On automorphism groups of Type II codes.

Gabriele Nebe

Lehrstuhl D für Mathematik

Marseille, April 1, 2009

RWITHAACHEN UNIVERSITY

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

A linear binary code of length *n* is a subspace $C \leq \mathbb{F}_2^n$.

$$C^{\perp} := \{ v \in \mathbb{F}_2^n \mid v \cdot c = \sum_{i=1}^n v_i c_i = 0 \text{ for all } c \in C \}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

A linear binary code of length *n* is a subspace $C \leq \mathbb{F}_2^n$.

$$C^{\perp} := \{ v \in \mathbb{F}_2^n \mid v \cdot c = \sum_{i=1}^n v_i c_i = 0 \text{ for all } c \in C \}$$

self-orthogonal means $C \subset C^{\perp}$ and self-dual means $C = C^{\perp}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

A linear binary code of length *n* is a subspace $C \leq \mathbb{F}_2^n$.

$$C^{\perp} := \{ v \in \mathbb{F}_2^n \mid v \cdot c = \sum_{i=1}^n v_i c_i = 0 \text{ for all } c \in C \}$$

self-orthogonal means $C \subset C^{\perp}$ and self-dual means $C = C^{\perp}$.

 $wt(c) := |\{1 \le i \le n \mid c_i \ne 0\}|$ is the Hamming weight of $c \in \mathbb{F}_2^n$ Clear: $C \subset C^{\perp} \Rightarrow wt(c) \in 2\mathbb{Z}$ for all $c \in C$.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

C is called Type II, if $C = C^{\perp}$ and $wt(c) \in 4\mathbb{Z}$ for all $c \in C$.

A linear binary code of length *n* is a subspace $C \leq \mathbb{F}_2^n$.

$$C^{\perp} := \{ v \in \mathbb{F}_2^n \mid v \cdot c = \sum_{i=1}^n v_i c_i = 0 \text{ for all } c \in C \}$$

self-orthogonal means $C \subset C^{\perp}$ and self-dual means $C = C^{\perp}$.

 $wt(c) := |\{1 \le i \le n \mid c_i \ne 0\}|$ is the Hamming weight of $c \in \mathbb{F}_2^n$ Clear: $C \subset C^{\perp} \Rightarrow wt(c) \in 2\mathbb{Z}$ for all $c \in C$.

C is called Type II, if $C = C^{\perp}$ and $wt(c) \in 4\mathbb{Z}$ for all $c \in C$. Facts:

•
$$C = C^{\perp} \leq \mathbb{F}_2^n \Rightarrow n = 2 \dim(C)$$
 is even.

$$\bullet \ C = C^{\perp} \leq \mathbb{F}_2^n \Rightarrow \mathbf{1} = (1, \dots, 1) \in C.$$

•
$$C \leq \mathbb{F}_2^n$$
 Type II $\Rightarrow n \in 8\mathbb{Z}$.

Automorphism groups.

The automorphism group of C is

$$P(C) := \{ \pi \in S_n \mid \pi(C) = C \}.$$

Automorphism groups.

The automorphism group of C is

$$P(C) := \{ \pi \in S_n \mid \pi(C) = C \}.$$

For a subgroup $G \leq S_n$ we let

$$\mathcal{C}(G) := \{ C \le \mathbb{F}_2^n \mid G \le P(C) \}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

the set of all \mathbb{F}_2G -submodules of the permutation module \mathbb{F}_2^n .

Automorphism groups.

The automorphism group of C is

$$P(C) := \{ \pi \in S_n \mid \pi(C) = C \}.$$

For a subgroup $G \leq S_n$ we let

$$\mathcal{C}(G) := \{ C \le \mathbb{F}_2^n \mid G \le P(C) \}$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

the set of all \mathbb{F}_2G -submodules of the permutation module \mathbb{F}_2^n . Question:

- ▶ Is there $C = C^{\perp} \in \mathcal{C}(G)$?
- ▶ Is there a Type II code $C \in C(G)$?

