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Group algebras
▶ G finite group, K field
▶ KG =

⊕
g∈GKg group algebra

▶ QG ∼=
⊕h

i=1Ai with Ai
∼= Dni×ni

i semisimple algebra

▶ Ki := Z(Di) abelian number fields, conductor divides |G|
▶ Di division algebra dimKi

(Di) = m2
i

▶ Di has uniformly distributed invariants
▶ mini divides |G| =

∑h
i=1[Ki : Q](mini)

2

Natural involution
▶ ι : QG→ QG,

∑
g∈G agg 7→

∑
g∈G agg

−1.
▶ ι(Ai) = Ai, ιi := ι|Ai

▶ Ki real ⇒ ιi involution of first kind,
then mi ∈ {1, 2} and mi = 2 if ιi symplectic.

▶ Ki not real ιi involution of second kind.

Determine invariants of ιi
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Invariant forms

▶ ρi : G→ A×
i group homomorphism

▶ χi : G→ Ki, g 7→ trace(ρi(g)) character,
Ki = Q(χi) character field
χi constant on conjugacy classes, χi(1) = nimi

▶ Frobenius Schur indicator ind(χi) ∈ {+, o,−}
+ if Ki is real and ρi(G) stabilises a quadratic form Qi

- if Ki is real and ρi(G) stabilises a symplectic form Si

o if Ki is complex, then ρi(G) stabilises a Hermitian form Hi

Fi := FixKi(ιi)

F(ρi) = {aQi | a ∈ Ki} resp. = {aHi | a ∈ Fi}
space of ρi(G)-invariant forms.
Invariants of ιi are the invariants of Qi resp. Hi that are independent
of scaling.
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Discriminants for even character degree

ιi orthogonal

F(ρi) = {aQi | a ∈ Ki}, ρi : G→ O(Qi) orthogonal
disc(aQi) = aχi(1) disc(Qi)
so disc(ιi) ∈ K×

i /(K
×
i )2 well defined, if and only if χi(1) even.

Irr+(G) := {χ ∈ Irr(G) | ind(χ) = + and χ(1) even }

ιi of second kind
F(ρi) = {aHi | a ∈ Fi}, ρi : G→ U(Hi) unitary
disc(ιi) ∈ F×

i /NKi/Fi
(K×

i ) well defined, if and only if χi(1) even.

Irro(G) := {χ ∈ Irr(G) | ind(χ) = o and χ(1) even }

Determine discriminants for the characters in Irr+(G) and Irro(G) for
all but the largest few ATLAS groups.
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▶ Building blocks of finite groups:
finite simple groups

▶ alternating groups
▶ classical groups

linear, symplectic, unitary, orthogonal groups over finite fields
▶ 26 sporadic simple groups: Matthieu groups ... Monster
▶ ATLAS of finite groups

ordinary character tables of finite simple groups
classifying simple QG-modules
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The character table of A7

1a 2a 3a 3b 4a 5a 6a 7a 7b

X.1 + 1 1 1 1 1 1 1 1 1
X.2 + 6 2 3 . . 1 -1 -1 -1
X.3 o 10 -2 1 1 . . 1 A B
X.4 o 10 -2 1 1 . . 1 B A
X.5 + 14 2 2 -1 . -1 2 . .
X.6 + 14 2 -1 2 . -1 -1 . .
X.7 + 15 -1 3 . -1 . -1 1 1
X.8 + 21 1 -3 . -1 1 1 . .
X.9 + 35 -1 -1 -1 1 . -1 . .

