Symmetries of discrete structures

Gabriele Nebe

Lehrstuhl D für Mathematik

ÖMG-DMV meeting 2017
RWTHAACHEN

Plan

The use of symmetry

- Beautiful objects have symmetries.
- Symmetries help to reduce the search space for nice objects
- and hence make huge problems acessible to computations.

Discrete structures

- strongly regular graphs
- Steiner systems
- block designs
- latin squares
- abstract projective planes
- Hadamard matrices
- codes
- lattices
- ...

Plan

The use of symmetry

- Beautiful objects have symmetries.
- Symmetries help to reduce the search space for nice objects
- and hence make huge problems acessible to computations.

Discrete structures

- strongly regular graphs
- Steiner systems
- block designs
- latin squares
- abstract projective planes
- Hadamard matrices
- doubly-even self-dual codes
- even unimodular lattices
- Why ?

Voyager 1981

distance Saturn-Earth more than
1 billion kilometers
power of transmitter: less than 60 Watt
error correction with Golay Code QR(23) of length 23

The best known codes
of small length are self-dual and doubly-even.

Doubly-even self-dual codes

- code $C \leq \mathbb{F}_{2}^{n}$ (linear binary code of length n)
- $C^{\perp}=\left\{x \in \mathbb{F}_{2}^{n} \mid x \cdot c:=\sum_{i=1}^{n} x_{i} c_{i}=0\right.$ for all $\left.c \in C\right\}$ dual code
- self-dual $C=C^{\perp}$
- $\mathrm{wt}(c):=\left|\left\{i \mid c_{i} \neq 0\right\}\right|$ weight
- $d(C):=\min \{\omega \mathrm{wt}(c) \mid 0 \neq c \in C\}$ minimum distance
- Clear: $c \cdot c \equiv \mathrm{wt}(c)(\bmod 2)$
- C doubly-even if $\mathrm{wt}(C) \subseteq 4 \mathbb{Z}$
- C doubly-even $\Rightarrow C \subseteq C^{\perp}$
- C doubly-even self-dual $\Leftrightarrow C /\langle\mathbf{1}\rangle \leq\left(\langle\mathbf{1}\rangle^{\perp} /\langle\mathbf{1}\rangle, q\right)$ maximal isotropic of dimension $(n-2) / 2$,

$$
q(c+\langle\mathbf{1}\rangle)=\frac{1}{2} \mathrm{wt}(c)+2 \mathbb{Z} \in \mathbb{Z} / 2 \mathbb{Z}=\mathbb{F}_{2} .
$$

- Fact: $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ doubly-even $\Rightarrow n \in 8 \mathbb{Z}$ and

$$
\operatorname{Aut}(C)=\left\{\sigma \in S_{n} \mid \sigma(C)=C\right\} \leq \operatorname{Alt}_{n}
$$

Extended Quadratic Residue Codes

Extended QR Codes, $p \equiv-1(\bmod 8)$

$$
\begin{gathered}
X^{p}-1=(X-1) g(X) h(X) \in \mathbb{F}_{2}[X], \operatorname{deg}(g)=\operatorname{deg}(h)=\frac{p-1}{2} . \\
\operatorname{QR}(p):=(\overline{g(X)}) \leq \mathbb{F}_{2}[X] /\left(X^{p}-1\right) \cong \mathbb{F}_{2}^{p}
\end{gathered}
$$

is a code of length p and dimension $\frac{p+1}{2}$. extended QR-Code

$$
\hat{\mathrm{Q}}(p):=\{(c, \mathrm{wt}(c)+2 \mathbb{Z}) \mid c \in \operatorname{QR}(p)\} \leq \mathbb{F}_{2}^{p+1}
$$

is a self-dual doubly-even code of length $p+1$.
$\mathrm{QR}(p)$ is a cyclic code of length $p(p||\operatorname{Aut}(\mathrm{QR}(p))|)$. Cyclic codes have good provable error correcting properties and fast encoding and decoding algorithms.

$$
\begin{aligned}
& \operatorname{Aut}(\hat{\mathrm{Q}}(7))=2^{3}: \mathrm{PSL}_{3}(2) \text {, of order } 8 \cdot 168=2^{6} \cdot 3 \cdot 7 \\
& \operatorname{Aut}(\hat{\mathrm{Q}}(23))=M_{24} \text {, of order } 2^{10} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11 \cdot 23 \\
& \operatorname{Aut}(\hat{\mathrm{Q}}(p))=\operatorname{PSL}_{2}(p) \text { for } p>23 \text {, of order }(p-1) p(p+1) / 2 \text { (conj.). }
\end{aligned}
$$

