: 10,400 extremal codes with Aut = 1.
- $\operatorname{Aut}(\hat{Q}(47)) = \operatorname{PSL}_2(47).$
- $d(\hat{\mathbf{Q}}(71)) = 12, \, d(\hat{\mathbf{Q}}(79)) = 16.$
- ▶ Sloane (1973): Is there a (72, 36, 16) self-dual code?
- If $C = C^{\perp} \leq \mathbb{F}_2^{72}$, d(C) = 16 then $\operatorname{Aut}(C)$ has order ≤ 5 .
- ► There is no beautiful (72, 36, 16) self-dual code.

The Type of an automorphism

Definition (Conway, Pless, Huffman 1982)

Let $\sigma \in S_n$ of prime order p. Then σ is of Type (z, f), if σ has z p-cycles and f fixed points. zp + f = n.

• Let *p* be odd,
$$\sigma = (1, 2, .., p)(p + 1, .., 2p)...((z - 1)p + 1, .., zp).$$

• $\mathbb{F}_2^n = \operatorname{Fix}(\sigma) \perp E(\sigma) \cong \mathbb{F}_2^{z+f} \perp \mathbb{F}_2^{z(p-1)}$ with

$$E(\sigma) = \operatorname{Fix}(\sigma)^{\perp} = \{(x_1, \dots, x_p, x_{p+1}, \dots, x_{2p}, \dots, x_{(z-1)p+1}, \dots, x_{zp}, 0, \dots, 0) \mid x_1 + \dots + x_p = x_{p+1} + \dots + x_{2p} = \dots = x_{(z-1)p+1} + \dots + x_{zp} = 0\}$$

Two self-dual codes of smaller length

- Let $C \leq \mathbb{F}_2^n$ and p an odd prime,
- $\blacktriangleright \ \sigma = (1,2,..,p)(p+1,..,2p)...((z-1)p+1,..,zp) \in \operatorname{Aut}(C).$
- Then $C = C \cap Fix(\sigma) \oplus C \cap E(\sigma) =: Fix_C(\sigma) \oplus E_C(\sigma)$.

$$\begin{aligned} \operatorname{Fix}_{C}(\sigma) &= \{(\underbrace{c_{p}\ldots c_{p}}_{p}\underbrace{c_{2p}\ldots c_{2p}}_{p}\ldots\underbrace{c_{zp}\ldots c_{zp}}_{p}c_{zp+1}\ldots c_{n})\in C\} \cong \\ \pi(\operatorname{Fix}_{C}(\sigma)) &= \{(c_{p}c_{2p}\ldots c_{zp}c_{zp+1}\ldots c_{n})\in \mathbb{F}_{2}^{z+f} \mid c\in \operatorname{Fix}_{C}(\sigma)\} \end{aligned}$$

• and
$$C^{\perp} = C^{\perp} \cap \operatorname{Fix}(\sigma) \oplus C^{\perp} \cap E(\sigma)$$
.

Theorem

If $C = C^{\perp}$ then $\pi(\operatorname{Fix}_C(\sigma)) \leq \mathbb{F}_2^{z+f}$ is self-dual and $E_C(\sigma)$ is (Hermitian) self-dual in $E(\sigma)$.

Method: Classify possibilities for $\pi(\operatorname{Fix}_C(\sigma))$ and $E_C(\sigma)$ and check if $C = \operatorname{Fix}_C(\sigma) \oplus E_C(\sigma)$ is extremal.

 $C = C^{\perp} \leq \mathbb{F}_2^{72}$ extremal, $G = \operatorname{Aut}(C)$.

Theorem (Conway, Huffmann, Pless, Bouyuklieva, O'Brien, Willems, Feulner, Borello, Yorgov, N., ..)

Let $C \leq \mathbb{F}_2^{72}$ be an extremal doubly even code, $G := \operatorname{Aut}(C) := \{ \sigma \in S_{72} \mid \sigma(C) = C \}, \sigma \in G \text{ of prime order } p.$

- If p = 2 or p = 3 then σ has no fixed points. (B)
- If p = 5 or p = 7 then σ has 2 fixed points. (CHPB)
- G contains no element of prime order \geq 7. (BYFN)
- G has no subgroup S_3 , D_{10} , $C_3 \times C_3$. (BFN)
- If p = 2 then C is a free $\mathbb{F}_2\langle \sigma \rangle$ -module. (N)
- G has no subgroup $C_{10}, C_4 \times C_2, Q_8$. (N)
- $G \cong \operatorname{Alt}_4, G \cong D_8, G \cong C_2 \times C_2 \times C_2$ (BN)
- ▶ G contains no element of order 6. (Borello)
- and hence $|G| \leq 5$.
- G contains no element of order 4. (YY)

Existence of an extremal code of length 72 is still open.

