Extremal lattices

Gabriele Nebe

Lehrstuhl D für Mathematik

Oberwolfach August 2012

Lattices and sphere packings

$$
\theta=1+6 q+6 q^{3}+6 q^{4}+12 q^{7}+6 q^{9}+\ldots
$$

Even unimodular lattices

Definition

- A lattice L in Euclidean n-space $\left(\mathbb{R}^{n},(),\right)$ is the \mathbb{Z}-span of an \mathbb{R}-basis $B=\left(b_{1}, \ldots, b_{n}\right)$ of \mathbb{R}^{n}

$$
L=\left\langle b_{1}, \ldots, b_{n}\right\rangle_{\mathbb{Z}}=\left\{\sum_{i=1}^{n} a_{i} b_{i} \mid a_{i} \in \mathbb{Z}\right\} .
$$

- The dual lattice is

$$
L^{\#}:=\left\{x \in \mathbb{R}^{n} \mid(x, \ell) \in \mathbb{Z} \text { for all } \ell \in L\right\}
$$

- L is called unimodular if $L=L^{\#}$.
- $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}, Q(x):=\frac{1}{2}(x, x)$ associated quadratic form
- L is called even if $Q(\ell) \in \mathbb{Z}$ for all $\ell \in L$.
- $\min (L):=\min \{2 Q(\ell) \mid 0 \neq \ell \in L\}$ minimum of L.

The sphere packing density of an even unimodular lattice is proportional to its minimum.

Theta-series of lattices

Let (L, Q) be an even unimodular lattice of dimension n so a regular positive definite integral quadratic form $Q: L \rightarrow \mathbb{Z}$.

- The theta series of L is

$$
\theta_{L}=\sum_{\ell \in L} q^{Q(\ell)}=1+\sum_{k=\min (L) / 2}^{\infty} a_{k} q^{k}
$$

where $a_{k}=|\{\ell \in L \mid Q(\ell)=k\}|$.

- θ_{L} defines a holomorphic function on the upper half plane by substituting $q:=\exp (2 \pi i z)$.
- Then θ_{L} is a modular form of weight $\frac{n}{2}$ for the full modular group $\mathrm{SL}_{2}(\mathbb{Z})$.
- n is a multiple of 8 .
- $\theta_{L} \in \mathcal{M}_{\frac{n}{2}}\left(\operatorname{SL}_{2}(\mathbb{Z})\right)=\mathbb{C}\left[E_{4}, \Delta\right]_{\frac{n}{2}}$ where $E_{4}:=\theta_{E_{8}}=1+240 q+\ldots$ is the normalized Eisenstein series of weight 4 and

$$
\Delta=q-24 q^{2}+252 q^{3}-1472 q^{4}+\ldots \text { of weight } 12
$$

Extremal modular forms

Basis of $\mathcal{M}_{4 k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$:

$$
\begin{array}{lccrl}
E_{4}^{k}= & 1+ & 240 k q+ & * q^{2}+ & \ldots \\
E_{4}^{k-3} \Delta= & q+ & * q^{2}+ & \ldots \\
E_{4}^{k-6} \Delta^{2}= & & q^{2}+ & \ldots
\end{array}
$$

where $m_{k}=\left\lfloor\frac{n}{24}\right\rfloor=\left\lfloor\frac{k}{3}\right\rfloor$.

Definition

This space contains a unique form
$f^{(k)}:=1+0 q+0 q^{2}+\ldots+0 q^{m_{k}}+a\left(f^{(k)}\right) q^{m_{k}+1}+b\left(f^{(k)}\right) q^{m_{k}+2}+\ldots$
$f^{(k)}$ is called the extremal modular form of weight $4 k$.

$$
\begin{aligned}
& f^{(1)}=1+240 q+\ldots=\theta_{E_{8}}, f^{(2)}=1+480 q+\ldots=\theta_{E_{8}}^{2} \\
& f^{(3)}=1+196,560 q^{2}+\ldots=\theta_{\Lambda_{24}} \\
& f^{(6)}=1+52,416,000 q^{3}+\ldots=\theta_{P_{48 p}}=\theta_{P_{48 q}}=\theta_{P_{48 n}} \\
& f^{(9)}=1+6,218,175,600 q^{4}+\ldots=\theta_{\Gamma_{72}}
\end{aligned}
$$

Extremal even unimodular lattices

Theorem (Siegel)