Examples for self-dual doubly-even codes

weight enumerator $p_{C}:=\sum_{c \in C} x^{n-\mathrm{wt}(c)} y^{\mathrm{wt}(c)} \in \mathbb{C}[x, y]_{n}$.

$$
\hat{Q}(7):\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

is the unique doubly-even self-dual code of length 8 ,

$$
p_{\hat{Q}(7)}(x, y)=x^{8}+14 x^{4} y^{4}+y^{8}
$$

$\hat{\mathrm{Q}}(23)$ (extended Golay code) unique doubly-even self-dual code of length 24 with minimum distance ≥ 8.

$$
p_{\hat{\mathrm{Q}}(23)}=x^{24}+759 x^{16} y^{8}+2576 x^{12} y^{12}+759 x^{8} y^{16}+y^{24}
$$

Application of invariant theory

weight enumerator $p_{C}:=\sum_{c \in C} x^{n-\mathrm{wt}(c)} y^{\mathrm{wt}(c)} \in \mathbb{C}[x, y]_{n}$.
Theorem (Gleason, ICM 1970)
Let $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ be doubly-even. Then $d(C) \leq 4+4\left\lfloor\frac{n}{24}\right\rfloor$ Doubly-even self-dual codes achieving equality are called extremal.

Application of invariant theory

weight enumerator $p_{C}:=\sum_{c \in C} x^{n-\mathrm{wt}(c)} y^{\mathrm{wt}(c)} \in \mathbb{C}[x, y]_{n}$.

Theorem (Gleason, ICM 1970)
Let $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ be doubly-even. Then $d(C) \leq 4+4\left\lfloor\frac{n}{24}\right\rfloor$
Doubly-even self-dual codes achieving equality are called extremal.

Proof:

- $p_{C}(x, y)=p_{C}(x, i y), p_{C}(x, y)=p_{C^{\perp}}(x, y)=p_{C}\left(\frac{x+y}{\sqrt{2}}, \frac{x-y}{\sqrt{2}}\right)$
- $G_{192}:=\left\langle\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)\right\rangle$.
- $p_{C} \in \operatorname{Inv}\left(G_{192}\right)=\mathbb{C}\left[p_{\hat{\mathrm{Q}}(7)}, p_{\hat{\mathrm{Q}}(23)}\right]$
- $\exists!f \in \mathbb{C}\left[p_{\hat{\mathrm{Q}}(7)}, p_{\hat{\mathrm{Q}}(23)}\right]_{8 m}$ such that

$$
f(1, y)=1+0 y^{4}+\ldots+0 y^{4\left\lfloor\frac{m}{3}\right\rfloor}+a_{m} y^{4\left\lfloor\frac{m}{3}\right\rfloor+4}+b_{m} y^{4\left\lfloor\frac{m}{3}\right\rfloor+8}+\ldots
$$

- $a_{m}>0$ for all m.

Application of invariant theory

weight enumerator $p_{C}:=\sum_{c \in C} x^{n-\mathrm{wt}(c)} y^{\mathrm{wt}(c)} \in \mathbb{C}[x, y]_{n}$.

Theorem (Gleason, ICM 1970)

Let $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ be doubly-even. Then $d(C) \leq 4+4\left\lfloor\frac{n}{24}\right\rfloor$
Doubly-even self-dual codes achieving equality are called extremal.

Proof:

- $p_{C}(x, y)=p_{C}(x, i y), p_{C}(x, y)=p_{C^{\perp}}(x, y)=p_{C}\left(\frac{x+y}{\sqrt{2}}, \frac{x-y}{\sqrt{2}}\right)$
- $G_{192}:=\left\langle\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)\right\rangle$.
- $p_{C} \in \operatorname{Inv}\left(G_{192}\right)=\mathbb{C}\left[p_{\hat{\mathrm{Q}}(7)}, p_{\hat{\mathrm{Q}}(23)}\right]$
- $\exists!f \in \mathbb{C}\left[p_{\hat{\mathrm{Q}}(7)}, p_{\hat{\mathrm{Q}}(23)}\right]_{8 m}$ such that

$$
f(1, y)=1+0 y^{4}+\ldots+0 y^{4\left\lfloor\frac{m}{3}\right\rfloor}+a_{m} y^{4\left\lfloor\frac{m}{3}\right\rfloor+4}+b_{m} y^{4\left\lfloor\frac{m}{3}\right\rfloor+8}+\ldots
$$

- $a_{m}>0$ for all m.

