Automorphisms of extremal codes

Gabriele Nebe

Lehrstuhl D für Mathematik

Princeton, November 2015
RWIHAACHEN
UNIVERSTIY

Plan

The use of symmetry

- Beautiful objects have symmetries.
- Symmetries help to reduce the search space for nice objects
- and hence make huge problems accessible to computations.

The use of challenge problems

- Applications for classical theories and theorems such as
- Burnside orbit counting
- Invariant theory of finite groups
- Theory of quadratic forms
- Representation theory of finite groups
- Provide a practical introduction to abstract theory.

Self-dual codes

- A linear binary code C of length n is a subspace $C \leq \mathbb{F}_{2}^{n}$.
- The dual code of C is

$$
C^{\perp}:=\left\{x \in \mathbb{F}_{2}^{n} \mid(x, c):=\sum_{i=1}^{n} x_{i} c_{i}=0 \text { for all } c \in C\right\}
$$

- C is called self-dual if $C=C^{\perp}$.
- The Hamming weight of a codeword $c \in C$ is

$$
\operatorname{wt}(c):=\left|\left\{i \mid c_{i} \neq 0\right\}\right| .
$$

- $\operatorname{wt}(c) \equiv_{2}(c, c)$, so $C \subseteq C^{\perp}$ implies $\operatorname{wt}(C) \subset 2 \mathbb{Z}$.
- C is called doubly-even if $\mathrm{wt}(C) \subset 4 \mathbb{Z}$.
- The minimum distance $d(C):=\min \{\mathrm{wt}(c) \mid 0 \neq c \in C\}$.
- $\operatorname{Aut}(C)=\left\{\sigma \in S_{n} \mid \sigma(C)=C\right\}$.
- The weight enumerator of C is

$$
p_{C}:=\sum_{c \in C} x^{n-\mathrm{wt}(c)} y^{\mathrm{wt}(c)} \in \mathbb{C}[x, y]_{n}
$$

Facts

- $\operatorname{dim}(C)+\operatorname{dim}\left(C^{\perp}\right)=n$ so $C=C^{\perp} \Rightarrow \operatorname{dim}(C)=\frac{n}{2}$.
- Let $\mathbf{1}=(1, \ldots, 1)$. Then $(c, c)=(c, \mathbf{1})$.
- So if $C=C^{\perp}$ then $1 \in C$.

Examples for self-dual doubly-even codes

Hamming Code

$$
h_{8}:\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

the extended Hamming code, the unique doubly-even self-dual code of length 8 ,

$$
p_{h_{8}}(x, y)=x^{8}+14 x^{4} y^{4}+y^{8}
$$

and $\operatorname{Aut}\left(h_{8}\right)=2^{3}: L_{3}(2)$.

Golay Code

The binary Golay code \mathcal{G}_{24} is the unique doubly-even self-dual code of length 24 with minimum distance ≥ 8. Aut $\left(\mathcal{G}_{24}\right)=M_{24}$

$$
p_{\mathcal{G}_{24}}=x^{24}+759 x^{16} y^{8}+2576 x^{12} y^{12}+759 x^{8} y^{16}+y^{24}
$$

Application of invariant theory

The weight enumerator of C is $p_{C}:=\sum_{c \in C} x^{n-\mathrm{wt}(c)} y^{\mathrm{wt}(c)} \in \mathbb{C}[x, y]_{n}$.
Theorem (Gleason, ICM 1970)
Let $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ be doubly even. Then $d(C) \leq 4+4\left\lfloor\frac{n}{24}\right\rfloor$ Doubly-even self-dual codes achieving equality are called extremal.

Application of invariant theory

The weight enumerator of C is $p_{C}:=\sum_{c \in C} x^{n-\mathrm{wt}(c)} y^{\mathrm{wt}(c)} \in \mathbb{C}[x, y]_{n}$.
Theorem (Gleason, ICM 1970)
Let $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ be doubly even. Then $d(C) \leq 4+4\left\lfloor\frac{n}{24}\right\rfloor$ Doubly-even self-dual codes achieving equality are called extremal.

