Computing unit groups of orders

Gabriele Nebe

Lehrstuhl D für Mathematik

University of Pennsylvania, Philadelphia, 6. November 2015

Setup

- $\mathcal{A}=\mathcal{D}^{n \times n}$ simple \mathbb{Q}-algebra
- \mathcal{D} division algebra with center K
- K an algebraic number field
- \mathbb{Z}_{K} ring of integers in K
- V_{∞} the infinite places of K
- $V_{f}:=\left\{\wp \mid 0 \neq \wp \unlhd_{\text {prime }} \mathbb{Z}_{K}\right\}$ the finite places of K
- $S_{f}=\left\{\wp_{1}, \ldots, \wp_{s}\right\} \subseteq V_{f}$
- $S:=S_{f} \cup V_{\infty}$
- $\mathbb{Z}_{K, S}:=\left\{a \in K \mid\|a\|_{\wp} \leq 1\right.$ for all $\left.\wp \notin S\right\} S$-integers
- Λ a \mathbb{Z}_{K}-order in \mathcal{A}.
- $\Lambda_{S}:=\mathbb{Z}_{K, S} \otimes \Lambda$

Theorem (Borel, Serre, 1962-1975)

The unit group of Λ_{S} is finitely presented.

The proof of Borel and Serre

\mathcal{A} a simple \mathbb{Q}-algebra
Λ order in \mathcal{A}
$S=\left\{\wp_{1} \ldots, \wp_{s}\right\} \cup V_{\infty}$

Theorem (Borel, Serre 1962-1975)

The unit group of Λ_{S} is finitely presented.

- The unit group Λ_{S}^{*} acts on the locally finite cell complex
- $x=x_{\infty} \times x_{\wp_{1}} \times \ldots \times x_{\wp_{s}}$
- with finite stabilisers of points

The proof of Borel and Serre

```
A a simple \mathbb{Q}\mathrm{ -algebra}
\Lambda order in }\mathcal{A
S={\mp@subsup{\wp}{1}{}\ldots,\mp@subsup{\wp}{s}{}}\cup\mp@subsup{V}{\infty}{}
```


Theorem (Borel, Serre 1962-1975)

The unit group of Λ_{S} is finitely presented.

- The unit group Λ_{S}^{*} acts on the locally finite cell complex
- $X=X_{\infty} \times X_{\wp_{1}} \times \ldots \times X_{\wp_{s}}$
- with finite stabilisers of points
- $X_{\wp_{i}}=$ Bruhat-Tits building of the \wp_{i}-adic group $\operatorname{SL}\left(\mathcal{A}_{\wp_{i}}\right)$.
- X homogeneous space with point stabiliser the maximal compact subgroup of $\mathrm{SL}\left(\mathcal{A}_{\infty}\right)$
- General Theory: One may compute a finite presentation using this action.

Examples

- $\mathcal{A}=K$ algebraic number field $\Lambda=\mathbb{Z}_{K}, S_{f}=\emptyset$, $\Lambda^{*}=\mathbb{Z}_{K}^{*} \cong \mu_{K} \times \mathbb{Z}^{r+s-1}$ (Dirichlet's unit theorem)

Examples

- $\mathcal{A}=K$ algebraic number field $\Lambda=\mathbb{Z}_{K}, S_{f}=\emptyset$, $\Lambda^{*}=\mathbb{Z}_{K}^{*} \cong \mu_{K} \times \mathbb{Z}^{r+s-1}$ (Dirichlet's unit theorem)
- $\mathcal{A}=\mathcal{D}=\left(\frac{-1,-1}{\mathbb{Q}}\right)=\left\langle 1, i, j, k=i j \mid i^{2}=j^{2}=k^{2}=-1\right\rangle_{\mathbb{Q}}$ definite rational quaternion algebra, $\Lambda=\langle 1, i, j, k\rangle_{\mathbb{Z}}$. $S_{f}=\emptyset \Rightarrow \Lambda^{*}=\langle i, j\rangle \cong Q_{8}$ finite.

Examples

- $\mathcal{A}=K$ algebraic number field $\Lambda=\mathbb{Z}_{K}, S_{f}=\emptyset$, $\Lambda^{*}=\mathbb{Z}_{K}^{*} \cong \mu_{K} \times \mathbb{Z}^{r+s-1}$ (Dirichlet's unit theorem)
- $\mathcal{A}=\mathcal{D}=\left(\frac{-1,-1}{\mathbb{Q}}\right)=\left\langle 1, i, j, k=i j \mid i^{2}=j^{2}=k^{2}=-1\right\rangle_{\mathbb{Q}}$ definite rational quaternion algebra, $\Lambda=\langle 1, i, j, k\rangle_{\mathbb{Z}}$. $S_{f}=\emptyset \Rightarrow \Lambda^{*}=\langle i, j\rangle \cong Q_{8}$ finite. $S_{f} \neq \emptyset \Rightarrow$ Chinburg etal: congruence subgroup problem.