A = (−1 +
√
−7)/2, B = (−1−

√
−7)/2



The character table of A7

1a 2a 3a 3b 4a 5a 6a 7a 7b
OD

X.1 + 1 1 1 1 1 1 1 1 1
X.2 -7 + 6 2 3 . . 1 -1 -1 -1
X.3 -1 o 10 -2 1 1 . . 1 A B
X.4 -1 o 10 -2 1 1 . . 1 B A
X.5 -3 + 14 2 2 -1 . -1 2 . .
X.6 -15 + 14 2 -1 2 . -1 -1 . .
X.7 + 15 -1 3 . -1 . -1 1 1
X.8 + 21 1 -3 . -1 1 1 . .
X.9 + 35 -1 -1 -1 1 . -1 . .

A = (−1 +
√
−7)/2, B = (−1−

√
−7)/2



Orthogonal stability

A character χ is called orthogonal if there is a representation ρ with
character χ admitting a non-degenerate invariant quadratic form Q.
Then ρ : G→ O(Q).

An orthogonal character χ is called orthogonally stable
if there is a square class d(Q(χ)×)2 such that
for all representations ρ : G→ GLn(L) with character χ and all
non-degenerate quadratic forms Q ∈ F(ρ)

disc(Q) = d(L×)2.

χ orthogonally stable, then

disc(χ) := d(Q(χ)×)2

is called the orthogonal discriminant of χ.
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The discriminant of a quadratic form

▶ B non-degenerate symmetric bilinear form on V
▶ adjoint involution ιB on End(V )

B(α(v), w) = B(v, ιB(α)(w)) for all v, w ∈ V.

E−(B) := {α ∈ EndK(V ) | ιB(α) = −α}

▶ basis (v1, . . . , vn), End(V ) ∼= Kn×n, B := (B(vi, vj)) ∈ Kn×n

▶ ιB(A) = BAtrB−1 and E−(B) = {BX | X = −Xtr} as
▶ ιB(BX) = B(BX)trB−1 = BXtr.

▶ X = −Xtr then det(X) is a square.

Proposition (Knus, Merkurjev, Rost, Tignol, 1998)

dim(V ) even ⇔ E−(B) ∩GL(V ) ̸= {}.
Then det(B) = det(α)(K×)2 for any invertible α ∈ E−(B).
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▶ ιB(BX) = B(BX)trB−1 = BXtr.

▶ X = −Xtr then det(X) is a square.
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Theorem (GN 22)

χ is orthogonally stable, if and only if all its absolutely irreducible
indicator + constituents have even degree.

▶ Q ∈ F(ρ) non-degenerate, ρ(G) ≤ O(Q), n := dim(ρ) even
▶ ιQ(g) = g−1 for all g ∈ ρ(G)

▶ Take three random elements g, h, k in ρ(G)
▶ compute X = X(g, h, k) = g − g−1 + h− h−1 + k − k−1

▶ If det(X) ̸= 0 then
(a) χρ is orthogonally stable and
(b) disc(χρ) = (−1)n/2 det(X)(Q(χ)×)2.
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The character table of J2

▶ Rational Schur index of χ21 is 2, A21 =
(

2,3
Q

)168×168

▶ No rational representation with character χ21

▶ But over Fp, p ≥ 7, there is an orthogonal representation of
degree 336 with character χ21.

▶ Compute disc(χ21):
▶ ρ a 672 dimensional rational representation affording 2χ21

▶ Choose g, h, k ∈ ρ(J2), compute
X = X(g, h, k) = g − g−1 + h− h−1 + k − k−1 ∈ ρ(E−(QJ2)).

▶ disc(χ21) = Nred(X)(Q×)2.
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The discriminant field extension

▶ d(K×)2 determines K[
√
d]/K.

▶ χ ∈ Irr+(G), K := Q(χ)

▶ disc(χ) = d(K×)2 ⇒ ∆(χ) := K[
√
d] discriminant field

▶ χ (mod ℘) orthogonally stable ⇒ ℘ unramified in ∆(χ)

Then ℘ inert ⇔ disc(χ (mod ℘)) not a square.
▶ primes that ramify in ∆(χ)/Q(χ) divide the group order.
▶ a priori finite list of possibilities for disc(χ)
▶ Determine disc(χ) by reducing it modulo enough primes

(not dividing the group order)

∆(χ)/Q is not always Galois.