Proof:

- $p_{C}(x, y)=p_{C}(x, i y), p_{C}(x, y)=p_{C^{\perp}}(x, y)=p_{C}\left(\frac{x+y}{\sqrt{2}}, \frac{x-y}{\sqrt{2}}\right)$
- $G_{192}:=\left\langle\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)\right\rangle$.
- $p_{C} \in \operatorname{Inv}\left(G_{192}\right)=\mathbb{C}\left[p_{h_{8}}, p_{\mathcal{G}_{24}}\right]$
- $\exists!f \in \mathbb{C}\left[p_{h_{8}}, p_{\mathcal{G}_{24}}\right]_{8 m}$ such that

$$
f(1, y)=1+0 y^{4}+\ldots+0 y^{4\left\lfloor\frac{m}{3}\right\rfloor}+a_{m} y^{4\left\lfloor\frac{m}{3}\right\rfloor+4}+b_{m} y^{4\left\lfloor\frac{m}{3}\right\rfloor+8}+\ldots
$$

- $a_{m}>0$ for all m

Application of invariant theory

The weight enumerator of C is $p_{C}:=\sum_{c \in C} x^{n-\mathrm{wt}(c)} y^{\mathrm{wt}(c)} \in \mathbb{C}[x, y]_{n}$.

Theorem (Gleason, ICM 1970)

Let $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ be doubly even. Then $d(C) \leq 4+4\left\lfloor\frac{n}{24}\right\rfloor$ Doubly-even self-dual codes achieving equality are called extremal.

Proof:

- $p_{C}(x, y)=p_{C}(x, i y), p_{C}(x, y)=p_{C^{\perp}}(x, y)=p_{C}\left(\frac{x+y}{\sqrt{2}}, \frac{x-y}{\sqrt{2}}\right)$
- $G_{192}:=\left\langle\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)\right\rangle$.
- $p_{C} \in \operatorname{Inv}\left(G_{192}\right)=\mathbb{C}\left[p_{h_{8}}, p_{\mathcal{G}_{24}}\right]$
- $\exists!f \in \mathbb{C}\left[p_{h_{8}}, p_{\mathcal{G}_{24}}\right]_{8 m}$ such that

$$
f(1, y)=1+0 y^{4}+\ldots+0 y^{4\left\lfloor\frac{m}{3}\right\rfloor}+a_{m} y^{4\left\lfloor\frac{m}{3}\right\rfloor+4}+b_{m} y^{4\left\lfloor\frac{m}{3}\right\rfloor+8}+\ldots
$$

- $a_{m}>0$ for all m

Proposition (Mallows, Sloane)

$b_{m}<0$ for all $m \geq 494$ so there is no extremal code of length ≥ 3952.

Classification of extremal codes

length	8	24	32	40	48	72	80	96	104	≥ 3952
$d(C)$	4	8	8	8	12	16	16	20	20	
extremal	h_{8}	\mathcal{G}_{24}	5	16,470	$Q R_{48}$	$?$	≥ 15	$?$	≥ 1	0

$$
\operatorname{Aut}(C)=\left\{\sigma \in S_{n} \mid \sigma(C)=C\right\} \text { is the automorphism group of } C \leq \mathbb{F}_{2}^{n} .
$$

- $\operatorname{Aut}\left(h_{8}\right)=2^{3} . L_{3}(2)$
- $\operatorname{Aut}\left(\mathcal{G}_{24}\right)=M_{24}$
- Length 32: $L_{2}(31), 2^{5} . L_{5}(2), 2^{8} . S_{8}, 2^{8} . L_{2}(7) .2,2^{5} . S_{6}$.
- Length 40: 10,400 extremal codes with Aut $=1$.
- $\operatorname{Aut}\left(Q R_{48}\right)=L_{2}(47)$.
- Sloane (1973): Is there a $(72,36,16)$ self-dual code?
- If C is such a $(72,36,16)$ code then $\operatorname{Aut}(C)$ has order ≤ 5.