Examples

- $\mathcal{A}=K$ algebraic number field $\Lambda=\mathbb{Z}_{K}, S_{f}=\emptyset$, $\Lambda^{*}=\mathbb{Z}_{K}^{*} \cong \mu_{K} \times \mathbb{Z}^{r+s-1}$ (Dirichlet's unit theorem)
- $\mathcal{A}=\mathcal{D}=\left(\frac{-1,-1}{\mathbb{Q}}\right)=\left\langle 1, i, j, k=i j \mid i^{2}=j^{2}=k^{2}=-1\right\rangle_{\mathbb{Q}}$ definite rational quaternion algebra, $\Lambda=\langle 1, i, j, k\rangle_{\mathbb{Z}}$. $S_{f}=\emptyset \Rightarrow \Lambda^{*}=\langle i, j\rangle \cong Q_{8}$ finite.
$S_{f} \neq \emptyset \Rightarrow$ Chinburg etal: congruence subgroup problem.
- $\mathcal{A}=\mathbb{Q}^{2 \times 2}$.

$$
\mathrm{SL}_{2}(\mathbb{Z})=\left\langle S=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \left.T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \right\rvert\, S^{2}=(S T)^{3}=-1\right\rangle
$$

Examples

- $\mathcal{A}=K$ algebraic number field $\Lambda=\mathbb{Z}_{K}, S_{f}=\emptyset$, $\Lambda^{*}=\mathbb{Z}_{K}^{*} \cong \mu_{K} \times \mathbb{Z}^{r+s-1}$ (Dirichlet's unit theorem)
- $\mathcal{A}=\mathcal{D}=\left(\frac{-1,-1}{\mathbb{Q}}\right)=\left\langle 1, i, j, k=i j \mid i^{2}=j^{2}=k^{2}=-1\right\rangle_{\mathbb{Q}}$ definite rational quaternion algebra, $\Lambda=\langle 1, i, j, k\rangle_{\mathbb{Z}}$. $S_{f}=\emptyset \Rightarrow \Lambda^{*}=\langle i, j\rangle \cong Q_{8}$ finite.
$S_{f} \neq \emptyset \Rightarrow$ Chinburg etal: congruence subgroup problem.
- $\mathcal{A}=\mathbb{Q}^{2 \times 2}$.

$$
\mathrm{SL}_{2}(\mathbb{Z})=\left\langle S=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), \left.T=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \right\rvert\, S^{2}=(S T)^{3}=-1\right\rangle
$$

- $\mathcal{A}=\mathcal{D}=\mathcal{Q}_{2,3}=\left(\frac{2,3}{\mathbb{Q}}\right)=\left\langle 1, i, j, k=i j \mid i^{2}=2, j^{2}=3\right\rangle_{\mathbb{Q}}$, $\Lambda=\left\langle 1, i, \frac{1}{2}(1+i+i j), \frac{1}{2}(j+i j)\right\rangle_{\mathbb{Z}}$ maximal order.
$a=\frac{1}{2}\left(\begin{array}{cc}1 & \sqrt{2}+1 \\ 3-3 \sqrt{2} & 1\end{array}\right), b=\left(\begin{array}{cc}\sqrt{2} & \sqrt{2}+1 \\ 3-3 \sqrt{2} & -\sqrt{2}\end{array}\right), t=b-a+1$.
Then $\Lambda^{*}=\left\langle a, b, t \mid a^{3}=b^{2}=a t b t=-1\right\rangle$

The congruence subgroup problem

- $n \in \mathbb{N}$
- $\Lambda_{S}[n] \hookrightarrow \Lambda_{S}^{*} \rightarrow\left(\Lambda_{S} / n \Lambda_{S}\right)^{*}$ (finite group)
- $\Lambda_{S}[n]$ is normal in Λ_{S}^{*} of finite index.

The congruence subgroup problem

- $n \in \mathbb{N}$
- $\Lambda_{S}[n] \hookrightarrow \Lambda_{S}^{*} \rightarrow\left(\Lambda_{S} / n \Lambda_{S}\right)^{*}$ (finite group)
- $\Lambda_{S}[n]$ is normal in Λ_{S}^{*} of finite index.

Definition

$U \leq \Lambda_{S}^{*}$ is called congruence subgroup, if there is some $n \in \mathbb{N}$ such that $\Lambda_{S}[n] \subseteq U$.
The algebra \mathcal{A} has the congruence subgroup property for S, if all subgroups U of finite index in Λ_{S}^{*} are congruence subgroups.

The congruence subgroup problem

- $n \in \mathbb{N}$
- $\Lambda_{S}[n] \hookrightarrow \Lambda_{S}^{*} \rightarrow\left(\Lambda_{S} / n \Lambda_{S}\right)^{*}$ (finite group)
- $\Lambda_{S}[n]$ is normal in Λ_{S}^{*} of finite index.

Definition

$U \leq \Lambda_{S}^{*}$ is called congruence subgroup, if there is some $n \in \mathbb{N}$ such that $\Lambda_{S}[n] \subseteq U$.
The algebra \mathcal{A} has the congruence subgroup property for S, if all subgroups U of finite index in Λ_{S}^{*} are congruence subgroups.

Conjecture (Serre, 1970)

\mathcal{A} has the congruence subgroup property for S if and only if

$$
\operatorname{Rk}_{S}(\operatorname{SL}(\mathcal{A})):=\sum_{i=1}^{s} \operatorname{Rk}\left(\operatorname{SL}\left(\mathcal{A}_{\wp_{i}}\right)\right)+\sum_{v \in V_{\infty}} \operatorname{Rk}\left(\operatorname{SL}\left(\mathcal{A}_{v}\right)\right) \geq 2
$$

and $\operatorname{Rk}\left(\operatorname{SL}\left(\mathcal{A}_{\wp_{i}}\right)\right)>0$ for all i.

$\mathbb{Q}^{2 \times 2}$ has not the congruence subgroup property

Idea

G finite simple group, not an epimorphic image of $\mathrm{SL}_{2}(\mathbb{Z} / n \mathbb{Z})$.

$$
1 \rightarrow N \hookrightarrow \mathrm{SL}_{2}(\mathbb{Z}) \xrightarrow{\varphi} G \rightarrow 1
$$

Then N is not a congruence subgroup.

