Orthogonal Representations of Finite Groups

Gabriele Nebe

Lehrstuhl für Algebra und Zahlentheorie

joint work with Thomas Breuer, Linda Hoyer, and Richard Parker

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- ► G finite group, K field
- ► $KG = \bigoplus_{g \in G} Kg$ group algebra
- ▶ $\mathbb{Q}G \cong \bigoplus_{i=1}^{h} A_i$ with $A_i \cong D_i^{n_i \times n_i}$ semisimple algebra

(ロ) (同) (三) (三) (三) (○) (○)

- ▶ G finite group, K field
- ► $KG = \bigoplus_{g \in G} Kg$ group algebra
- $\mathbb{Q}G \cong \bigoplus_{i=1}^{h} A_i$ with $A_i \cong D_i^{n_i \times n_i}$ semisimple algebra
- ▶ $K_i := Z(D_i)$ abelian number fields, conductor divides |G|

(ロ) (同) (三) (三) (三) (○) (○)

• D_i division algebra $\dim_{K_i}(D_i) = m_i^2$

- ▶ G finite group, K field
- ► $KG = \bigoplus_{g \in G} Kg$ group algebra
- $\mathbb{Q}G \cong \bigoplus_{i=1}^{h} A_i$ with $A_i \cong D_i^{n_i \times n_i}$ semisimple algebra
- ► $K_i := Z(D_i)$ abelian number fields, conductor divides |G|

(日) (日) (日) (日) (日) (日) (日)

- D_i division algebra $\dim_{K_i}(D_i) = m_i^2$
- D_i has uniformly distributed invariants
- $m_i n_i$ divides $|G| = \sum_{i=1}^h [K_i : \mathbb{Q}](m_i n_i)^2$

- ▶ G finite group, K field
- ► $KG = \bigoplus_{g \in G} Kg$ group algebra
- $\mathbb{Q}G \cong \bigoplus_{i=1}^{h} A_i$ with $A_i \cong D_i^{n_i \times n_i}$ semisimple algebra
- ► $K_i := Z(D_i)$ abelian number fields, conductor divides |G|

(日) (日) (日) (日) (日) (日) (日)

- D_i division algebra $\dim_{K_i}(D_i) = m_i^2$
- D_i has uniformly distributed invariants
- $m_i n_i$ divides $|G| = \sum_{i=1}^h [K_i : \mathbb{Q}](m_i n_i)^2$

Natural involution

$$\blacktriangleright \iota: \mathbb{Q}G \to \mathbb{Q}G, \sum_{g \in G} a_g g \mapsto \sum_{g \in G} a_g g^{-1}.$$

- ▶ G finite group, K field
- ► $KG = \bigoplus_{g \in G} Kg$ group algebra
- $\mathbb{Q}G \cong \bigoplus_{i=1}^{h} A_i$ with $A_i \cong D_i^{n_i \times n_i}$ semisimple algebra
- ► $K_i := Z(D_i)$ abelian number fields, conductor divides |G|

(日) (日) (日) (日) (日) (日) (日)

- D_i division algebra $\dim_{K_i}(D_i) = m_i^2$
- D_i has uniformly distributed invariants
- $m_i n_i$ divides $|G| = \sum_{i=1}^h [K_i : \mathbb{Q}](m_i n_i)^2$

Natural involution

$$\blacktriangleright \iota: \mathbb{Q}G \to \mathbb{Q}G, \sum_{g \in G} a_g g \mapsto \sum_{g \in G} a_g g^{-1}.$$

$$\blacktriangleright \iota(A_i) = A_i, \, \iota_i := \iota_{|A_i|}$$

- ▶ G finite group, K field
- ► $KG = \bigoplus_{g \in G} Kg$ group algebra
- $\mathbb{Q}G \cong \bigoplus_{i=1}^{h} A_i$ with $A_i \cong D_i^{n_i \times n_i}$ semisimple algebra
- ► $K_i := Z(D_i)$ abelian number fields, conductor divides |G|

(日) (日) (日) (日) (日) (日) (日)

- D_i division algebra $\dim_{K_i}(D_i) = m_i^2$
- D_i has uniformly distributed invariants
- $m_i n_i$ divides $|G| = \sum_{i=1}^h [K_i : \mathbb{Q}](m_i n_i)^2$

Natural involution

$$\blacktriangleright \iota: \mathbb{Q}G \to \mathbb{Q}G, \sum_{g \in G} a_g g \mapsto \sum_{g \in G} a_g g^{-1}.$$

 $\blacktriangleright \iota(A_i) = A_i, \, \iota_i := \iota_{|A_i|}$

K_i real ⇒ ι_i involution of first kind, then m_i ∈ {1,2} and m_i = 2 if ι_i symplectic.

- ▶ G finite group, K field
- ► $KG = \bigoplus_{g \in G} Kg$ group algebra
- $\mathbb{Q}G \cong \bigoplus_{i=1}^{h} A_i$ with $A_i \cong D_i^{n_i \times n_i}$ semisimple algebra
- ► $K_i := Z(D_i)$ abelian number fields, conductor divides |G|

(日) (日) (日) (日) (日) (日) (日)

- D_i division algebra $\dim_{K_i}(D_i) = m_i^2$
- D_i has uniformly distributed invariants
- $m_i n_i$ divides $|G| = \sum_{i=1}^h [K_i : \mathbb{Q}](m_i n_i)^2$

Natural involution

$$\blacktriangleright \iota: \mathbb{Q}G \to \mathbb{Q}G, \sum_{g \in G} a_g g \mapsto \sum_{g \in G} a_g g^{-1}.$$

- $\blacktriangleright \ \iota(A_i) = A_i, \, \iota_i := \iota_{|A_i|}$
- K_i real ⇒ ι_i involution of first kind, then m_i ∈ {1,2} and m_i = 2 if ι_i symplectic.
- K_i not real ι_i involution of second kind.

- ▶ G finite group, K field
- ► $KG = \bigoplus_{g \in G} Kg$ group algebra
- $\mathbb{Q}G \cong \bigoplus_{i=1}^{h} A_i$ with $A_i \cong D_i^{n_i \times n_i}$ semisimple algebra
- ► $K_i := Z(D_i)$ abelian number fields, conductor divides |G|
- D_i division algebra $\dim_{K_i}(D_i) = m_i^2$
- D_i has uniformly distributed invariants
- $m_i n_i$ divides $|G| = \sum_{i=1}^h [K_i : \mathbb{Q}](m_i n_i)^2$

Natural involution

$$\blacktriangleright \iota: \mathbb{Q}G \to \mathbb{Q}G, \sum_{g \in G} a_g g \mapsto \sum_{g \in G} a_g g^{-1}.$$

- $\blacktriangleright \iota(A_i) = A_i, \, \iota_i := \iota_{|A_i|}$
- K_i real ⇒ ι_i involution of first kind, then m_i ∈ {1,2} and m_i = 2 if ι_i symplectic.
- K_i not real ι_i involution of second kind.

Determine invariants of ι_i

- $\rho_i: G \to A_i^{\times}$ group homomorphism
- $\chi_i: G \to K_i, g \mapsto \operatorname{trace}(\rho_i(g))$ character,

• $\rho_i: G \to A_i^{\times}$ group homomorphism

•
$$\chi_i: G \to K_i, g \mapsto \operatorname{trace}(\rho_i(g))$$
 character,

 $K_i = \mathbb{Q}(\chi_i)$ character field

- $\rho_i: G \to A_i^{\times}$ group homomorphism
- $\chi_i: G \to K_i, g \mapsto \operatorname{trace}(\rho_i(g))$ character,
 - $K_i = \mathbb{Q}(\chi_i)$ character field

 χ_i constant on conjugacy classes, $\chi_i(1) = n_i m_i$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $\rho_i: G \to A_i^{\times}$ group homomorphism
- $\chi_i: G \to K_i, g \mapsto \operatorname{trace}(\rho_i(g))$ character,

 $K_i = \mathbb{Q}(\chi_i)$ character field

 χ_i constant on conjugacy classes, $\chi_i(1) = n_i m_i$

(ロ) (同) (三) (三) (三) (○) (○)

Frobenius Schur indicator $ind(\chi_i) \in \{+, o, -\}$

- $\rho_i: G \to A_i^{\times}$ group homomorphism
- $\chi_i: G \to K_i, g \mapsto \operatorname{trace}(\rho_i(g))$ character,

 $K_i = \mathbb{Q}(\chi_i)$ character field

 χ_i constant on conjugacy classes, $\chi_i(1) = n_i m_i$

- Frobenius Schur indicator $ind(\chi_i) \in \{+, o, -\}$
- + if K_i is real and $\rho_i(G)$ stabilises a quadratic form Q_i
- if K_i is real and $\rho_i(G)$ stabilises a symplectic form S_i
- o if K_i is complex, then $\rho_i(G)$ stabilises a Hermitian form H_i $F_i := Fix_{K_i}(\iota_i)$

- $\rho_i: G \to A_i^{\times}$ group homomorphism
- $\chi_i: G \to K_i, g \mapsto \operatorname{trace}(\rho_i(g))$ character,

 $K_i = \mathbb{Q}(\chi_i)$ character field

 χ_i constant on conjugacy classes, $\chi_i(1) = n_i m_i$

- Frobenius Schur indicator $ind(\chi_i) \in \{+, o, -\}$
- + if K_i is real and $\rho_i(G)$ stabilises a quadratic form Q_i
- if K_i is real and $\rho_i(G)$ stabilises a symplectic form S_i
- o if K_i is complex, then $\rho_i(G)$ stabilises a Hermitian form H_i $F_i := Fix_{K_i}(\iota_i)$

 $\mathfrak{F}(\rho_i) = \{aQ_i \mid a \in K_i\} \text{ resp.} = \{aH_i \mid a \in F_i\}$ space of $\rho_i(G)$ -invariant forms.