Thompson, Sloane, Willems and others treat group ring codes, so $G \leq S_G$ via its regular representation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Then $\mathcal{C}(G) =: \mathcal{C}_{reg}(G)$ are the left ideals of \mathbb{F}_2G .

Thompson, Sloane, Willems and others treat group ring codes, so $G \leq S_G$ via its regular representation.

Then $\mathcal{C}(G) =: \mathcal{C}_{reg}(G)$ are the left ideals of \mathbb{F}_2G .

We find the famous and important cyclic codes, if G is cyclic.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Thompson, Sloane, Willems and others treat group ring codes, so $G \leq S_G$ via its regular representation.

Then $\mathcal{C}(G) =: \mathcal{C}_{req}(G)$ are the left ideals of \mathbb{F}_2G .

We find the famous and important cyclic codes, if G is cyclic.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Theorem 1 $\exists C = C^{\perp} \in \mathfrak{C}_{reg}(G) \Leftrightarrow |G| \in 2\mathbb{Z}.$

Thompson, Sloane, Willems and others treat group ring codes, so $G \leq S_G$ via its regular representation.

Then $\mathcal{C}(G) =: \mathcal{C}_{reg}(G)$ are the left ideals of \mathbb{F}_2G .

We find the famous and important cyclic codes, if G is cyclic.

Theorem 1 $\exists C = C^{\perp} \in \mathfrak{C}_{reg}(G) \Leftrightarrow |G| \in 2\mathbb{Z}.$

Theorem 2 (Sloane, Thompson) $\exists C = C^{\perp} \in \mathcal{C}_{reg}(G)$ of Type II \Leftrightarrow $|G| \in 8\mathbb{Z}$ and the Sylow 2-subgroups of *G* are not cyclic.

 $\Rightarrow: C = C^{\perp} \leq \mathbb{F}_2 G \cong \mathbb{F}_2^{|G|}$, then $\dim(C) = \frac{|G|}{2}$, so |G| is even.

 $\Rightarrow: C = C^{\perp} \leq \mathbb{F}_2 G \cong \mathbb{F}_2^{|G|}, \text{ then } \dim(C) = \frac{|G|}{2}, \text{ so } |G| \text{ is even.}$ $\Leftarrow: 1 \neq g \in G, g^2 = 1. \text{ Then}$

$$C := \mathbb{F}_2 G(1+g) = C^{\perp}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

 $\Rightarrow: C = C^{\perp} \leq \mathbb{F}_2 G \cong \mathbb{F}_2^{|G|}, \text{ then } \dim(C) = \frac{|G|}{2}, \text{ so } |G| \text{ is even.}$ $\Leftarrow: 1 \neq g \in G, g^2 = 1. \text{ Then}$

$$C := \mathbb{F}_2 G(1+g) = C^{\perp}.$$

More precisely, write $G = \bigcup \{h_i, h_ig\}$, then with respect to $h_1, h_1g, h_2, h_2g, \ldots C$ is the rowspace of

$1 \ 1$	$0 \ 0$		$0 \ 0$
0 0	11	·	0 0
·	·	·	÷
$0 \ 0$	$0 \ 0$		$1 \ 1$

(日) (日) (日) (日) (日) (日) (日)

In joint work with Annika Günther we treat arbitrary permutation groups $G \leq S_n$.

Theorem A $\exists C = C^{\perp} \in \mathfrak{C}(G) \Leftrightarrow$ condition (E) is satisfied.

(*E*) every simple \mathbb{F}_2G -module *S* with $S \cong S^* = \text{Hom}(S, \mathbb{F}_2)$ occurs in \mathbb{F}_2^n with even multiplicity.

In joint work with Annika Günther we treat arbitrary permutation groups $G \leq S_n$.

Theorem A $\exists C = C^{\perp} \in \mathfrak{C}(G) \Leftrightarrow$ condition (E) is satisfied.