$\mathbb{Q}^{2 \times 2}$ has not the congruence subgroup property

Idea

G finite simple group, not an epimorphic image of $\mathrm{SL}_{2}(\mathbb{Z} / n \mathbb{Z})$.

$$
1 \rightarrow N \hookrightarrow \mathrm{SL}_{2}(\mathbb{Z}) \xrightarrow{\varphi} G \rightarrow 1
$$

Then N is not a congruence subgroup.

$$
\mathrm{SL}_{2}(\mathbb{Z})=\left\langle S, S T \mid S^{2}=(S T)^{3}=-1\right\rangle
$$

$G=\langle x, y\rangle$ so that $x^{2}=y^{3}=1$.
$\varphi: \mathrm{SL}_{2}(\mathbb{Z}) \rightarrow G, S \mapsto x,(S T) \mapsto y$ epimorphism. $N:=\operatorname{Ker}(\varphi)$ no congruence subgroup.
There are many such groups G.
E.g. $G=J_{1}$ has standard generators of order 2 and 3 .

$$
S=\{\infty\}, \operatorname{Rk}_{S}\left(\mathrm{SL}_{2}(\mathbb{Q})\right)=\operatorname{Rk}\left(\mathrm{SL}_{2}(\mathbb{R})\right)=1<2
$$

So the example confirms Serre's conjecture.
$\Omega_{2,3}$ has not the congruence subgroup property

Idea

G finite simple group, not an epimorphic image of $\mathrm{SL}_{2}(\mathbb{Z} / n \mathbb{Z})$.

$$
1 \rightarrow N \hookrightarrow \mathrm{SL}_{2}(\mathbb{Z}) \xrightarrow{\varphi} G \rightarrow 1
$$

Then N is not a congruence subgroup.
Λ maximal order in $Q_{2,3} \cdot \Lambda^{*}=\left\langle a, b, t \mid a^{3}=b^{2}=a t b t=-1\right\rangle$

Theorem

Choose $G=J_{1}=\langle x, y\rangle$ with $x^{2}=y^{3}=1$. Put $z:=(x y)^{3} x$. Then z is the unique element such that $y z x z=1$.

$$
\varphi: \Lambda^{*} \rightarrow J_{1}, a \mapsto y, b \mapsto x, t \mapsto z
$$

epimorphisms. $\operatorname{Ker}(\varphi)$ no congruence subgroup.

$$
S=\{\infty\}, \operatorname{Rk}_{S}\left(\mathrm{SL}_{2}(\mathbb{Q})\right)=\operatorname{Rk}\left(\mathrm{SL}_{2}(\mathbb{R})\right)=1<2
$$

So also this example confirms Serre's conjecture. To find a counterexample, need to choose $S_{f} \neq \emptyset$.

Compute presentation of Λ_{S}^{*}

Part I for $S_{f}=\emptyset$, Braun, Coulangeon, N., Schönnenbeck (2015)

- Action of \mathcal{A}^{*} on X_{∞}.
- computes generators and relations for Λ^{*}.
- solves word problem in these generators
- uses Voronoi algorithm to enumerate perfect forms.
- Implementation is good for $\operatorname{dim}_{\mathbb{Q}}(\mathcal{A}) \leq 9$.
- For quaternion algebras we are better than Magma (5 min. versus 1 day)
- For division algebras of degree 3 this is the first available algorithm.

Compute presentation of Λ_{S}^{*}

Part I for $S_{f}=\emptyset$, Braun, Coulangeon, N., Schönnenbeck (2015)

- Action of \mathcal{A}^{*} on X_{∞}.
- computes generators and relations for Λ^{*}.
- solves word problem in these generators
- uses Voronoi algorithm to enumerate perfect forms.
- Implementation is good for $\operatorname{dim}_{\mathbb{Q}}(\mathcal{A}) \leq 9$.
- For quaternion algebras we are better than Magma (5 min. versus 1 day)
- For division algebras of degree 3 this is the first available algorithm.

Part II for $S_{f}=\left\{\wp_{1}, \ldots, \wp_{s}\right\}$, Coulangeon, N. (in preparation)

- Action of \mathcal{A}^{*} on $X_{\wp_{1}} \times \ldots \times X_{\wp_{s}}$.
- Stabilisers Λ^{*} for suitable orders Λ.
- Idea: Chinburg et al (2014):
$\mathcal{A}=\left(\frac{-1,-1}{\mathbb{Q}}\right) \Rightarrow \operatorname{Rk}_{S}(\mathcal{A})=\left|S_{f}-\{2\}\right|$
X_{p} is tree, stabilisers finite.

Part I for $S_{f}=\emptyset$: Voronoi

- $\mathcal{A}=\mathcal{D}^{n \times n}$ simple \mathbb{Q}-algebra
- $\mathcal{A} \hookrightarrow \mathcal{A}_{\mathbb{R}}:=\mathcal{A} \otimes_{\mathbb{Q}} \mathbb{R}$ real semisimple algebra, so isomorphic to direct sum of matrix rings over \mathbb{R}, \mathbb{C} and \mathbb{H}.
- $\mathcal{A}_{\mathbb{R}}$ has "canonical involution". $x \mapsto x^{\dagger}$

Part I for $S_{f}=\emptyset$: Voronoi

- $\mathcal{A}=\mathcal{D}^{n \times n}$ simple \mathbb{Q}-algebra
- $\mathcal{A} \hookrightarrow \mathcal{A}_{\mathbb{R}}:=\mathcal{A} \otimes_{\mathbb{Q}} \mathbb{R}$ real semisimple algebra, so isomorphic to direct sum of matrix rings over \mathbb{R}, \mathbb{C} and \mathbb{H}.
- $\mathcal{A}_{\mathbb{R}}$ has "canonical involution". $x \mapsto x^{\dagger}$
- $\Sigma:=\operatorname{Sym}\left(\mathcal{A}_{\mathbb{R}}\right):=\left\{F \in \mathcal{A}_{\mathbb{R}} \mid F^{\dagger}=F\right\}$ symmetric elements.
- $(-,-): \Sigma \times \Sigma \rightarrow \mathbb{R},\left(F_{1}, F_{2}\right):=\operatorname{trace}\left(F_{1} F_{2}^{\dagger}\right)$.
- $(\Sigma,(-,-))$ euclidean space.
- Note: in general $\mathcal{A}^{\dagger} \neq \mathcal{A}$.