- $\rho_i: G \to A_i^{\times}$ group homomorphism
- $\chi_i: G \to K_i, g \mapsto \operatorname{trace}(\rho_i(g))$ character,

 $K_i = \mathbb{Q}(\chi_i)$ character field

 χ_i constant on conjugacy classes, $\chi_i(1) = n_i m_i$

- Frobenius Schur indicator $ind(\chi_i) \in \{+, o, -\}$
- + if K_i is real and $\rho_i(G)$ stabilises a quadratic form Q_i
- if K_i is real and $\rho_i(G)$ stabilises a symplectic form S_i
- o if K_i is complex, then $\rho_i(G)$ stabilises a Hermitian form H_i $F_i := Fix_{K_i}(\iota_i)$

 $\mathcal{F}(\rho_i) = \{aQ_i \mid a \in K_i\} \text{ resp.} = \{aH_i \mid a \in F_i\}$ space of $\rho_i(G)$ -invariant forms. Invariants of ι_i are the invariants of Q_i resp. H_i that are independent of scaling.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

ι_i orthogonal

 $\mathfrak{F}(\rho_i) = \{aQ_i \mid a \in K_i\}, \, \rho_i : G \to O(Q_i) \text{ orthogonal}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 ι_i orthogonal

$$\begin{split} & \mathcal{F}(\rho_i) = \{aQ_i \mid a \in K_i\}, \, \rho_i : G \to O(Q_i) \text{ orthogonal} \\ & \operatorname{disc}(aQ_i) = a^{\chi_i(1)} \operatorname{disc}(Q_i) \\ & \text{so } \operatorname{disc}(\iota_i) \in K_i^{\times} / (K_i^{\times})^2 \text{ well defined, if and only if } \chi_i(1) \text{ even.} \end{split}$$

(日) (日) (日) (日) (日) (日) (日)

 ι_i orthogonal

$$\begin{split} & \mathcal{F}(\rho_i) = \{aQ_i \mid a \in K_i\}, \, \rho_i : G \to O(Q_i) \text{ orthogonal} \\ & \operatorname{disc}(aQ_i) = a^{\chi_i(1)} \operatorname{disc}(Q_i) \\ & \text{so } \operatorname{disc}(\iota_i) \in K_i^{\times} / (K_i^{\times})^2 \text{ well defined, if and only if } \chi_i(1) \text{ even.} \end{split}$$

 $\operatorname{Irr}^+(G) := \{ \chi \in \operatorname{Irr}(G) \mid \operatorname{ind}(\chi) = + \text{ and } \chi(1) \text{ even } \}$

(ロ) (同) (三) (三) (三) (○) (○)

ι_i orthogonal

$$\begin{split} \mathfrak{F}(\rho_i) &= \{ aQ_i \mid a \in K_i \}, \, \rho_i : G \to O(Q_i) \text{ orthogonal} \\ \operatorname{disc}(aQ_i) &= a^{\chi_i(1)} \operatorname{disc}(Q_i) \\ \text{so } \operatorname{disc}(\iota_i) \in K_i^{\times} / (K_i^{\times})^2 \text{ well defined, if and only if } \chi_i(1) \text{ even.} \end{split}$$

 $\operatorname{Irr}^+(G) := \{ \chi \in \operatorname{Irr}(G) \mid \operatorname{ind}(\chi) = + \text{ and } \chi(1) \text{ even } \}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

ι_i of second kind

$$\mathfrak{F}(\rho_i) = \{aH_i \mid a \in F_i\}, \, \rho_i : G \to U(H_i) \text{ unitary}$$

ι_i orthogonal

$$\begin{split} \mathfrak{F}(\rho_i) &= \{ aQ_i \mid a \in K_i \}, \, \rho_i : G \to O(Q_i) \text{ orthogonal} \\ \operatorname{disc}(aQ_i) &= a^{\chi_i(1)} \operatorname{disc}(Q_i) \\ \text{so } \operatorname{disc}(\iota_i) \in K_i^{\times} / (K_i^{\times})^2 \text{ well defined, if and only if } \chi_i(1) \text{ even.} \end{split}$$

 $\operatorname{Irr}^+(G) := \{ \chi \in \operatorname{Irr}(G) \mid \operatorname{ind}(\chi) = + \text{ and } \chi(1) \text{ even } \}$

ι_i of second kind

 $\begin{aligned} \mathfrak{F}(\rho_i) &= \{ aH_i \mid a \in F_i \}, \, \rho_i : G \to U(H_i) \text{ unitary} \\ \operatorname{disc}(\iota_i) &\in F_i^\times / N_{K_i/F_i}(K_i^\times) \text{ well defined, if and only if } \chi_i(1) \text{ even.} \end{aligned}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

ι_i orthogonal

$$\begin{split} & \mathcal{F}(\rho_i) = \{aQ_i \mid a \in K_i\}, \, \rho_i : G \to O(Q_i) \text{ orthogonal} \\ & \operatorname{disc}(aQ_i) = a^{\chi_i(1)} \operatorname{disc}(Q_i) \\ & \text{so } \operatorname{disc}(\iota_i) \in K_i^{\times} / (K_i^{\times})^2 \text{ well defined, if and only if } \chi_i(1) \text{ even.} \end{split}$$

 $\operatorname{Irr}^+(G) := \{ \chi \in \operatorname{Irr}(G) \mid \operatorname{ind}(\chi) = + \text{ and } \chi(1) \text{ even } \}$

ι_i of second kind

 $\mathfrak{F}(\rho_i) = \{aH_i \mid a \in F_i\}, \rho_i : G \to U(H_i) \text{ unitary}$ $\operatorname{disc}(\iota_i) \in F_i^{\times} / N_{K_i/F_i}(K_i^{\times}) \text{ well defined, if and only if } \chi_i(1) \text{ even.}$

 $\operatorname{Irr}^{o}(G) := \{ \chi \in \operatorname{Irr}(G) \mid \operatorname{ind}(\chi) = o \text{ and } \chi(1) \text{ even } \}$

(日) (日) (日) (日) (日) (日) (日)

ι_i orthogonal

$$\begin{split} \mathfrak{F}(\rho_i) &= \{ aQ_i \mid a \in K_i \}, \, \rho_i : G \to O(Q_i) \text{ orthogonal} \\ \operatorname{disc}(aQ_i) &= a^{\chi_i(1)} \operatorname{disc}(Q_i) \\ \text{so } \operatorname{disc}(\iota_i) \in K_i^{\times} / (K_i^{\times})^2 \text{ well defined, if and only if } \chi_i(1) \text{ even.} \end{split}$$

 $\operatorname{Irr}^+(G) := \{ \chi \in \operatorname{Irr}(G) \mid \operatorname{ind}(\chi) = + \text{ and } \chi(1) \text{ even } \}$

ι_i of second kind

 $\mathcal{F}(\rho_i) = \{aH_i \mid a \in F_i\}, \rho_i : G \to U(H_i) \text{ unitary}$ $\operatorname{disc}(\iota_i) \in F_i^{\times} / N_{K_i/F_i}(K_i^{\times}) \text{ well defined, if and only if } \chi_i(1) \text{ even.}$

 $\operatorname{Irr}^{o}(G) := \{ \chi \in \operatorname{Irr}(G) \mid \operatorname{ind}(\chi) = o \text{ and } \chi(1) \text{ even } \}$

Determine discriminants for the characters in $Irr^+(G)$ and $Irr^o(G)$ for all but the largest few ATLAS groups.