Alt₄ = $\langle a, b, s \rangle \succeq \langle a, b \rangle = V_4$, (Borello, N. 2013) Example: $C = C^{\perp} \leq \mathbb{F}_2^{72}$ extremal \Rightarrow no Alt₄ \leq Aut(C).

- ix I Fixth = } x = Fix(h) Fix (g = Cottann D.)) 9,10,1 20

Alt₄ = $\langle a, b, s \rangle \supseteq \langle a, b \rangle = V_4$, (Borello, N. 2013) Example: $C = C^{\perp} \leq \mathbb{F}_2^{72}$ extremal \Rightarrow no Alt₄ \leq Aut(C).

・ロト・日本・日本・日本・日本・日本

Extremal binary codes: Summary

- ▶ $C = C^{\perp} \leq \mathbb{F}_2^n$ doubly-even $\Rightarrow 8 \mid n \text{ and } d(C) \leq 4 + 4\lfloor \frac{n}{24} \rfloor$
- ▶ all known extremal codes of length n = 24m:

n	C	$\operatorname{Aut}(C)$	d(C)
24	$\hat{Q}(23)$	M_{24}	8
48	$\hat{Q}(47)$	$PSL_2(47)$	12
72	?	≤ 5	16

minimum distance of extended QR-Codes:

n	72	80	104	128	152	168
d	12	16	20	20	20	24
d_{ext}	16	16	20	24	28	32

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Extremal ternary codes

• $C = C^{\perp} \leq \mathbb{F}_3^n \Rightarrow 4 \mid n \text{ and } d(C) \leq 3 + 3\lfloor \frac{n}{12} \rfloor$

▶ all known extremal codes of length n = 12m:

- length 12, 24: all classified
- ▶ length 36: all other codes have $Aut(C) = C_4$ or trivial
- length 48: all other codes have $|\operatorname{Aut}(C)|$ divides 48
- length 72: extremal weight enumerator has negative coefficient

Lattices and sphere packings

Hexagonal Circle Packing

$$\theta = 1 + 6q + 6q^3 + 6q^4 + 12q^7 + 6q^9 + \dots$$

Dense sphere packings

- Classical problem to find densest sphere packings:
- Dimension 2: Gauß (lattices), Fejes Tóth (general)
- Dimension 3: Kepler conjecture, proven by T.C. Hales
- Dimension 8 and 24: Maryna Viazovska et al. (2016):
- *E*₈-lattice packing and Leech lattice packing are the densest sphere packings in dimension 8 and 24

(日) (日) (日) (日) (日) (日) (日)

Other dimensions: open

 E_8 and Leech are even unimodular lattices

Even unimodular lattices

Definition

► A lattice L in Euclidean n-space (ℝⁿ, (,)) is the Z-span of an R-basis

$$L = \{\sum_{i=1}^{n} a_i b_i \mid a_i \in \mathbb{Z}\}.$$

- ▶ $Q : \mathbb{R}^n \to \mathbb{R}_{\geq 0}, Q(x) := \frac{1}{2}(x, x)$ associated quadratic form
- L is called even if $Q(\ell) \in \mathbb{Z}$ for all $\ell \in L$.
- $\min(L) := \min\{Q(\ell) \mid 0 \neq \ell \in L\}$ minimum of L.
- The dual lattice is

$$L^{\#} := \{ x \in \mathbb{R}^n \mid (x, \ell) \in \mathbb{Z} \text{ for all } \ell \in L \}$$

(ロ) (同) (三) (三) (三) (○) (○)

• L is called unimodular if $L = L^{\#}$.

Even unimodular lattices L correspond to regular positive definite integral quadratic forms $Q: L \to \mathbb{Z}$.

Even lattices and Modular forms

... Hecke, Hilbert, Siegel (1900-1970) Quebbemann (1995)

Lattices	L	\mapsto	Holomorphic functions Θ_L (Theta series)
properties of (even, unimod	<u>L</u> dular)	\rightarrow	symmetries of Θ_L $\Theta_L \in Inv(G)$
unstructured	set		finitely generated ring
properties of $\min(L) < 1 + 1$	L	\Leftarrow	$\operatorname{Inv}(G) = \mathbb{C}[p_1, \dots, p_s]$
extremal lattic	L ₂₄ J Ces	\rightarrow	extremal modular forms

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Extremal lattices and extremal modular forms