Part I for $S_{f}=\emptyset$: Voronoi

- $\mathcal{A}=\mathcal{D}^{n \times n}$ simple \mathbb{Q}-algebra
- $\mathcal{A} \hookrightarrow \mathcal{A}_{\mathbb{R}}:=\mathcal{A} \otimes_{\mathbb{Q}} \mathbb{R}$ real semisimple algebra, so isomorphic to direct sum of matrix rings over \mathbb{R}, \mathbb{C} and \mathbb{H}.
- $\mathcal{A}_{\mathbb{R}}$ has "canonical involution". $x \mapsto x^{\dagger}$
- $\Sigma:=\operatorname{Sym}\left(\mathcal{A}_{\mathbb{R}}\right):=\left\{F \in \mathcal{A}_{\mathbb{R}} \mid F^{\dagger}=F\right\}$ symmetric elements.
- $(-,-): \Sigma \times \Sigma \rightarrow \mathbb{R},\left(F_{1}, F_{2}\right):=\operatorname{trace}\left(F_{1} F_{2}^{\dagger}\right)$.
- $(\Sigma,(-,-))$ euclidean space.
- Note: in general $\mathcal{A}^{\dagger} \neq \mathcal{A}$.

Positive forms

- Let $V=\mathcal{D}^{1 \times n}$ the simple right \mathcal{A}-module, $V_{\mathbb{R}}=V \otimes \mathbb{Q} \mathbb{R}$.
- $x \in V_{\mathbb{R}} \Rightarrow x^{\dagger} x \in \Sigma$.
- $F \in \Sigma$ positive if $F[x]>0$ for all $0 \neq x \in V_{\mathbb{R}}$.

$$
F[x]:=\left(F, x^{\dagger} x\right)=\operatorname{trace}\left(F x^{\dagger} x\right)=\operatorname{trace}\left(x F x^{\dagger}\right)>0
$$

- construct X_{∞} in the cone $\Sigma^{>0}=\{F \in \Sigma \mid F$ positive $\}$

Lattices and perfect forms

- Let \mathcal{O} be a \mathbb{Z}_{K}-order in \mathcal{D} and L an \mathcal{O}-lattice in the simple \mathcal{A} module V.
- $\Lambda:=\operatorname{End}_{\mathcal{O}}(L)$ is \mathbb{Z}_{K}-order in \mathcal{A} with unit group
$\Lambda^{*}:=\operatorname{GL}(L)=\{a \in \mathcal{A} \mid a L=L\}$.

Lattices and perfect forms

- Let \mathcal{O} be a \mathbb{Z}_{K}-order in \mathcal{D} and L an \mathcal{O}-lattice in the simple \mathcal{A} module V.
- $\Lambda:=\operatorname{End}_{\mathcal{O}}(L)$ is \mathbb{Z}_{K}-order in \mathcal{A} with unit group $\Lambda^{*}:=\operatorname{GL}(L)=\{a \in \mathcal{A} \mid a L=L\}$.

L-minimal vectors

Choose $F \in \Sigma^{>0}$ (positive form).

- $\mu(F):=\mu_{L}(F)=\min \{F[\ell] \mid 0 \neq \ell \in L\}$ the L-minimum of F
- $\mathcal{M}_{L}(F):=\left\{\ell \in L \mid F[\ell]=\mu_{L}(F)\right\}$ set of L-minimal vectors

Lattices and perfect forms

- Let \mathcal{O} be a \mathbb{Z}_{K}-order in \mathcal{D} and L an \mathcal{O}-lattice in the simple \mathcal{A} module V.
- $\Lambda:=\operatorname{End}_{\mathcal{O}}(L)$ is \mathbb{Z}_{K}-order in \mathcal{A} with unit group $\Lambda^{*}:=\operatorname{GL}(L)=\{a \in \mathcal{A} \mid a L=L\}$.

L-minimal vectors

Choose $F \in \Sigma^{>0}$ (positive form).

- $\mu(F):=\mu_{L}(F)=\min \{F[\ell] \mid 0 \neq \ell \in L\}$ the L-minimum of F
- $\mathcal{M}_{L}(F):=\left\{\ell \in L \mid F[\ell]=\mu_{L}(F)\right\}$ set of L-minimal vectors
- $\operatorname{Vor}_{L}(F):=\left\{\sum_{x \in \mathcal{M}_{L}(F)} a_{x} x^{\dagger} x \mid a_{x} \geq 0\right\} \subset \Sigma^{\geq 0}$ Voronoi domain
- F is L-perfect $\Leftrightarrow \operatorname{dim}\left(\operatorname{Vor}_{L}(F)\right)=\operatorname{dim}(\Sigma)$.

Lattices and perfect forms

- Let \mathcal{O} be a \mathbb{Z}_{K}-order in \mathcal{D} and L an \mathcal{O}-lattice in the simple \mathcal{A} module V.
- $\Lambda:=\operatorname{End}_{\mathcal{O}}(L)$ is \mathbb{Z}_{K}-order in \mathcal{A} with unit group $\Lambda^{*}:=\operatorname{GL}(L)=\{a \in \mathcal{A} \mid a L=L\}$.

