Automorphisms of extremal codes

Gabriele Nebe

Lehrstuhl D für Mathematik

Princeton, November 2015

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

Plan

The use of symmetry

- Beautiful objects have symmetries.
- Symmetries help to reduce the search space for nice objects
- and hence make huge problems accessible to computations.

The use of challenge problems

- Applications for classical theories and theorems such as
- Burnside orbit counting
- Invariant theory of finite groups
- Theory of quadratic forms
- Representation theory of finite groups
- Provide a practical introduction to abstract theory.

Self-dual codes

- ▶ A linear binary code *C* of length *n* is a subspace $C \leq \mathbb{F}_2^n$.
- ▶ The dual code of C is

 $C^{\perp} := \{ x \in \mathbb{F}_2^n \mid (x,c) := \sum_{i=1}^n x_i c_i = 0 \text{ for all } c \in C \}$

- C is called self-dual if $C = C^{\perp}$.
- The Hamming weight of a codeword $c \in C$ is

$$wt(c) := |\{i \mid c_i \neq 0\}|.$$

- $\operatorname{wt}(c) \equiv_2 (c, c)$, so $C \subseteq C^{\perp}$ implies $\operatorname{wt}(C) \subset 2\mathbb{Z}$.
- C is called doubly-even if $wt(C) \subset 4\mathbb{Z}$.
- The minimum distance $d(C) := \min\{\operatorname{wt}(c) \mid 0 \neq c \in C\}.$
- $\operatorname{Aut}(C) = \{ \sigma \in S_n \mid \sigma(C) = C \}.$
- ► The weight enumerator of *C* is $p_C := \sum_{c \in C} x^{n - wt(c)} y^{wt(c)} \in \mathbb{C}[x, y]_n.$

Facts

▶ $\dim(C) + \dim(C^{\perp}) = n$ so $C = C^{\perp} \Rightarrow \dim(C) = \frac{n}{2}$.

• Let
$$\mathbf{1} = (1, \dots, 1)$$
. Then $(c, c) = (c, \mathbf{1})$.

So if $C = C^{\perp}$ then $\mathbf{1} \in C$.

Examples for self-dual doubly-even codes

Hamming Code

$$h_8: \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

the extended Hamming code, the unique doubly-even self-dual code of length 8,

$$p_{h_8}(x,y) = x^8 + 14x^4y^4 + y^8$$

and $Aut(h_8) = 2^3 : L_3(2)$.

Golay Code

The binary Golay code \mathcal{G}_{24} is the unique doubly-even self-dual code of length 24 with minimum distance ≥ 8 . Aut $(\mathcal{G}_{24}) = M_{24}$

$$p_{\mathcal{G}_{24}} = x^{24} + 759x^{16}y^8 + 2576x^{12}y^{12} + 759x^8y^{16} + y^{24}$$

Application of invariant theory

The weight enumerator of C is $p_C := \sum_{c \in C} x^{n-\operatorname{wt}(c)} y^{\operatorname{wt}(c)} \in \mathbb{C}[x, y]_n$.

Theorem (Gleason, ICM 1970)

Let $C = C^{\perp} \leq \mathbb{F}_2^n$ be doubly even. Then $d(C) \leq 4 + 4\lfloor \frac{n}{24} \rfloor$ Doubly-even self-dual codes achieving equality are called extremal.

(日) (日) (日) (日) (日) (日) (日)

Application of invariant theory

The weight enumerator of C is $p_C := \sum_{c \in C} x^{n-\operatorname{wt}(c)} y^{\operatorname{wt}(c)} \in \mathbb{C}[x, y]_n$.

Theorem (Gleason, ICM 1970)

Let $C = C^{\perp} \leq \mathbb{F}_2^n$ be doubly even. Then $d(C) \leq 4 + 4\lfloor \frac{n}{24} \rfloor$ Doubly-even self-dual codes achieving equality are called extremal.