・ロト・1回ト・1回ト・1回ト・1回ト

 Building blocks of finite groups: finite simple groups

- Building blocks of finite groups: finite simple groups
- alternating groups
- classical groups

linear, symplectic, unitary, orthogonal groups over finite fields

- Building blocks of finite groups: finite simple groups
- alternating groups
- classical groups

linear, symplectic, unitary, orthogonal groups over finite fields

26 sporadic simple groups: Matthieu groups ... Monster

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Building blocks of finite groups: finite simple groups
- alternating groups
- classical groups

linear, symplectic, unitary, orthogonal groups over finite fields

- 26 sporadic simple groups: Matthieu groups ... Monster
- ATLAS of finite groups ordinary character tables of finite simple groups classifying simple QG-modules

The character table of A_7

		1a	2a	3a	3b	4a	5a	6a	7a	7b
X.1	+	1	1	1	1	1	1	1	1	1
Х.2	+	6	2	3		•	1	-1	-1	-1
Х.З	0	10	-2	1	1			1	Α	В
Χ.4	0	10	-2	1	1			1	В	Α
X.5	+	14	2	2	-1		-1	2		
Х.б	+	14	2	-1	2		-1	-1		
Χ.7	+	15	-1	3		-1		-1	1	1
Χ.8	+	21	1	-3		-1	1	1		
X.9	+	35	-1	-1	-1	1		-1		

$$A = (-1 + \sqrt{-7})/2, B = (-1 - \sqrt{-7})/2$$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

The character table of A_7

			1a	2a	3a	3b	4a	5a	6a	7a	7b
	OD										
Χ.1		+	1	1	1	1	1	1	1	1	1
Х.2	-7	+	6	2	3			1	-1	-1	-1
Х.З	-1	0	10	-2	1	1			1	Α	В
Χ.4	-1	0	10	-2	1	1			1	В	Α
Χ.5	-3	+	14	2	2	-1		-1	2		
Х.б	-15	+	14	2	-1	2		-1	-1		
Χ.7		+	15	-1	3		-1		-1	1	1
Χ.8		+	21	1	-3		-1	1	1		
Х.9		+	35	-1	-1	-1	1		-1		

$$A = (-1 + \sqrt{-7})/2, B = (-1 - \sqrt{-7})/2$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Orthogonal stability

A character χ is called orthogonal if there is a representation ρ with character χ admitting a non-degenerate invariant quadratic form Q. Then $\rho: G \to O(Q)$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Orthogonal stability

A character χ is called orthogonal if there is a representation ρ with character χ admitting a non-degenerate invariant quadratic form Q. Then $\rho : G \to O(Q)$. An orthogonal character χ is called orthogonally stable if there is a square class $d(\mathbb{Q}(\chi)^{\times})^2$ such that for all representations $\rho : G \to \operatorname{GL}_n(L)$ with character χ and all non-degenerate quadratic forms $Q \in \mathcal{F}(\rho)$

 $\operatorname{disc}(Q) = d(L^{\times})^2.$

(日) (日) (日) (日) (日) (日) (日)

Orthogonal stability

A character χ is called orthogonal if there is a representation ρ with character χ admitting a non-degenerate invariant quadratic form Q. Then $\rho : G \to O(Q)$. An orthogonal character χ is called orthogonally stable if there is a square class $d(\mathbb{Q}(\chi)^{\times})^2$ such that for all representations $\rho : G \to \operatorname{GL}_n(L)$ with character χ and all non-degenerate quadratic forms $Q \in \mathcal{F}(\rho)$

$$\operatorname{disc}(Q) = d(L^{\times})^2.$$

 χ orthogonally stable, then

$$\operatorname{disc}(\chi) := d(\mathbb{Q}(\chi)^{\times})^2$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

is called the orthogonal discriminant of χ .

The discriminant of a quadratic form

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

The discriminant of a quadratic form

- ▶ *B* non-degenerate symmetric bilinear form on *V*
- adjoint involution ι_B on $\operatorname{End}(V)$

 $B(\alpha(v), w) = B(v, \iota_B(\alpha)(w))$ for all $v, w \in V$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ
- ▶ *B* non-degenerate symmetric bilinear form on *V*
- adjoint involution ι_B on $\operatorname{End}(V)$

$$B(\alpha(v), w) = B(v, \iota_B(\alpha)(w))$$
 for all $v, w \in V$.

$$E_{-}(B) := \{ \alpha \in \operatorname{End}_{K}(V) \mid \iota_{B}(\alpha) = -\alpha \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

- ▶ *B* non-degenerate symmetric bilinear form on *V*
- adjoint involution ι_B on $\operatorname{End}(V)$

$$B(\alpha(v), w) = B(v, \iota_B(\alpha)(w))$$
 for all $v, w \in V$.

$$E_{-}(B) := \{ \alpha \in \operatorname{End}_{K}(V) \mid \iota_{B}(\alpha) = -\alpha \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

▶ basis
$$(v_1, ..., v_n)$$
, End $(V) \cong K^{n \times n}$, $B := (B(v_i, v_j)) \in K^{n \times n}$
▶ $\iota_B(A) = BA^{tr}B^{-1}$ and $E_-(B) = \{BX \mid X = -X^{tr}\}$ as

- B non-degenerate symmetric bilinear form on V
- adjoint involution ι_B on $\operatorname{End}(V)$

$$B(\alpha(v), w) = B(v, \iota_B(\alpha)(w))$$
 for all $v, w \in V$.

$$E_{-}(B) := \{ \alpha \in \operatorname{End}_{K}(V) \mid \iota_{B}(\alpha) = -\alpha \}$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

basis (v₁,..., v_n), End(V) ≅ K^{n×n}, B := (B(v_i, v_j)) ∈ K^{n×n}
 ι_B(A) = BA^{tr}B⁻¹ and E₋(B) = {BX | X = -X^{tr}} as
 ι_B(BX) = B(BX)^{tr}B⁻¹ = BX^{tr}.
 X = -X^{tr} then det(X) is a square.

- B non-degenerate symmetric bilinear form on V
- adjoint involution ι_B on $\operatorname{End}(V)$

$$B(\alpha(v), w) = B(v, \iota_B(\alpha)(w))$$
 for all $v, w \in V$.

$$E_{-}(B) := \{ \alpha \in \operatorname{End}_{K}(V) \mid \iota_{B}(\alpha) = -\alpha \}$$

basis (v₁,..., v_n), End(V) ≅ K^{n×n}, B := (B(v_i, v_j)) ∈ K^{n×n}
 ι_B(A) = BA^{tr}B⁻¹ and E_−(B) = {BX | X = −X^{tr}} as
 ι_B(BX) = B(BX)^{tr}B⁻¹ = BX^{tr}.
 X = −X^{tr} then det(X) is a square.

Proposition (Knus, Merkurjev, Rost, Tignol, 1998) $\dim(V)$ even $\Leftrightarrow E_{-}(B) \cap \operatorname{GL}(V) \neq \{\}.$ Then $\det(B) = \det(\alpha)(K^{\times})^2$ for any invertible $\alpha \in E_{-}(B)$.

Proposition (Knus, Merkurjev, Rost, Tignol, 1998)

 $\dim(V)$ even $\Rightarrow E_{-}(B) \cap \operatorname{GL}(V) \neq \{\}.$ Then $\det(B) = \det(\alpha)(K^{\times})^2$ for any invertible $\alpha \in E_{-}(B)$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

Proposition (Knus, Merkurjev, Rost, Tignol, 1998)

 $\dim(V) \text{ even } \Rightarrow E_{-}(B) \cap \operatorname{GL}(V) \neq \{\}.$ Then $\det(B) = \det(\alpha)(K^{\times})^2$ for any invertible $\alpha \in E_{-}(B)$.

Theorem (GN 22)

 χ is orthogonally stable, if and only if all its absolutely irreducible indicator + constituents have even degree.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Proposition (Knus, Merkurjev, Rost, Tignol, 1998)

 $\dim(V) \text{ even } \Rightarrow E_{-}(B) \cap \operatorname{GL}(V) \neq \{\}.$ Then $\det(B) = \det(\alpha)(K^{\times})^2$ for any invertible $\alpha \in E_{-}(B)$.

Theorem (GN 22)

 χ is orthogonally stable, if and only if all its absolutely irreducible indicator + constituents have even degree.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Proposition (Knus, Merkurjev, Rost, Tignol, 1998)

 $\dim(V) \text{ even } \Rightarrow E_{-}(B) \cap \operatorname{GL}(V) \neq \{\}.$ Then $\det(B) = \det(\alpha)(K^{\times})^2$ for any invertible $\alpha \in E_{-}(B)$.

Theorem (GN 22)

 χ is orthogonally stable, if and only if all its absolutely irreducible indicator + constituents have even degree.

- ▶ $Q \in \mathfrak{F}(\rho)$ non-degenerate, $\rho(G) \leq O(Q)$, $n := \dim(\rho)$ even
- $\iota_Q(g) = g^{-1}$ for all $g \in \rho(G)$
- Take three random elements g, h, k in $\rho(G)$
- compute $X = X(g, h, k) = g g^{-1} + h h^{-1} + k k^{-1}$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Proposition (Knus, Merkurjev, Rost, Tignol, 1998)

 $\dim(V) \text{ even } \Rightarrow E_{-}(B) \cap \operatorname{GL}(V) \neq \{\}.$ Then $\det(B) = \det(\alpha)(K^{\times})^2$ for any invertible $\alpha \in E_{-}(B)$.

Theorem (GN 22)

 χ is orthogonally stable, if and only if all its absolutely irreducible indicator + constituents have even degree.

