On automorphism groups of Type II codes.

Gabriele Nebe

Lehrstuhl D für Mathematik
Marseille, April 1, 2009
RWTHAACHEN
UNIVERSTTY

Binary Codes

A linear binary code of length n is a subspace $C \leq \mathbb{F}_{2}^{n}$.

$$
C^{\perp}:=\left\{v \in \mathbb{F}_{2}^{n} \mid v \cdot c=\sum_{i=1}^{n} v_{i} c_{i}=0 \text { for all } c \in C\right\}
$$

Binary Codes

A linear binary code of length n is a subspace $C \leq \mathbb{F}_{2}^{n}$.

$$
C^{\perp}:=\left\{v \in \mathbb{F}_{2}^{n} \mid v \cdot c=\sum_{i=1}^{n} v_{i} c_{i}=0 \text { for all } c \in C\right\}
$$

self-orthogonal means $C \subset C^{\perp}$ and self-dual means $C=C^{\perp}$.

Binary Codes

A linear binary code of length n is a subspace $C \leq \mathbb{F}_{2}^{n}$.

$$
C^{\perp}:=\left\{v \in \mathbb{F}_{2}^{n} \mid v \cdot c=\sum_{i=1}^{n} v_{i} c_{i}=0 \text { for all } c \in C\right\}
$$

self-orthogonal means $C \subset C^{\perp}$ and self-dual means $C=C^{\perp}$. $w t(c):=\left|\left\{1 \leq i \leq n \mid c_{i} \neq 0\right\}\right|$ is the Hamming weight of $c \in \mathbb{F}_{2}^{n}$ Clear: $C \subset C^{\perp} \Rightarrow \mathrm{wt}(c) \in 2 \mathbb{Z}$ for all $c \in C$.
C is called Type II, if $C=C^{\perp}$ and $\mathrm{wt}(c) \in 4 \mathbb{Z}$ for all $c \in C$.

Binary Codes

A linear binary code of length n is a subspace $C \leq \mathbb{F}_{2}^{n}$.

$$
C^{\perp}:=\left\{v \in \mathbb{F}_{2}^{n} \mid v \cdot c=\sum_{i=1}^{n} v_{i} c_{i}=0 \text { for all } c \in C\right\}
$$

self-orthogonal means $C \subset C^{\perp}$ and self-dual means $C=C^{\perp}$. $w t(c):=\left|\left\{1 \leq i \leq n \mid c_{i} \neq 0\right\}\right|$ is the Hamming weight of $c \in \mathbb{F}_{2}^{n}$ Clear: $C \subset C^{\perp} \Rightarrow \mathrm{wt}(c) \in 2 \mathbb{Z}$ for all $c \in C$.
C is called Type II, if $C=C^{\perp}$ and $\mathrm{wt}(c) \in 4 \mathbb{Z}$ for all $c \in C$.
Facts:

- $C=C^{\perp} \leq \mathbb{F}_{2}^{n} \Rightarrow n=2 \operatorname{dim}(C)$ is even.
- $C=C^{\perp} \leq \mathbb{F}_{2}^{n} \Rightarrow \mathbf{1}=(1, \ldots, 1) \in C$.
- $C \leq \mathbb{F}_{2}^{n}$ Type $\| \Rightarrow n \in 8 \mathbb{Z}$.

Automorphism groups.

The automorphism group of C is

$$
P(C):=\left\{\pi \in S_{n} \mid \pi(C)=C\right\} .
$$

Automorphism groups.

The automorphism group of C is

$$
P(C):=\left\{\pi \in S_{n} \mid \pi(C)=C\right\} .
$$

For a subgroup $G \leq S_{n}$ we let

$$
\mathcal{C}(G):=\left\{C \leq \mathbb{F}_{2}^{n} \mid G \leq P(C)\right\}
$$

the set of all $\mathbb{F}_{2} G$-submodules of the permutation module \mathbb{F}_{2}^{n}.

Automorphism groups.

The automorphism group of C is

$$
P(C):=\left\{\pi \in S_{n} \mid \pi(C)=C\right\} .
$$

For a subgroup $G \leq S_{n}$ we let

$$
\mathcal{C}(G):=\left\{C \leq \mathbb{F}_{2}^{n} \mid G \leq P(C)\right\}
$$

the set of all $\mathbb{F}_{2} G$-submodules of the permutation module \mathbb{F}_{2}^{n}. Question:

- Is there $C=C^{\perp} \in \mathcal{C}(G)$?
- Is there a Type II code $C \in \mathcal{C}(G)$?