E.g. G = J1, χ(1) = 56, Q(χ) = Q(
√
5),

disc(χ) = (31 + 5
√
5)/2, Gal(∆(χ))/Q ∼= D8
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Σ−(G) := ⟨g − g−1 | g ∈ G⟩ ≤ ZG.

χ orthogonally stable ⇔ there is X ∈ Σ−(G) such that det(ρ(X)) ̸= 0
for any representation ρ affording χ. Then

disc(χ) = (−1)χ(1)/2 det(ρ(X))(Q(χ)×)2.

H ≤ G such that χ|H orthogonally stable ⇔ ∃ such X ∈ Σ−(H).

A simple algebra with orthogonal involution ι.
Σ−(A) := {a ∈ A | a = −ι(a)}.
Subalgebra B ≤ A orthogonally stable if and only if
(a) ι(B) = B and (b) Σ−(B) ∩A× ̸= ∅.
Then

disc(ι) = disc(ι|B).
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Parker’s conjecture

Discriminants of rational orthogonally stable characters are odd.

If disc(χ) = d(K×)2 then ν(d) is even for all dyadic valuations ν of K.

Parker’s conjecture holds

▶ for the ATLAS groups up to HN
order |HN | = 21436567 · 11 · 19 = 273, 030, 912, 000, 000

largest χ(1) = 5, 103, 000, Q(χ) = Q(
√
5)

▶ for characters of the form ψ + ψ where ind(ψ) =o
(Navarro, Tiep, Isaacs, Liebeck)

▶ for solvable groups (GN)
▶ SL2(q), SL3(q), SU3(q) (all q, OB,LH,GN),
▶ for all Coxeter groups (Linda Hoyer)
▶ for all groups GLn(q), G2(q) with q odd (Linda Hoyer)

No counterexamples to Parker’s conjecture so far.
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Hermitian forms

Discriminant of quaternion algebra

▶ K field, σ ∈ Aut(K) of order 2, F := FixK(σ), K = F [
√
−δ]

▶ d ∈ F×, quaternion algebra

(K, d)F := ⟨1, i, j, k | i2 = −δ, j2 = d, ij = −ji = k⟩F

▶ discK([(K, d)F ]) =: dNK/F (K
×) K-discriminant of [(K, d)F ].

Discriminant of Hermitian form
▶ H : V × V → K Hermitian form
▶ HB := (H(bi, bj))

n
i,j=1 ∈ Kn×n, B = (b1, . . . , bn) an K-basis of V

▶ disc(H) := (−1)(
n
2) det(HB)NK/F (K

×) discriminant of H.
▶ ∆(H) := [(K, d)F ] ∈ Br2(K,F ) discriminant algebra of H.
▶ χ ∈ Irro(G), well defined disc(χ) and ∆(χ)

▶ Primes that ramify in ∆(χ) do divide the group order.
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Orthogonal subalgebras

A central simple K-algebra of even degree 2m involution ι of second
kind, F := FixK(ι).

A F -subalgebra A of A is called an orthogonal subalgebra of (A, ι) if
(a) A is a central simple F -algebra with KA = A.
(b) A is invariant under ι, i.e. ι(A) = A.
(c) The restriction of ι to A is an orthogonal involution of A.