- ▶ $Q \in \mathfrak{F}(\rho)$ non-degenerate, $\rho(G) \leq O(Q)$, $n := \dim(\rho)$ even
- $\iota_Q(g) = g^{-1}$ for all $g \in \rho(G)$
- Take three random elements g, h, k in $\rho(G)$
- compute $X = X(g, h, k) = g g^{-1} + h h^{-1} + k k^{-1}$

	>																										0	0			p p	0	e	e	e	6			
			;	e -	1	8	e 1	6	6	e	e	e		6	6	e	6	6	6	6	8	12	16	15	,	' :	836	48	12	6 4	8 16	6	6	T	12	12			
		p	powe	r 9	A 1	240 A	080 A	36 A	96 A	300 A	300 A	50 A	50 A	24 AA	12 BB	A	A	BB	AB	DA	CA	AA	BA	AA			A	A	BB	IC IC	AA	AB	BC	AC	AB	AB			
		p 1	nd 1	A :	A 2A	A 2B	A 3A	A 3B	A 4A	A 5A	A Be	A 50	A De	AA 6A	BB 6B	7A	8A	10A	B#	10C	D#	12A	15A	Bw 1	rus i	nd	SC	4B	4C 6	5C 1	3B 80	128	120	14A	24A	Ba			
	x	1	+	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	:	++	1	1	1	1	1	1	1 1	1	1	1	Xı		
	x		+ 1-	+	2	2	5	-1	2	-365		b5+2		1	-1	0	0	ь5	.*	-b5	*	-1	0	0	1	+	0	0	0	0	0	0	0 0		0 0	0	X2		
	Xs		+ 11	-	s	2	5	-1	2		-305		b5+2	1	-1	0	0	*	b5		-b5	-1	0	0	1												X3		
	X4		+ 21	1	5 -	-3	3	0	1	b5+4	*	-255		-1	0	0	-1	ь5	*	0	0	1		b5	1	*	0	0	0	0	0	0	0	0	0 1	5 0	X		
	Xs		21	5	5 -	3	3	0	1		b5+4		-205	-1	0	0	-1		b5	0	0	1	-b5		1										1	1 -1	x		
	X6		36	4		0	9	0	4	-4	-4	1	1	1	0	1	0	0	0	-1	-1	1	-1	-1	:	++	6	-2	0	0	2	5	1		-1 .			~	
	X7		63	15	-	1	0	3	3	3	3	-2	-2	0	-1	0	1	-1	-1	0	0	0	Q	0	:	++	. 7	3	-1	1	-3	1	0	-1	0	0		Ve.	
	Хs	+	70	-10	-2		7	1	2 .	-555		0	0	-1	. 1	0	0	-b5	*	0	0	-1	65	5 8	1	•	• 0	0	0	0	0	0	0	0	0	U	•	¥9	
	Xo	+	70	-10	-2		7	1	2	*	-5b5	0	0	-1	1	0	0	*	-b5	0	0	-1	•	e b5	1												1	X In	
	X10		90	10	6		9	0 -	-2	5	5	. 0	0	1	o	-1	0	1	1	0	C	1		1 -1	:	+-	+ 6	1	2 0	0) 4	0	-1	0	-1		1	X	
	- Y		126	1.11	6			0	2	1	1	1	1	-1	0	0	0	1	1	-1	-1	1 -1	1	1 1	۱ :	+	+ ()	1 0) '	0 2	-2	1	0	U	-1	-1	×	
	~		120		N	14		1	0	-5	-5	0	0	0	1	-1	0	-1	-1	0			D .	1 .	1 :	: +	+	В	0 3	2 -	1 (1 (0 0	-		0	1	X12	
	X12	+	100		4					->	0	0	0	3	1	0	-1	0	(0.0		D -	1	0 1	0	: 4	++	7 -	1	1	1 -	- 1	1 -		1 (1 -1	-1	×	
	X13	+	175	15	-5	->		' -		0	0			0	0	0	1	b5	,	+ b5			0	0	0	1	+	0	0	0	0	0	0)	0	0 0	0	A14	
	X14	+ 1	189	-3	-3	0	C	:	3 -	365		05+2		0	0	0	1		b		+ b'	5	0	0	0	1												Xis	
	X15	+ 1	89	-3	-3	0	0		3	* .	-3b5	*	55+2	0				1			,	0	0	* -b	5	,	+	0	0	0	0	0	0	0	0	0 () () Xu	
	X16	+ 2	24	0	-4	8	-1	: • (0 2r!	5-1-2	r5-1	292	*	0	-1	0	0					0	0 -1	65	*	1												XI	,
	X17	+ 2	24	0	_4	8	-1	0)-2r!	5-1 2	r5-1	*	2b5	0	-1	0	0	1					0	0	0		++	1	-3	-1	1	3	-1	0	-1	1	0	0 X	18
	X18	+ 22	25 -1	5	5	0	3	3		0	0	0	0	0	-1	1	-1	0		0 0	0	0						0	0	-2	-1	0	0	0	1	1	0	0)	19
	Y10	. 28	R	2	4	0	-3	0		3	3	-2	-2	0	1	1	0	-1	-	1 1	0	0	0	U	0	•	**		~	0	0	-2	-2	1	0	-1	1	1	X20
		- 20			0	16	0	Ш		0	0	0	0	1	0	-1	0	0		0 . 1	0	0	1	0	0	:	++	0	-2	0	0	:	0	0	0	0	r6	-r6	X21
	X20 ·	- 30	0 -20	,	0 -		0	-			.n	1	1	-2	0	0	0	0		0	1	1	0	-1	-1	;	++	0	0	0	0	0		10	211	28	24	24	
,	K21Q23	334	5 16		0	-6	0	0		-4				6	12	7	8	20	2	0 1	0	10	12	15	15 :	fus	ind	4	4	8	12	8	8	12	24	28	24	24	
	ind	1	2		4	3	3	4		5	5	5	10	6	16	14	8			1	0	10	12	30	30							0	0	() (0 0	0	0	x
		2	S			0		-					b5-1	1	0	-1	0	C)	0 -b	5	*	-1	b5	*	1	-	0	0	(, 0	0							>
		1	2	1	1 -	3	0	2	-2	DO CO	×	-													-														

・ロト・日本・日本・日本・日本・日本

• Rational Schur index of
$$\chi_{21}$$
 is 2, $A_{21} = \left(\frac{2,3}{\mathbb{Q}}\right)^{168 \times 168}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

• Rational Schur index of
$$\chi_{21}$$
 is 2, $A_{21} = \left(\frac{2,3}{\mathbb{Q}}\right)^{168 \times 168}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▶ No rational representation with character χ_{21}

• Rational Schur index of
$$\chi_{21}$$
 is 2, $A_{21} = \left(\frac{2.3}{\mathbb{Q}}\right)^{168 \times 168}$

- ► No rational representation with character χ_{21}
- But over 𝔽_p, p ≥ 7, there is an orthogonal representation of degree 336 with character χ₂₁.

(ロ) (同) (三) (三) (三) (三) (○) (○)

• Compute $\operatorname{disc}(\chi_{21})$:

• Rational Schur index of
$$\chi_{21}$$
 is 2, $A_{21} = \left(\frac{2.3}{\mathbb{Q}}\right)^{168 \times 168}$

- ► No rational representation with character χ_{21}
- But over 𝔽_p, p ≥ 7, there is an orthogonal representation of degree 336 with character χ₂₁.
- Compute $\operatorname{disc}(\chi_{21})$:
- ▶ ρ a 672 dimensional rational representation affording $2\chi_{21}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

• $d(K^{\times})^2$ determines $K[\sqrt{d}]/K$.

•
$$d(K^{\times})^2$$
 determines $K[\sqrt{d}]/K$.

$$\blacktriangleright \chi \in \operatorname{Irr}^+(G), \, K := \mathbb{Q}(\chi)$$

• disc
$$(\chi) = d(K^{\times})^2 \Rightarrow \Delta(\chi) := K[\sqrt{d}]$$
 discriminant field

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

•
$$d(K^{\times})^2$$
 determines $K[\sqrt{d}]/K$.

- ► disc $(\chi) = d(K^{\times})^2 \Rightarrow \Delta(\chi) := K[\sqrt{d}]$ discriminant field
- $\chi \pmod{\wp}$ orthogonally stable $\Rightarrow \wp$ unramified in $\Delta(\chi)$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

•
$$d(K^{\times})^2$$
 determines $K[\sqrt{d}]/K$.

•
$$\chi \in \operatorname{Irr}^+(G), K := \mathbb{Q}(\chi)$$

- $\operatorname{disc}(\chi) = d(K^{\times})^2 \Rightarrow \Delta(\chi) := K[\sqrt{d}]$ discriminant field
- ► $\chi \pmod{\wp}$ orthogonally stable $\Rightarrow \wp$ unramified in $\Delta(\chi)$ Then \wp inert $\Leftrightarrow \operatorname{disc}(\chi \pmod{\wp})$ not a square.

(ロ) (同) (三) (三) (三) (三) (○) (○)

- $d(K^{\times})^2$ determines $K[\sqrt{d}]/K$.
- $\blacktriangleright \ \chi \in \operatorname{Irr}^+(G), \, K := \mathbb{Q}(\chi)$
- ► disc $(\chi) = d(K^{\times})^2 \Rightarrow \Delta(\chi) := K[\sqrt{d}]$ discriminant field
- χ (mod ℘) orthogonally stable ⇒ ℘ unramified in Δ(χ)
 Then ℘ inert ⇔ disc(χ (mod ℘)) not a square.
- ▶ primes that ramify in $\Delta(\chi)/\mathbb{Q}(\chi)$ divide the group order.