Group ring codes.

Thompson, Sloane, Willems and others treat group ring codes, so $G \leq S_{G}$ via its regular representation.

Then $\mathcal{C}(G)=: \mathcal{C}_{\text {reg }}(G)$ are the left ideals of $\mathbb{F}_{2} G$.

Group ring codes.

Thompson, Sloane, Willems and others treat group ring codes, so $G \leq S_{G}$ via its regular representation.

Then $\mathcal{C}(G)=: \mathfrak{C}_{\text {reg }}(G)$ are the left ideals of $\mathbb{F}_{2} G$.
We find the famous and important cyclic codes, if G is cyclic.

Group ring codes.

Thompson, Sloane, Willems and others treat group ring codes, so $G \leq S_{G}$ via its regular representation.

Then $\mathcal{C}(G)=: \mathfrak{C}_{\text {reg }}(G)$ are the left ideals of $\mathbb{F}_{2} G$.
We find the famous and important cyclic codes, if G is cyclic.
Theorem $1 \exists C=C^{\perp} \in \mathcal{C}_{r e g}(G) \Leftrightarrow|G| \in 2 \mathbb{Z}$.

Group ring codes.

Thompson, Sloane, Willems and others treat group ring codes, so $G \leq S_{G}$ via its regular representation.

Then $\mathcal{C}(G)=: \mathfrak{C}_{\text {reg }}(G)$ are the left ideals of $\mathbb{F}_{2} G$.
We find the famous and important cyclic codes, if G is cyclic.
Theorem $1 \exists C=C^{\perp} \in \mathcal{C}_{\text {reg }}(G) \Leftrightarrow|G| \in 2 \mathbb{Z}$.
Theorem 2 (Sloane, Thompson)
$\exists C=C^{\perp} \in \mathcal{C}_{r e g}(G)$ of Type II
\Leftrightarrow
$|G| \in 8 \mathbb{Z}$ and the Sylow 2-subgroups of G are not cyclic.

Proof of Theorem 1.

$\Rightarrow: C=C^{\perp} \leq \mathbb{F}_{2} G \cong \mathbb{F}_{2}^{|G|}$, then $\operatorname{dim}(C)=\frac{|G|}{2}$, so $|G|$ is even.

Proof of Theorem 1.

$\Rightarrow: C=C^{\perp} \leq \mathbb{F}_{2} G \cong \mathbb{F}_{2}^{|G|}$, then $\operatorname{dim}(C)=\frac{|G|}{2}$, so $|G|$ is even.
$\Leftarrow: 1 \neq g \in G, g^{2}=1$. Then

$$
C:=\mathbb{F}_{2} G(1+g)=C^{\perp}
$$

Proof of Theorem 1.

$\Rightarrow: C=C^{\perp} \leq \mathbb{F}_{2} G \cong \mathbb{F}_{2}^{|G|}$, then $\operatorname{dim}(C)=\frac{|G|}{2}$, so $|G|$ is even.
$\Leftarrow: 1 \neq g \in G, g^{2}=1$. Then

$$
C:=\mathbb{F}_{2} G(1+g)=C^{\perp}
$$

More precisely, write $G=\dot{\cup}\left\{h_{i}, h_{i} g\right\}$, then with respect to $h_{1}, h_{1} g, h_{2}, h_{2} g, \ldots C$ is the rowspace of

$$
\left.\begin{array}{cccc}
1 & 1 & 0 & 0 \\
\ldots & 0 & 0 \\
0 & 0 & 11 & \ddots
\end{array}\right) 00
$$

General permutation representations

In joint work with Annika Günther we treat arbitrary permutation groups $G \leq S_{n}$.

Theorem A $\exists C=C^{\perp} \in \mathcal{C}(G) \Leftrightarrow$ condition (E) is satisfied.
(E) every simple $\mathbb{F}_{2} G$-module S with $S \cong S^{*}=\operatorname{Hom}\left(S, \mathbb{F}_{2}\right)$ occurs in \mathbb{F}_{2}^{n} with even multiplicity.

General permutation representations

In joint work with Annika Günther we treat arbitrary permutation groups $G \leq S_{n}$.

Theorem A $\exists C=C^{\perp} \in \mathcal{C}(G) \Leftrightarrow$ condition (E) is satisfied.
(E) every simple $\mathbb{F}_{2} G$-module S with $S \cong S^{*}=\operatorname{Hom}\left(S, \mathbb{F}_{2}\right)$ occurs in \mathbb{F}_{2}^{n} with even multiplicity.