$a\left(f^{(k)}\right)>0$ for all k

Corollary

Let L be an n-dimensional even unimodular lattice. Then

$$
\min (L) \leq 2+2\left\lfloor\frac{n}{24}\right\rfloor=2+2 m_{n / 8}
$$

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices $\mathrm{L} \leq \mathbb{R}^{n}$

n	8	16	24	32	40	48	72	80	$\geq 163,264$
min(L)	2	2	4	4	4	6	8	8	
number of extremal lattices	1	2	1	$\geq 10^{7}$	$\geq 10^{51}$	≥ 3	≥ 1	≥ 4	0

Extremal even unimodular lattices

Theorem (Siegel)

$a\left(f^{(k)}\right)>0$ for all k and $b\left(f^{(k)}\right)<0$ for large $k(k \geq 20408)$.

Corollary

Let L be an n-dimensional even unimodular lattice. Then

$$
\min (L) \leq 2+2\left\lfloor\frac{n}{24}\right\rfloor=2+2 m_{n / 8}
$$

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices $\mathrm{L} \leq \mathbb{R}^{n}$

n	8	16	24	32	40	48	72	80	$\geq 163,264$
min(L)	2	2	4	4	4	6	8	8	
number of extremal lattices	1	2	1	$\geq 10^{7}$	$\geq 10^{51}$	≥ 3	≥ 1	≥ 4	0

Extremal even unimodular lattices in jump dimensions

Let L be an extremal even unimodular lattice of dimension $24 m$ so $\min (L)=2 m+2$

- All non-empty layers $\emptyset \neq\{\ell \in L \mid Q(\ell)=a\}$ form spherical 11-designs.
- The density of the associated sphere packing realises a local maximum of the density function on the space of all $24 m$-dimensional lattices.
- If $m=1$, then $L=\Lambda_{24}$ is unique, Λ_{24} is the Leech lattice.
- The 196560 minimal vectors of the Leech lattice form the unique tight spherical 11-design and realise the maximal kissing number in dimension 24.
- Λ_{24} is the densest 24-dimensional lattice (Cohn, Kumar).
- For $m=2,3$ these lattices are the densest known lattices and realise the maximal known kissing number.

Extremal even unimodular lattices in jump dimensions

The extremal theta series

$$
\begin{aligned}
& f^{(3)}=1+196,560 q^{2}+\ldots=\theta_{\Lambda_{24}} . \\
& f^{(6)}=1+52,416,000 q^{3}+\ldots=\theta_{P_{48 p}}=\theta_{P_{48 q}}=\theta_{P_{48 n}} . \\
& f^{(9)}=1+6,218,175,600 q^{4}+\ldots=\theta_{\Gamma_{72}} .
\end{aligned}
$$

The automorphism groups

$\operatorname{Aut}\left(\Lambda_{24}\right) \cong 2 . \mathrm{Co}_{1}$	order $=$	8315553613086720000 $2^{22} 3^{9} 5^{4} 7^{2} \cdot 11 \cdot 13 \cdot 23$
$\operatorname{Aut}\left(P_{48 p}\right) \cong\left(\mathrm{SL}_{2}(23) \times S_{3}\right): 2$	order	$72864=2^{5} 3^{2} 11 \cdot 23$
$\operatorname{Aut}\left(P_{48 q}\right) \cong \mathrm{SL}_{2}(47)$	order	$103776=2^{5} 3 \cdot 23 \cdot 47$
$\operatorname{Aut}\left(P_{48 n}\right) \cong\left(\mathrm{SL}_{2}(13) \mathrm{YSL}_{2}(5)\right) \cdot 2^{2}$	order	$524160=2^{7} 3^{2} 5 \cdot 7 \cdot 13$
$\operatorname{Aut}\left(\Gamma_{72}\right) \cong\left(\mathrm{SL}_{2}(25) \times \mathrm{PSL}_{2}(7)\right): 2$	order	$5241600=2^{8} 3^{2} 5^{2} 7 \cdot 13$

Construction of extremal lattices

From codes.