(ロ) (同) (三) (三) (三) (○) (○)

• a priori finite list of possibilities for $disc(\chi)$

- $d(K^{\times})^2$ determines $K[\sqrt{d}]/K$.
- $\blacktriangleright \ \chi \in \operatorname{Irr}^+(G), \, K := \mathbb{Q}(\chi)$
- ► disc $(\chi) = d(K^{\times})^2 \Rightarrow \Delta(\chi) := K[\sqrt{d}]$ discriminant field
- χ (mod ℘) orthogonally stable ⇒ ℘ unramified in Δ(χ)
 Then ℘ inert ⇔ disc(χ (mod ℘)) not a square.
- primes that ramify in $\Delta(\chi)/\mathbb{Q}(\chi)$ divide the group order.
- a priori finite list of possibilities for $disc(\chi)$
- Determine disc(\u03c0) by reducing it modulo enough primes (not dividing the group order)

(ロ) (同) (三) (三) (三) (○) (○)

- $d(K^{\times})^2$ determines $K[\sqrt{d}]/K$.
- $\blacktriangleright \ \chi \in \operatorname{Irr}^+(G), \, K := \mathbb{Q}(\chi)$
- ► disc $(\chi) = d(K^{\times})^2 \Rightarrow \Delta(\chi) := K[\sqrt{d}]$ discriminant field
- ► $\chi \pmod{\wp}$ orthogonally stable $\Rightarrow \wp$ unramified in $\Delta(\chi)$ Then \wp inert $\Leftrightarrow \operatorname{disc}(\chi \pmod{\wp})$ not a square.
- primes that ramify in $\Delta(\chi)/\mathbb{Q}(\chi)$ divide the group order.
- a priori finite list of possibilities for $disc(\chi)$
- Determine disc(\u03c0) by reducing it modulo enough primes (not dividing the group order)

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

 $\Delta(\chi)/\mathbb{Q}$ is not always Galois.

•
$$d(K^{\times})^2$$
 determines $K[\sqrt{d}]/K$.

$$\blacktriangleright \ \chi \in \operatorname{Irr}^+(G), \ K := \mathbb{Q}(\chi)$$

- disc $(\chi) = d(K^{\times})^2 \Rightarrow \Delta(\chi) := K[\sqrt{d}]$ discriminant field
- ► $\chi \pmod{\wp}$ orthogonally stable $\Rightarrow \wp$ unramified in $\Delta(\chi)$ Then \wp inert $\Leftrightarrow \operatorname{disc}(\chi \pmod{\wp})$ not a square.
- primes that ramify in $\Delta(\chi)/\mathbb{Q}(\chi)$ divide the group order.
- a priori finite list of possibilities for disc(χ)
- Determine disc(\u03c0) by reducing it modulo enough primes (not dividing the group order)

 $\Delta(\chi)/\mathbb{Q}$ is not always Galois.

E.g.
$$G = J_1, \chi(1) = 56, \mathbb{Q}(\chi) = \mathbb{Q}(\sqrt{5}),$$

$$\operatorname{disc}(\chi) = (31 + 5\sqrt{5})/2, \ \operatorname{Gal}(\Delta(\chi))/\mathbb{Q} \cong D_8$$

2 ordinaries 20 Dec 2021 11 19 129 31 41 59 13/17 · 14 0-0+0-0+0-0-3 XX 14 0-0+0-0+0-0--3 × X 360+0+0+0+0+0+15 0-0-700-0+0-0+0-0--3 XX 700-0+0-0+0-0- -3 × X 900+0-0+0-0-0--70-0-1260-0-0+0-0+0- +7-50-0-160 0+0+0+0+0+0+ 1 of of 224 OF OF OF OF OF OF I X X 224 Ot Ot Ot Ot Ot OT I X X 288 0-0-0-0-0+0+271050+0-3000-0-0-0-0+0+210-0+ 336 0+ 0+ 0+ 0+ 0+ 0+ 1 0+ 0+ ab 63 175 189ab 225 (12/4) 8/3 6 13 (12/11/9) 9/0/7 13 (Prine) = 1+ k63+ k36 (22 k36= 224ab+70ab+21ab

$\Sigma^{-}(G) := \langle g - g^{-1} \mid g \in G \rangle \le \mathbb{Z}G.$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQで

$\Sigma^{-}(G) := \langle g - g^{-1} \mid g \in G \rangle \leq \mathbb{Z}G.$

 χ orthogonally stable \Leftrightarrow there is $X \in \Sigma^{-}(G)$ such that $\det(\rho(X)) \neq 0$ for any representation ρ affording χ .

$$\Sigma^{-}(G) := \langle g - g^{-1} \mid g \in G \rangle \le \mathbb{Z}G.$$

 χ orthogonally stable \Leftrightarrow there is $X \in \Sigma^{-}(G)$ such that $\det(\rho(X)) \neq 0$ for any representation ρ affording χ . Then

$$\operatorname{disc}(\chi) = (-1)^{\chi(1)/2} \operatorname{det}(\rho(X)) (\mathbb{Q}(\chi)^{\times})^2.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

$$\Sigma^{-}(G) := \langle g - g^{-1} \mid g \in G \rangle \le \mathbb{Z}G.$$

 χ orthogonally stable \Leftrightarrow there is $X \in \Sigma^{-}(G)$ such that $\det(\rho(X)) \neq 0$ for any representation ρ affording χ . Then

$$\operatorname{disc}(\chi) = (-1)^{\chi(1)/2} \operatorname{det}(\rho(X)) (\mathbb{Q}(\chi)^{\times})^2.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 $H \leq G$ such that $\chi_{|H}$ orthogonally stable $\Leftrightarrow \exists$ such $X \in \Sigma^{-}(H)$.

$$\Sigma^{-}(G) := \langle g - g^{-1} \mid g \in G \rangle \le \mathbb{Z}G.$$

 χ orthogonally stable \Leftrightarrow there is $X \in \Sigma^{-}(G)$ such that $\det(\rho(X)) \neq 0$ for any representation ρ affording χ . Then

$$\operatorname{disc}(\chi) = (-1)^{\chi(1)/2} \operatorname{det}(\rho(X)) (\mathbb{Q}(\chi)^{\times})^2.$$

 $H \leq G$ such that $\chi_{|H}$ orthogonally stable $\Leftrightarrow \exists$ such $X \in \Sigma^{-}(H)$.

A simple algebra with orthogonal involution ι . $\Sigma^{-}(A) := \{a \in A \mid a = -\iota(a)\}.$ Subalgebra $B \leq A$ orthogonally stable if and only if (a) $\iota(B) = B$ and (b) $\Sigma^{-}(B) \cap A^{\times} \neq \emptyset.$ Then

 $\operatorname{disc}(\iota) = \operatorname{disc}(\iota|_B).$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Discriminants of rational orthogonally stable characters are odd.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Discriminants of rational orthogonally stable characters are odd. If $\operatorname{disc}(\chi) = d(K^{\times})^2$ then $\nu(d)$ is even for all dyadic valuations ν of K.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Discriminants of rational orthogonally stable characters are odd. If $disc(\chi) = d(K^{\times})^2$ then $\nu(d)$ is even for all dyadic valuations ν of K.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Parker's conjecture holds

▶ for the ATLAS groups up to *HN*

Discriminants of rational orthogonally stable characters are odd. If $\operatorname{disc}(\chi) = d(K^{\times})^2$ then $\nu(d)$ is even for all dyadic valuations ν of K.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Parker's conjecture holds

► for the ATLAS groups up to HNorder $|HN| = 2^{14}3^65^67 \cdot 11 \cdot 19 = 273,030,912,000,000$ largest $\chi(1) = 5,103,000, \mathbb{Q}(\chi) = \mathbb{Q}(\sqrt{5})$

Discriminants of rational orthogonally stable characters are odd. If $disc(\chi) = d(K^{\times})^2$ then $\nu(d)$ is even for all dyadic valuations ν of K.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Parker's conjecture holds

- For the ATLAS groups up to *HN* order |*HN*| = 2¹⁴3⁶5⁶7 ⋅ 11 ⋅ 19 = 273,030,912,000,000 largest χ(1) = 5,103,000, Q(χ) = Q(√5)
- ▶ for characters of the form ψ + ψ where ind(ψ) =o (Navarro, Tiep, Isaacs, Liebeck)

Discriminants of rational orthogonally stable characters are odd. If $disc(\chi) = d(K^{\times})^2$ then $\nu(d)$ is even for all dyadic valuations ν of K.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Parker's conjecture holds

- For the ATLAS groups up to HN order |HN| = 2¹⁴3⁶5⁶7 ⋅ 11 ⋅ 19 = 273,030,912,000,000 largest χ(1) = 5,103,000, Q(χ) = Q(√5)
- ▶ for characters of the form ψ + ψ where ind(ψ) =o (Navarro, Tiep, Isaacs, Liebeck)
- for solvable groups (GN)

Discriminants of rational orthogonally stable characters are odd. If $disc(\chi) = d(K^{\times})^2$ then $\nu(d)$ is even for all dyadic valuations ν of K.