 $L \text{ extremal} \Leftrightarrow \min(L) = 1 + \lfloor \frac{n}{24} \rfloor$

$$\begin{split} f^{(8)} &= 1 + 240q + \ldots = \theta_{E_8}, \\ f^{(24)} &= 1 + 196, 560q^2 + \ldots = \theta_{\Lambda_{24}}, \\ f^{(32)} &= 1 + 146, 880q^2 + \ldots = \theta_L, \\ f^{(40)} &= 1 + 39, 600q^2 + \ldots = \theta_L, \\ f^{(48)} &= 1 + 52, 416, 000q^3 + \ldots = \theta_{P_{48pqnm}}, \\ f^{(72)} &= 1 + 6, 218, 175, 600q^4 + \ldots = \theta_{\Gamma_{72}}, \\ f^{(80)} &= 1 + 1, 250, 172, 000q^4 + \ldots = \theta_{M_{80}} \end{split}$$

Extremal even unimodular lattices $L \leq \mathbb{R}^n$

n	8	24	32	40	48	72	80	\geq 163,264
min(L)	1	2	2	2	3	4	4	
number extremal lattices	1	1	$\geq 10^7$	$\geq 10^{51}$	≥ 4	≥ 1	≥ 4	0

L extremal even unimodular lattice of dimension 24m

- ▶ All $\emptyset \neq \{\ell \in L \mid Q(\ell) = a\}$ form spherical 11-designs.
- ► local maximum of the density function on the space of all 24*m*-dimensional lattices.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

L extremal even unimodular lattice of dimension 24m

- ▶ All $\emptyset \neq \{\ell \in L \mid Q(\ell) = a\}$ form spherical 11-designs.
- ► local maximum of the density function on the space of all 24*m*-dimensional lattices.
- If m = 1, then $L = \Lambda_{24}$ is unique (Leech lattice).
- The 196.560 minimal vectors of the Leech lattice form the unique tight spherical 11-design and realise the maximal kissing number in dimension 24.

(日) (日) (日) (日) (日) (日) (日)

 Λ₂₄ yields densest sphere packing in 24 dimensions (H.Cohn, A.Kumar, SD.Miller, D.Radchenko, M.Viazovska)

L extremal even unimodular lattice of dimension 24m

- ▶ All $\emptyset \neq \{\ell \in L \mid Q(\ell) = a\}$ form spherical 11-designs.
- ► local maximum of the density function on the space of all 24*m*-dimensional lattices.
- If m = 1, then $L = \Lambda_{24}$ is unique (Leech lattice).
- The 196.560 minimal vectors of the Leech lattice form the unique tight spherical 11-design and realise the maximal kissing number in dimension 24.
- Λ₂₄ yields densest sphere packing in 24 dimensions (H.Cohn, A.Kumar, SD.Miller, D.Radchenko, M.Viazovska)
- ► For *m* = 2,3 these lattices are the densest known lattices and realise the maximal known kissing number.

(日) (日) (日) (日) (日) (日) (日)

Notion of Equivalence

Codes	Lattices
$C \cong D \Leftrightarrow \\ \exists \sigma \in S_n, \sigma(C) = D$	$\begin{split} L &\cong M \Leftrightarrow \\ \exists \sigma \in O_n(\mathbb{R}), \sigma(L) = M \end{split}$
all transformations preserving Hamming distance	all transformations preserving inner product
$\operatorname{Aut}(C) = \operatorname{Stab}_{S_n}(C)$	$\operatorname{Aut}(L) = \operatorname{Stab}_{O_n}(L)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Notion of Equivalence

Codes	Lattices
$C \cong D \Leftrightarrow \\ \exists \sigma \in S_n, \sigma(C) = D$	$\begin{split} L &\cong M \Leftrightarrow \\ \exists \sigma \in O_n(\mathbb{R}), \sigma(L) = M \end{split}$
all transformations preserving Hamming distance	all transformations preserving inner product
$\operatorname{Aut}(C) = \operatorname{Stab}_{S_n}(C)$	$\operatorname{Aut}(L) = \operatorname{Stab}_{O_n}(L)$

- Size of equivalence class $\sim |\operatorname{Aut}|^{-1}$
- Small equivalence class ~ big stabiliser
- Interesting objects have large automorphism groups ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The extremal theta series

$$\begin{aligned} f^{(24)} &= 1 + 196,560q^2 + \ldots = \theta_{\Lambda_{24}}, \\ f^{(48)} &= 1 + 52,416,000q^3 + \ldots = \theta_{P_{48pqnm}} \\ f^{(72)} &= 1 + 6,218,175,600q^4 + \ldots = \theta_{\Gamma_{72}}. \end{aligned}$$

The automorphism groups		
$\operatorname{Aut}(\Lambda_{24}) \cong 2.Co_1$	order =	$\frac{8315553613086720000}{2^{22}3^95^47^2\cdot 11\cdot 13\cdot 23}$
$\operatorname{Aut}(P_{48p}) \cong (\operatorname{SL}_2(23) \times S_3) : 2$	order	$72864 = 2^5 3^2 11 \cdot 23$
$\operatorname{Aut}(P_{48q}) \cong \operatorname{SL}_2(47)$	order	$103776 = 2^53 \cdot 23 \cdot 47$
$\operatorname{Aut}(P_{48n}) \cong (\operatorname{SL}_2(13) Y \operatorname{SL}_2(5)).2^2$	order	$524160 = 2^7 3^2 5 \cdot 7 \cdot 13$
$\operatorname{Aut}(P_{48m}) \cong (C_5 \times C_{15}) : (D_8 Y C_4)$	order	$1200 = 2^4 3 \ 5^2$
$\operatorname{Aut}(\Gamma_{72}) \cong (\operatorname{SL}_2(25) \times \operatorname{PSL}_2(7)): 2$	order	$5241600 = 2^8 3^2 5^2 7 \cdot 13$

The Type of an automorphism.