(*E*) every simple \mathbb{F}_2G -module *S* with $S \cong S^* = \text{Hom}(S, \mathbb{F}_2)$ occurs in \mathbb{F}_2^n with even multiplicity.

Remark. Condition (E) is fulfilled, if $|N_G(H_i)/H_i|$ is even where $H_i := \text{Stab}_G(i)$ for $i \in \{1, ..., n\}$.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Clear. Theorem A implies Theorem 1.

In joint work with Annika Günther we treat arbitrary permutation groups $G \leq S_n$.

Theorem A $\exists C = C^{\perp} \in \mathfrak{C}(G) \Leftrightarrow$ condition (*E*) is satisfied.

(*E*) every simple \mathbb{F}_2G -module *S* with $S \cong S^* = \text{Hom}(S, \mathbb{F}_2)$ occurs in \mathbb{F}_2^n with even multiplicity.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Theorem B If $C = C^{\perp}$ is of Type II, then $P(C) \leq Alt_n$.

In joint work with Annika Günther we treat arbitrary permutation groups $G \leq S_n$.

Theorem A $\exists C = C^{\perp} \in \mathfrak{C}(G) \Leftrightarrow \text{condition } (E) \text{ is satisfied.}$

(*E*) every simple \mathbb{F}_2G -module *S* with $S \cong S^* = \text{Hom}(S, \mathbb{F}_2)$ occurs in \mathbb{F}_2^n with even multiplicity.

Theorem B If $C = C^{\perp}$ is of Type II, then $P(C) \leq \text{Alt}_n$.

Theorem C $\exists C = C^{\perp} \in \mathcal{C}(G)$ of Type II \Leftrightarrow (a) $n \in 8\mathbb{Z}$, (b) condition (E) is satisfied, and (c) $G \leq Alt_n$.

Theorem 2 follows from Theorem C

Remark: Theorem 2 follows from Theorem C:

Proof:

- Condition (E) for group ring codes is equivalent to even group order.
- The Sylow 2-subgroups of a group of even order are not cyclic precisely if the regular representation of G is contained in the alternating group.

```
Theorem 2 (Sloane, Thompson)

\exists C = C^{\perp} \in \mathcal{C}_{reg}(G) of Type II

\Leftrightarrow

|G| \in 8\mathbb{Z} and the Sylow 2-subgroups of G are not cyclic.
```

・ロト・ 日本・ 日本・ 日本・ 日本・ うらく

Theorem 2 follows from Theorem C

Remark: Theorem 2 follows from Theorem C:

Proof:

- Condition (E) for group ring codes is equivalent to even group order.
- The Sylow 2-subgroups of a group of even order are not cyclic precisely if the regular representation of G is contained in the alternating group.

(日) (日) (日) (日) (日) (日) (日)

```
Theorem C \exists C = C^{\perp} \in \mathcal{C}(G) of Type II \Leftrightarrow
(a) n \in 8\mathbb{Z},
(b) condition (E) is satisfied, and
(c) G \leq Alt_n.
```

 \Rightarrow : $\mathbb{F}_2^n/C^{\perp} \cong \operatorname{Hom}(C, \mathbb{F}_2)$, so if *S* is a composition factor of *C*, then S^* is a composition factor of \mathbb{F}_2^n/C^{\perp} .

$$\underbrace{\mathbb{F}_2^n \supseteq C^\perp}_{S^*} = \underbrace{C \supseteq \{0\}}_S$$

 $\Leftarrow: C \subset C^{\perp}$ maximal self-orthogonal, then C^{\perp}/C anisotropic and hence semi-simple,

$$C^{\perp}/C \cong \perp S_j$$
 with $S_j \cong S_j^* \forall j$.

 $S \perp S$ is hyperbolic since $\mathbb{F}_2 = \{x^2 \mid x \in \mathbb{F}_2\}.$

Theorem A $\exists C = C^{\perp} \in \mathfrak{C}(G) \Leftrightarrow \text{condition } (E) \text{ is satisfied.}$

Let *K* be any field, $V = K^{2m}$, $q: V \to K$ a non-degenerate quadratic form of Witt defect 0. This means that there is

$$U \le V, \dim(U) = m, q(U) = \{0\}.$$

Fix such a maximal isotropic subspace U.

