RWTHAACHEN

Lattices and Codes, analogies and interactions.
or
Codes, Invariants and Modular Forms, a conclusion.
Gabriele Nebe, RWTH Aachen
Bonn, 11.7.2008

Codes.

R finite ring, A finite left R-module $C \leq A^{N}$ is called a code, N its length and codewords $c=\left(c_{1}, \ldots, c_{N}\right)$ are rows.
The codepolynomial of C is

$$
p_{C}:=\sum_{c \in C} \prod_{i=1}^{N} x_{c_{i}} \in \mathbb{C}\left[x_{a} \mid a \in A\right]_{N}=p_{C}^{(1)}
$$

The genus \mathbf{m} codepolynomial of C is

$$
p_{C}^{(m)}:=\sum_{\left(c^{(1)}, \ldots, c^{(m)}\right) \in C^{m}} \prod_{v \in A^{m}} x_{v}^{a_{v}\left(c^{(1)}, \ldots, c^{(m)}\right)} \in \mathbb{C}\left[x_{v}: v \in A^{m}\right]
$$

where
$a_{v}\left(c^{(1)}, \ldots, c^{(m)}\right):=\mid\left\{j \in\{1, \ldots, N\} \mid c_{j}^{(i)}=v_{i}\right.$ for all $\left.i \in\{1, \ldots, m\}\right\} \mid$ for $v:=\left(v_{1}, \ldots, v_{m}\right) \in A^{m}$.

For $C \leq A^{N}$ and $m \in \mathbb{N}$ let
$C(m):=R^{m \times 1} \otimes C=\left\{\left(c^{(1)}, \ldots, c^{(m)}\right)^{\operatorname{Tr}} \mid c^{(1)}, \ldots, c^{(m)} \in C\right\} \leq\left(A^{m}\right)^{N}$
Then

$$
p_{C}^{(m)}=p_{C(m)} .
$$

A typical element of $C(m)$ is a matrix in $A^{m \times N}$, where the rows are codewords in C.

\[

\]

The finite Siegel Φ-operator. (B. Runge, 1995)

$$
\Phi_{m}: p_{C}^{(m)} \mapsto p_{C}^{(m-1)}
$$

is given by the variable substitution:

$$
x_{\left(v_{1}, \ldots, v_{m}\right)} \mapsto \begin{cases}x_{\left(v_{1}, \ldots, v_{m-1}\right)} & \text { if } v_{m}=0 \\ 0 & \text { else }\end{cases}
$$

$p_{C}^{(m-1)}$ is obtained from $p_{C}^{(m)}$ by counting only those matrices

$$
\begin{array}{cccccc}
c_{1}^{(1)} & c_{2}^{(1)} & \ldots & c_{j}^{(1)} & \cdots & c_{N}^{(1)} \\
c_{1}^{(2)} & c_{2}^{(2)} & \ldots & c_{j}^{(2)} & \cdots & c_{N}^{(2)} \\
\vdots & \vdots & \cdots & \vdots & \cdots & \vdots \\
c_{1}^{(m-1)} & c_{2}^{(m-1)} & \ldots & c_{j}^{(m-1)} & \ldots & c_{N}^{(m-1)} \\
0 & 0 & \cdots & 0 & \cdots & 0 \\
& & & \uparrow & & \\
& & & v \in A^{m} & &
\end{array}
$$

in which the last row is zero.

Lattices and Theta Series.
$L \leq\left(\mathbb{R}^{N},(),\right)$ a lattice in Euclidean N-space.
The theta series of L is

$$
\vartheta_{L}(z)=\sum_{\ell \in L} q^{(\ell, \ell)}
$$

where $q=\exp (\pi i z)$.
The genus \mathbf{m} Siegel theta series of L is

$$
\vartheta_{L}^{(m)}(Z)=\sum_{\underline{\ell} \in L^{m}} \exp (\pi i \operatorname{Tr}(Z(\underline{\ell}, \underline{\ell}))) .
$$

The Siegel Φ-operator maps $\vartheta_{L}^{(m)}$ to $\vartheta_{L}^{(m-1)}$.

Codes and Lattices: Construction A.

Let p be a prime and $\left(b_{1}, \ldots, b_{N}\right)$ be a basis of \mathbb{R}^{N} such that

$$
\left(b_{i}, b_{j}\right)= \begin{cases}0 & \text { if } i \neq j \\ 1 / p & \text { if } i=j\end{cases}
$$

Let $C \leq \mathbb{F}_{p}^{N}=\mathbb{Z}^{N} / p \mathbb{Z}^{N}$ be a code. Then the codelattice L_{C} is

$$
L_{C}:=\left\{\sum_{i=1}^{N} a_{i} b_{i} \mid\left(a_{1} \quad(\bmod p), \ldots, a_{N} \quad(\bmod p)\right) \in C\right\}
$$

Remark.

(a) $L_{C}^{*}=L_{C^{\perp}}$, so L_{C} is unimodular, if C is self-dual.
(b) L_{C} is even unimodular, if $p=2$ and C is a Type II code.
(c) $\vartheta_{L_{C}}=p_{C}\left(\vartheta_{0}, \ldots, \vartheta_{p-1}\right)$ where

$$
\vartheta_{a}=\vartheta_{(a+p \mathbb{Z}) b_{1}}=\sum_{n=-\infty}^{\infty} q^{(a+p n)^{2} / p}
$$

similarly for higher genus theta series and codepolynomials.

Theta series are Modular Forms.