Parker's conjecture holds

- ► for the ATLAS groups up to HNorder $|HN| = 2^{14}3^65^67 \cdot 11 \cdot 19 = 273,030,912,000,000$ largest $\chi(1) = 5,103,000, \mathbb{Q}(\chi) = \mathbb{Q}(\sqrt{5})$
- ▶ for characters of the form ψ + ψ where ind(ψ) =o (Navarro, Tiep, Isaacs, Liebeck)
- for solvable groups (GN)
- ▶ $SL_2(q)$, $SL_3(q)$, $SU_3(q)$ (all q, OB, LH, GN),
- for all Coxeter groups (Linda Hoyer)
- ▶ for all groups $GL_n(q)$, $G_2(q)$ with q odd (Linda Hoyer)
Parker's conjecture

Discriminants of rational orthogonally stable characters are odd. If $disc(\chi) = d(K^{\times})^2$ then $\nu(d)$ is even for all dyadic valuations ν of K.

Parker's conjecture holds

- ► for the ATLAS groups up to HNorder $|HN| = 2^{14}3^65^67 \cdot 11 \cdot 19 = 273,030,912,000,000$ largest $\chi(1) = 5,103,000, \mathbb{Q}(\chi) = \mathbb{Q}(\sqrt{5})$
- ▶ for characters of the form ψ + ψ where ind(ψ) =o (Navarro, Tiep, Isaacs, Liebeck)
- for solvable groups (GN)
- ▶ $SL_2(q)$, $SL_3(q)$, $SU_3(q)$ (all q, OB, LH, GN),
- for all Coxeter groups (Linda Hoyer)
- ▶ for all groups $GL_n(q)$, $G_2(q)$ with q odd (Linda Hoyer)

No counterexamples to Parker's conjecture so far.

▲ロト▲御ト▲ヨト▲ヨト ヨーのへで

Discriminant of quaternion algebra

• K field, $\sigma \in Aut(K)$ of order 2, $F := Fix_K(\sigma), K = F[\sqrt{-\delta}]$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Discriminant of quaternion algebra

• K field, $\sigma \in Aut(K)$ of order 2, $F := Fix_K(\sigma)$, $K = F[\sqrt{-\delta}]$

▶ $d \in F^{\times}$, quaternion algebra

$$(K,d)_F := \langle 1, i, j, k \mid i^2 = -\delta, j^2 = d, ij = -ji = k \rangle_F$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Discriminant of quaternion algebra

• K field, $\sigma \in Aut(K)$ of order 2, $F := Fix_K(\sigma)$, $K = F[\sqrt{-\delta}]$

▶ $d \in F^{\times}$, quaternion algebra

$$(K,d)_F := \langle 1, i, j, k \mid i^2 = -\delta, j^2 = d, ij = -ji = k \rangle_F$$

(日) (日) (日) (日) (日) (日) (日)

• disc_K([(K, d)_F]) =: $dN_{K/F}(K^{\times})$ K-discriminant of [(K, d)_F].

Discriminant of quaternion algebra

• K field, $\sigma \in Aut(K)$ of order 2, $F := Fix_K(\sigma)$, $K = F[\sqrt{-\delta}]$

► $d \in F^{\times}$, quaternion algebra

$$(K,d)_F := \langle 1, i, j, k \mid i^2 = -\delta, j^2 = d, ij = -ji = k \rangle_F$$

• disc_K([(K, d)_F]) =: $dN_{K/F}(K^{\times})$ K-discriminant of [(K, d)_F].

Discriminant of Hermitian form

- $H: V \times V \to K$ Hermitian form
- ▶ $H_B := (H(b_i, b_j))_{i,j=1}^n \in K^{n \times n}$, $B = (b_1, \dots, b_n)$ an K-basis of V
- disc $(H) := (-1)^{\binom{n}{2}} \det(H_B) N_{K/F}(K^{\times})$ discriminant of H.

Discriminant of quaternion algebra

• K field, $\sigma \in Aut(K)$ of order 2, $F := Fix_K(\sigma)$, $K = F[\sqrt{-\delta}]$

► $d \in F^{\times}$, quaternion algebra

$$(K,d)_F := \langle 1, i, j, k \mid i^2 = -\delta, j^2 = d, ij = -ji = k \rangle_F$$

• disc_K([(K, d)_F]) =: $dN_{K/F}(K^{\times})$ K-discriminant of [(K, d)_F].

Discriminant of Hermitian form

• $H: V \times V \to K$ Hermitian form

►
$$H_B := (H(b_i, b_j))_{i,j=1}^n \in K^{n \times n}$$
, $B = (b_1, \dots, b_n)$ an K-basis of V

- disc $(H) := (-1)^{\binom{n}{2}} \det(H_B) N_{K/F}(K^{\times})$ discriminant of H.
- $\Delta(H) := [(K, d)_F] \in Br_2(K, F)$ discriminant algebra of H.

Discriminant of quaternion algebra

• K field, $\sigma \in Aut(K)$ of order 2, $F := Fix_K(\sigma)$, $K = F[\sqrt{-\delta}]$

► $d \in F^{\times}$, quaternion algebra

$$(K,d)_F := \langle 1, i, j, k \mid i^2 = -\delta, j^2 = d, ij = -ji = k \rangle_F$$

• disc_K([(K, d)_F]) =: $dN_{K/F}(K^{\times})$ K-discriminant of [(K, d)_F].

Discriminant of Hermitian form

• $H: V \times V \to K$ Hermitian form

►
$$H_B := (H(b_i, b_j))_{i,j=1}^n \in K^{n \times n}$$
, $B = (b_1, \dots, b_n)$ an K-basis of V

- disc $(H) := (-1)^{\binom{n}{2}} \det(H_B) N_{K/F}(K^{\times})$ discriminant of H.
- $\Delta(H) := [(K, d)_F] \in Br_2(K, F)$ discriminant algebra of H.
- $\chi \in \operatorname{Irr}^{o}(G)$, well defined $\operatorname{disc}(\chi)$ and $\Delta(\chi)$

Discriminant of quaternion algebra

• K field, $\sigma \in Aut(K)$ of order 2, $F := Fix_K(\sigma)$, $K = F[\sqrt{-\delta}]$

► $d \in F^{\times}$, quaternion algebra

$$(K,d)_F := \langle 1, i, j, k \mid i^2 = -\delta, j^2 = d, ij = -ji = k \rangle_F$$

• disc_K([(K, d)_F]) =: $dN_{K/F}(K^{\times})$ K-discriminant of [(K, d)_F].

Discriminant of Hermitian form

• $H: V \times V \to K$ Hermitian form

►
$$H_B := (H(b_i, b_j))_{i,j=1}^n \in K^{n \times n}, B = (b_1, \dots, b_n)$$
 an K-basis of V

- disc $(H) := (-1)^{\binom{n}{2}} \det(H_B) N_{K/F}(K^{\times})$ discriminant of H.
- $\Delta(H) := [(K, d)_F] \in Br_2(K, F)$ discriminant algebra of H.
- $\chi \in \operatorname{Irr}^{o}(G)$, well defined $\operatorname{disc}(\chi)$ and $\Delta(\chi)$
- Primes that ramify in $\Delta(\chi)$ do divide the group order.

 \mathfrak{A} central simple *K*-algebra of even degree 2m involution ι of second kind, $F := \operatorname{Fix}_{K}(\iota)$.

 \mathfrak{A} central simple *K*-algebra of even degree 2m involution ι of second kind, $F := \operatorname{Fix}_{K}(\iota)$.

A *F*-subalgebra *A* of \mathfrak{A} is called an orthogonal subalgebra of (\mathfrak{A}, ι) if

(ロ) (同) (三) (三) (三) (○) (○)

 \mathfrak{A} central simple *K*-algebra of even degree 2m involution ι of second kind, $F := \operatorname{Fix}_{K}(\iota)$.

A *F*-subalgebra *A* of \mathfrak{A} is called an orthogonal subalgebra of (\mathfrak{A}, ι) if (a) *A* is a central simple *F*-algebra with $KA = \mathfrak{A}$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

 \mathfrak{A} central simple *K*-algebra of even degree 2m involution ι of second kind, $F := \operatorname{Fix}_{K}(\iota)$.

A *F*-subalgebra *A* of \mathfrak{A} is called an orthogonal subalgebra of (\mathfrak{A}, ι) if (a) *A* is a central simple *F*-algebra with $KA = \mathfrak{A}$. (b) *A* is invariant under ι , i.e. $\iota(A) = A$.

(日) (日) (日) (日) (日) (日) (日)

 \mathfrak{A} central simple *K*-algebra of even degree 2m involution ι of second kind, $F := \operatorname{Fix}_{K}(\iota)$.

A $F\text{-subalgebra}\;A$ of $\mathfrak A$ is called an orthogonal subalgebra of $(\mathfrak A,\iota)$ if

(日) (日) (日) (日) (日) (日) (日)

- (a) A is a central simple F-algebra with $KA = \mathfrak{A}$.
- (b) A is invariant under ι , i.e. $\iota(A) = A$.
- (c) The restriction of ι to A is an orthogonal involution of A.