Let *K* be any field, $V = K^{2m}$, $q: V \to K$ a non-degenerate quadratic form of Witt defect 0. This means that there is

$$U \le V, \dim(U) = m, q(U) = \{0\}.$$

Fix such a maximal isotropic subspace U.

 $O(V,q) := \{g \in \operatorname{GL}(V) \mid q(g(v)) = q(v) \text{ for all } v \in V\}.$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Let *K* be any field, $V = K^{2m}$, $q: V \to K$ a non-degenerate quadratic form of Witt defect 0. This means that there is

$$U \le V, \dim(U) = m, q(U) = \{0\}.$$

Fix such a maximal isotropic subspace U.

$$O(V,q) := \{g \in \operatorname{GL}(V) \mid q(g(v)) = q(v) \text{ for all } v \in V\}.$$

Dickson homomorphism

$$D: O(V,q) \to \{1,-1\}, g \mapsto (-1)^{m-\dim(U \cap Ug)}$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

is a well defined (independent from U) homomorphism.

Let *K* be any field, $V = K^{2m}$, $q: V \to K$ a non-degenerate quadratic form of Witt defect 0. This means that there is

$$U \le V, \dim(U) = m, q(U) = \{0\}.$$

Fix such a maximal isotropic subspace U.

$$O(V,q) := \{g \in \operatorname{GL}(V) \mid q(g(v)) = q(v) \text{ for all } v \in V\}.$$

Dickson homomorphism

$$D: O(V,q) \to \{1,-1\}, g \mapsto (-1)^{m-\dim(U \cap Ug)}$$

is a well defined (independent from U) homomorphism. $char(K) \neq 2 \Rightarrow D(g) = det(g).$

Let *K* be any field, $V = K^{2m}$, $q: V \to K$ a non-degenerate quadratic form of Witt defect 0. This means that there is

$$U \le V, \dim(U) = m, q(U) = \{0\}.$$

Fix such a maximal isotropic subspace U.

$$O(V,q) := \{g \in \operatorname{GL}(V) \mid q(g(v)) = q(v) \text{ for all } v \in V\}.$$

Dickson homomorphism

$$D: O(V,q) \to \{1,-1\}, g \mapsto (-1)^{m-\dim(U \cap Ug)}$$

is a well defined (independent from U) homomorphism. $\operatorname{char}(K) \neq 2 \Rightarrow D(g) = \det(g).$ **Theorem.** $\operatorname{Stab}_{O(V,q)}(U) \leq \ker(D)$

Let $n \in 8\mathbb{Z}$.

$$V := \mathbf{1}^{\perp} / \langle \mathbf{1} \rangle = \{ x + \langle \mathbf{1} \rangle \mid x \in \mathbb{F}_2^n, \operatorname{wt}(x) \in 2\mathbb{Z} \}$$
$$q : V \to \mathbb{F}_2, q(x + \langle \mathbf{1} \rangle) := \frac{\operatorname{wt}(x)}{2} + 2\mathbb{Z}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Let $n \in 8\mathbb{Z}$.

$$V := \mathbf{1}^{\perp} / \langle \mathbf{1} \rangle = \{ x + \langle \mathbf{1} \rangle \mid x \in \mathbb{F}_2^n, \operatorname{wt}(x) \in 2\mathbb{Z} \}$$
$$q : V \to \mathbb{F}_2, q(x + \langle \mathbf{1} \rangle) := \frac{\operatorname{wt}(x)}{2} + 2\mathbb{Z}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

- q is a well-defined, non-degenerate quadratic form.
- Its associated bilinear form is $\sum x_i y_i$.
- (V,q) has Witt defect 0.