Classification of extremal codes

length	8	24	32	40	48	72	80	96	104	≥ 3952
$d(C)$	4	8	8	8	12	16	16	20	20	
extremal	h_{8}	\mathcal{G}_{24}	5	16,470	$Q R_{48}$	$?$	≥ 15	$?$	≥ 1	0

$$
\operatorname{Aut}(C)=\left\{\sigma \in S_{n} \mid \sigma(C)=C\right\} \text { is the automorphism group of } C \leq \mathbb{F}_{2}^{n} .
$$

- $\operatorname{Aut}\left(h_{8}\right)=2^{3} . L_{3}(2)$
- $\operatorname{Aut}\left(\mathcal{G}_{24}\right)=M_{24}$
- Length 32: $L_{2}(31), 2^{5} . L_{5}(2), 2^{8} . S_{8}, 2^{8} . L_{2}(7) .2,2^{5} . S_{6}$.
- Length 40: 10,400 extremal codes with Aut $=1$.
- $\operatorname{Aut}\left(Q R_{48}\right)=L_{2}(47)$.
- Sloane (1973): Is there a $(72,36,16)$ self-dual code?
- If C is such a $(72,36,16)$ code then $\operatorname{Aut}(C)$ has order ≤ 5.
- There is no beautiful $(72,36,16)$ self-dual code.

Extremal even unimodular lattices

n	8	24	32	48	72	80	$\geq 163,264$
$\min (\mathrm{~L})$	2	4	4	6	8	8	
extremal	1	1	$\geq 10^{7}$	≥ 4	≥ 1	≥ 4	0

The automorphism groups

$$
\begin{array}{lr}
\operatorname{Aut}\left(\Lambda_{24}\right) \cong 2 . \mathrm{Co}_{1} & 83155533613086720000 \\
= & 2^{22} 3^{9} 5^{4} 7^{2} \cdot 11 \cdot 13 \cdot 23 \\
\operatorname{Aut}\left(P_{48}\right) \cong\left(\mathrm{SL}_{2}(23) \times S_{3}\right): 2 & 72864=2^{5} 3^{2} 11 \cdot 23 \\
\operatorname{Aut}\left(P_{48 q}\right) \cong \mathrm{SL}_{2}(47) & 103776=2^{5} 3 \cdot 23 \cdot 47 \\
\operatorname{Aut}\left(P_{48 n}\right) \cong\left(\mathrm{SL}_{2}(13) \mathrm{Y} \mathrm{SL}_{2}(5)\right) \cdot 2^{2} & 524160=2^{7} 3^{2} 5 \cdot 7 \cdot 13 \\
\operatorname{Aut}\left(P_{48 m}\right) \cong\left(C_{5} \times C_{5} \times C_{3}\right):\left(D_{8} \mathrm{Y} C_{4}\right) & 1200=2^{4} 35^{2} \\
& \\
\operatorname{Aut}\left(\Gamma_{72}\right) \cong\left(\mathrm{SL}_{2}(25) \times \mathrm{PSL}_{2}(7)\right): 2 & 5241600=2^{8} 3^{2} 5^{2} 7 \cdot 13
\end{array}
$$

The Type of an automorphism

Definition

Let $\sigma \in S_{n}$ of prime order p. Then σ is of Type (z, f) if σ has z p-cycles and f fixed points. $z p+f=n$.

- Let p be odd, $\sigma=(1,2, . ., p)(p+1, . ., 2 p) \ldots((z-1) p+1, . ., z p)$
- $\mathbb{F}_{2}^{n}=\operatorname{Fix}(\sigma) \perp E(\sigma)=\mathbb{F}_{2}^{n} e_{0} \perp \mathbb{F}_{2}^{n} e_{1}$ with
- $e_{0}=1+\sigma+\ldots+\sigma^{p-1}, e_{1}=1-e_{0}$.
- $C=C^{\perp}, \sigma \in \operatorname{Aut}(C)$
- get two self-dual codes $C e_{0}$ and $C e_{1}$ of smaller length

$$
\begin{aligned}
& C e_{0}=\operatorname{Fix}_{C}(\sigma)=\{(\underbrace{c_{p} \ldots c_{p}}_{p} \underbrace{c_{2 p} \ldots c_{2 p}}_{p} \ldots \underbrace{c_{z p} \ldots c_{z p}}_{p} c_{z p+1} \ldots c_{n}) \in C\} \\
& \pi\left(\operatorname{Fix}_{C}(\sigma)\right)=\left\{\left(c_{p} c_{2 p} \ldots c_{z p} c_{z p+1} \ldots c_{n}\right) \in \mathbb{F}_{2}^{z+f} \mid c \in \operatorname{Fix}_{C}(\sigma)\right\}
\end{aligned}
$$