L-minimal vectors

Choose $F \in \Sigma^{>0}$ (positive form).

- $\mu(F):=\mu_{L}(F)=\min \{F[\ell] \mid 0 \neq \ell \in L\}$ the L-minimum of F
- $\mathcal{M}_{L}(F):=\left\{\ell \in L \mid F[\ell]=\mu_{L}(F)\right\}$ set of L-minimal vectors
- $\operatorname{Vor}_{L}(F):=\left\{\sum_{x \in \mathcal{M}_{L}(F)} a_{x} x^{\dagger} x \mid a_{x} \geq 0\right\} \subset \Sigma^{\geq 0}$ Voronoi domain
- F is L-perfect $\Leftrightarrow \operatorname{dim}\left(\operatorname{Vor}_{L}(F)\right)=\operatorname{dim}(\Sigma)$.

Main theorem

$$
\mathcal{T}:=\left\{\operatorname{Vor}_{L}(F) \mid F \in \Sigma^{>0}, \text { L-perfect }\right\}
$$

is an exact locally finite polyhedral tiling of the cone $\Sigma^{\geq 0}$.
Λ^{*} acts on \mathcal{T} with finitely many orbits.

Generators for Λ^{*}

- Representatives $\mathcal{R}:=\left\{F_{1}, \ldots, F_{s}\right\}$ of the Λ^{*}-orbits of L-perfect forms.
- for all neighbors F of the $F_{i}\left(\operatorname{codim}\left(\operatorname{Vor}(F) \cap \operatorname{Vor}\left(F_{i}\right)\right)=1\right)$ find some $g_{F} \in \Lambda^{*}$ with $g_{F} \cdot F \in \mathcal{R}$ (isometry of lattices)
- Then $\Lambda^{*}=\left\langle\operatorname{Aut}\left(F_{i}\right), g_{F}\right| F_{i} \in \mathcal{R}, F$ neighbor of some $\left.F_{j} \in \mathcal{R}\right\rangle$.

Generators for Λ^{*}

- Representatives $\mathcal{R}:=\left\{F_{1}, \ldots, F_{s}\right\}$ of the Λ^{*}-orbits of L-perfect forms.
- for all neighbors F of the $F_{i}\left(\operatorname{codim}\left(\operatorname{Vor}(F) \cap \operatorname{Vor}\left(F_{i}\right)\right)=1\right)$ find some $g_{F} \in \Lambda^{*}$ with $g_{F} \cdot F \in \mathcal{R}$ (isometry of lattices)
- Then $\Lambda^{*}=\left\langle\operatorname{Aut}\left(F_{i}\right), g_{F}\right| F_{i} \in \mathcal{R}, F$ neighbor of some $\left.F_{j} \in \mathcal{R}\right\rangle$.

$$
\Lambda^{*}=\left\langle\operatorname{Aut}\left(F_{1}\right), \operatorname{Aut}\left(F_{2}\right), \operatorname{Aut}\left(F_{3}\right), a, b, c, d, e, f\right\rangle
$$

An example: $\mathcal{Q}_{2,3}$.

- $\mathcal{A}=\mathcal{D}=\mathcal{Q}_{2,3}=\left(\frac{2,3}{\mathbb{Q}}\right)=\left\langle i, j \mid i^{2}=2, j^{2}=3, i j=-j i\right\rangle_{\mathbb{Q}}$
- maximal order $\Lambda=\left\langle 1, i, \frac{1}{2}(1+i+i j), \frac{1}{2}(j+i j)\right\rangle_{\mathbb{Z}}$
- $V=\mathcal{A}, L=\Lambda, \Lambda=\operatorname{End}_{\Lambda}(\Lambda)$.
- $\mathcal{A} \hookrightarrow \mathcal{A}_{\mathbb{R}}=\mathbb{R}^{2 \times 2}$ by

$$
i \mapsto \operatorname{diag}(\sqrt{2},-\sqrt{2}), j \mapsto\left(\begin{array}{ll}
0 & 1 \\
3 & 0
\end{array}\right)
$$

An example: $\Omega_{2,3}$.

- $\mathcal{A}=\mathcal{D}=\mathcal{Q}_{2,3}=\left(\frac{2,3}{\mathbb{Q}}\right)=\left\langle i, j \mid i^{2}=2, j^{2}=3, i j=-j i\right\rangle_{\mathbb{Q}}$
- maximal order $\Lambda=\left\langle 1, i, \frac{1}{2}(1+i+i j), \frac{1}{2}(j+i j)\right\rangle_{\mathbb{Z}}$
- $V=\mathcal{A}, L=\Lambda, \Lambda=\operatorname{End}_{\Lambda}(\Lambda)$.
- $\mathcal{A} \hookrightarrow \mathcal{A}_{\mathbb{R}}=\mathbb{R}^{2 \times 2}$ by

$$
i \mapsto \operatorname{diag}(\sqrt{2},-\sqrt{2}), j \mapsto\left(\begin{array}{ll}
0 & 1 \\
3 & 0
\end{array}\right)
$$

Three perfect forms

- $F_{1}=\left(\begin{array}{cc}1 & 2-\sqrt{2} \\ 2-\sqrt{2} & 1\end{array}\right), F_{2}=\left(\begin{array}{cc}6-3 \sqrt{2} & 2 \\ 2 & 2+\sqrt{2}\end{array}\right)$
- $F_{3}=\operatorname{diag}(-3 \sqrt{2}+9,3 \sqrt{2}+5)$

The tiling for $\Omega_{2,3} \hookrightarrow \mathbb{Q}[\sqrt{2}]^{2 \times 2}$.