Proof:

Application of invariant theory

The weight enumerator of C is $p_C := \sum_{c \in C} x^{n-\operatorname{wt}(c)} y^{\operatorname{wt}(c)} \in \mathbb{C}[x, y]_n$.

Theorem (Gleason, ICM 1970)

Let $C = C^{\perp} \leq \mathbb{F}_2^n$ be doubly even. Then $d(C) \leq 4 + 4\lfloor \frac{n}{24} \rfloor$ Doubly-even self-dual codes achieving equality are called extremal.

Proof:

▶ $a_m > 0$ for all m

Proposition (Mallows, Sloane)

 $b_m < 0$ for all $m \ge 494$ so there is no extremal code of length ≥ 3952 .

Classification of extremal codes

length	8	24	32	40	48	72	80	96	104	≥ 3952
d(C)	4	8	8	8	12	16	16	20	20	
extremal	h_8	\mathcal{G}_{24}	5	16,470	QR_{48}	?	≥ 15	?	≥ 1	0

Aut $(C) = \{ \sigma \in S_n \mid \sigma(C) = C \}$ is the automorphism group of $C \leq \mathbb{F}_2^n$.

- $\operatorname{Aut}(h_8) = 2^3 \cdot L_3(2)$
- $\operatorname{Aut}(\mathcal{G}_{24}) = M_{24}$
- ▶ Length 32: $L_2(31)$, $2^5.L_5(2)$, $2^8.S_8$, $2^8.L_2(7).2$, $2^5.S_6$.
- Length 40: 10,400 extremal codes with Aut = 1.
- $\operatorname{Aut}(QR_{48}) = L_2(47).$
- ► Sloane (1973): Is there a (72, 36, 16) self-dual code?
- ▶ If C is such a (72, 36, 16) code then Aut(C) has order ≤ 5 .

Classification of extremal codes

length	8	24	32	40	48	72	80	96	104	≥ 3952
d(C)	4	8	8	8	12	16	16	20	20	
extremal	h_8	\mathcal{G}_{24}	5	16,470	QR_{48}	?	≥ 15	?	≥ 1	0

Aut $(C) = \{ \sigma \in S_n \mid \sigma(C) = C \}$ is the automorphism group of $C \leq \mathbb{F}_2^n$.

- ▶ $Aut(h_8) = 2^3 L_3(2)$
- $\operatorname{Aut}(\mathcal{G}_{24}) = M_{24}$
- ▶ Length 32: $L_2(31)$, $2^5.L_5(2)$, $2^8.S_8$, $2^8.L_2(7).2$, $2^5.S_6$.
- Length 40: 10,400 extremal codes with Aut = 1.
- $\operatorname{Aut}(QR_{48}) = L_2(47).$
- ► Sloane (1973): Is there a (72, 36, 16) self-dual code?
- ▶ If C is such a (72, 36, 16) code then Aut(C) has order ≤ 5 .
- There is no beautiful (72, 36, 16) self-dual code.

Extremal even unimodular lattices

n	8	24	32	48	72	80	$\geq 163, 264$
min(L)	2	4	4	6	8	8	
extremal	1	1	$\geq 10^7$	≥ 4	≥ 1	≥ 4	0

The automorphism groups $\operatorname{Aut}(\Lambda_{24}) \cong 2.Co_1$ 8315553613086720000 $2^{22}3^{9}5^{4}7^{2} \cdot 11 \cdot 13 \cdot 23$ _ $72864 = 2^5 3^2 11 \cdot 23$ $\operatorname{Aut}(P_{48p}) \cong (\operatorname{SL}_2(23) \times S_3) : 2$ $103776 = 2^53 \cdot 23 \cdot 47$ $\operatorname{Aut}(P_{48a}) \cong \operatorname{SL}_2(47)$ $524160 = 2^7 3^2 5 \cdot 7 \cdot 13$ $Aut(P_{48n}) \cong (SL_2(13) \vee SL_2(5)).2^2$ $1200 = 2^4 3 5^2$ $\operatorname{Aut}(P_{48m}) \cong (C_5 \times C_5 \times C_3) : (D_8 \vee C_4)$ $5241600 = 2^8 3^2 5^2 7 \cdot 13$ $\operatorname{Aut}(\Gamma_{72}) \cong (\operatorname{SL}_2(25) \times \operatorname{PSL}_2(7)) : 2$

(日) (日) (日) (日) (日) (日) (日)

The Type of an automorphism

Definition

Let $\sigma \in S_n$ of prime order p. Then σ is of Type (z, f) if σ has z p-cycles and f fixed points. zp + f = n.