Fact

$\pi\left(\operatorname{Fix}_{C}(\sigma)\right)$ is a self-dual code of length $z+f$, in particular

$$
\operatorname{dim}\left(\operatorname{Fix}_{C}(\sigma)\right)=\frac{z+f}{2} \text { and }\left|\operatorname{Fix}_{C}(\sigma)\right|=2^{(z+f) / 2}
$$

Application of Burnside's orbit counting theorem

Theorem (Conway, Pless, 1982)
Let $C=C^{\perp} \leq \mathbb{F}_{2}^{n}, \sigma \in \operatorname{Aut}(C)$ of odd prime order p and Type (z, f).
Then $\quad 2^{(z+f) / 2} \equiv 2^{n / 2} \quad(\bmod p)$.

Proof: Apply orbit counting:
The number of G-orbits on a finite set M is $\frac{1}{|G|} \sum_{g \in G}\left|\operatorname{Fix}_{M}(g)\right|$. Here $G=\langle\sigma\rangle, M=C, \operatorname{Fix}_{C}(g)=\operatorname{Fix}_{C}(\sigma)$ for all $1 \neq g \in G$, and the number of $\langle\sigma\rangle$-orbits on C is $\frac{1}{p}\left(2^{n / 2}+(p-1) 2^{(z+f) / 2}\right) \in \mathbb{N}$.

Corollary

$C=C^{\perp} \leq \mathbb{F}_{2}^{n}, p>n / 2$ an odd prime divisor of $|\operatorname{Aut}(C)|$, then $p \equiv \pm 1$ $(\bmod 8)$.

Here $z=1, f=n-p,(z+f) / 2=(n-(p-1)) / 2$, so $2^{(p-1) / 2}$ is 1 $\bmod p$ and hence 2 must be a square modulo p.

Application of quadratic forms

Theorem (A. Meyer, N. 2009)

Let $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ doubly-even. Then $\operatorname{Aut}(C) \leq \operatorname{Alt}_{n}$.

- Proof. (sketch)
- $\mathbf{E}_{\mathbf{n}-\mathbf{2}}=\left(\mathbf{1}^{\perp} /\langle\mathbf{1}\rangle, q\right), q(c+\langle\mathbf{1}\rangle)=\frac{1}{2} \operatorname{wt}(c)(\bmod 2) \in \mathbb{F}_{2}$.
- $C /\langle\mathbf{1}\rangle$ is a self-dual isotropic subspace $\mathbf{E}_{\mathbf{n}-\mathbf{2}}$.
- The stabilizer in the orthogonal group of $\mathbf{E}_{\mathbf{n}-\mathbf{2}}$ of such a space has trivial Dickson invariant.
- $S_{n} \leq O\left(\mathbf{E}_{\mathbf{n}-\mathbf{2}}\right), \operatorname{Aut}(C)=\operatorname{Stab}_{S_{n}}(C)$.
- The restriction of the Dickson invariant to S_{n} is the sign.

Application of Representation Theory

G finite group, $\mathbb{F}_{2} G=\left\{\sum_{g \in G} a_{g} g \mid a_{g} \in \mathbb{F}_{2}\right\}$ group ring.
Then G acts on $\mathbb{F}_{2} G \cong \mathbb{F}_{2}^{|G|}$ by permuting the basis elements.

Theorem (Sloane, Thompson, 1988)

There is a G-invariant self-dual doubly-even code $C \leq \mathbb{F}_{2} G$, if and only if $|G| \in 8 \mathbb{N}$ and the Sylow 2-subgroups of G are not cyclic.