 \mathfrak{A} central simple *K*-algebra of even degree 2m involution ι of second kind, $F := \operatorname{Fix}_{K}(\iota)$.

A *F*-subalgebra A of \mathfrak{A} is called an orthogonal subalgebra of (\mathfrak{A}, ι) if

(日) (日) (日) (日) (日) (日) (日)

- (a) A is a central simple F-algebra with $KA = \mathfrak{A}$.
- (b) A is invariant under ι , i.e. $\iota(A) = A$.
- (c) The restriction of ι to A is an orthogonal involution of A.

(V, H) Hermitian space of dimension 2mB an orthogonal basis, so H_B diagonal matrix. $\mathfrak{A} = \operatorname{End}(V) = K^{2m \times 2m}, \iota = \iota_H.$

 \mathfrak{A} central simple *K*-algebra of even degree 2m involution ι of second kind, $F := \operatorname{Fix}_{K}(\iota)$.

A *F*-subalgebra A of \mathfrak{A} is called an orthogonal subalgebra of (\mathfrak{A}, ι) if

- (a) A is a central simple F-algebra with $KA = \mathfrak{A}$.
- (b) A is invariant under ι , i.e. $\iota(A) = A$.
- (c) The restriction of ι to A is an orthogonal involution of A.

(V, H) Hermitian space of dimension 2m B an orthogonal basis, so H_B diagonal matrix. $\mathfrak{A} = \operatorname{End}(V) = K^{2m \times 2m}, \iota = \iota_H.$ Then $A := F^{2m \times 2m}$ is an orthogonal subalgebra.

 \mathfrak{A} central simple *K*-algebra of even degree 2m involution ι of second kind, $F := \operatorname{Fix}_{K}(\iota)$.

A *F*-subalgebra A of \mathfrak{A} is called an orthogonal subalgebra of (\mathfrak{A}, ι) if

- (a) A is a central simple F-algebra with $KA = \mathfrak{A}$.
- (b) A is invariant under ι , i.e. $\iota(A) = A$.
- (c) The restriction of ι to A is an orthogonal involution of A.

(V, H) Hermitian space of dimension 2m B an orthogonal basis, so H_B diagonal matrix. $\mathfrak{A} = \operatorname{End}(V) = K^{2m \times 2m}, \iota = \iota_H.$ Then $A := F^{2m \times 2m}$ is an orthogonal subalgebra. $\operatorname{disc}(H) = \operatorname{disc}(\iota_A)N_{K/F}(K^{\times}).$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

$$\begin{array}{l} \mathbf{k} & K = F[\sqrt{-\delta}], \\ \mathbf{k} & V = Kb_1 \oplus Kb_2, \, d \in F^{\times}, \, H_B := \operatorname{diag}(1, d) \in K^{2 \times 2}. \\ \mathbf{k} & \operatorname{disc}(H) = \operatorname{disc}(H_B) = -dN_{K/F}(K^{\times}) \\ \mathbf{k} & \mathcal{Q} = \langle i := \operatorname{diag}(\sqrt{-\delta}, -\sqrt{-\delta}), j := \begin{pmatrix} 0 & 1 \\ d & 0 \end{pmatrix} \rangle_F \subseteq K^{2 \times 2}. \end{array}$$

$$\begin{array}{l} \blacktriangleright K = F[\sqrt{-\delta}], \\ \blacktriangleright V = Kb_1 \oplus Kb_2, d \in F^{\times}, H_B := \operatorname{diag}(1, d) \in K^{2 \times 2}. \\ \vdash \operatorname{disc}(H) = \operatorname{disc}(H_B) = -dN_{K/F}(K^{\times}) \\ \vdash \\ \mathfrak{Q} = \langle i := \operatorname{diag}(\sqrt{-\delta}, -\sqrt{-\delta}), j := \begin{pmatrix} 0 & 1 \\ d & 0 \end{pmatrix} \rangle_F \subseteq K^{2 \times 2} \end{array}$$

adjoint involution ι_H restricts to orthogonal involution ι_Ω of Ω.
 ι(i) = −i, so disc(ι_Ω) = − det(i)(F[×])² = −δ(F[×])².

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\begin{array}{l} \mathbf{K} = F[\sqrt{-\delta}], \\ \mathbf{V} = Kb_1 \oplus Kb_2, \, d \in F^{\times}, \, H_B := \operatorname{diag}(1, d) \in K^{2 \times 2}. \\ \mathbf{b} \operatorname{disc}(H) = \operatorname{disc}(H_B) = -dN_{K/F}(K^{\times}) \\ \\ \mathbf{\mathfrak{Q}} = \langle i := \operatorname{diag}(\sqrt{-\delta}, -\sqrt{-\delta}), j := \begin{pmatrix} 0 & 1 \\ d & 0 \end{pmatrix} \rangle_F \subseteq K^{2 \times 2} \end{array}$$

adjoint involution ι_H restricts to orthogonal involution ι_Ω of Ω.
ι(i) = -i, so disc(ι_Ω) = -det(i)(F[×])² = -δ(F[×])².
disc(ι_H) = -dN_{K/F}(K[×])
δ ∈ N_{K/F}(K[×])

(ロ) (同) (三) (三) (三) (○) (○)

$$\begin{array}{l} & K = F[\sqrt{-\delta}], \\ & V = Kb_1 \oplus Kb_2, d \in F^{\times}, H_B := \operatorname{diag}(1, d) \in K^{2 \times 2}. \\ & \operatorname{disc}(H) = \operatorname{disc}(H_B) = -dN_{K/F}(K^{\times}) \\ & \\ & \mathfrak{Q} = \langle i := \operatorname{diag}(\sqrt{-\delta}, -\sqrt{-\delta}), j := \begin{pmatrix} 0 & 1 \\ d & 0 \end{pmatrix} \rangle_F \subseteq K^{2 \times 2} \end{array}$$

adjoint involution ι_H restricts to orthogonal involution ι_Ω of Ω.
ι(i) = -i, so disc(ι_Ω) = -det(i)(F[×])² = -δ(F[×])².
disc(ι_H) = -dN_{K/F}(K[×])
δ ∈ N_{K/F}(K[×])

$$\operatorname{disc}(H_B) = \operatorname{disc}(\iota_H) = \operatorname{disc}(\iota_{\mathfrak{Q}}) \operatorname{disc}_K([\mathfrak{Q}])$$

▲ロト▲御ト▲ヨト▲ヨト ヨーのへで

Theorem (GN 24)

Let (V, H) be a Hermitian *K*-space of even dimension 2m, $\mathfrak{A} := \operatorname{End}_K(V)$, and $\iota = \iota_H$ the adjoint involution of the non-degenerate Hermitian form *H*. Let *A* be an orthogonal subalgebra of \mathfrak{A} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (GN 24)

Let (V, H) be a Hermitian *K*-space of even dimension 2m, $\mathfrak{A} := \operatorname{End}_K(V)$, and $\iota = \iota_H$ the adjoint involution of the non-degenerate Hermitian form *H*. Let *A* be an orthogonal subalgebra of \mathfrak{A} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(a)
$$[A] \in Br_2(K, F).$$

Theorem (GN 24)

Let (V, H) be a Hermitian *K*-space of even dimension 2m, $\mathfrak{A} := \operatorname{End}_K(V)$, and $\iota = \iota_H$ the adjoint involution of the non-degenerate Hermitian form *H*. Let *A* be an orthogonal subalgebra of \mathfrak{A} .

(a)
$$[A] \in \operatorname{Br}_2(K, F).$$

(b) disc
$$(H)$$
 = disc $_K([A])^m$ disc $(\iota_{|A}) \in F^{\times}/N_{K/F}(K^{\times})$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (GN 24)

Let (V, H) be a Hermitian *K*-space of even dimension 2m, $\mathfrak{A} := \operatorname{End}_K(V)$, and $\iota = \iota_H$ the adjoint involution of the non-degenerate Hermitian form *H*. Let *A* be an orthogonal subalgebra of \mathfrak{A} .

Proof: Choose suitable orthogonal basis and use formula above for each orthogonal summand.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (GN 24)

Let (V, H) be a Hermitian *K*-space of even dimension 2m, $\mathfrak{A} := \operatorname{End}_K(V)$, and $\iota = \iota_H$ the adjoint involution of the non-degenerate Hermitian form *H*. Let *A* be an orthogonal subalgebra of \mathfrak{A} .

(a)
$$[A] \in \operatorname{Br}_2(K, F).$$

(b) $\operatorname{disc}(H) = \operatorname{disc}_K([A])^m \operatorname{disc}(\iota_{|A}) \in F^{\times}/N_{K/F}(K^{\times}).$

Proof: Choose suitable orthogonal basis and use formula above for each orthogonal summand.

(日) (日) (日) (日) (日) (日) (日)

Fixed algebras of certain group automorphisms are orthogonal subalgebras.