- Let $\left(e_{1}, \ldots, e_{n}\right)$ be a p-frame, so $\left(e_{i}, e_{j}\right)=p \delta_{i j}$.
- $Z:=\left\langle e_{1}, \ldots, e_{n}\right\rangle_{\mathbb{Z}} \cong \sqrt{p} \mathbb{Z}^{n}, Z^{\#}=\frac{1}{p} Z$.
- $Z^{\#} / Z \cong \mathbb{F}_{p}^{n}$.
- Given $C \leq \mathbb{F}_{p}^{n}$ the codelattice is
- $\Lambda(C):=\left\{\left.\frac{1}{p} \sum c_{i} e_{i} \right\rvert\,\left(\bar{c}_{1}, \ldots, \bar{c}_{n}\right) \in C\right\}$
- $\Lambda(C)^{\#}=\Lambda\left(C^{\perp}\right)$.
- $\Lambda(C)$ is even if $p=2$ and C is doubly even.
- $\min (\Lambda(C))=\min \left(p, \frac{d(C)}{p}\right)$.
- $\operatorname{Aut}(C) \leq \operatorname{Aut}(\Lambda(C))$.

Binary extremal codes.

length	8	24	32	40	48	72	80	≥ 3952
$d(C)$	4	8	8	8	12	16	16	
extremal	h_{8}	\mathcal{G}_{24}	5	16,470	$Q R_{48}$	$?$	≥ 4	0

Canonical constructions of lattices

- A canonical construction of a lattice is a construction that is respected by (a big subgroup of) its automorphism group.
- The Leech lattice has at least 23 constructions, none of them is really canonical:
- Leech as a neighbor of a code lattice
- Let $\mathcal{G}_{24} \leq \mathbb{F}_{2}^{24}$ be the binary Golay code (the extended quadratic residue code).
- Then $d\left(\mathcal{G}_{24}\right)=8$.
- $\operatorname{Min}\left(\Lambda\left(\mathcal{G}_{24}\right)\right)=\left\{ \pm e_{1}, \ldots, \pm e_{24}\right\}$.
- Neighbor lattice: $v=\frac{1}{2}\left(3 e_{1}+\ldots+e_{24}\right)$
- $\Lambda_{24}:=\Lambda\left(\mathcal{G}_{24}\right)^{(v), 2}:=\left\langle\left\{x \in \Lambda\left(\mathcal{G}_{24}\right) \mid(x, v)\right.\right.$ even $\left.\}, \frac{v}{2}\right\rangle$
- $2^{12}: M_{24} \leq \operatorname{Aut}\left(\Lambda_{24}\right)=2 . C o_{1}$.

Canonical constructions of the 48-dimensional lattices

Two of the 48-dimensional extremal lattices have a canonical construction with codes:

Theorem (Koch)

Let $C=C^{\perp} \leq \mathbb{F}_{3}^{48}$ with $d(C)=15$. Then $\Lambda(C)^{(v), 2}$ is an extremal even unimodular lattice, where $v=\frac{1}{3}\left(e_{1}+\ldots+e_{48}\right)$.

Theorem (N)

Let $C=C^{\perp} \leq \mathbb{F}_{3}^{48}$ with $d(C)=15$ such that $|\operatorname{Aut}(C)|$ is divisible by some prime $p \geq 5$. Then $C \cong Q_{48}$ or $C \cong P_{48}$. We have $\operatorname{Aut}\left(Q_{48}\right) \cong \operatorname{SL}_{2}(47)$ and $\operatorname{Aut}\left(P_{48}\right) \cong\left(\mathrm{SL}_{2}(23) \times C_{2}\right): 2$.

Remark

$$
\begin{aligned}
& \Lambda\left(Q_{48}\right)^{(v), 2} \cong P_{48 q}, \operatorname{Aut}\left(P_{48 q}\right) \cong \mathrm{SL}_{2}(47) \\
& \Lambda\left(P_{48}\right)^{(v), 2} \cong P_{48 p}, \operatorname{Aut}\left(P_{48 p}\right) \cong\left(\mathrm{SL}_{2}(23) \times S_{3}\right): 2
\end{aligned}
$$

How many 48-dimensional extremal lattices are there?

Let L be an extremal even unimodular lattice of dimension 48 and p be a prime dividing $|\operatorname{Aut}(L)|$.