Theorem (A. Meyer, N., 2009)

Given $G \leq S_{n}$. Then there is $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ doubly-even such that $G \leq \operatorname{Aut}(C)$, if and only if
(1) $n \in 8 \mathbb{N}$,
(2) all self-dual composition factors of the $\mathbb{F}_{2} G$-module \mathbb{F}_{2}^{n} occur with even multiplicity, and
(3) $G \leq \operatorname{Alt}_{n}$.

General theoretical results (Summary)

- Invariant Theory:
$C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ extremal if $d(C)=4+4\left\lfloor\frac{n}{24}\right\rfloor$
- Orbit Counting:
$C=C^{\perp}, \sigma \in \operatorname{Aut}(C)$ of odd prime order p and Type (z, f), then $2^{(z+f) / 2} \equiv 2^{n / 2}(\bmod p)$
- Quadratic Forms:
$C=C^{\perp}$ doubly even, then $n \in 8 \mathbb{Z}$ and $\operatorname{Aut}(C) \leq \mathrm{Alt}_{n}$.
- Equivariant Witt groups and Representation Theory: Characterisation of the permutation groups admitting a self-dual doubly-even invariant code.

$C=C^{\perp} \leq \mathbb{F}_{2}^{72}$ extremal, $G=\operatorname{Aut}(C)$.

Theorem (Conway, Huffman, Pless, Bouyuklieva, O’Brien, Willems, Feulner, Borello, Yorgov, N., ..)

Let $C \leq \mathbb{F}_{2}^{72}$ be an extremal doubly even code, $G:=\operatorname{Aut}(C):=\left\{\sigma \in S_{72} \mid \sigma(C)=C\right\}, \sigma \in G$ of prime order p.

- If $p=2$ or $p=3$ then σ has no fixed points. (B)
- If $p=5$ or $p=7$ then σ has 2 fixed points. (CHPB)
- G contains no element of prime order ≥ 7. (BYFN)
- G has no subgroup $S_{3}, D_{10}, C_{3} \times C_{3}$. (BFN)
- If $p=2$ then C is a free $\mathbb{F}_{2}\langle\sigma\rangle$-module. (N)
- G has no subgroup $C_{10}, C_{4} \times C_{2}, Q_{8}$.
- $G \not \approx \mathrm{Alt}_{4}, G \not \approx D_{8}, G \not \approx C_{2} \times C_{2} \times C_{2}$ (BN)
- G contains no element of order 6. (Borello)
- and hence $|G| \leq 5$.
- G contains no element of order 4. (Y)

Existence of an extremal code of length 72 is still open.

The Type of a permutation of prime order

 Theoretical results, p odd.
Definition (recall)

Let $\sigma \in S_{n}$ of prime order p. Then σ is of Type (z, f), if σ has z p-cycles and f fixed points. $z p+f=n$.

Theorem (Conway, Pless) (recall)
Let $C=C^{\perp} \leq \mathbb{F}_{2}^{n}, \sigma \in \operatorname{Aut}(C)$ of odd prime order p and Type (z, f).
Then $\quad 2^{(z+f) / 2} \equiv 2^{n / 2} \quad(\bmod p)$.

Corollary. $n=72 \Rightarrow p \neq 37,43,53,59,61,67$.

Corollary. If $n=8$ then $p \neq 5$ and $p=3 \Rightarrow$ Type $(2,2)$.

$$
2^{4} \not \equiv 2^{(1+3) / 2}(\bmod 5), 2^{4} \not \equiv 2^{(1+5) / 2}(\bmod 3) .
$$

Computational results, p odd.

BabyTheorem: $n=8, p=3$

All doubly even self-dual codes of length 8 that have an automorphism of order 3 are equivalent to h_{8}.

