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Setup

» A =D"*" simple Q-algebra

» D division algebra with center K

» K an algebraic number field

» Zx ring of integers in K

» V. the infinite places of K

> Vi:={p|0# p Iprime Zk } the finite places of K
> Sp=A{p1,-- 0} C Vs

> §:=S5rUVe

> Zk,s :={a € K| ||a||l, < 1forall p ¢ S} S-integers
> A aZg-orderin A.

> Ag ' =Zrs®A

Theorem (Borel, Serre, 1962-1975)

The unit group of Ag is finitely presented.
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» The unit group A acts on the locally finite cell complex
> X=X X X, X ... %X Xp,
» with finite stabilisers of points



The proof of Borel and Serre

A a simple Q-algebra
A orderin A
S:{pl...,ps}UVw

Theorem (Borel, Serre 1962-1975)

The unit group of Ag is finitely presented.

» The unit group A acts on the locally finite cell complex
> X=X X X, X ... %X Xp,

» with finite stabilisers of points

» X, = Bruhat-Tits building of the g;-adic group SL(A,, ).

» X homogeneous space with point stabiliser the maximal compact
subgroup of SL(Ax)

» General Theory: One may compute a finite presentation using this
action.
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Examples

» A = K algebraic number field A = Zk, Sy = 0,
A* =75 = pux x 2"t~ (Dirichlet’s unit theorem)
> A=D= () = (Ligk=ij| = =k = -1)q
definite rational quaternion algebra, A = (1,4, j, k)z.
S =0= A" = {(i,j) = Qs finite.
Sy # @ = Chinburg etal: congruence subgroup problem.
» A= QQXQ-

SLQ(Z):(S:( 7 é)T:(é 1)|SQ:(ST)3:71>

Q
A= (1,i,3(1+1i+1j), 5(j +ij))z maximal order.

:%< 3—13\/5 \/51le >’b:< 3—\/35\/5 \/—ijil >’t:b_a+1'

Then A* = (a,b,t | a® = b* = atbt = —1)

S A=D =005 = (%) = (Lijk=ij|i® =25 =3,

a
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The congruence subgroup problem

»neN
> As[n] — A — (As/nAs)™ (finite group)
» Ag[n]is normal in A% of finite index.

Definition

U < A% is called congruence subgroup, if there is some n € N such that
As[n] CU.

The algebra A has the congruence subgroup property for .S, if all subgroups
U of finite index in A% are congruence subgroups.

Conjecture (Serre, 1970)

A has the congruence subgroup property for S if and only if

Rks(SL(A ZRk (SL(Ag;)) + > Rk(SL(4A

VEV

and Rk(SL(A,,)) > 0 for all <.



Q2*2 has not the congruence subgroup property

Idea
G finite simple group, not an epimorphic image of SL3(Z/nZ).

1%N<—>SL2(Z)i>G%1

Then N is not a congruence subgroup.



Q2*2 has not the congruence subgroup property

ldea
G finite simple group, not an epimorphic image of SL3(Z/nZ).

1%N<—>SL2(Z)i>G%1

Then N is not a congruence subgroup.

SLa(Z) = (S,8T | $* = (ST)® = —1)
G = (z,y) so that z* = ¢° = 1.
¢ :SL2(Z) — G, S — z,(ST) — y epimorphism. N :=Ker(y) no congruence
subgroup.
There are many such groups G.
E.g. G = J1 has standard generators of order 2 and 3.

S = {oo}, Rks(SLa(Q)) = Rk(SLy(R)) = 1 < 2

So the example confirms Serre’s conjecture.



Qs 3 has not the congruence subgroup property
Idea
G finite simple group, not an epimorphic image of SL3(Z/nZ).
1%N<—>SL2(Z)i>G%1

Then N is not a congruence subgroup.

A maximal order in Qs 3. A* = (a,b,t | a® = b? = atbt = —1)

Theorem

Choose G = Ji = (z,y) with 2 = y® = 1. Put z := (zy)>z. Then z is the
unique element such that yzzz = 1.

w: A= Ji,a—y,b—x,t— 2

epimorphisms. Ker(yp) no congruence subgroup.