How many extremal lattices in dimension 48?

Use automorphisms to classify extremal even unimodular lattices of dimension 48 and 72.

Let $L \leq \mathbb{R}^n$ be some even unimodular lattice and $\sigma \in Aut(L)$ of prime order p. The fixed lattice

$$F := \operatorname{Fix}_{L}(\sigma) := \{ v \in L \mid \sigma v = v \} \le L$$

has dimension d, and σ acts on $M := E_L(\sigma) := F^{\perp}$ as a pth root of unity, so n = d + z(p-1).

$$F^{\#} \perp M^{\#} \ge L = L^{\#} \ge F \perp M \ge pL$$

with $\det(F) = |F^{\#}/F| = |M^{\#}/M| = \det(M) = p^{s}$

Definition: p - (z, d) - s is called the Type of σ .

Proposition: $s \leq \min(d, z)$ and z - s is even.

48-dimensional extremal lattices

Theorem (Kirschmer, N. 2013-2017)

Let L be an extremal even unimodular lattice of dimension 48 and p be a prime dividing $|\operatorname{Aut}(L)|.$ Then p=47,23 or $p\leq13.$

Туре	$\operatorname{Fix}(\sigma)$	$E(\sigma)$	example	class.
47-(1,2)-1	unique	unique	P_{48q}	yes
23-(2,4)-2	unique	2	P_{48q}, P_{48p}	yes
13-(4,0)-0	{0}	at least 1	P_{48n}	
11-(4,8)-4	unique	at least 1	P_{48p}	
7-(8,0)-0	{0}	at least 1	P_{48n}	
7-(7,6)-5	$\sqrt{7}A_{6}^{\#}$	not known	not known	
5-(12,0)-0	{0}	at least 2	P_{48n}, P_{48m}	
5-(10,8)-8	$\sqrt{5}E_8$	at least 1	P_{48m}	
5-(8,16)-8	$[2. Alt_{10}]_{16}$	Λ_{32}	P_{48m}	yes
p=3		6 possible t	ypes	
2-(24,24)-24	$\sqrt{2}\Lambda_{24}$	$\sqrt{2}\Lambda_{24}$	P_{48n}	
2-(24,24)-24	$\sqrt{2}O_{24}$	$\sqrt{2}O_{24}$	$P_{48n}, P_{48p}, P_{48m}$	

Large automorphisms of extremal lattices

Definition

 $\sigma \in \operatorname{Aut}(L)$ is called large, if μ_{σ} has an irreducible factor Φ_a of degree $d = \varphi(a) > \frac{1}{2} \dim(L)$.

Remark

Let $\sigma \in Aut(\Lambda_{24})$ be large. Then

а	23	33	35	39	40	52	56	60	84
d	22	20	24	24	16	24	24	16	24

Theorem (N. 2013-2014)

Let L be an extremal unimodular lattice of dimension n=48 or $n=72,\,\sigma\in {\rm Aut}(L)$ large.

Then n = 48 and

а	120	132	69	47	65	104		
d	32	40	44	46	48	48		
L	P_{48n}	P_{48p}	P_{48p}	P_{48q}	P_{48n}	P_{48n}		
or n	= 72, 1	$L = \Gamma_{72}$	and ei	ther a =	= 91 (d	= 72) o	r a = 168 ((d = 48)

ロ ト 4 聞 ト 4 三 ト 4 三 - りへの

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

- > Yes, as we already assumed a certain structure.
- > Yes, as we experience symmetry for small situations.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- > Yes, as we already assumed a certain structure.
- > Yes, as we experience symmetry for small situations.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

No in large dimension.

- Yes, as we already assumed a certain structure.
- > Yes, as we experience symmetry for small situations.
- No in large dimension.
- Depending on definition of good:
- Measure of quality motivated by technical applications.
- These applications can make use of additional structure.
- ► Random even lattice L ≤ ℝ¹⁰⁰ given by Gram matrix. Cannot determine its minimum, nor use it for error correction.

(日) (日) (日) (日) (日) (日) (日)

- Exists hardcoded decoding for the Leech lattice.
- Might be extended to Γ_{72} .