- $\sigma=(1,2,3)(4,5,6)(7)(8) \in \operatorname{Aut}(C)$
- $e_{0}=1+\sigma+\sigma^{2}, e_{1}=\sigma+\sigma^{2}$ idempotents in $\mathbb{F}_{2}\langle\sigma\rangle$
- $C=C e_{0} \perp C e_{1} \leq \mathbb{F}_{2}^{8} e_{0} \perp \mathbb{F}_{2}^{8} e_{1} \cong \mathbb{F}_{2}^{4} \perp \mathbb{F}_{4}^{2}$
- $C e_{0}=\operatorname{Fix}_{C}(\sigma)$ isomorphic to a self-dual code in \mathbb{F}_{2}^{4}, so

$$
C e_{0}:\left[\begin{array}{llllllll}
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]
$$

- $C e_{1}=E_{C}(\sigma) \leq \mathbb{F}_{4}^{2}$ Hermitian self-dual, $C e_{1} \cong[1,1]$, so

$$
C e_{1}:\left[\begin{array}{llllllll}
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right]
$$

and hence

$$
C:\left[\begin{array}{llllllll}
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Computational results, p odd.

Theorem. (Borello, Feulner, N. 2012, 2013)

Let $C=C^{\perp} \leq \mathbb{F}_{2}^{72}$, extremal, so $d(C)=16$.
Then $\operatorname{Aut}(C)$ has no subgroup $C_{7}, C_{3} \times C_{3}, D_{10}, S_{3}$.

- Proof. for $S_{3}=\left\langle\sigma, \tau \mid \sigma^{3}, \tau^{2},(\sigma \tau)^{2}\right\rangle$
- $\sigma=(1,2,3)(4,5,6) \cdots(67,68,69)(70,71,72)$
- $\tau=(1,4)(2,6)(3,5) \cdots(67,70)(68,72)(69,71)$
- $C \cong \operatorname{Fix}_{C}(\sigma) \oplus E_{C}(\sigma)$ with $\operatorname{Fix}_{C}(\sigma) \cong(1,1,1) \otimes \mathcal{G}_{24}$ and
- $E_{C}(\sigma) \leq \mathbb{F}_{4}^{24}$ Hermitian self-dual, minimum distance ≥ 8.
- τ acts on $E_{C}(\sigma)$ by $\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{23}, \epsilon_{24}\right)^{\tau}=\left(\overline{\epsilon_{2}}, \overline{\epsilon_{1}}, \ldots, \overline{\epsilon_{24}}, \overline{\epsilon_{23}}\right)$
- $\operatorname{Fix}_{E_{C}(\sigma)}(\tau)=\left\{\epsilon:=\left(\overline{\epsilon_{2}}, \epsilon_{2} \ldots, \overline{\epsilon_{24}}, \epsilon_{24}\right) \in E_{C}(\sigma)\right\}$
- $\cong \pi\left(\operatorname{Fix}_{E_{C}(\sigma)}(\tau)\right)=\left\{\left(\epsilon_{2}, \ldots, \epsilon_{24}\right) \mid \epsilon \in \operatorname{Fix}_{E_{C}(\sigma)}(\tau)\right\} \leq \mathbb{F}_{4}^{12}$
- is trace Hermitian self-dual additive code, minimum distance ≥ 4.
- There are 195,520 such codes.
- $\left\langle\operatorname{Fix}_{E_{C}(\sigma)}(\tau)\right\rangle_{\mathbb{F}_{4}}=E_{C}(\sigma)$.
- No $E_{C}(\sigma)$ has minimum distance ≥ 8.
$C=C^{\perp} \leq \mathbb{F}_{2}^{72}$, doubly even, extremal, so $d(C)=16$ Theoretical results, p even.

Theorem. (N. 2012)

Let $\tau \in \operatorname{Aut}(C)$ of order 2 . Then C is a free $\mathbb{F}_{2}\langle\tau\rangle$-module.

