Orthogonal Representations of Finite Groups

Gabriele Nebe

Lehrstuhl fir Algebra und Zahlentheorie

joint work with Thomas Breuer, Linda Hoyer, and Richard Parker


http://www.math.rwth-aachen.de
http://www.math.rwth-aachen.de

Group algebras
» (G finite group, K field
> KG = @gea Kg group algebra

> QG = @), A; with A; = D*™ semisimple algebra



Group algebras
» (G finite group, K field
> KG =P, s Kg group algebra
> QG =@ | A; with A; = D" semisimple algebra
> K, := Z(D;) abelian number fields, conductor divides |G|
» D, division algebra dimg, (D;) = m?

K2



Group algebras
» (G finite group, K field
KG =@, Kg group algebra
QG = @, A; with A; = D> semisimple algebra
K, := Z(D;) abelian number fields, conductor divides |G|
D; division algebra dim, (D;) = m?

D; has uniformly distributed invariants

>
| 4
>
| 4
>
> mn; divides |G| = Y0 [K; : Q](myn;)?



Group algebras
» (G finite group, K field
> KG =P, s Kg group algebra
QG = @, A; with A; = D> semisimple algebra
K, := Z(D;) abelian number fields, conductor divides |G|
D; division algebra dim, (D;) = m?

D; has uniformly distributed invariants
mgn; divides |G| = Y1 [K; : Q](mqn;)?

vvyVvyyvyy

Natural involution
> .: QG — QG, de(; agg — deG agg~".



Group algebras
» (G finite group, K field
> KG =P, s Kg group algebra
QG = @, A; with A; = D> semisimple algebra
K, := Z(D;) abelian number fields, conductor divides |G|
D; division algebra dim, (D;) = m?

D; has uniformly distributed invariants
mgn; divides |G| = Y1 [K; : Q](mqn;)?

vvyVvyyvyy

Natural involution

> 1:QG = QG > ;99 = Dyei agg.
> L(A) = Ag, 1 =4,



Group algebras
» (G finite group, K field
> KG =P, s Kg group algebra
QG = @, A; with A; = D> semisimple algebra
K, := Z(D;) abelian number fields, conductor divides |G|
D; division algebra dim, (D;) = m?

D; has uniformly distributed invariants
mgn; divides |G| = Y1 [K; : Q](mqn;)?

vvyVvyyvyy

Natural involution
> .: QG — QG, de(; agg — deG agg~".
> o (Ai) = Ai, b = LIA;
» K, real = ¢; involution of first kind,
then m; € {1,2} and m; = 2 if ¢; symplectic.



Group algebras
» (G finite group, K field
> KG = ®g€G K g group algebra
QG = @, A; with A; = D> semisimple algebra
K, := Z(D;) abelian number fields, conductor divides |G|
D; division algebra dim, (D;) = m?

D; has uniformly distributed invariants
mgn; divides |G| = Y1 [K; : Q](mqn;)?

vvyVvyyvyy

Natural involution

> . : QG — QQG, deG agg — deG agg*t.
> L(A) = Ag, 1 =4,
» K, real = ¢; involution of first kind,
then m; € {1,2} and m; = 2 if ¢; symplectic.
» K; not real «; involution of second kind.



Group algebras
» (G finite group, K field
> KG =P, s Kg group algebra
QG = @, A; with A; = D> semisimple algebra
K, := Z(D;) abelian number fields, conductor divides |G|
D; division algebra dim, (D;) = m?

D; has uniformly distributed invariants
mgn; divides |G| = Y1 [K; : Q](mqn;)?

vvyVvyyvyy

Natural involution
> . : QG — QQG, deg agg — deG agg*t.
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Invariant forms

> p;: G — A group homomorphism

> xi: G — K, g+ trace(p;(g)) character,
K; = Q(x;) character field
Xi constant on conjugacy classes, x;(1) = n;m;

» Frobenius Schur indicator ind(x;) € {+,0, —}

+ if K; is real and p;(G) stabilises a quadratic form Q;

- if K; is real and p,;(G) stabilises a symplectic form .S;

o if K; is complex, then p;(G) stabilises a Hermitian form H;
F; := Fixg, (1)

F(pi) ={aQ; | a € K} resp. = {aH; | a € F;}

space of p;(G)-invariant forms.

Invariants of ; are the invariants of Q; resp. H; that are independent
of scaling.
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t; orthogonal

F(pi) = {aQ; | a € K;}, pi : G — O(Q;) orthogonal
disc(aQ;) = aXi™) disc(Q;)
so disc(s;) € K;*/(K;)* well defined, if and only if x;(1) even.