- $\chi \in \operatorname{Irr}^{o}(G), \rho : G \to \operatorname{GL}_{2m}(K)$ representation affording χ
- $\alpha \in \operatorname{Aut}(G)$ with $\alpha^2 = 1$ and $\chi \circ \alpha = \overline{\chi}$.

- ▶ $\chi \in Irr^{o}(G), \rho : G \to GL_{2m}(K)$ representation affording χ
- $\alpha \in \operatorname{Aut}(G)$ with $\alpha^2 = 1$ and $\chi \circ \alpha = \overline{\chi}$.

• $A = \langle \rho(g) + \rho(\alpha(g)) : g \in G \rangle_F = Fix(\alpha)$ is orthogonal subalgebra

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ▶ $\chi \in Irr^{o}(G), \rho : G \to GL_{2m}(K)$ representation affording χ
- $\alpha \in \operatorname{Aut}(G)$ with $\alpha^2 = 1$ and $\chi \circ \alpha = \overline{\chi}$.
- ► $A = \langle \rho(g) + \rho(\alpha(g)) : g \in G \rangle_F = Fix(\alpha)$ is orthogonal subalgebra

(ロ) (同) (三) (三) (三) (○) (○)

 $\blacktriangleright \Sigma^{-}(A) = \langle \rho(g) + \rho(\alpha(g)) - (\rho(g^{-1}) + \rho(\alpha(g^{-1}))) : g \in G \rangle_{F}$

- $\chi \in \operatorname{Irr}^{o}(G), \rho : G \to \operatorname{GL}_{2m}(K)$ representation affording χ
- $\alpha \in \operatorname{Aut}(G)$ with $\alpha^2 = 1$ and $\chi \circ \alpha = \overline{\chi}$.
- ► $A = \langle \rho(g) + \rho(\alpha(g)) : g \in G \rangle_F = Fix(\alpha)$ is orthogonal subalgebra
- $\blacktriangleright \Sigma^-(A) = \langle \rho(g) + \rho(\alpha(g)) (\rho(g^{-1}) + \rho(\alpha(g^{-1}))) : g \in G \rangle_F$
- $X \in \Sigma^{-}(A) \cap A^{\times}$ then the α -discriminant of χ is

$$\operatorname{disc}^{\alpha}(\chi) = (-1)^m \operatorname{det}(X) (F^{\times})^2.$$

- ▶ $\chi \in Irr^{o}(G), \rho : G \to GL_{2m}(K)$ representation affording χ
- $\alpha \in \operatorname{Aut}(G)$ with $\alpha^2 = 1$ and $\chi \circ \alpha = \overline{\chi}$.

•
$$A = \langle \rho(g) + \rho(\alpha(g)) : g \in G \rangle_F = Fix(\alpha)$$
 is orthogonal subalgebra

- $\blacktriangleright \Sigma^{-}(A) = \langle \rho(g) + \rho(\alpha(g)) (\rho(g^{-1}) + \rho(\alpha(g^{-1}))) : g \in G \rangle_{F}$
- $X \in \Sigma^{-}(A) \cap A^{\times}$ then the α -discriminant of χ is

$$\operatorname{disc}^{\alpha}(\chi) = (-1)^m \operatorname{det}(X) (F^{\times})^2.$$

(ロ) (同) (三) (三) (三) (○) (○)

Theorem

 $\operatorname{disc}(\chi) = \operatorname{disc}^{\alpha}(\chi) \operatorname{disc}_{K}([A])^{m}.$

- ▶ $\chi \in Irr^{o}(G), \rho : G \to GL_{2m}(K)$ representation affording χ
- $\alpha \in \operatorname{Aut}(G)$ with $\alpha^2 = 1$ and $\chi \circ \alpha = \overline{\chi}$.

•
$$A = \langle \rho(g) + \rho(\alpha(g)) : g \in G \rangle_F = Fix(\alpha)$$
 is orthogonal subalgebra

- $\blacktriangleright \Sigma^{-}(A) = \langle \rho(g) + \rho(\alpha(g)) (\rho(g^{-1}) + \rho(\alpha(g^{-1}))) : g \in G \rangle_{F}$
- $X \in \Sigma^{-}(A) \cap A^{\times}$ then the α -discriminant of χ is

$$\operatorname{disc}^{\alpha}(\chi) = (-1)^m \operatorname{det}(X) (F^{\times})^2.$$

(日) (日) (日) (日) (日) (日) (日)

Theorem

 $\operatorname{disc}(\chi) = \operatorname{disc}^{\alpha}(\chi) \operatorname{disc}_{K}([A])^{m}.$

 ${\rm disc}^{\alpha}(\chi)$ is a square class of F hence can be obtained by enough reductions modulo primes

- ▶ $\chi \in Irr^{o}(G), \rho : G \to GL_{2m}(K)$ representation affording χ
- $\alpha \in \operatorname{Aut}(G)$ with $\alpha^2 = 1$ and $\chi \circ \alpha = \overline{\chi}$.

•
$$A = \langle \rho(g) + \rho(\alpha(g)) : g \in G \rangle_F = Fix(\alpha)$$
 is orthogonal subalgebra

- $\blacktriangleright \Sigma^{-}(A) = \langle \rho(g) + \rho(\alpha(g)) (\rho(g^{-1}) + \rho(\alpha(g^{-1}))) : g \in G \rangle_{F}$
- $X \in \Sigma^{-}(A) \cap A^{\times}$ then the α -discriminant of χ is

$$\operatorname{disc}^{\alpha}(\chi) = (-1)^m \operatorname{det}(X) (F^{\times})^2.$$

Theorem

 $\operatorname{disc}(\chi) = \operatorname{disc}^{\alpha}(\chi) \operatorname{disc}_{K}([A])^{m}.$

 $\operatorname{disc}^{\alpha}(\chi)$ is a square class of *F* hence can be obtained by enough reductions modulo primes $\operatorname{disc}_{K}([A])$ is obtained from Schur indices of the induced character of χ to the semidirect product $G : \langle \alpha \rangle$.
Computed the orthogonal discriminants of the characters in

 $\operatorname{Irr}^+(G) = \{ \chi \in \operatorname{Irr}(G) \mid \operatorname{ind}(\chi) = +, \chi(1) \text{ even } \}.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

for the ATLAS groups up to HN. (joint with Richard Parker and Thomas Breuer)

Computed the orthogonal discriminants of the characters in

 $\operatorname{Irr}^+(G) = \{ \chi \in \operatorname{Irr}(G) \mid \operatorname{ind}(\chi) = +, \chi(1) \text{ even } \}.$

for the ATLAS groups up to HN. (joint with Richard Parker and Thomas Breuer)

Computed the unitary discriminants of the characters in

 $\operatorname{Irr}^{o}(G) = \{ \chi \in \operatorname{Irr}(G) \mid \operatorname{ind}(\chi) = +, \chi(1) \text{ even } \}.$

(日) (日) (日) (日) (日) (日) (日)

for the ATLAS groups up to HN. (joint with David Schlang)

Computed the orthogonal discriminants of the characters in

 $\operatorname{Irr}^+(G) = \{ \chi \in \operatorname{Irr}(G) \mid \operatorname{ind}(\chi) = +, \chi(1) \text{ even } \}.$

for the ATLAS groups up to HN. (joint with Richard Parker and Thomas Breuer)

Computed the unitary discriminants of the characters in

 $\operatorname{Irr}^{o}(G) = \{ \chi \in \operatorname{Irr}(G) \mid \operatorname{ind}(\chi) = +, \chi(1) \text{ even } \}.$

for the ATLAS groups up to HN. (joint with David Schlang)

$$\Sigma^{-}(G) := \langle g - g^{-1} \mid g \in G \rangle \le \mathbb{Z}G.$$

 χ orthogonally stable \Leftrightarrow there is $X \in \Sigma^{-}(G)$, $\det(\rho(X)) \neq 0$ for any representation ρ affording χ . Then

 $\det(\chi) = \det(\rho(X))(\mathbb{Q}(\chi)^{\times})^2.$

Computed the orthogonal discriminants of the characters in

 $\operatorname{Irr}^+(G) = \{ \chi \in \operatorname{Irr}(G) \mid \operatorname{ind}(\chi) = +, \chi(1) \text{ even } \}.$

for the ATLAS groups up to HN. (joint with Richard Parker and Thomas Breuer)

Computed the unitary discriminants of the characters in

 $\operatorname{Irr}^{o}(G) = \{ \chi \in \operatorname{Irr}(G) \mid \operatorname{ind}(\chi) = +, \chi(1) \text{ even } \}.$

for the ATLAS groups up to HN. (joint with David Schlang)

$$\Sigma^{-}(G) := \langle g - g^{-1} \mid g \in G \rangle \le \mathbb{Z}G.$$

 χ orthogonally stable \Leftrightarrow there is $X \in \Sigma^{-}(G)$, $\det(\rho(X)) \neq 0$ for any representation ρ affording χ . Then

 $\det(\chi) = \det(\rho(X))(\mathbb{Q}(\chi)^{\times})^2.$

Parker's conjecture

 $X\in \Sigma^-(G) \Rightarrow \nu(\det(\rho(X))) \text{ even for all dyadic valuations } \nu.$