Proposition

$b_{m}<0$ for all $m \geq 494$ so there is no extremal code of length ≥ 3952.

Self-dual codes and Invariant Theory

Gleason 1970, N., Rains, Sloane 2006

Codes
Polynomials
$C \quad \mapsto \quad p_{C}$
properties of C
(self-duality, doubly-even)
unstructured set
properties of C
$d(C) \leq 4+4\left\lfloor\frac{n}{24}\right\rfloor$
extremal code
\rightarrow symmetries of p_{C}
$p_{C} \in \operatorname{Inv}(G)$
finitely generated ring
$\Leftarrow \operatorname{Inv}(G)=\mathbb{C}\left[p_{1}, \ldots, p_{s}\right]$
\rightarrow extremal weight enumerator

Automorphism groups of extremal codes

length	8	16	24	32	40	48	72	80	≥ 3952
$d(C)$	4	4	8	8	8	12	16	16	
extremal	$\hat{\mathrm{Q}}(7)$	2	$\hat{\mathrm{Q}}(23)$	5	16,470	$\hat{\mathrm{Q}}(47)$	$?$	≥ 15	0

Automorphism group $\operatorname{Aut}(C)=\left\{\sigma \in S_{n} \mid \sigma(C)=C\right\}$

- $\operatorname{Aut}(\hat{\mathrm{Q}}(7))=2^{3} . \mathrm{PSL}_{3}(2)$
- $\operatorname{Aut}(\hat{\mathrm{Q}}(23))=M_{24}$
- Length 32: $\mathrm{PSL}_{2}(31), 2^{5} . \mathrm{PSL}_{5}(2), 2^{8} . S_{8}, 2^{8} . \mathrm{PSL}_{2}(7) .2,2^{5} . S_{6}$.
- Length 40: 10,400 extremal codes with Aut $=1$.
- $\operatorname{Aut}(\hat{\mathrm{Q}}(47))=\operatorname{PSL}_{2}(47)$.
- $d(\hat{\mathrm{Q}}(71))=12, d(\hat{\mathrm{Q}}(79))=16$.
- Sloane (1973): Is there a $(72,36,16)$ self-dual code?
- If $C=C^{\perp} \leq \mathbb{F}_{2}^{72}, d(C)=16$ then $\operatorname{Aut}(C)$ has order ≤ 5.

Automorphism groups of extremal codes

length	8	16	24	32	40	48	72	80	≥ 3952
$d(C)$	4	4	8	8	8	12	16	16	
extremal	$\hat{\mathrm{Q}}(7)$	2	$\hat{\mathrm{Q}}(23)$	5	16,470	$\hat{\mathrm{Q}}(47)$	$?$	≥ 15	0

Automorphism group $\operatorname{Aut}(C)=\left\{\sigma \in S_{n} \mid \sigma(C)=C\right\}$

- $\operatorname{Aut}(\hat{\mathrm{Q}}(7))=2^{3} . \mathrm{PSL}_{3}(2)$
- $\operatorname{Aut}(\hat{\mathrm{Q}}(23))=M_{24}$
- Length 32: $\mathrm{PSL}_{2}(31), 2^{5} . \mathrm{PSL}_{5}(2), 2^{8} . S_{8}, 2^{8} . \mathrm{PSL}_{2}(7) .2,2^{5} . S_{6}$.
- Length 40: 10,400 extremal codes with Aut $=1$.
- $\operatorname{Aut}(\hat{\mathrm{Q}}(47))=\mathrm{PSL}_{2}(47)$.
- $d(\hat{\mathrm{Q}}(71))=12, d(\hat{\mathrm{Q}}(79))=16$.
- Sloane (1973): Is there a $(72,36,16)$ self-dual code?
- If $C=C^{\perp} \leq \mathbb{F}_{2}^{72}, d(C)=16$ then $\operatorname{Aut}(C)$ has order ≤ 5.
- There is no beautiful $(72,36,16)$ self-dual code.