Let $n \in 8\mathbb{Z}$.

$$V := \mathbf{1}^{\perp} / \langle \mathbf{1} \rangle = \{ x + \langle \mathbf{1} \rangle \mid x \in \mathbb{F}_2^n, \operatorname{wt}(x) \in 2\mathbb{Z} \}$$
$$q : V \to \mathbb{F}_2, q(x + \langle \mathbf{1} \rangle) := \frac{\operatorname{wt}(x)}{2} + 2\mathbb{Z}.$$

- q is a well-defined, non-degenerate quadratic form.
- Its associated bilinear form is $\sum x_i y_i$.
- (V,q) has Witt defect 0.
- ► The maximal isotropic subspaces of (V, q) are precisely the images of the Type II codes in 𝔽ⁿ₂.

Let $n \in 8\mathbb{Z}$.

$$V := \mathbf{1}^{\perp} / \langle \mathbf{1} \rangle = \{ x + \langle \mathbf{1} \rangle \mid x \in \mathbb{F}_2^n, \operatorname{wt}(x) \in 2\mathbb{Z} \}$$
$$q : V \to \mathbb{F}_2, q(x + \langle \mathbf{1} \rangle) := \frac{\operatorname{wt}(x)}{2} + 2\mathbb{Z}.$$

- q is a well-defined, non-degenerate quadratic form.
- Its associated bilinear form is $\sum x_i y_i$.
- (V,q) has Witt defect 0.
- ► The maximal isotropic subspaces of (V, q) are precisely the images of the Type II codes in ℝ₂ⁿ.
- ► *S_n* fixes 1 and preserves the weight hence embeds into *O*(*V*, *q*).
- ► The restriction of the Dickson homomorphism $D: S_n \rightarrow \{1, -1\}$ is the sign.

Generalization of Theorem B

This shows more general: **Theorem B'.** Let $C \leq \mathbb{F}_{2^d}^n$ be a self-dual generalized doubly-even code. Then $P(C) \leq \text{Alt}_n$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Generalization of Theorem B

This shows more general: **Theorem B'.** Let $C \leq \mathbb{F}_{2^d}^n$ be a self-dual generalized doubly-even code. Then $P(C) \leq \text{Alt}_n$.

For odd characteristic, the weight preserving mappings that preserve orthogonality are all permutations and sign changes

$$\{\pm 1\}^n : S_n$$

and one obtains

Theorem B". Let p > 2 and $C = C^{\perp} \leq \mathbb{F}_{p^d}^n$. Then $\det(\operatorname{Aut}(C)) = \{1\}.$

 $\Leftarrow: \text{Condition (E)} \Rightarrow \exists X = X^{\perp} \in \mathcal{C}(G).$ X doubly-even, then done,

⇐: Condition (E) ⇒ $\exists X = X^{\perp} \in C(G)$. X doubly-even, then done, else

$$X_0 := \{ x \in X \mid \operatorname{wt}(x) \in 4\mathbb{Z} \}$$

$$C_1 \quad C_2 \quad X$$

$$X_0 \cong \mathbb{F}_2 \oplus \mathbb{F}_2.$$

-- 1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Then $X_0^{\perp}/X_0 \cong \mathbb{F}_2 \oplus \mathbb{F}_2$.

⇐: Condition (E) ⇒ $\exists X = X^{\perp} \in C(G)$. X doubly-even, then done, else

$$X_0 := \{ x \in X \mid \operatorname{wt}(x) \in 4\mathbb{Z} \}$$

Then $X_0^{\perp}/X_0 \cong \mathbb{F}_2 \oplus \mathbb{F}_2$.

- C_1 and C_2 are doubly-even.
- $\dim(C_1) \dim(C_1 \cap C_2) = 1$ is odd.
- $G \le P(X) \le P(X_0)$ acts on $\{C_1, C_2\}$.
- $D(G) = \{1\}$ so $C_i g = C_i$ for all $g \in G, i = 1, 2$.
- $C_i \in \mathcal{C}(G)$ are Type II.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ののの