Theorem

$p=47,23$ or $p \leq 13$.
Let $\sigma \in \operatorname{Aut}(L)$ be of order p. Then the fixed lattice
$F:=\operatorname{Fix}(\sigma):=\{v \in L \mid \sigma v=v\}$ is as follows.

p	$\operatorname{dim} \mathbb{F}$	$\operatorname{det}(F)$	F	example
47	2	47	unique	yes
23	4	23^{2}	unique	yes
13	0		unique	yes
11	8	11^{4}	unique	yes
7	0		unique	yes
7	6	7^{5}	$\sqrt{7} A_{6}$	no
2	24	2^{24}	$\sqrt{2} \Lambda_{24}$	yes
2	24	2^{24}	$\sqrt{2} O_{24}$	yes

Hermitian lattices

Definition

Let K be an imaginary quadratic number field, \mathbb{Z}_{K} its ring of integers, (V, h) an n-dimensional Hermitian positiv definit K-vectorspace.

- A lattice $P \leq V$ is a finitely generated \mathbb{Z}_{K}-moduls that contains a basis of V.
- The minimum of P is $\min (P):=\min \{h(\ell, \ell) \mid 0 \neq \ell \in P\}$.
- The Hermitian Hermite function $\gamma_{h}(P):=\frac{\min (P)}{\operatorname{det}(P)^{1 / n}}$ measures the density of P.
- If $P=\left\langle b_{1}, \ldots, b_{n}\right\rangle_{\mathbb{Z}_{K}}$ is a free \mathbb{Z}_{K}-module then $\operatorname{det}(P)=\operatorname{det}\left(h\left(b_{i}, b_{j}\right)\right)_{i, j}$.
- The Hermitian dual lattice is

$$
P^{*}:=\left\{v \in V \mid h(v, \ell) \in \mathbb{Z}_{K} \text { for all } \ell \in P\right\}
$$

We call P Hermitian unimodular, if $P=P^{*}($ then $\operatorname{det}(P)=1)$.

Hermitian tensor products (Renaud Coulangeon)

Minimal vectors in tensor products

Let $\left(L, h_{L}\right)$ and $\left(M, h_{M}\right)$ be Hermitian \mathbb{Z}_{K}-lattices, $n=\operatorname{dim}_{\mathbb{Z}_{K}}(L) \leq m:=\operatorname{dim}_{\mathbb{Z}_{K}}(M)$. Each $v \in L \otimes M$ is the sum of at most n pure tensors

$$
v=\sum_{i=1}^{r} \ell_{i} \otimes m_{i}, \text { such that } r=: r k(v) \text { minimal. }
$$

Put $A:=\left(h_{L}\left(\ell_{i}, \ell_{j}\right)\right)$ and $B:=\left(h_{M}\left(m_{i}, m_{j}\right)\right)$, then

$$
h(v, v)=\operatorname{Trace} A \bar{B} \geq r \operatorname{det}(A)^{1 / r} \operatorname{det}(B)^{1 / r} .
$$

$$
\text { so } \min (L \otimes M) \geq \min \left\{r d_{r}(L)^{1 / r} d_{r}(M)^{1 / r} \mid r=1, \ldots, n\right\}
$$

where $d_{r}(L)=\min \{\operatorname{det}(T) \mid T \leq L, \operatorname{Rg}(T)=r\}$.
In particular $d_{r}(L)^{1 / r} \geq \min (L) / \gamma_{r}\left(\mathbb{Z}_{K}\right)$ where γ_{r} is the Hermitian Hermite constant.

Trace lattices

Trace lattices

- Any Hermitian \mathbb{Z}_{K}-lattice (P, h) is also a \mathbb{Z}-lattice (L, Q) of dimension $2 n$,
- where $L=P$ and $Q(x):=h(x, x) \in \mathbb{R} \cap K=\mathbb{Q}$.
- Then the polar form of Q is $(x, y)=\operatorname{Trace}_{K / \mathbb{Q}}(h(x, y))$ and (L, Q) is called the trace lattice of (P, h).
- $\min (L)=2 \min (P), L^{\#}=\mathbb{Z}_{K}^{\#} P^{*}$ and $\operatorname{det}(L)=d_{K}^{n} \operatorname{det}(P)^{2}$.
- $\mathbb{Z}_{K}^{\#}=\left\{x \in K \mid \operatorname{Trace}_{K / \mathbb{Q}}(x \ell) \in \mathbb{Z}\right.$ for all $\left.\ell \in \mathbb{Z}_{K}\right\}$
- $d_{K}=\operatorname{det}\left(\mathbb{Z}_{K}, \operatorname{Trace}(x \bar{y})=\left|\mathbb{Z}_{K}^{\#} / \mathbb{Z}_{K}\right|\right.$

$$
K=\mathbb{Q}[\sqrt{-11}], \mathbb{Z}_{K}=\mathbb{Z}[\eta], \eta=(1+\sqrt{-11}) / 2
$$

Then $\left.\eta^{2}-\eta+3=0, \mathbb{Z}_{[} \eta\right]$ has a Euclidean algorithm, for any $x \in K$ there is some $a \in \mathbb{Z}[\eta]$ such that $N(x-a) \leq \frac{9}{11}$.