(V,H) Hermitian space of dimension 2m

B an orthogonal basis, so HB diagonal matrix.
A = End(V ) = K2m×2m, ι = ιH .
Then A := F 2m×2m is an orthogonal subalgebra.
disc(H) = disc(ιA)NK/F (K

×).
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Orthogonal subalgebras

▶ K = F [
√
−δ],

▶ V = Kb1 ⊕Kb2, d ∈ F×, HB := diag(1, d) ∈ K2×2.
▶ disc(H) = disc(HB) = −dNK/F (K

×)

▶

Q = ⟨i := diag(
√
−δ,−

√
−δ), j :=

(
0 1
d 0

)
⟩F ⊆ K2×2

▶ adjoint involution ιH restricts to orthogonal involution ιQ of Q.
▶ ι(i) = −i, so disc(ιQ) = − det(i)(F×)2 = −δ(F×)2.
▶ disc(ιH) = −dNK/F (K

×)

▶ δ ∈ NK/F (K
×)

disc(HB) = disc(ιH) = disc(ιQ) discK([Q])
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Unitary discriminant from orthogonal subalgebra

Theorem (GN 24)

Let (V,H) be a Hermitian K-space of even dimension 2m,
A := EndK(V ), and ι = ιH the adjoint involution of the
non-degenerate Hermitian form H. Let A be an orthogonal
subalgebra of A.
(a) [A] ∈ Br2(K,F ).
(b) disc(H) = discK([A])m disc(ι|A) ∈ F×/NK/F (K

×).

Proof: Choose suitable orthogonal basis and use formula above for
each orthogonal summand.

Fixed algebras of certain group automorphisms are orthogonal
subalgebras.
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Fixed algebras

▶ χ ∈ Irro(G), ρ : G→ GL2m(K) representation affording χ
▶ α ∈ Aut(G) with α2 = 1 and χ ◦ α = χ.

▶ A = ⟨ρ(g) + ρ(α(g)) : g ∈ G⟩F = Fix(α) is orthogonal subalgebra
▶ Σ−(A) = ⟨ρ(g) + ρ(α(g))− (ρ(g−1) + ρ(α(g−1))) : g ∈ G⟩F
▶ X ∈ Σ−(A) ∩A× then the α-discriminant of χ is

discα(χ) = (−1)m det(X)(F×)2.

Theorem
disc(χ) = discα(χ) discK([A])m.

discα(χ) is a square class of F
hence can be obtained by enough reductions modulo primes
discK([A]) is obtained from Schur indices of the induced character of
χ to the semidirect product G : ⟨α⟩.



Fixed algebras

▶ χ ∈ Irro(G), ρ : G→ GL2m(K) representation affording χ
▶ α ∈ Aut(G) with α2 = 1 and χ ◦ α = χ.
▶ A = ⟨ρ(g) + ρ(α(g)) : g ∈ G⟩F = Fix(α) is orthogonal subalgebra

▶ Σ−(A) = ⟨ρ(g) + ρ(α(g))− (ρ(g−1) + ρ(α(g−1))) : g ∈ G⟩F
▶ X ∈ Σ−(A) ∩A× then the α-discriminant of χ is

discα(χ) = (−1)m det(X)(F×)2.

Theorem
disc(χ) = discα(χ) discK([A])m.

discα(χ) is a square class of F
hence can be obtained by enough reductions modulo primes
discK([A]) is obtained from Schur indices of the induced character of
χ to the semidirect product G : ⟨α⟩.
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Conclusion
▶ Computed the orthogonal discriminants of the characters in

Irr+(G) = {χ ∈ Irr(G) | ind(χ) = +, χ(1) even }.

for the ATLAS groups up to HN .
(joint with Richard Parker and Thomas Breuer)

▶ Computed the unitary discriminants of the characters in

Irro(G) = {χ ∈ Irr(G) | ind(χ) = +, χ(1) even }.

for the ATLAS groups up to HN . (joint with David Schlang)

Σ−(G) := ⟨g − g−1 | g ∈ G⟩ ≤ ZG.

χ orthogonally stable ⇔ there is X ∈ Σ−(G), det(ρ(X)) ̸= 0
for any representation ρ affording χ. Then

det(χ) = det(ρ(X))(Q(χ)×)2.

Parker’s conjecture

X ∈ Σ−(G) ⇒ ν(det(ρ(X))) even for all dyadic valuations ν.
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