- Let $R=\mathbb{F}_{2}\langle\tau\rangle$ the free $\mathbb{F}_{2}\langle\tau\rangle$-module, $S=\mathbb{F}_{2}$ the simple one.
- Then $C=R^{a} \oplus S^{b}$ with $2 a+b=36$.
- $F:=\operatorname{Fix}_{C}(\tau)=\{c \in C \mid c \tau=c\} \cong S^{a+b}, C(1-\tau) \cong S^{a}$.
- $\tau=(1,2)(3,4) \ldots(71,72)$.
- $F \cong \pi(F), \pi(c)=\left(c_{2}, c_{4}, c_{6}, \ldots, c_{72}\right) \in \mathbb{F}_{2}^{36}$.
- Fact: $\pi(F)=\pi(C(1-\tau))^{\perp} \supseteq D=D^{\perp} \supseteq \pi(C(1-\tau))$.
- $d(F) \geq d(C)=16$, so $d(D) \geq d(\pi(F)) \geq 8$.
- There are 41 such extremal self-dual codes D (Gaborit etal).
- No code D has a proper overcode with minimum distance ≥ 8.
- This can also be seen a priori considering weight enumerators.
- So $\pi(F)=D$ and hence $a+b=18$, so $a=18, b=0$.

Theorem: C is a free $\mathbb{F}_{2}\langle\tau\rangle$-module.

Corollary. Aut (C) has no element of order 8.

$g \in \operatorname{Aut}(C)$ of order 8 . Then C is a free $\mathbb{F}_{2}\left\langle g^{4}\right\rangle$-module, hence also a free $\mathbb{F}_{2}\langle g\rangle$-module of rank $\operatorname{dim}(C) / 8=36 / 8=9 / 2$ a contradiction.

Corollary. Aut (C) has no subgroup Q_{8}.

Use a theorem by J. Carlson: If M is an $\mathbb{F}_{2} Q_{8}$-module such that the restriction of M to the center of Q_{8} is free, then M is free.

Corollary.

Aut (C) has no subgroup $U \cong C_{2} \times C_{4}, C_{8}$ or C_{10}.
(needs inspection of automorphism group of the 41 possibile fixed codes)

$\mathrm{Alt}_{4}=\langle a, b, \sigma\rangle \unrhd\langle a, b\rangle=V_{4}$, (Borello, N. 2013)

 Computational results: $\mathrm{No} \mathrm{Alt}_{4} \leq \operatorname{Aut}(C)$.

3 possibilities for D $\operatorname{dim}\left(D^{\perp} / D\right)=20,20,22$.
$C / D \leq D^{\perp} / D$
maximal isotropic subspace.
V_{4} acts trivially on $D^{\perp} / D=: V$.
$V=V e_{0} \oplus V e_{1}$
is an $\mathbb{F}_{2}\langle\sigma\rangle$-module.
Unique possibility for $C e_{0}$. $C e_{1} \leq V e_{1}$ Hermitian maximal singular \mathbb{F}_{4}-subspace. Compute all these subspaces as orbit under the unitary group of $V e_{1}$. No extremal code is found.

Theoretical results, $p=2$.

Theorem. (N. 2012)
$C=C^{\perp} \leq \mathbb{F}_{2}^{72}$ extremal, $\tau \in \operatorname{Aut}(C)$ of order 2. Then C is a free $\mathbb{F}_{2}\langle\tau\rangle$-module.

Theorem (Borello, N. 2015)
Let $m \geq 3$ be odd and $C=C^{\perp}$ an extremal doubly-even binary code of length $24 m$.

- If $\tau \in \operatorname{Aut}(C)$ is of order 2 and fixed point free then C is a free $\mathbb{F}_{2}\langle\tau\rangle$-module.
- If 8 divides $|\operatorname{Aut}(C)|$, then the Sylow 2-subgroups of $\operatorname{Aut}(C)$ are isomorphic to $C_{2} \times C_{2} \times C_{2}, C_{2} \times C_{4}$, or D_{8}.

Conclusion

Search for extremal codes with automorphisms provides a nice application for classical theories in particular

- Quadratic Forms:
$C=C^{\perp}$ doubly even, then $n \in 8 \mathbb{Z}$ and $\operatorname{Aut}(C) \leq \mathrm{Alt}_{n}$.
- Obtain characterisation of the permutation groups admitting a self-dual doubly-even invariant code.
- Modular Representation Theory and Invariant Theory $n=24 m, d(C)=4 m+4, \tau \in \operatorname{Aut}(C)$ of Type $(12 m, 0)$. If m is odd then C is a free $\mathbb{F}_{2}\langle\tau\rangle$-module.
Motivation for explicit computations with a practical and detailed use of the structure of the automorphism group.