Remark. Condition (E) is fulfilled, if $\left|N_{G}\left(H_{i}\right) / H_{i}\right|$ is even where $H_{i}:=\operatorname{Stab}_{G}(i)$ for $i \in\{1, \ldots, n\}$.

Clear. Theorem A implies Theorem 1.

General permutation representations

In joint work with Annika Günther we treat arbitrary permutation groups $G \leq S_{n}$.

Theorem $\mathbf{A} \exists C=C^{\perp} \in \mathcal{C}(G) \Leftrightarrow$ condition (E) is satisfied.
(E) every simple $\mathbb{F}_{2} G$-module S with $S \cong S^{*}=\operatorname{Hom}\left(S, \mathbb{F}_{2}\right)$ occurs in \mathbb{F}_{2}^{n} with even multiplicity.

Theorem B If $C=C^{\perp}$ is of Type II, then $P(C) \leq \mathrm{Alt}_{n}$.

General permutation representations

In joint work with Annika Günther we treat arbitrary permutation groups $G \leq S_{n}$.

Theorem $\mathbf{A} \exists C=C^{\perp} \in \mathcal{C}(G) \Leftrightarrow$ condition (E) is satisfied.
(E) every simple $\mathbb{F}_{2} G$-module S with $S \cong S^{*}=\operatorname{Hom}\left(S, \mathbb{F}_{2}\right)$ occurs in \mathbb{F}_{2}^{n} with even multiplicity.

Theorem B If $C=C^{\perp}$ is of Type II, then $P(C) \leq \mathrm{Alt}_{n}$.
Theorem C $\exists C=C^{\perp} \in \mathcal{C}(G)$ of Type II \Leftrightarrow
(a) $n \in 8 \mathbb{Z}$,
(b) condition (E) is satisfied, and
(c) $G \leq \mathrm{Alt}_{n}$.

Theorem 2 follows from Theorem C

Remark: Theorem 2 follows from Theorem C:
Proof:

- Condition (E) for group ring codes is equivalent to even group order.
- The Sylow 2-subgroups of a group of even order are not cyclic precisely if the regular representation of G is contained in the alternating group.

Theorem 2 (Sloane, Thompson)
$\exists C=C^{\perp} \in \mathcal{C}_{\text {reg }}(G)$ of Type II
\Leftrightarrow
$|G| \in 8 \mathbb{Z}$ and the Sylow 2-subgroups of G are not cyclic.

Theorem 2 follows from Theorem C

Remark: Theorem 2 follows from Theorem C:
Proof:

- Condition (E) for group ring codes is equivalent to even group order.
- The Sylow 2-subgroups of a group of even order are not cyclic precisely if the regular representation of G is contained in the alternating group.

Theorem C $\exists C=C^{\perp} \in \mathcal{C}(G)$ of Type II \Leftrightarrow
(a) $n \in 8 \mathbb{Z}$,
(b) condition (E) is satisfied, and
(c) $G \leq \mathrm{Alt}_{n}$.

Proof of Theorem A

$\Rightarrow: \mathbb{F}_{2}^{n} / C^{\perp} \cong \operatorname{Hom}\left(C, \mathbb{F}_{2}\right)$, so if S is a composition factor of C, then S^{*} is a composition factor of $\mathbb{F}_{2}^{n} / C^{\perp}$.

$$
\underbrace{\mathbb{F}_{2}^{n} \supseteq C^{\perp}}_{S^{*}}=\underbrace{C \supseteq\{0\}}_{S}
$$

$\Leftarrow: C \subset C^{\perp}$ maximal self-orthogonal, then C^{\perp} / C anisotropic and hence semi-simple,

$$
C^{\perp} / C \cong \perp S_{j} \text { with } S_{j} \cong S_{j}^{*} \forall j .
$$

$S \perp S$ is hyperbolic since $\mathbb{F}_{2}=\left\{x^{2} \mid x \in \mathbb{F}_{2}\right\}$.
Theorem $\mathbf{A} \exists C=C^{\perp} \in \mathcal{C}(G) \Leftrightarrow$ condition (E) is satisfied.