The densest 2-dimensional lattice

Let L_{K} have Gram matrix $\left(\begin{array}{cc}1 & 3 / \sqrt{-11} \\ -3 / \sqrt{-11} & 1\end{array}\right)$ Then L_{K} is the densest 2-dimensional $\mathbb{Z}[\eta]$-lattice, the trace lattice is \mathbb{D}_{4}.
Let T be the 2 -dimensional unimodular Hermitian \mathbb{Z}_{K}-lattice with Gram matrix $\left(\begin{array}{cc}2 & \eta \\ \bar{\eta} & 2\end{array}\right)$. Then T is Hermitian unimodular, $\min (T)=2, \operatorname{Aut}(T)= \pm S_{3}$.

The lattice $P_{48 n}$ as Hermitian tensor product

Let (P, h) be some 12 -dimensional \mathbb{Z}_{K}-lattice such that the trace lattice Trace (P) is isometric to the Leech lattice. Then the Hermitian tensor product $R:=P \otimes_{\mathbb{Z}_{K}} T$ has Hermitian minimum either 2 or 3 . The minimum of R is 3 , if and only if (P, h) does not represent one of the lattices L_{K} or T.

A canonical construction for $P_{48 n}$

Some $\mathbb{Z}[\eta]$-structure of Leech.

Let P be the $\mathbb{Z}[\eta]$-lattice with $\operatorname{Aut}(P) \cong \mathrm{SL}_{2}(13) .2$ such that $\operatorname{Trace}(P) \cong \Lambda_{24}$. Then $\operatorname{Trace}(P \otimes T) \cong P_{48 n}$.

Canonical construction for $P_{48 n}$

As a trace lattice of a quaternion tensor product: $\mathrm{SL}_{2}(13) \leq \mathrm{GL}_{3}\left(Q_{\sqrt{13}, \infty, \infty}\right)$ and $\mathrm{SL}_{2}(5) \leq \mathrm{GL}_{1}\left(Q_{\sqrt{5}, \infty, \infty}\right)$ act on quaternionic lattices L_{13} resp. L_{5}. Then

$$
P_{48 n}=\operatorname{Trace}\left(L_{13} \otimes_{Q_{\infty, 2}} L_{5}\right)
$$

The discovery of the 72-dimensional extremal even unimodular lattice.

1967 Turyn: Constructed the Golay code \mathcal{G}_{24} from the Hamming code 78,82,84 Tits; Lepowsky, Meurman; Quebbemann:

Construction of the Leech lattice Λ_{24} from \mathbb{E}_{8}
1996 Gross, Elkies: Λ_{24} from Hermitian structure of \mathbb{E}_{8}
1996 N.: Tried similar construction of extremal 72-dimensional lattices (Bordeaux).
1998 Bachoc, N.: Two extremal 80-dimensional lattices using Quebbemann's generalization and the Hermitian structure of \mathbb{E}_{8}
2010 Griess: Reminds Lepowsky, Meurman construction of Leech. proposes to construct 72-dimensional lattices from Λ_{24}
2010 N .: Used one of the nine $\mathbb{Z}\left[\alpha=\frac{1+\sqrt{-7}}{2}\right]$ structures of Λ_{24} to find extremal 72-dimensional lattice $\Gamma_{72}=\mathcal{L}\left(\alpha \Lambda_{24}, \bar{\alpha} \Lambda_{24}\right)$
2011 Parker, N.: Check all other polarisations of Λ_{24} to show that Γ_{72} is the unique extremal lattice obtained from Λ_{24} by Turyn's construction.
Chance: $1: 10^{16}$ to find extremely good polarisation.

$$
K=\mathbb{Q}[\sqrt{-7}], \mathbb{Z}_{K}=\mathbb{Z}[\alpha], \alpha=(1+\sqrt{-7}) / 2
$$

Then $\alpha^{2}-\alpha+2=0, \beta=\bar{\alpha}=1-\alpha, \alpha \beta=2$ and $\mathbb{Z}[\alpha]$ has a Euclidean algorithm, for any $x \in K$ there is some $a \in \mathbb{Z}[\alpha]$ such that $N(x-a) \leq \frac{4}{7}$.