The Type of an automorphism

Definition (Conway, Pless, Huffman 1982)

Let $\sigma \in S_{n}$ of prime order p. Then σ is of Type (z, f), if σ has z p-cycles and f fixed points. $z p+f=n$.

- Let p be odd, $\sigma=(1,2, . ., p)(p+1, . ., 2 p) \ldots((z-1) p+1, . ., z p)$.
- $\mathbb{F}_{2}^{n}=\operatorname{Fix}(\sigma) \perp E(\sigma) \cong \mathbb{F}_{2}^{z+f} \perp \mathbb{F}_{2}^{z(p-1)}$ with

$\operatorname{Fix}(\sigma)=$| $1 \ldots 1$ | $0 \ldots 0$ | \ldots | $0 \ldots 0$ | 0 | 0 | \ldots | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0 \ldots 0$ | $1 \ldots 1$ | \ldots | $0 \ldots 0$ | 0 | 0 | \ldots | 0 |
| $0 \ldots 0$ | $0 \ldots 0$ | \ldots | $1 \ldots 1$ | 0 | 0 | \ldots | 0 |
| $\left.\begin{array}{llll}0 \ldots 0 & \ldots 0 & \ldots & 0 \ldots 0 \\ 0 & 0 & \ldots & 0 \\ 0 \ldots 0 & 0 \ldots 0 & \ldots & 0 \ldots 0 \\ 0 & 1 & \ldots & 0 \\ \underbrace{0 \ldots 0}_{p} & \underbrace{0 \ldots 0}_{p} & \cdots & \underbrace{0 \ldots 0}_{p} \\ 0 & 0 & \ldots & 1\end{array}\right\rangle$ | | | | | | | |

$$
\begin{aligned}
& E(\sigma)=\operatorname{Fix}(\sigma)^{\perp}= \\
& \left\{\left(x_{1}, \ldots, x_{p}, x_{p+1}, \ldots, x_{2 p}, \ldots, x_{(z-1) p+1}, \ldots, x_{z p}, 0, \ldots, 0\right) \mid\right. \\
& \left.x_{1}+\ldots+x_{p}=x_{p+1}+\ldots+x_{2 p}=\ldots=x_{(z-1) p+1}+\ldots+x_{z p}=0\right\}
\end{aligned}
$$

Two self-dual codes of smaller length

- Let $C \leq \mathbb{F}_{2}^{n}$ and p an odd prime,
- $\sigma=(1,2, . ., p)(p+1, . ., 2 p) \ldots((z-1) p+1, . ., z p) \in \operatorname{Aut}(C)$.
- Then $C=C \cap \operatorname{Fix}(\sigma) \oplus C \cap E(\sigma)=: \operatorname{Fix}_{C}(\sigma) \oplus E_{C}(\sigma)$.

$$
\begin{aligned}
& \operatorname{Fix}_{C}(\sigma)=\{(\underbrace{c_{p} \ldots c_{p}}_{p} \underbrace{c_{2 p} \ldots c_{2 p}}_{p} \ldots \underbrace{c_{z p} \ldots c_{z p}}_{p} c_{z p+1} \ldots c_{n}) \in C\} \cong \\
& \pi\left(\operatorname{Fix}_{C}(\sigma)\right)=\left\{\left(c_{p} c_{2 p} \ldots c_{z p} c_{z p+1} \ldots c_{n}\right) \in \mathbb{F}_{2}^{z+f} \mid c \in \operatorname{Fix}_{C}(\sigma)\right\}
\end{aligned}
$$

- and $C^{\perp}=C^{\perp} \cap \operatorname{Fix}(\sigma) \oplus C^{\perp} \cap E(\sigma)$.

Theorem

If $C=C^{\perp}$ then $\pi\left(\operatorname{Fix}_{C}(\sigma)\right) \leq \mathbb{F}_{2}^{z+f}$ is self-dual and $E_{C}(\sigma)$ is (Hermitian) self-dual in $E(\sigma)$.

Method: Classify possibilities for $\pi\left(\operatorname{Fix}_{C}(\sigma)\right)$ and $E_{C}(\sigma)$ and check if $C=\operatorname{Fix}_{C}(\sigma) \oplus E_{C}(\sigma)$ is extremal.