S = {oo}, Rks(SL2(Q)) = Rk(SL2(R)) =1 < 2

So also this example confirms Serre’s conjecture. To find a counterexample,
need to choose Sy # 0.



Compute presentation of A%

Part | for Sy = (), Braun, Coulangeon, N., Schénnenbeck (2015)

>

Action of A™ on Xo.

computes generators and relations for A*.

solves word problem in these generators

uses Voronoi algorithm to enumerate perfect forms.

Implementation is good for dimg(A) < 9.

For quaternion algebras we are better than Magma (5 min. versus 1 day)
For division algebras of degree 3 this is the first available algorithm.



Compute presentation of A%
Part | for Sy = (), Braun, Coulangeon, N., Schénnenbeck (2015)

» Action of A* on X .

» computes generators and relations for A*.

» solves word problem in these generators

» uses Voronoi algorithm to enumerate perfect forms.

» Implementation is good for dimg(A) < 9.

» For quaternion algebras we are better than Magma (5 min. versus 1 day)
» For division algebras of degree 3 this is the first available algorithm.

Part Il for Sy = {p1,..., s}, Coulangeon, N. (in preparation)

» Action of A" on X, X ... x Xg,.

» Stabilisers A* for suitable orders A.

» Idea: Chinburg et al (2014):
A= (Z52) = Rs(4) = IS5 - {2}]
X, is tree, stabilisers finite.
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sum of matrix rings over R, C and H.

Ag has “canonical involution”. z +— zf

¥ = Sym(Ar) := {F € Az | F' = F'} symmetric elements.
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Note: in general AT # A.

v

v

v

v

v

Positive forms

v

Let V = D'*™ the simple right A-module, V& = V ®q R.
>» zeVe=alzen.
» F € ¥ positive if Flx] > 0forall 0 # z € Vk.

Flz] := (F,z'z) = trace(Faz'z) = trace(zFz') > 0

v

construct X, in the cone ©>° = {F € X | F positive }



Lattices and perfect forms

> Let O be a Zk-order in D and L an O-lattice in the simple A module V.

» A :=Endo (L) is Zxk-order in A with unit group
A" :=CGL(L)={a€A|aL =1L}.
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> Let O be a Zk-order in D and L an O-lattice in the simple A module V.

» A :=Endo (L) is Zx-order in A with unit group
A" :=CGL(L)={a€A|aL =1L}.

L-minimal vectors

Choose F € ©>° (positive form).
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v

v

\{

v

Main theorem

T :={Vorp(F) | F € ©”°, L-perfect }

is an exact locally finite polyhedral tiling of the cone $=°.
A™ acts on T with finitely many orbits.



Generators for A*

» Representatives R := {F1, ..., F,} of the A"-orbits of L-perfect forms.

» for all neighbors F of the F; (codim(Vor(F) N Vor(F;))= 1) find some
gr € A" withgp - F € R (

» Then A* = (Aut(F}), gr | Fi € R, F neighbor of some F; € R).



Generators for A*

» Representatives R := {F1, ..., F,} of the A*-orbits of L-perfect forms.

» for all neighbors F of the F; (codim(Vor(F) N Vor(F;))= 1) find some
gr € A" with gr - F € R (isometry of latiices)

» Then A* = (Aut(F}), gr | Fi € R, F neighbor of some F; € R).

A* = (Aut(F1), Aut(F>), Aut(Fs), a,b,c,d, e, f).



An example: Q 3.

v

A=D=05= (%)= (i,j| i =25 =3,ij = —jik
» maximal order A = (1,4, 3(1+ i +ij), 3(j +ij))z

» V=A L=A A=Enda(A).

» A — Ap = R?*Z by

iniag(\[,*\/i),jr—)(g (1))



An example: Q 3.

v

A=D=05= (%)= (i,j| i =25 =3,ij = —jik
maximal order A = (1,4, 3(1 + i+ ij), 3(j + ij))z

» V=A L=A A=Enda(A).