$\Lambda^{*} /\langle \pm 1\rangle=\left\langle a, b, t \mid a^{3}, b^{2}, a t b t\right\rangle, \mathcal{A} \cong \Omega_{2,3}$

21

$$
\Lambda^{*}=\left\langle a, b, t \mid a^{3}=b^{2}=a t b t=-1\right\rangle, \mathcal{A} \cong Q_{2,3}
$$

$$
\begin{gathered}
a=\frac{1}{2}\left(\begin{array}{cc}
1 & \sqrt{2}+1 \\
3-3 \sqrt{2} & 1
\end{array}\right) \\
b=\left(\begin{array}{cc}
\sqrt{2} & \sqrt{2}+1 \\
3-3 \sqrt{2} & -\sqrt{2}
\end{array}\right) \\
t=\frac{1}{2}\left(\begin{array}{cc}
2 \sqrt{2}+1 & \sqrt{2}+1 \\
3-3 \sqrt{2} & 1-2 \sqrt{2}
\end{array}\right)
\end{gathered}
$$

Then

- $t=b-a+1$ has minimal polynomial $\mu_{t}=x^{2}+x-1$
- $\langle a, b\rangle /\langle \pm 1\rangle \cong C_{3} * C_{2} \cong \operatorname{PSL}_{2}(\mathbb{Z})$

The tiling for $\Omega_{2,3} \hookrightarrow \mathbb{Q}[\sqrt{3}]^{2 \times 2}$.

A rational division algebra of index 3

- $\vartheta=\zeta_{9}+\zeta_{9}^{-1},\langle\sigma\rangle=\operatorname{Gal}(\mathbb{Q}(\vartheta) / \mathbb{Q})$,
- \mathcal{A} the \mathbb{Q}-algebra generated by
- $Z:=\left(\begin{array}{ccc}\vartheta & & \\ & \sigma(\vartheta) & \\ & & \sigma^{2}(\vartheta)\end{array}\right)$ and $\Pi:=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 0 & 0\end{array}\right)$.
- \mathcal{A} division algebra with center \mathbb{Q}, Hasse invariants $\frac{1}{3}$ at 2 and $\frac{2}{3}$ at 3 .
- Λ maximal order in \mathcal{A}
- $\Gamma:=\Lambda^{\times}$has 431 orbits of perfect forms and presentation

$$
\begin{aligned}
\Gamma \cong\langle a, b| & b^{2} a^{2}\left(b^{-1} a^{-1}\right)^{2}, b^{-2}\left(a^{-1} b^{-1}\right)^{2} a b^{-2} a^{2} b^{-3}, \\
& a b^{2} a^{-1} b^{3} a^{-2} b a b^{3}, a^{2} b a b^{-2} a b^{-1}\left(a^{-2} b\right)^{2}, \\
& a^{-1} b^{2} a^{-1} b^{-1} a^{-5} b^{-2} a^{-3}, \\
& \left.b^{-2} a^{-2} b^{-1} a^{-1} b^{-1} a^{-2} b^{-1} a^{-1} b^{-2}\left(a^{-1} b^{-1}\right)^{3}\right\rangle
\end{aligned}
$$

- $a=\frac{1}{3}\left(\left(1-3 Z-Z^{2}\right)+\left(2+Z^{2}\right) \Pi+\left(1-Z^{2}\right) \Pi^{2}\right)$, $b=\frac{1}{3}\left(\left(-3-2 Z+Z^{2}\right)+(1-2 Z) \Pi+\left(1-Z^{2}\right) \Pi^{2}\right)$.

Quaternion algebras with imaginary quadratic fields

$$
\mathcal{A}=\left(\frac{-1,-1}{k}\right), \quad k=\mathbb{Q}(\sqrt{-d})
$$

d	perfect forms	timing Voronoï	timing presentation	number of generators
7	1	$1.24 s$	$0.42 s$	2
31	8	$6.16 s$	$0.50 s$	3
55	21	$14.69 s$	$1.01 s$	5
79	40	$28.74 s$	$1.78 s$	5
95	69	$53.78 s$	$2.57 s$	7
103	53	$38.39 s$	$2.52 s$	6
111	83	$66.16 s$	$3.02 s$	6
255	302	$323.93 s$	$17.54 s$	16

Quaternion algebras with center $\mathbb{Q}(\sqrt{-7})$

$$
\mathcal{A}=\left(\frac{a, b}{\mathbb{Q}(\sqrt{-7})}\right)
$$

a, b	perfect forms	timing Voronoï	timing presentation	number of generators
$-1,-1$	1	$1.24 s$	$0.42 s$	2
$-1,-11$	20	$21.61 s$	$4.13 s$	6
$-11,-14$	58	$51.46 s$	$5.11 s$	10
$-1,-23$	184	$179.23 s$	$89.34 s$	16

The word problem

The word problem

The word problem

The word problem

Part II: $S_{f} \neq \emptyset$, buildings

$$
S=V_{\infty} \cup S_{f}, S_{f}=\left\{\wp_{1}, \ldots, \wp_{s}\right\} .
$$

Borel, Serre: Λ_{S}^{*} is finitely presented.

faithful action on locally finite polyhedral complex $x=X_{\infty} \times X_{\wp_{1}} \times \ldots \times X_{\wp_{s}}$
$X_{\infty}=$ Voronoi domains of L-perfect forms in $\Sigma^{>0}$.
$X_{\wp_{i}}=$ Bruhat-Tits building of the \wp_{i}-adic group $\operatorname{SL}\left(\mathcal{A}_{\wp_{i}}\right)$.

Part II: $S_{f} \neq \emptyset$, buildings

$S=V_{\infty} \cup S_{f}, S_{f}=\left\{\wp_{1}, \ldots, \wp_{s}\right\}$.