$C=C^{\perp} \leq \mathbb{F}_{2}^{72}$ extremal, $G=\operatorname{Aut}(C)$.

Theorem (Conway, Huffmann, Pless, Bouyuklieva, O'Brien, Willems, Feulner, Borello, Yorgov, N., ..)

Let $C \leq \mathbb{F}_{2}^{72}$ be an extremal doubly even code, $G:=\operatorname{Aut}(C):=\left\{\sigma \in S_{72} \mid \sigma(C)=C\right\}, \sigma \in G$ of prime order p.

- If $p=2$ or $p=3$ then σ has no fixed points. (B)
- If $p=5$ or $p=7$ then σ has 2 fixed points. (CHPB)
- G contains no element of prime order ≥ 7. (BYFN)
- G has no subgroup $S_{3}, D_{10}, C_{3} \times C_{3}$. (BFN)
- If $p=2$ then C is a free $\mathbb{F}_{2}\langle\sigma\rangle$-module. (N)
- G has no subgroup $C_{10}, C_{4} \times C_{2}, Q_{8}$. (N)
- $G \neq \mathrm{Alt}_{4}, G \not \approx D_{8}, G \not \approx C_{2} \times C_{2} \times C_{2}$ (BN)
- G contains no element of order 6. (Borello)
- and hence $|G| \leq 5$.
- G contains no element of order 4. (YY)

Existence of an extremal code of length 72 is still open.

$\mathrm{Alt}_{4}=\langle a, b, s\rangle \unrhd\langle a, b\rangle=V_{4}$, (Borello, N. 2013)

Example: $C=C^{\perp} \leq \mathbb{F}_{2}^{72}$ extremal \Rightarrow no $\operatorname{Alt}_{4} \leq \operatorname{Aut}(C)$.

$\mathrm{Alt}_{4}=\langle a, b, s\rangle \unrhd\langle a, b\rangle=V_{4}$, (Borello, N. 2013) Example: $C=C^{\perp} \leq \mathbb{F}_{2}^{72}$ extremal \Rightarrow no $\operatorname{Alt}_{4} \leq \operatorname{Aut}(C)$.

Extremal binary codes: Summary

- $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ doubly-even $\Rightarrow 8 \mid n$ and $d(C) \leq 4+4\left\lfloor\frac{n}{24}\right\rfloor$
- all known extremal codes of length $n=24 m$:

n	C	$\operatorname{Aut}(C)$	$d(C)$
24	$\hat{\mathrm{Q}}(23)$	M_{24}	8
48	$\hat{\mathrm{Q}}(47)$	$\mathrm{PSL}_{2}(47)$	12
72	$?$	≤ 5	16

- minimum distance of extended QR-Codes:

n	72	80	104	128	152	168
d	12	16	20	20	20	24
$d_{\text {ext }}$	16	16	20	24	28	32

Extremal ternary codes

- $C=C^{\perp} \leq \mathbb{F}_{3}^{n} \Rightarrow 4 \mid n$ and $d(C) \leq 3+3\left\lfloor\frac{n}{12}\right\rfloor$
- all known extremal codes of length $n=12 \mathrm{~m}$:

n	C	$\operatorname{Aut}(C)$	$d(C)$
12	Q_{12}	$2 . M_{12}$	6
24	Q_{24}	$C_{2} \times \operatorname{PSL}_{2}(23)$	9
24	P_{24}	$\left(C_{2} \times \mathrm{SL}_{2}(11)\right) \cdot 2$	9
36	P_{36}	$\left(C_{4} \times \mathrm{PSL}_{2}(17)\right) \cdot 2$	12
48	Q_{48}	$C_{2} \times \mathrm{PSL}_{2}(47)$	15
48	P_{48}	$\left(C_{2} \times \mathrm{SL}_{2}(23)\right) \cdot 2$	15
60	Q_{60}	$C_{2} \times \mathrm{PSL}_{2}(59)$	18
60	P_{60}	$\left(C_{4} \times \mathrm{PSL}_{2}(29)\right) \cdot 2$	18
60	V_{60}	$\mathrm{SL}_{2}(29)$	18

- length 12, 24: all classified
- length 36: all other codes have $\operatorname{Aut}(C)=C_{4}$ or trivial
- length 48: all other codes have $|\operatorname{Aut}(C)|$ divides 48
- length 72: extremal weight enumerator has negative coefficient