» A — Ap = R?*Z by

v

iniag(\[,fﬂ),jH(g (1))

Three perfect forms

1 2—+2 6—-3vV2 2
Fl:(zf\/i 1 >’F2:< 2 2+\/§>
F; = diag(—3v2 +9,3v2 + 5)

v

v






A*/(£1) = {a,b,t | a3, b2 atbt), A = Qs 5




A* = (a,b,t | a® = b> = atht = —1), A 2 Q3

“:%< 3—13\/5 ﬂ1+1 )
b:(:a:/:i/i \/i}%l>

t_1<2x/§+1 \/§+1>
T2\ 3-3vV2 1-2v2

Then
» t =b— a+ 1 has minimal polynomial y; = 2> + 2 — 1
> (a7 b>/<:|:1> = Cg * CQ = PSLz(Z)



The tiling for Qs 5 — Q[v/3]2*2.




A rational division algebra of index 3

v

0 =C+ ¢ (o) = Gal(Q(9)/Q),
A the Q-algebra generated by

Y 0 1 0
Z = o(9) andII:=| 0 0 1 |.
[0 )2

» A division algebra with center Q, Hasse invariants + at 2 and 2 at 3.
A maximal order in A
» I := A* has 431 orbits of perfect forms and presentation
I'2{a,b| b*a?b ta™H? b %@ b 1)%ab %a®b3,
ab’a'b*a"%bab®, a*bab"2ab~(a72b)?,
a '0?a a5 2073,
672 72b71a71b71a72b71a71b72(a71b71)3>
(1-3Z—-2%) + 2+ 2>+ (1 — Z*)11?),
(=3-2Z+4+ 2%+ (1 -22)11+ (1 — Z*)I1%).

v

v

v

_1
N
b_§



Quaternion algebras with imaginary quadratic fields

A= ( 11; 1), k=Q(v—d)
d perfect | timing timing number of
forms Voronoi | presentation | generators
7 1 1.24s 0.42s 2
31 8 6.16s 0.50s 3
55 21 14.69s 1.01s 5
79 40 28.74s 1.78s 5
95 69 53.78s 2.57s 7
103 | 53 38.39s 2.52s 6
111 | 83 66.16s 3.02s 6
255 | 302 323.93s | 17.54s 16




Quaternion algebras with center Q(v/—7)

*= ()

a,b perfect | timing timing number of
forms Voronoi | presentation | generators

—-1,-1 1 1.24s 0.42s 2

—1,-11 20 21.61s 4.13s 6

—11,—14 | 58 51.46s 5.11s 10

—1,-23 184 179.23s | 89.34s 16
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Part II: Sy # 0, buildings

S =V USs, Sy ={p1,...,0s}
Borel, Serre: A% is finitely presented.

faithful action on locally finite polyhedral complex
X=X X Xy, X...%xXp,

X~ = Voronoi domains of L-perfect forms in ©>°.

X, = Bruhat-Tits building of the p;-adic group SL(A,, ).



Part II: Sy # 0, buildings

S =V USs, Sy ={p1,...,0s}
Borel, Serre: Aj is finitely presented.

faithful action on locally finite polyhedral complex
X=X X Xy, X...%xXp,

X~ = Voronoi domains of L-perfect forms in ©>°.

X, = Bruhat-Tits building of the p;-adic group SL(A,, ).

Simplification

» K =Q, s =1, p1 = pZ, p unramified in D.
As =A[3] = {a € A|p'a € Afor some i}.

Completion: ‘Ap = @p ® -DTLXTL — Q'Ir;and'

v

v

v



The building of SL,,,(Q,)

> V, = Q" simple A,-module.

L a Zy-lattice in Vj,

[L] := {p'L | i € Z} homothetie class of L.
Xp: m — 1-dimensional simplicial complex with

v

\4

v

v

vertices (0-simplices) X := {[L] | L lattice in V,}
{[L1],---,[Lx]} C Kis ak — 1simplex, if there are M; € [L;] s.t. (after
permutation)

v

“.DMleQD...DMkDpM1D...