Borel, Serre: Λ_{S}^{*} is finitely presented.

faithful action on locally finite polyhedral complex
$x=x_{\infty} \times x_{\wp_{1}} \times \ldots \times x_{\wp_{s}}$
$X_{\infty}=$ Voronoi domains of L-perfect forms in $\Sigma^{>0}$.
$x_{\wp_{i}}=$ Bruhat-Tits building of the \wp_{i}-adic group $\operatorname{SL}\left(\mathcal{A}_{\wp_{i}}\right)$.

Simplification

- $K=\mathbb{Q}, s=1, \wp_{1}=p \mathbb{Z}, p$ unramified in \mathcal{D}.
- $\Lambda_{S}=\Lambda\left[\frac{1}{p}\right]=\left\{a \in \mathcal{A} \mid p^{i} a \in \Lambda\right.$ for some $\left.i\right\}$.
- Completion: $\mathcal{A}_{p}=\mathbb{Q}_{p} \otimes \mathcal{D}^{n \times n}=\mathbb{Q}_{p}^{n d \times n d}$.
- $\operatorname{SL}\left(\mathcal{A}_{p}\right)=\mathrm{SL}_{n d}\left(\mathbb{Q}_{p}\right)$.

The building of $\mathrm{SL}_{m}\left(\mathbb{Q}_{p}\right)$

- $V_{p}=\mathbb{Q}_{p}^{m}$ simple \mathcal{A}_{p}-module.
- L a \mathbb{Z}_{p}-lattice in V_{p},
- $[L]:=\left\{p^{i} L \mid i \in \mathbb{Z}\right\}$ homothetie class of L.
- $X_{p}: m$ - 1-dimensional simplicial complex with
- vertices (0-simplices) $\mathcal{K}:=\left\{[L] \mid L\right.$ lattice in $\left.V_{p}\right\}$
- $\left\{\left[L_{1}\right], \ldots,\left[L_{k}\right]\right\} \subset \mathcal{K}$ is a $k-1$ simplex, if there are $M_{i} \in\left[L_{i}\right]$ s.t. (after permutation)

$$
\ldots \supset M_{1} \supset M_{2} \supset \ldots \supset M_{k} \supset p M_{1} \supset \ldots
$$

The building of $\mathrm{SL}_{m}\left(\mathbb{Q}_{p}\right)$

- $V_{p}=\mathbb{Q}_{p}^{m}$ simple \mathcal{A}_{p}-module.
- L a \mathbb{Z}_{p}-lattice in V_{p},
- $[L]:=\left\{p^{i} L \mid i \in \mathbb{Z}\right\}$ homothetie class of L.
- $X_{p}: m$ - 1-dimensional simplicial complex with
- vertices (0-simplices) $\mathcal{K}:=\left\{[L] \mid L\right.$ lattice in $\left.V_{p}\right\}$
- $\left\{\left[L_{1}\right], \ldots,\left[L_{k}\right]\right\} \subset \mathcal{K}$ is a $k-1$ simplex, if there are $M_{i} \in\left[L_{i}\right]$ s.t. (after permutation)

$$
\ldots \supset M_{1} \supset M_{2} \supset \ldots \supset M_{k} \supset p M_{1} \supset \ldots
$$

- Choose basis $\left(b_{1}, \ldots, b_{m}\right)$ of V_{p} such that $L_{0}:=\bigoplus \mathbb{Z}_{p} b_{i}$ is Λ-invariant
- The Type of $[L]$ is $\nu_{p}(\operatorname{det}(B)) \in \mathbb{Z} / m \mathbb{Z}$ for any $B \in \mathrm{GL}_{m}\left(\mathbb{Q}_{p}\right)$ with $B L_{0}=L$.
- $\mathrm{SL}_{m}\left(\mathbb{Q}_{p}\right)$ acts on \mathcal{K} with Type as a separating invariant.

Presentation of the S-unit group

Main theorem

- $\Lambda_{S}^{*}=\Lambda\left[\frac{1}{p}\right]$ acts as simplicial automorphisms on X_{p} with finitely many orbits.
- $\mathbb{Z}_{K, S}^{*}=\mathbb{Z}\left[\frac{1}{p}\right]^{*}=\{1,-1\} \times\left\{p^{i} \mid i \in \mathbb{Z}\right\}=Z\left(\Lambda_{S}^{*}\right)$ is the kernel of this action.
- $\operatorname{Stab}_{\Lambda_{S}^{*}}\left(L_{0}\right)=\Lambda^{*}$.
- $\operatorname{Stab}_{\Lambda_{S}^{*}}\left(\left[L_{0}\right]\right)=\Lambda^{*} \times\left\{p^{i} \mid i \in \mathbb{Z}\right\}$.

Presentation of the S-unit group

Main theorem

- $\Lambda_{S}^{*}=\Lambda\left[\frac{1}{p}\right]$ acts as simplicial automorphisms on X_{p} with finitely many orbits.
- $\mathbb{Z}_{K, S}^{*}=\mathbb{Z}\left[\frac{1}{p}\right]^{*}=\{1,-1\} \times\left\{p^{i} \mid i \in \mathbb{Z}\right\}=Z\left(\Lambda_{S}^{*}\right)$ is the kernel of this action.
- $\operatorname{Stab}_{\Lambda_{S}^{*}}\left(L_{0}\right)=\Lambda^{*}$.
- $\operatorname{Stab}_{\Lambda_{S}^{*}}\left(\left[L_{0}\right]\right)=\Lambda^{*} \times\left\{p^{i} \mid i \in \mathbb{Z}\right\}$.