The densest 2-dimensional lattice

Denote by P_{a} the $\mathbb{Z}[\alpha]$-lattice with Gram matrix

$$
\left(\begin{array}{cc}
1 & 2 / \sqrt{-7} \\
-2 / \sqrt{-7} & 1
\end{array}\right) . \text { Then } \min \left(P_{a}\right)=1 \text { and } \operatorname{det}\left(P_{a}\right)=3 / 7 \text {. }
$$

The Barnes-lattice

$P_{b}=\langle(\beta, \beta, 0),(0, \beta, \beta),(\alpha, \alpha, \alpha)\rangle \leq \mathbb{Z}[\alpha]^{3}$ with Hermitian form $h: P_{b} \times P_{b} \rightarrow \mathbb{Z}[\alpha], h\left(\left(a_{1}, a_{2}, a_{3}\right),\left(b_{1}, b_{2}, b_{3}\right)\right)=\frac{1}{2} \sum_{i=1}^{3} a_{i} \bar{b}_{i}$ is Hermitian unimodular, $\operatorname{Aut}_{\mathbb{Z}[\alpha]}\left(P_{b}\right) \cong \pm \operatorname{PSL}_{2}(7)$,
$\gamma_{h}\left(P_{b}\right)=\min \left(P_{b}\right)=2$. Gram matrix $\left(\begin{array}{ccc}2 & 1 & \beta \\ 1 & 2 & \beta \\ \alpha & \alpha & 3\end{array}\right)$

Densest $\mathbb{Z}[\alpha]$-lattices

\mathbb{E}_{8} as trace lattice

$$
P_{c}:=\mathbb{Z}[\alpha]^{4}+\left\langle\frac{1}{\sqrt{-7}}(1,1,1,3), \frac{1}{\sqrt{-7}}(0,1,3,-2)\right\rangle \leq K^{4}
$$

Then $\min \left(P_{c}\right)=1, \operatorname{det}\left(P_{c}\right)=(1 / 7)^{2}, P_{c}^{*}=\sqrt{-7} P_{c}, \operatorname{Trace}\left(P_{c}\right)=\mathbb{E}_{8}$

Theorem

P_{a}, P_{b} and P_{c} are the densest $\mathbb{Z}[\alpha]$-lattices in dimension 2,3,4.
$\gamma_{2}(\mathbb{Z}[\alpha])=\sqrt{7 / 3}, \gamma_{3}(\mathbb{Z}[\alpha])=2, \gamma_{4}(\mathbb{Z}[\alpha])=\sqrt{7}$.
Proof: Trace $\left(P_{c}\right)$ is densest \mathbb{Z}-lattice.
For P_{a} enough to apply reduction theory.
For P_{b} explicit application of Voronoi's algorithm.

Extremal lattices as Hermitian tensor products

The Leech lattice

Let $P:=P_{b} \otimes_{\mathbb{Z}[\alpha]} P_{c}$. Then $\min (P)=2$ and Trace (P) is an extremal even unimodular lattice of dimension 24 , so $\operatorname{Trace}(P) \cong \Lambda_{24}$.

Proof: Trace (P) is even unimodular, since P_{b} Hermitian unimodular and $\mathbb{E}_{8}=\operatorname{Trace}\left(P_{c}\right)$ even unimodular. Show that $\min (P) \geq 2$:

r	1	2	3
$d_{r}\left(P_{b}\right)$	2	2	1
$d_{r}\left(P_{c}\right)$	1	$3 / 7$	$\geq 1 / 8$
$r d_{r}\left(P_{b}\right)^{1 / r} d_{r}\left(P_{c}\right)^{1 / r}$	2	1,85	1,5

$$
\min (L \otimes M) \geq \min \left\{r d_{r}(L)^{1 / r} d_{r}(M)^{1 / r} \mid r=1, \ldots, n\right\}
$$

Dimension 72.

Theorem (R. Coulangeon, N)

Let P be an Hermitian $\mathbb{Z}[\alpha]$-lattice with $\min (P)=2$. Then $\min \left(P \otimes P_{b}\right) \geq 3$ and $\min \left(P \otimes P_{b}\right)>3$ if and only if P has no sublattice isometric to P_{b}.