Orthogonal groups

Let K be any field, $V=K^{2 m}, q: V \rightarrow K$ a non-degenerate quadratic form of Witt defect 0 . This means that there is

$$
U \leq V, \operatorname{dim}(U)=m, q(U)=\{0\}
$$

Fix such a maximal isotropic subspace U.

Orthogonal groups

Let K be any field, $V=K^{2 m}, q: V \rightarrow K$ a non-degenerate quadratic form of Witt defect 0 . This means that there is

$$
U \leq V, \operatorname{dim}(U)=m, q(U)=\{0\}
$$

Fix such a maximal isotropic subspace U.

$$
O(V, q):=\{g \in \operatorname{GL}(V) \mid q(g(v))=q(v) \text { for all } v \in V\}
$$

Orthogonal groups

Let K be any field, $V=K^{2 m}, q: V \rightarrow K$ a non-degenerate quadratic form of Witt defect 0 . This means that there is

$$
U \leq V, \operatorname{dim}(U)=m, q(U)=\{0\}
$$

Fix such a maximal isotropic subspace U.

$$
O(V, q):=\{g \in \operatorname{GL}(V) \mid q(g(v))=q(v) \text { for all } v \in V\}
$$

Dickson homomorphism

$$
D: O(V, q) \rightarrow\{1,-1\}, g \mapsto(-1)^{m-\operatorname{dim}(U \cap U g)}
$$

is a well defined (independent from U) homomorphism.

Orthogonal groups

Let K be any field, $V=K^{2 m}, q: V \rightarrow K$ a non-degenerate quadratic form of Witt defect 0 . This means that there is

$$
U \leq V, \operatorname{dim}(U)=m, q(U)=\{0\}
$$

Fix such a maximal isotropic subspace U.

$$
O(V, q):=\{g \in \mathrm{GL}(V) \mid q(g(v))=q(v) \text { for all } v \in V\}
$$

Dickson homomorphism

$$
D: O(V, q) \rightarrow\{1,-1\}, g \mapsto(-1)^{m-\operatorname{dim}(U \cap U g)}
$$

is a well defined (independent from U) homomorphism. $\operatorname{char}(K) \neq 2 \Rightarrow D(g)=\operatorname{det}(g)$.

Orthogonal groups

Let K be any field, $V=K^{2 m}, q: V \rightarrow K$ a non-degenerate quadratic form of Witt defect 0 . This means that there is

$$
U \leq V, \operatorname{dim}(U)=m, q(U)=\{0\}
$$

Fix such a maximal isotropic subspace U.

$$
O(V, q):=\{g \in \mathrm{GL}(V) \mid q(g(v))=q(v) \text { for all } v \in V\}
$$

Dickson homomorphism

$$
D: O(V, q) \rightarrow\{1,-1\}, g \mapsto(-1)^{m-\operatorname{dim}(U \cap U g)}
$$

is a well defined (independent from U) homomorphism. $\operatorname{char}(K) \neq 2 \Rightarrow D(g)=\operatorname{det}(g)$.
Theorem. $\operatorname{Stab}_{O(V, q)}(U) \leq \operatorname{ker}(D)$

Proof of Theorem B

Let $n \in 8 \mathbb{Z}$.

$$
\begin{gathered}
V:=\mathbf{1}^{\perp} /\langle\mathbf{1}\rangle=\left\{x+\langle\mathbf{1}\rangle \mid x \in \mathbb{F}_{2}^{n}, \mathrm{wt}(x) \in 2 \mathbb{Z}\right\} \\
q: V \rightarrow \mathbb{F}_{2}, q(x+\langle\mathbf{1}\rangle):=\frac{\mathrm{wt}(x)}{2}+2 \mathbb{Z}
\end{gathered}
$$

Proof of Theorem B

Let $n \in 8 \mathbb{Z}$.

$$
\begin{gathered}
V:=\mathbf{1}^{\perp} /\langle\mathbf{1}\rangle=\left\{x+\langle\mathbf{1}\rangle \mid x \in \mathbb{F}_{2}^{n}, \mathrm{wt}(x) \in 2 \mathbb{Z}\right\} \\
q: V \rightarrow \mathbb{F}_{2}, q(x+\langle\mathbf{1}\rangle):=\frac{\mathrm{wt}(x)}{2}+2 \mathbb{Z}
\end{gathered}
$$

- q is a well-defined, non-degenerate quadratic form.
- Its associated bilinear form is $\sum x_{i} y_{i}$.
- (V, q) has Witt defect 0 .