Irr™(G) = {x € Irr(G) | ind(x) = + and x(1) even }

1; of second kind

F(p;) = {aH, | a € F;}, p; : G — U(H;) unitary
disc(v;) € F/* /Ng, /r,(K;*) well defined, if and only if x;(1) even.

Irr’(G) := {x € Irr(G) | ind(x) = o and x(1) even }

Determine discriminants for the characters in Trr*(G) and Irr?(G) for
all but the largest few ATLAS groups.
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ATLAS

FINITE GROUPS

Building blocks of finite groups:
finite simple groups

alternating groups

classical groups

linear, symplectic, unitary, orthogonal groups over finite fields
26 sporadic simple groups: Matthieu groups ... Monster
ATLAS of finite groups

ordinary character tables of finite simple groups

classifying simple QG-modules
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Orthogonal stability

A character x is called orthogonal if there is a representation p with
character y admitting a non-degenerate invariant quadratic form Q.
Thenp: G — O(Q).

An orthogonal character y is called orthogonally stable

if there is a square class d(Q(x)*)? such that

for all representations p : G — GL,, (L) with character y and all
non-degenerate quadratic forms @ € F(p)

disc(Q) = d(L*)?.

x orthogonally stable, then

disc(x) := d(Q(x)*)?

is called the orthogonal discriminant of .
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Computing the orthogonal discriminant

Proposition (Knus, Merkurjev, Rost, Tignol, 1998)

dim(V) even = E_(B) N GL(V) # {}.
Then det(B) = det(a)(K*)? for any invertible « € E_(B).

Theorem (GN 22)

x is orthogonally stable, if and only if all its absolutely irreducible
indicator + constituents have even degree.

> @ € F(p) non-degenerate, p(G) < O(Q), n := dim(p) even
> 1q(g) =g ' forall g € p(G)

> Take three random elements g, h, k in p(G)

> compute X = X (g, h,k)=g—g ' +h—h ' +k—k!

> If det(X) # 0 then

(a) x, is orthogonally stable and
(b) disc(x,) = (—1)"/* det(X)(Q(x)*)*.
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The character table of .J,

> Rational Schur index of 21 is 2, A2 = (%”

» No rational representation with character y2;

» But over F,,, p > 7, there is an orthogonal representation of
degree 336 with character xo;.

) 168x168

» Compute disc(x21):
> p a 672 dimensional rational representation affording 221

» Choose g, h, k € p(J2), compute
X=X(ghk)=g—g ' +h=h""+k—k' € p(E_(QJ)).

> disc(x21) = Nrea(X)(Q*)2.
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The discriminant field extension

d(K*)? determines K[Vd]/K.

x €I (G), K == Q(x)

disc(y) = d(K*)? = A(x) := K[V/d] discriminant field
x (mod p) orthogonally stable = o unramified in A(x)
Then p inert < disc(x (mod p)) not a square.

primes that ramify in A(x)/Q(x) divide the group order.
a priori finite list of possibilities for disc(x)

» Determine disc(x) by reducing it modulo enough primes
(not dividing the group order)

vvyyvyy

vy

A(x)/Q is not always Galois.
E.g. G =Ji, x(1) = 56, Q(x) = Q(v/5),
disc(x) = (31 +5V5)/2, Gal(A(x))/Q = Dy
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Y (G):={g—g'|geG) <ZG.

x orthogonally stable < there is X € ¥~ (G) such that det(p(X)) # 0
for any representation p affording x. Then

disc(x) = (=1)XM72 det(p(X))(Q()*)*-

H < G such that x| orthogonally stable < 3 such X € ¥~ (H).

A simple algebra with orthogonal involution .
Y (A):={acA|a=—i(a)}
Subalgebra B < A orthogonally stable if and only if
(@) «(B) = Band (b) X~ (B) N A* # 0.
Then
disc(e) = disc(s|p).
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Parker’s conjecture

Discriminants of rational orthogonally stable characters are odd.
If disc(x) = d(K*)? then v(d) is even for all dyadic valuations v of K.