Fact

 $\pi(\operatorname{Fix}_C(\sigma))$ is a self-dual code of length z + f, in particular

$$\dim(\operatorname{Fix}_C(\sigma)) = \frac{z+f}{2} \text{ and } |\operatorname{Fix}_C(\sigma)| = 2^{(z+f)/2}.$$

Application of Burnside's orbit counting theorem

Theorem (Conway, Pless, 1982)Let $C = C^{\perp} \leq \mathbb{F}_2^n$, $\sigma \in Aut(C)$ of odd prime order p and Type (z, f).Then $2^{(z+f)/2} \equiv 2^{n/2} \pmod{p}$.

Proof: Apply orbit counting: The number of *G*-orbits on a finite set *M* is $\frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}_M(g)|$. Here $G = \langle \sigma \rangle$, M = C, $\operatorname{Fix}_C(g) = \operatorname{Fix}_C(\sigma)$ for all $1 \neq g \in G$, and the number of $\langle \sigma \rangle$ -orbits on *C* is $\frac{1}{p}(2^{n/2} + (p-1)2^{(z+f)/2}) \in \mathbb{N}$.

Corollary

 $C=C^{\perp}\leq \mathbb{F}_2^n,$ p>n/2 an odd prime divisor of $|\operatorname{Aut}(C)|,$ then $p\equiv \pm 1 \pmod{8}.$

Here z = 1, f = n - p, (z + f)/2 = (n - (p - 1))/2, so $2^{(p-1)/2}$ is $1 \mod p$ and hence 2 must be a square modulo p.

・ロット 4回ッ 4回ッ 4回ッ 4日・

Application of quadratic forms

Theorem (A. Meyer, N. 2009)

Let $C = C^{\perp} \leq \mathbb{F}_2^n$ doubly-even. Then $\operatorname{Aut}(C) \leq \operatorname{Alt}_n$.

Proof. (sketch)

- ► $\mathbf{E_{n-2}} = (\mathbf{1}^{\perp}/\langle \mathbf{1} \rangle, q), q(c + \langle \mathbf{1} \rangle) = \frac{1}{2} \operatorname{wt}(c) \pmod{2} \in \mathbb{F}_2.$
- $C/\langle \mathbf{1} \rangle$ is a self-dual isotropic subspace $\mathbf{E_{n-2}}$.
- ► The stabilizer in the orthogonal group of E_{n-2} of such a space has trivial Dickson invariant.

- ► $S_n \leq O(\mathbf{E_{n-2}})$, $\operatorname{Aut}(C) = \operatorname{Stab}_{S_n}(C)$.
- The restriction of the Dickson invariant to S_n is the sign.

Application of Representation Theory

G finite group, $\mathbb{F}_2 G = \{\sum_{g \in G} a_g g \mid a_g \in \mathbb{F}_2\}$ group ring. Then *G* acts on $\mathbb{F}_2 G \cong \mathbb{F}_2^{|G|}$ by permuting the basis elements.

Theorem (Sloane, Thompson, 1988)

There is a *G*-invariant self-dual doubly-even code $C \leq \mathbb{F}_2 G$, if and only if $|G| \in 8\mathbb{N}$ and the Sylow 2-subgroups of *G* are not cyclic.

Theorem (A. Meyer, N., 2009)

Given $G \leq S_n$. Then there is $C = C^{\perp} \leq \mathbb{F}_2^n$ doubly-even such that $G \leq \operatorname{Aut}(C)$, if and only if

- (1) $n \in 8\mathbb{N}$,
- (2) all self-dual composition factors of the \mathbb{F}_2G -module \mathbb{F}_2^n occur with even multiplicity, and
- (3) $G \leq \operatorname{Alt}_n$.