The building of SL,,,(Q,)

> V, = Q" simple A,-module.

> L aZp-lattice in V,

» [L] := {p'L | i € Z} homothetie class of L.

» X,: m — 1-dimensional simplicial complex with

» vertices (0-simplices) X := {[L] | L lattice in V},}

> {[L1],...,[Lx]} C Kisak — 1simplex, if there are M; € [L;] s.t. (after
permutation)

H.DMleQD...DMkDpM1D...

» Choose basis (b1, .. .,bn) of V, such that Ly := @ Z,b; is A-invariant

» The Type of [L] is v, (det(B)) € Z/mZ for any B € GL,(Q,) with
BLo = L.

» SL.,(Q,) acts on X with Type as a separating invariant.



Presentation of the S-unit group
Main theorem
> A = A[%] acts as simplicial automorphisms on X,, with finitely many
orbits.

> Zxs = Z[%]* ={1,-1} x {p' | i € Z} = Z(A}%) is the kernel of this
action.

> StabAg (Lo) = A*.
» Stabax ([Lo]) = A* x {p’ | i € Z}.



Presentation of the S-unit group
Main theorem

> A5 = A[%] acts as simplicial automorphisms on X,, with finitely many
orbits.

> Zxs = Z[%]* ={1,-1} x {p' | i € Z} = Z(A}%) is the kernel of this
action.

> StabAg (Lo) = A*.

> StabAg([Lo]) =A" x {pi | € Z}.

Presentation

» Representatives R := {[L1], ..., [Ls]} of the Ag-orbits on X

» For all adjacent vertices [L] of some [L;] compute g;, € A% such that
gr - [L] € R.

» Then

A5 = (Z(A%s), Stabay (Li), g1 | [Li] € R, [L] adjacent to some [L;] € R).

» To get a presentation we need to solve the word problem in the point
stabilisers (= A*)



An example

A =D = Q>3 and A as above
A/{£1} = (A, B| B*,(A’B)?)

A is right principal ideal domain

1 1
A=1"/Z]=]" = (A, B, C,
/20T =« »)
with Cp, € A of norm p.



An example

A =D = Q>3 and A as above
A*/{E1} = (A, B | B®,(A’B)?)
A is right principal ideal domain

1 1
A[=1"/Z]=]" = (A, B, C,
[p]/ [p] ( »)
with C},, € A of norm p.
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An example

A =D = Q>3 and A as above
A/{£1} = (A, B| B*,(A’B)?)

A is right principal ideal domain

1 1
A[=]*/Z[=]* = (A, B, C,
[p] / [p] ( »)
with C},, € A of norm p.
(CA_ZC)3, (O_1A2C_1A_2)2,
T i loy CATICTrA’CTATICT ACATI CA,
A[g] /(Z[g} ) = <AaC | CASCA_IC_lAQC_lAC_IAQC_lA_l,

(CA"'CACA~2CA™IC)?

. 1 B3 (A’B)?,CBA™'CAB™*A~2,
A" /(Z[=]) = <A,B,C| CA*BA™2CABA,CB 'A™'BABC 'B™, >
[ CB'AC'A*B ' AB



Compute presentation of A%

Part I: S; = 0, Braun, Coulangeon, N., Schénnenbeck (2015)

|

Action A" on X .

Voronoi-algorithm, perfect forms, isometries of lattices
Presentation of A™.

Word problem in generators.

Practicable for dimg(A) < 9.

For quaternion algebra better performance than Magma (5 min. versus 1
day)

First available algorithms for division algebras of index > 3.

Part II: Sy = {p1,...,ps}, Coulangeon, N. (in preparation)

| 2

>

>

Action of A on X, X ... x X, .
Stabilisers A* for certain orders A.
Additional generators: suitable elements of A of norm dividing TT;_, ;.