Parker’s conjecture holds

» for the ATLAS groups up to HN
order |[HN| = 21436567 . 11 - 19 = 273,030, 912, 000, 000
largest x(1) = 5,103,000, Q(x) = Q(+/5)

» for characters of the form 1 + 1) where ind(v)) =0
(Navarro, Tiep, Isaacs, Liebeck)

» for solvable groups (GN)

> SLa(q), SLs(q), SUs(q) (all ¢, OB,LH,GN),

» for all Coxeter groups (Linda Hoyer)

» for all groups GL,,(q), G2(g) with ¢ odd (Linda Hoyer)

No counterexamples to Parker’s conjecture so far.
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Hermitian forms
Discriminant of quaternion algebra

> K field, o € Aut(K) of order 2, F := Fixk (o), K = F[v—{]
> d € F*, quaternion algebra

(K, d)r = (L4, 5,k | ©* = =6,j* = d,ij = —ji = k)r

> disck ([(K,d)r]) =: dNk,r(K*) K-discriminant of [(K, d)r].

Discriminant of Hermitian form

» H:V xV — K Hermitian form
Hp = (H(b;,b;))},—y € K"™*", B = (by,...,b,) an K-basis of V/

> Tl
> disc(H) = (—1)(3) det(Hp) Nk, »(K*) discriminant of H.
> A(H) :=[(K,d)r] € Bra(K, F') discriminant algebra of H.
> y € Irr°(G), well defined disc(y) and A(x)

> Primes that ramify in A(x) do divide the group order.
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Orthogonal subalgebras

2 central simple K-algebra of even degree 2m involution ¢ of second
kind, F' := Fixg (1).

A F-subalgebra A of 2l is called an orthogonal subalgebra of (2, ) if
(a) Ais a central simple F-algebra with KA = 2.

(b) A is invariant under ¢, i.e. t«(A) = A.

(c) The restriction of « to A is an orthogonal involution of A.

(V, H) Hermitian space of dimension 2m

B an orthogonal basis, so Hpg diagonal matrix.
A=FEnd(V) = Kmx2m | = p.

Then A := F?™*2™ jg an orthogonal subalgebra.
disc(H) = disc(e4)Ng/p (K*).
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Orthogonal subalgebras

> K =F[vV-9],

» V=Kb & Kby,de F*, Hg := diag(l,d) € K2%2,
» disc(H) = disc(Hp) = —dNg p(K*)

>

Q = (i == diag(V=8, —v/=3),j = ( 2 (1) )>F C K>

adjoint involution ¢y restricts to orthogonal involution ¢y of Q.
(i) = —i, so disc(tq) = —det(i)(F*)? = —§(F*)2.

disc(ty) = —dNg/p(K*)
o€ NK/F(KX)

vvyyvyy

disc(Hp) = disc(tg) = disc(tg) disck ([Q])
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Unitary discriminant from orthogonal subalgebra

Theorem (GN 24)

Let (V, H) be a Hermitian K-space of even dimension 2m,
2 := Endg (V), and ¢ = ¢y the adjoint involution of the
non-degenerate Hermitian form H. Let A be an orthogonal
subalgebra of L.

(@) [A] € Bra(K, F).

(b) disc(H) = disck ([A])™ disc(tja) € F*/Ng)p(K>).

Proof: Choose suitable orthogonal basis and use formula above for
each orthogonal summand.

Fixed algebras of certain group automorphisms are orthogonal
subalgebras.
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Fixed algebras

> v € Irr°(G), p : G — GLa,, (K) representation affording x

> o c Aut(G)witha? =1and yoa =Y.

> A= {(p(g) +p(a(g)) : g € G)r = Fix(«) is orthogonal subalgebra
>

>

S7(A) = (p(9) + p(alg)) = (p(g™") + pla(g™))) 1 g € G)F
X € X7 (A) N A* then the a-discriminant of x is

disc®(x) = (=1)™ det(X)(F*)2.

Theorem
disc(x) = disc® () disck ([A])™.

disc®(y) is a square class of F’

hence can be obtained by enough reductions modulo primes

disck ([A]) is obtained from Schur indices of the induced character of
x to the semidirect product G : («).
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Conclusion
» Computed the orthogonal discriminants of the characters in

It ™ (G) = {x € Irr(G) | ind(x) = +, x(1) even }.

for the ATLAS groups up to HN.
(joint with Richard Parker and Thomas Breuer)
» Computed the unitary discriminants of the characters in

Irr’(G) = {x € Irr(G) | ind(x) = +, x(1) even }.
for the ATLAS groups up to HN. (joint with David Schlang)
Y (G)=(g—g']geG) <ZG.

x orthogonally stable < thereis X € £~ (G), det(p(X)) # 0
for any representation p affording x. Then

det(x) = det(p(X))(Q()*)*.

Parker’s conjecture
X € 7 (G) = v(det(p(X))) even for all dyadic valuations v.