General theoretical results (Summary)

Invariant Theory:

 $C=C^{\perp} \leq \mathbb{F}_2^n$ extremal if $d(C)=4+4\lfloor \frac{n}{24} \rfloor$

- Orbit Counting: $C = C^{\perp}, \sigma \in \operatorname{Aut}(C)$ of odd prime order p and Type (z, f), then $2^{(z+f)/2} \equiv 2^{n/2} \pmod{p}$
- Quadratic Forms: $C = C^{\perp}$ doubly even, then $n \in 8\mathbb{Z}$ and $Aut(C) \leq Alt_n$.
- Equivariant Witt groups and Representation Theory: Characterisation of the permutation groups admitting a self-dual doubly-even invariant code.

(日) (日) (日) (日) (日) (日) (日)

 $C = C^{\perp} \leq \mathbb{F}_2^{72}$ extremal, $G = \operatorname{Aut}(C)$.

Theorem (Conway, Huffman, Pless, Bouyuklieva, O'Brien, Willems, Feulner, Borello, Yorgov, N., ..)

Let $C \leq \mathbb{F}_2^{72}$ be an extremal doubly even code, $G := \operatorname{Aut}(C) := \{ \sigma \in S_{72} \mid \sigma(C) = C \}, \sigma \in G \text{ of prime order } p.$

- If p = 2 or p = 3 then σ has no fixed points. (B)
- If p = 5 or p = 7 then σ has 2 fixed points. (CHPB)
- G contains no element of prime order \geq 7. (BYFN)
- G has no subgroup S_3 , D_{10} , $C_3 \times C_3$. (BFN)
- If p = 2 then C is a free $\mathbb{F}_2\langle \sigma \rangle$ -module. (N)
- G has no subgroup $C_{10}, C_4 \times C_2, Q_8$.
- $G \cong \operatorname{Alt}_4, G \cong D_8, G \cong C_2 \times C_2 \times C_2$ (BN)
- G contains no element of order 6. (Borello)
- and hence $|G| \leq 5$.
- G contains no element of order 4. (Y)

Existence of an extremal code of length 72 is still open.

The Type of a permutation of prime order

Theoretical results, p odd.

Definition (recall)

Let $\sigma \in S_n$ of prime order p. Then σ is of Type (z, f), if σ has z p-cycles and f fixed points. zp + f = n.

Theorem (Conway, Pless) (recall)

Let $C = C^{\perp} \leq \mathbb{F}_2^n$, $\sigma \in Aut(C)$ of odd prime order p and Type (z, f).

Then
$$2^{(z+f)/2} \equiv 2^{n/2} \pmod{p}$$
.

Corollary. $n = 72 \Rightarrow p \neq 37, 43, 53, 59, 61, 67$.

Corollary. If n = 8 then $p \neq 5$ and $p = 3 \Rightarrow$ Type (2, 2). $2^4 \not\equiv 2^{(1+3)/2} \pmod{5}, 2^4 \not\equiv 2^{(1+5)/2} \pmod{3}.$

・ロト・西ト・ヨト ・ヨー シック

Computational results, *p* odd.

BabyTheorem: n = 8, p = 3

All doubly even self-dual codes of length 8 that have an automorphism of order 3 are equivalent to h_8 .

•
$$\sigma = (1, 2, 3)(4, 5, 6)(7)(8) \in \operatorname{Aut}(C)$$

• $e_0 = 1 + \sigma + \sigma^2$, $e_1 = \sigma + \sigma^2$ idempotents in $\mathbb{F}_2 \langle \sigma \rangle$
• $C = Ce_0 \perp Ce_1 \leq \mathbb{F}_2^8 e_0 \perp \mathbb{F}_2^8 e_1 \cong \mathbb{F}_2^4 \perp \mathbb{F}_4^2$
• $Ce_0 = \operatorname{Fix}_C(\sigma)$ isomorphic to a self-dual code in \mathbb{F}_2^4 , so
 $Ce_0 : \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$
• $Ce_1 = E_C(\sigma) \leq \mathbb{F}_4^2$ Hermitian self-dual, $Ce_1 \cong [1, 1]$, so
 $Ce_1 : \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \end{bmatrix}$
and hence

Computational results, *p* odd.