Lattices and sphere packings

$$
\theta=1+6 q+6 q^{3}+6 q^{4}+12 q^{7}+6 q^{9}+\ldots
$$

Dense sphere packings

- Classical problem to find densest sphere packings:
- Dimension 2: Gauß (lattices), Fejes Tóth (general)
- Dimension 3: Kepler conjecture, proven by T.C. Hales
- Dimension 8 and 24: Maryna Viazovska et al. (2016):
- E_{8}-lattice packing and Leech lattice packing are the densest sphere packings in dimension 8 and 24
- Other dimensions: open
E_{8} and Leech are even unimodular lattices

Even unimodular lattices

Definition

- A lattice L in Euclidean n-space $\left(\mathbb{R}^{n},(),\right)$ is the \mathbb{Z}-span of an \mathbb{R}-basis

$$
L=\left\{\sum_{i=1}^{n} a_{i} b_{i} \mid a_{i} \in \mathbb{Z}\right\} .
$$

- $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}, Q(x):=\frac{1}{2}(x, x)$ associated quadratic form
- L is called even if $Q(\ell) \in \mathbb{Z}$ for all $\ell \in L$.
- $\min (L):=\min \{Q(\ell) \mid 0 \neq \ell \in L\}$ minimum of L.
- The dual lattice is

$$
L^{\#}:=\left\{x \in \mathbb{R}^{n} \mid(x, \ell) \in \mathbb{Z} \text { for all } \ell \in L\right\}
$$

- L is called unimodular if $L=L^{\#}$.

Even unimodular lattices L correspond to regular positive definite integral quadratic forms $Q: L \rightarrow \mathbb{Z}$.

Even lattices and Modular forms

... Hecke, Hilbert, Siegel (1900-1970)
 Quebbemann (1995)

Lattices

$$
L \quad \mapsto \quad \Theta_{L} \text { (Theta series) }
$$

properties of $L \quad \rightarrow$ symmetries of Θ_{L}
(even, unimodular) $\quad \Theta_{L} \in \operatorname{Inv}(G)$
unstructured set finitely generated ring
properties of L
$\min (L) \leq 1+\left\lfloor\frac{n}{24}\right\rfloor$
extremal lattices \rightarrow extremal modular forms

Extremal lattices and extremal modular forms

$$
\begin{aligned}
& L \text { extremal } \Leftrightarrow \min (L)=1+\left\lfloor\frac{n}{24}\right\rfloor \\
& f^{(8)}=1+240 q+\ldots=\theta_{E_{8}} . \\
& f^{(24)}=1+196,560 q^{2}+\ldots=\theta_{\Lambda_{24}} . \\
& f^{(32)}=1+146,880 q^{2}+\ldots=\theta_{L} . \\
& f^{(40)}=1+39,600 q^{2}+\ldots=\theta_{L} . \\
& f^{(48)}=1+52,416,000 q^{3}+\ldots=\theta_{P_{48 p q n m}} . \\
& f^{(72)}=1+6,218,175,600 q^{4}+\ldots=\theta_{\Gamma_{72}} . \\
& f^{(80)}=1+1,250,172,000 q^{4}+\ldots=\theta_{M_{80}} .
\end{aligned}
$$

Extremal even unimodular lattices $\mathrm{L} \leq \mathbb{R}^{n}$

n	8	24	32	40	48	72	80	$\geq 163,264$
$\min (\mathrm{~L})$	1	2	2	2	3	4	4	
number extremal lattices	1	1	$\geq 10^{7}$	$\geq 10^{51}$	≥ 4	≥ 1	≥ 4	0

Extremal even unimodular lattices in jump dimensions

L extremal even unimodular lattice of dimension $24 m$

- All $\emptyset \neq\{\ell \in L \mid Q(\ell)=a\}$ form spherical 11-designs.
- local maximum of the density function on the space of all $24 m$-dimensional lattices.