Proof of Theorem B

Let $n \in 8 \mathbb{Z}$.

$$
\begin{gathered}
V:=\mathbf{1}^{\perp} /\langle\mathbf{1}\rangle=\left\{x+\langle\mathbf{1}\rangle \mid x \in \mathbb{F}_{2}^{n}, \mathrm{wt}(x) \in 2 \mathbb{Z}\right\} \\
q: V \rightarrow \mathbb{F}_{2}, q(x+\langle\mathbf{1}\rangle):=\frac{\mathrm{wt}(x)}{2}+2 \mathbb{Z}
\end{gathered}
$$

- q is a well-defined, non-degenerate quadratic form.
- Its associated bilinear form is $\sum x_{i} y_{i}$.
- (V, q) has Witt defect 0 .
- The maximal isotropic subspaces of (V, q) are precisely the images of the Type II codes in \mathbb{F}_{2}^{n}.

Proof of Theorem B

Let $n \in 8 \mathbb{Z}$.

$$
\begin{gathered}
V:=\mathbf{1}^{\perp} /\langle\mathbf{1}\rangle=\left\{x+\langle\mathbf{1}\rangle \mid x \in \mathbb{F}_{2}^{n}, \mathrm{wt}(x) \in 2 \mathbb{Z}\right\} \\
q: V \rightarrow \mathbb{F}_{2}, q(x+\langle\mathbf{1}\rangle):=\frac{\mathrm{wt}(x)}{2}+2 \mathbb{Z}
\end{gathered}
$$

- q is a well-defined, non-degenerate quadratic form.
- Its associated bilinear form is $\sum x_{i} y_{i}$.
- (V, q) has Witt defect 0 .
- The maximal isotropic subspaces of (V, q) are precisely the images of the Type II codes in \mathbb{F}_{2}^{n}.
- S_{n} fixes 1 and preserves the weight hence embeds into $O(V, q)$.
- The restriction of the Dickson homomorphism $D: S_{n} \rightarrow\{1,-1\}$ is the sign.

Generalization of Theorem B

This shows more general:
Theorem B'. Let $C \leq \mathbb{F}_{2^{d}}^{n}$ be a self-dual generalized doubly-even code. Then $P(C) \leq \mathrm{Alt}_{n}$.

Generalization of Theorem B

This shows more general:
Theorem B'. Let $C \leq \mathbb{F}_{2^{d}}^{n}$ be a self-dual generalized doubly-even code. Then $P(C) \leq \operatorname{Alt}_{n}$.

For odd characteristic, the weight preserving mappings that preserve orthogonality are all permutations and sign changes

$$
\{ \pm 1\}^{n}: S_{n}
$$

and one obtains
Theorem B". Let $p>2$ and $C=C^{\perp} \leq \mathbb{F}_{p^{d}}^{n}$. Then
$\operatorname{det}(\operatorname{Aut}(C))=\{1\}$.

Proof of Theorem C

\Leftarrow : Condition $(\mathrm{E}) \Rightarrow \exists X=X^{\perp} \in \mathcal{C}(G)$.
X doubly-even, then done ,

Proof of Theorem C

\Leftarrow : Condition (E) $\Rightarrow \exists X=X^{\perp} \in \mathcal{C}(G)$.
X doubly-even, then done, else

$$
X_{0}:=\{x \in X \mid \operatorname{wt}(x) \in 4 \mathbb{Z}\}
$$

Then $X_{0}^{\perp} / X_{0} \cong \mathbb{F}_{2} \oplus \mathbb{F}_{2}$.

Proof of Theorem C

\Leftarrow : Condition (E) $\Rightarrow \exists X=X^{\perp} \in \mathcal{C}(G)$.
X doubly-even, then done, else

$$
X_{0}:=\{x \in X \mid \operatorname{wt}(x) \in 4 \mathbb{Z}\}
$$

Then $X_{0}^{\perp} / X_{0} \cong \mathbb{F}_{2} \oplus \mathbb{F}_{2}$.

- C_{1} and C_{2} are doubly-even.
- $\operatorname{dim}\left(C_{1}\right)-\operatorname{dim}\left(C_{1} \cap C_{2}\right)=1$ is odd.
- $G \leq P(X) \leq P\left(X_{0}\right)$ acts on $\left\{C_{1}, C_{2}\right\}$.
- $D(G)=\{1\}$ so $C_{i} g=C_{i}$ for all $g \in G, i=1,2$.
- $C_{i} \in \mathcal{C}(G)$ are Type II.