Theorem. (Borello, Feulner, N. 2012, 2013)

Let $C = C^{\perp} \leq \mathbb{F}_2^{72}$, extremal, so d(C) = 16. Then $\operatorname{Aut}(C)$ has no subgroup C_7 , $C_3 \times C_3$, D_{10} , S_3 .

• **Proof.** for
$$S_3 = \langle \sigma, \tau \mid \sigma^3, \tau^2, (\sigma\tau)^2 \rangle$$

•
$$\sigma = (1, 2, 3)(4, 5, 6) \cdots (67, 68, 69)(70, 71, 72)$$

$$\bullet \ \tau = (1,4)(2,6)(3,5)\cdots(67,70)(68,72)(69,71)$$

- $C \cong \operatorname{Fix}_C(\sigma) \oplus E_C(\sigma)$ with $\operatorname{Fix}_C(\sigma) \cong (1,1,1) \otimes \mathcal{G}_{24}$ and
- $E_C(\sigma) \leq \mathbb{F}_4^{24}$ Hermitian self-dual, minimum distance ≥ 8 .
- τ acts on $E_C(\sigma)$ by $(\epsilon_1, \epsilon_2, \dots, \epsilon_{23}, \epsilon_{24})^{\tau} = (\overline{\epsilon_2}, \overline{\epsilon_1}, \dots, \overline{\epsilon_{24}}, \overline{\epsilon_{23}})$

Fix_{*E_C(\sigma)*}(
$$\tau$$
) = { $\epsilon := (\overline{\epsilon_2}, \epsilon_2 \dots, \overline{\epsilon_{24}}, \epsilon_{24}) \in E_C(\sigma)$ }

- $\blacktriangleright \cong \pi(\operatorname{Fix}_{E_C(\sigma)}(\tau)) = \{(\epsilon_2, \dots, \epsilon_{24}) \mid \epsilon \in \operatorname{Fix}_{E_C(\sigma)}(\tau)\} \le \mathbb{F}_4^{12}$
- ► is trace Hermitian self-dual additive code, minimum distance ≥ 4.
- There are 195,520 such codes.

$$\quad \langle \operatorname{Fix}_{E_C(\sigma)}(\tau) \rangle_{\mathbb{F}_4} = E_C(\sigma).$$

• No $E_C(\sigma)$ has minimum distance ≥ 8 .

 $C = C^{\perp} \leq \mathbb{F}_2^{72}$, doubly even, extremal, so d(C) = 16Theoretical results, *p* even.

Theorem. (N. 2012)

Let $\tau \in Aut(C)$ of order 2. Then C is a free $\mathbb{F}_2\langle \tau \rangle$ -module.

- Let $R = \mathbb{F}_2 \langle \tau \rangle$ the free $\mathbb{F}_2 \langle \tau \rangle$ -module, $S = \mathbb{F}_2$ the simple one.
- Then $C = R^a \oplus S^b$ with 2a + b = 36.

$$\blacktriangleright F := \operatorname{Fix}_C(\tau) = \{ c \in C \mid c\tau = c \} \cong S^{a+b}, C(1-\tau) \cong S^a.$$

•
$$\tau = (1,2)(3,4)\dots(71,72)$$

•
$$F \cong \pi(F), \pi(c) = (c_2, c_4, c_6, \dots, c_{72}) \in \mathbb{F}_2^{36}.$$

► Fact:
$$\pi(F) = \pi(C(1-\tau))^{\perp} \supseteq D = D^{\perp} \supseteq \pi(C(1-\tau)).$$

►
$$d(F) \ge d(C) = 16$$
, so $d(D) \ge d(\pi(F)) \ge 8$.