Extremal even unimodular lattices in jump dimensions

L extremal even unimodular lattice of dimension $24 m$

- All $\emptyset \neq\{\ell \in L \mid Q(\ell)=a\}$ form spherical 11-designs.
- local maximum of the density function on the space of all $24 m$-dimensional lattices.
- If $m=1$, then $L=\Lambda_{24}$ is unique (Leech lattice).
- The 196.560 minimal vectors of the Leech lattice form the unique tight spherical 11-design and realise the maximal kissing number in dimension 24.
- Λ_{24} yields densest sphere packing in 24 dimensions (H.Cohn, A.Kumar, SD.Miller, D.Radchenko, M.Viazovska)

Extremal even unimodular lattices in jump dimensions

L extremal even unimodular lattice of dimension $24 m$

- All $\emptyset \neq\{\ell \in L \mid Q(\ell)=a\}$ form spherical 11-designs.
- local maximum of the density function on the space of all $24 m$-dimensional lattices.
- If $m=1$, then $L=\Lambda_{24}$ is unique (Leech lattice).
- The 196.560 minimal vectors of the Leech lattice form the unique tight spherical 11-design and realise the maximal kissing number in dimension 24.
- Λ_{24} yields densest sphere packing in 24 dimensions (H.Cohn, A.Kumar, SD.Miller, D.Radchenko, M.Viazovska)
- For $m=2,3$ these lattices are the densest known lattices and realise the maximal known kissing number.

Notion of Equivalence

Codes	Lattices
$C \cong D \Leftrightarrow$	$L \cong M \Leftrightarrow$
$\exists \sigma \in S_{n}, \sigma(C)=D$	$\exists \sigma \in O_{n}(\mathbb{R}), \sigma(L)=M$
all transformations preserving Hamming distance	all transformations
$\operatorname{Aut}(C)=\operatorname{Stab}_{S_{n}}(C)$	$\operatorname{Aut}(L)=\operatorname{Stab}_{O_{n}}(L)$

Notion of Equivalence

Codes	Lattices
$C \cong D \Leftrightarrow$	$L \cong M \Leftrightarrow$
$\exists \sigma \in S_{n}, \sigma(C)=D$	$\exists \sigma \in O_{n}(\mathbb{R}), \sigma(L)=M$
all transformations preserving Hamming distance	all transformations
$\operatorname{Aut}(C)=\operatorname{Stab}_{S_{n}}(C)$	$\operatorname{Aut}(L)=\operatorname{Stab}_{O_{n}}(L)$

- Size of equivalence class $\sim \mid$ Aut $\left.\right|^{-1}$
- Small equivalence class \sim big stabiliser
- Interesting objects have large automorphism groups?

Extremal even unimodular lattices in jump dimensions

The extremal theta series

$$
\begin{aligned}
& f^{(24)}=1+196,560 q^{2}+\ldots=\theta_{\Lambda_{24}} . \\
& f^{(48)}=1+52,416,000 q^{3}+\ldots=\theta_{P_{48 p q n m}} . \\
& f^{(72)}=1+6,218,175,600 q^{4}+\ldots=\theta_{\Gamma_{72}} .
\end{aligned}
$$

The automorphism groups

$$
\begin{array}{lcc}
\operatorname{Aut}\left(\Lambda_{24}\right) \cong 2 . \mathrm{Co}_{1} & \begin{array}{c}
\text { order } \\
\text { = }
\end{array} & 8315553613086720000 \\
2^{22} 3^{9} 5^{4} 7^{2} \cdot 11 \cdot 13 \cdot 23 \\
\operatorname{Aut}\left(P_{48 p}\right) \cong\left(\mathrm{SL}_{2}(23) \times S_{3}\right): 2 & \text { order } & 72864=2^{5} 3^{2} 11 \cdot 23 \\
\operatorname{Aut}\left(P_{48 q}\right) \cong \mathrm{SL}_{2}(47) & \text { order } & 103776=2^{5} 3 \cdot 23 \cdot 47 \\
\operatorname{Aut}\left(P_{48 n}\right) \cong\left(\mathrm{SL}_{2}(13) \mathrm{YSL}_{2}(5)\right) \cdot 2^{2} & \text { order } & 524160=2^{7} 3^{2} 5 \cdot 7 \cdot 13 \\
\operatorname{Aut}\left(P_{48 m}\right) \cong\left(C_{5} \times C_{15}\right):\left(D_{8} \mathrm{Y} C_{4}\right) & \text { order } & 1200=2^{4} 35^{2} \\
\operatorname{Aut}\left(\Gamma_{72}\right) \cong\left(\mathrm{SL}_{2}(25) \times \mathrm{PSL}_{2}(7)\right): 2 & \text { order } & 5241600=2^{8} 3^{2} 5^{2} 7 \cdot 13
\end{array}
$$

The Type of an automorphism.