Proof.

r	1	2	3
$d_{r}\left(P_{b}\right)^{1 / r}$	2	$\sqrt{2}$	1
$d_{r}(P)^{1 / r}$	2	$\geq 2 \sqrt{3 / 7}$	≥ 1
$r d_{r}\left(P_{b}\right)^{1 / r} d_{r}(P)^{1 / r}$	4	$\geq 3,7$	≥ 3

And $d_{3}(P)>1$ if P_{b} is not a sublattice of P.

Corollary

Let P be some 12-dimensional $\mathbb{Z}[\alpha]$-lattice such that $\operatorname{Trace}(P) \cong \Lambda_{24}$. Then $\min \left(P \otimes P_{b}\right) \geq 3$ and $\min \left(P \otimes P_{b}\right)=4$ if P does not contain P_{b}.

Hermitian structures of the Leech lattice

Theorem (M. Hentschel, 2009)

There are exactly nine $\mathbb{Z}[\alpha]$-structures of the Leech lattice.

	group	$\left.\# P_{b} \leq P_{i}\right\}$
1	$\mathrm{SL}_{2}(25)$	0
2	$2 . A_{6} \times D_{8}$	$2 \cdot 20,160$
3	$\mathrm{SL}_{2}(13) .2$	$2 \cdot 52,416$
4	$\left(\mathrm{SL}_{2}(5) \times A_{5}\right) .2$	$2 \cdot 100,800$
5	$\left(\mathrm{SL}_{2}(5) \times A_{5}\right) .2$	$2 \cdot 100,800$
6	$2^{9} 3^{3}$	$2 \cdot 177,408$
7	$\pm \mathrm{PSL}_{2}(7) \times\left(C_{7}: C_{3}\right)$	$2 \cdot 306,432$
8	$\mathrm{PSL}_{2}(7) \times 2 . A_{7}$	$2 \cdot 504,000$
9	$2 . J_{2} .2$	$2 \cdot 1,209,600$

Theorem (R. Coulangeon, N)
$d_{3}\left(P_{i}\right)=1$ for $i=2, \ldots, 9$ and $d_{3}\left(P_{1}\right)>1$, so $\min \left(P_{1} \otimes P_{b}\right)=4$.

Stehlé, Watkins proof of extremality

Theorem (Stehlé, Watkins (2010))

Let L be an even unimodular lattice of dimension 72 with $\min (L) \geq 6$. Then L is extremal, if and only if it contains at least $6,218,175,600$ vectors v with $Q(v)=4$.

Proof: L is an even unimodular lattice of minimum ≥ 6, so its theta series is

$$
\begin{aligned}
& \theta_{L}=1+a_{3} q^{3}+a_{4} q^{4}+\ldots=f^{(9)}+a_{3} \Delta^{3} . \\
& f^{(9)}=1+6,218,175,600 q^{4}+\ldots \\
& \Delta^{3}=1 \quad q^{3} \quad-72 q^{4}+\ldots
\end{aligned}
$$

So $a_{4}=6,218,175,600-72 a_{3} \geq 6,218,175,600$ if and only if $a_{3}=0$.

Remark

A similar proof works in all jump dimensions $24 k$ (extremal minimum $=$ $2 k+2$) for lattices of minimum $\geq 2 k$.
For dimensions $24 k+8$ and lattices of minimum $\geq 2 k$ one needs to count vectors v with $Q(v)=k+2$.

The extremal 72-dimensional lattice Γ_{72}

Main result

- Γ_{72} is an extremal even unimodular lattice of dimension 72.
- Γ_{72} has a canonical construction as trace lattice of Hermitian tensor product.
- $\operatorname{Aut}\left(\Gamma_{72}\right)=\mathcal{U}:=\left(\mathrm{PSL}_{2}(7) \times \mathrm{SL}_{2}(25)\right): 2$.
- \mathcal{U} is an absolutely irreducible subgroup of $\mathrm{GL}_{72}(\mathbb{Q})$.
- All U-invariant lattices are similar to Γ_{72}.
- Γ_{72} is an ideal lattice in the 91 st cyclotomic number field.
- Γ_{72} realises the densest known sphere packing
- and maximal known kissing number in dimension 72.
- Γ_{72} is a $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$-lattice. This gives $\left(n^{2}+5 n+5\right)$-modular lattices of minimum $8+4 n\left(n \in \mathbb{N}_{0}\right)$.