- There are 41 such extremal self-dual codes D (Gaborit etal).
- No code D has a proper overcode with minimum distance ≥ 8 .
- This can also be seen a priori considering weight enumerators.
- So $\pi(F) = D$ and hence a + b = 18, so a = 18, b = 0.

Theorem: *C* is a free $\mathbb{F}_2\langle \tau \rangle$ -module.

Corollary. Aut(C) has no element of order 8.

 $g \in \operatorname{Aut}(C)$ of order 8. Then *C* is a free $\mathbb{F}_2\langle g^4 \rangle$ -module, hence also a free $\mathbb{F}_2\langle g \rangle$ -module of rank $\dim(C)/8 = 36/8 = 9/2$ a contradiction.

Corollary. Aut(C) has no subgroup Q_8 .

Use a theorem by J. Carlson: If M is an \mathbb{F}_2Q_8 -module such that the restriction of M to the center of Q_8 is free, then M is free.

Corollary.

 $\operatorname{Aut}(C)$ has no subgroup $U \cong C_2 \times C_4$, C_8 or C_{10} .

(needs inspection of automorphism group of the 41 possibile fixed codes)

Alt₄ = $\langle a, b, \sigma \rangle \supseteq \langle a, b \rangle = V_4$, (Borello, N. 2013) Computational results: No Alt₄ \leq Aut(*C*).

3 possibilities for D $\dim(D^{\perp}/D) = 20, 20, 22.$ $C/D < D^{\perp}/D$ maximal isotropic subspace. $\begin{array}{|c|c|c|c|c|} \textbf{D}_{\textbf{/D}}^{\textbf{L}} = \textbf{V} & V_4 \text{ acts } \dots \\ \textbf{D}_{\textbf{/D}}^{\textbf{L}} = \textbf{V} & V = Ve_0 \oplus Ve_1 \\ & \text{is an } \mathbb{F}_2 \langle \sigma \rangle \text{-module.} \\ \text{I nique possibility fc} \end{array}$ V_4 acts trivially on $D^{\perp}/D =: V$. Unique possibility for Ce_0 . $Ce_1 < Ve_1$ Hermitian maximal singular \mathbb{F}_4 -subspace. Compute all these subspaces as orbit under the unitary group of Ve_1 . No extremal code is found.

Theoretical results, p = 2.

Theorem. (N. 2012)

 $C = C^{\perp} \leq \mathbb{F}_2^{72}$ extremal, $\tau \in Aut(C)$ of order 2. Then C is a free $\mathbb{F}_2\langle \tau \rangle$ -module.

Theorem (Borello, N. 2015)

Let $m \geq 3$ be odd and $C = C^{\perp}$ an extremal doubly-even binary code of length 24m.

- ▶ If $\tau \in Aut(C)$ is of order 2 and fixed point free then *C* is a free $\mathbb{F}_2\langle \tau \rangle$ -module.
- If 8 divides | Aut(C)|, then the Sylow 2-subgroups of Aut(C) are isomorphic to C₂ × C₂ × C₂, C₂ × C₄, or D₈.

(ロ) (同) (三) (三) (三) (○) (○)

Conclusion

Search for extremal codes with automorphisms provides a nice application for classical theories in particular

Quadratic Forms:

 $C = C^{\perp}$ doubly even, then $n \in 8\mathbb{Z}$ and $Aut(C) \leq Alt_n$.

- Obtain characterisation of the permutation groups admitting a self-dual doubly-even invariant code.
- ▶ Modular Representation Theory and Invariant Theory $n = 24m, d(C) = 4m + 4, \tau \in Aut(C)$ of Type (12m, 0). If *m* is odd then *C* is a free $\mathbb{F}_2\langle \tau \rangle$ -module.

Motivation for explicit computations with a practical and detailed use of the structure of the automorphism group.

(日) (日) (日) (日) (日) (日) (日)