How many extremal lattices in dimension 48?

Use automorphisms to classify extremal even unimodular lattices of dimension 48 and 72.

Let $L \leq \mathbb{R}^{n}$ be some even unimodular lattice and $\sigma \in \operatorname{Aut}(L)$ of prime order p. The fixed lattice

$$
F:=\operatorname{Fix}_{L}(\sigma):=\{v \in L \mid \sigma v=v\} \leq L
$$

has dimension d, and σ acts on $M:=E_{L}(\sigma):=F^{\perp}$ as a p th root of unity, so $n=d+z(p-1)$.

$$
F^{\#} \perp M^{\#} \geq L=L^{\#} \geq F \perp M \geq p L
$$

with $\operatorname{det}(F)=\left|F^{\#} / F\right|=\left|M^{\#} / M\right|=\operatorname{det}(M)=p^{s}$
Definition: $p-(z, d)-s$ is called the Type of σ.

Proposition: $s \leq \min (d, z)$ and $z-s$ is even.

48-dimensional extremal lattices

Theorem (Kirschmer, N. 2013-2017)

Let L be an extremal even unimodular lattice of dimension 48 and p be a prime dividing $|\operatorname{Aut}(L)|$. Then $p=47,23$ or $p \leq 13$.

Type	Fix (σ)	$E(\sigma)$	example	class.		
$47-(1,2)-1$	unique	unique	$P_{48 q}$	yes		
$23-(2,4)-2$	unique	2	$P_{48 q}, P_{48 p}$	yes		
$13-(4,0)-0$	$\{0\}$	at least 1	$P_{48 n}$			
$11-(4,8)-4$	unique	at least 1	$P_{48 p}$			
$7-(8,0)-0$	$\{0\}$	at least 1	$P_{48 n}$			
$7-(7,6)-5$	$\sqrt{7} A_{6}^{\#}$	not known	not known			
$5-(12,0)-0$	$\{0\}$	at least 2	$P_{48 n}, P_{48 m}$			
$5-(10,8)-8$	$\sqrt{5} E_{8}$	at least 1	$P_{48 m}$			
$5-(8,16)-8$	$\left[2 . \text { Alt }_{10}\right]_{16}$	Λ_{32}	$P_{48 m}$	yes		
p=3	6 possible types					
$2-(24,24)-24$	$\sqrt{2} \Lambda_{24}$	$\sqrt{2} \Lambda_{24}$	$P_{48 n}$			
$2-(24,24)-24$	$\sqrt{2} O_{24}$	$\sqrt{2} O_{24}$	$P_{48 n}, P_{48 p}, P_{48 m}$			

Large automorphisms of extremal lattices

Definition

$\sigma \in \operatorname{Aut}(L)$ is called large, if μ_{σ} has an irreducible factor Φ_{a} of degree $d=\varphi(a)>\frac{1}{2} \operatorname{dim}(L)$.

Remark

Let $\sigma \in \operatorname{Aut}\left(\Lambda_{24}\right)$ be large. Then

a	23	33	35	39	40	52	56	60	84
d	22	20	24	24	16	24	24	16	24

Theorem (N. 2013-2014)

Let L be an extremal unimodular lattice of dimension $n=48$ or $n=72, \sigma \in \operatorname{Aut}(L)$ large.
Then $n=48$ and

Do good objects have symmetry ?

Do good objects have symmetry?

Do good objects have symmetry ?

- Yes, as we already assumed a certain structure.
- Yes, as we experience symmetry for small situations.

Do good objects have symmetry ?

- Yes, as we already assumed a certain structure.
- Yes, as we experience symmetry for small situations.
- No in large dimension.

Do good objects have symmetry ?

- Yes, as we already assumed a certain structure.
- Yes, as we experience symmetry for small situations.
- No in large dimension.
- Depending on definition of good:
- Measure of quality motivated by technical applications.
- These applications can make use of additional structure.
- Random even lattice $L \leq \mathbb{R}^{100}$ given by Gram matrix. Cannot determine its minimum, nor use it for error correction.
- Exists hardcoded decoding for the Leech lattice.
- Might be extended to Γ_{72}.