Presentation

- Representatives $\mathcal{R}:=\left\{\left[L_{1}\right], \ldots,\left[L_{s}\right]\right\}$ of the Λ_{S}^{*}-orbits on \mathcal{K}
- For all adjacent vertices $[L]$ of some $\left[L_{i}\right]$ compute $g_{L} \in \Lambda_{S}^{*}$ such that $g_{L} \cdot[L] \in \mathcal{R}$.
- Then

$$
\left.\Lambda_{S}^{*}=\left\langle Z\left(\Lambda_{S}^{*}\right), \operatorname{Stab}_{\Lambda_{S}^{*}}\left(L_{i}\right), g_{L}\right|\left[L_{i}\right] \in \mathcal{R},[L] \text { adjacent to some }\left[L_{j}\right] \in \mathcal{R}\right\rangle .
$$

- To get a presentation we need to solve the word problem in the point stabilisers ($\cong \Lambda^{*}$)

An example

$\mathcal{A}=\mathcal{D}=Q_{2,3}$ and Λ as above

$$
\Lambda^{\times} /\{ \pm 1\}=\left\langle A, B \mid B^{3},\left(A^{2} B\right)^{2}\right\rangle
$$

Λ is right principal ideal domain

$$
\Lambda\left[\frac{1}{p}\right]^{*} / \mathbb{Z}\left[\frac{1}{p}\right]^{*}=\left\langle A, B, C_{p}\right\rangle
$$

with $C_{p} \in \Lambda$ of norm p.

An example

$\mathcal{A}=\mathcal{D}=Q_{2,3}$ and Λ as above

$$
\Lambda^{\times} /\{ \pm 1\}=\left\langle A, B \mid B^{3},\left(A^{2} B\right)^{2}\right\rangle
$$

Λ is right principal ideal domain

$$
\Lambda\left[\frac{1}{p}\right]^{*} / \mathbb{Z}\left[\frac{1}{p}\right]^{*}=\left\langle A, B, C_{p}\right\rangle
$$

with $C_{p} \in \Lambda$ of norm p.

$$
\Lambda\left[\frac{1}{5}\right]^{*} /\left(\mathbb{Z}\left[\frac{1}{5}\right]^{*}\right)=\left\langle A, C \left\lvert\, \begin{array}{l}
\left(C A^{-2} C\right)^{3},\left(C^{-1} A^{2} C^{-1} A^{-2}\right)^{2} \\
C A^{-1} C^{-1} A^{2} C^{-1} A^{-1} C^{-1} A C A^{-1} C A \\
C A^{3} C A^{-1} C^{-1} A^{2} C^{-1} A C^{-1} A^{2} C^{-1} A^{-1}, \\
\left(C A^{-1} C A C A^{-2} C A^{-1} C\right)^{2}
\end{array}\right.\right\rangle
$$

An example

$\mathcal{A}=\mathcal{D}=\mathcal{Q}_{2,3}$ and Λ as above

$$
\Lambda^{\times} /\{ \pm 1\}=\left\langle A, B \mid B^{3},\left(A^{2} B\right)^{2}\right\rangle
$$

Λ is right principal ideal domain

$$
\Lambda\left[\frac{1}{p}\right]^{*} / \mathbb{Z}\left[\frac{1}{p}\right]^{*}=\left\langle A, B, C_{p}\right\rangle
$$

with $C_{p} \in \Lambda$ of norm p.

$$
\begin{gathered}
\Lambda\left[\frac{1}{5}\right]^{*} /\left(\mathbb{Z}\left[\frac{1}{5}\right]^{*}\right)=\left\langle\begin{array}{l}
\left(C A^{-2} C\right)^{3},\left(C^{-1} A^{2} C^{-1} A^{-2}\right)^{2}, \\
A, C\left|\begin{array}{l}
C A^{-1} C^{-1} A^{2} C^{-1} A^{-1} C^{-1} A C A^{-1} C A, \\
C A^{3} C A^{-1} C^{-1} A^{2} C^{-1} A C^{-1} A^{2} C^{-1} A^{-1},
\end{array}\right\rangle \\
\left(C A^{-1} C A C A^{-2} C A^{-1} C\right)^{2}
\end{array}\right. \\
\Lambda\left[\frac{1}{7}\right]^{*} /\left(\mathbb{Z}\left[\frac{1}{7}\right]^{*}\right)=\left\langle A, B, C \left\lvert\, \begin{array}{l}
B^{3},\left(A^{2} B\right)^{2}, C B A^{-1} C A B^{-1} A^{-2}, \\
C A^{2} B A^{-2} C A B A, C B^{-1} A^{-1} B A B C^{-1} B^{-1}, \\
C B^{-1} A C^{-1} A^{2} B^{-1} A B
\end{array}\right.\right\rangle
\end{gathered}
$$

Compute presentation of Λ_{S}^{*}

Part I: $S_{f}=\emptyset$, Braun, Coulangeon, N., Schönnenbeck (2015)

- Action \mathcal{A}^{*} on X_{∞}.
- Voronoi-algorithm, perfect forms, isometries of lattices
- Presentation of Λ^{*}.
- Word problem in generators.
- Practicable for $\operatorname{dim}_{\mathbb{Q}}(\mathcal{A}) \leq 9$.
- For quaternion algebra better performance than Magma (5 min. versus 1 day)
- First available algorithms for division algebras of index ≥ 3.

Part II: $S_{f}=\left\{\wp_{1}, \ldots, \wp_{s}\right\}$, Coulangeon, N. (in preparation)

- Action of \mathcal{A}^{*} on $X_{\wp_{1}} \times \ldots \times X_{\wp_{s}}$.
- Stabilisers Λ^{*} for certain orders Λ.
- Additional generators: suitable elements of Λ of norm dividing $\prod_{i=1}^{s} \wp_{i}^{a_{i}}$.