If $L=L^{*}$ and $(\ell, \ell) \in 2 \mathbb{Z}$ for all $\ell \in L$, even unimodular lattice, then

$$
\vartheta_{L}^{(m)}(Z)=\sum_{\underline{\ell} \in L^{m}} \exp (\pi i \operatorname{Tr}(Z(\underline{\ell}, \underline{\ell}))) \in \mathcal{M}_{N / 2}\left(\operatorname{Sp}_{2 m}(\mathbb{Z})\right)
$$

where

$$
\begin{gathered}
\mathrm{Sp}_{2 m}(\mathbb{Z})=\left\langle\left(\begin{array}{cc}
A & 0 \\
0 & A^{-t r}
\end{array}\right),\left(\begin{array}{cc}
I_{m} & B \\
0 & I_{m}
\end{array}\right),\left(\begin{array}{cc}
0 & -I_{m} \\
I_{m} & 0
\end{array}\right)\right. \\
\left|A \in \mathrm{GL}_{m}(\mathbb{Z}), B=B^{t r} \in \mathbb{Z}^{m \times m}\right\rangle
\end{gathered}
$$

Codepolynomials are Invariants.

R finite ring, A finite left R-module, $\beta: A \times A \rightarrow \mathbb{Q} / \mathbb{Z}$ regular. For $C \leq A^{N}$ the dual code is

$$
C^{\perp}:=\left\{v \in A^{N} \mid \sum_{i=1}^{N} \beta\left(v_{i}, c_{i}\right)=0 \text { for all } c \in C\right\} .
$$

Let $M:=\left\{\beta^{r}:(x, y) \mapsto \beta(x, r y) \mid r \in R\right\}$ and assume that $M \cong R_{R}$ and is closed under interchanging arguments.
Additional quadratic conditions are given by a subgroup $Q \leq(\mathbb{Q} / \mathbb{Z})^{A}$, such that:

- For all $\varphi \in Q, \lambda(\varphi):(x, y) \mapsto \varphi(x+y)-\varphi(x)-\varphi(y) \in M$.
- For all $r \in R, \varphi \in Q, \varphi[r]: x \mapsto \varphi(r x) \in Q$.
- For all $r \in R,\left\{\left\{\beta^{r}\right\}\right\}: x \mapsto \beta(x, r x) \in Q$.

Then (R, A, β, Q) is called a Type.
C is called a Type T code, if
a) $C \leq A^{N}$ is an R-module.
b) $\sum_{i=1}^{N} \varphi\left(c_{i}\right)=0$ for all $\varphi \in Q, c \in C$ (isotropic).
c) $C=C^{\perp}$ (self-dual)

Examples.

Type I codes (2_{I})

$$
R=\mathbb{F}_{2}=A, \beta(x, y)=\frac{1}{2} x y, Q=\left\{\varphi: x \mapsto \frac{1}{2} x^{2}=\beta(x, x), 0\right\}
$$

Type II code (2 $2_{\text {II }}$).

$$
R=\mathbb{F}_{2}=A, \beta(x, y)=\frac{1}{2} x y, Q=\left\{\phi: x \mapsto \frac{1}{4} x^{2}, 2 \phi=\varphi, 3 \phi, 0\right\}
$$

Type IV codes (4^{H}).

$$
R=\mathbb{F}_{4}=A, \beta(x, y)=\frac{1}{2} \operatorname{trace}(x \bar{y}), Q=\left\{\varphi: x \mapsto \frac{1}{2} x \bar{x}, 0\right\}
$$

where $\bar{x}=x^{2}$.
Additive codes over $\mathbb{F}_{4} \cdot\left(4^{H+}\right)$

$$
R=\mathbb{F}_{2}, A=\mathbb{F}_{4}, \beta(x, y)=\frac{1}{2} \operatorname{trace}(x \bar{y}), Q=\left\{\varphi: x \mapsto \frac{1}{2} x \bar{x}, 0\right\}
$$

Clifford-Weil groups.

Let $T:=(R, A, \beta, Q)$ be a Type. Then the associated Clifford-Weil group $\mathcal{C}(T)$ is a subgroup of $\mathrm{GL}_{|A|}(\mathbb{C})$ $\mathcal{C}(T)=\left\langle m_{r}, d_{\varphi}, h_{e, u_{e}, v_{e}}\right| r \in R^{*}, \varphi \in Q, e=u_{e} v_{e} \in R$ symmetric idempotent \rangle Let $\left(x_{a} \mid a \in A\right)$ denote a basis of $\mathbb{C}^{|A|}$. Then

$$
\begin{gathered}
m_{r}: x_{a} \mapsto x_{r a}, \quad d_{\varphi}: x_{a} \mapsto \exp (2 \pi i \varphi(a)) x_{a} \\
h_{e, u_{e}, v_{e}}: x_{a} \mapsto|e A|^{-1 / 2} \sum_{b \in e A} \exp \left(2 \pi i \beta\left(b, v_{e} a\right)\right) x_{b+(1-e) a}
\end{gathered}
$$

Similarly the genus m Clifford-Weil group

$$
\begin{aligned}
\mathcal{C}_{m}(T)=\left\langle m_{r}, d_{\varphi}, h_{e, u_{e}, v_{e}}\right| r & \left.\in \mathrm{GL}_{m}(R), \varphi \in Q^{(m)}, e=u_{e} v_{e} \in R^{m \times m} \text { sym. id. }\right\rangle \\
& \leq \mathrm{GL}_{|A|^{m}}(\mathbb{C})
\end{aligned}
$$

$$
\begin{gathered}
m_{r}: x_{a} \mapsto x_{r a}, \quad d_{\varphi}: x_{a} \mapsto \exp (2 \pi i \varphi(a)) x_{a} \\
h_{e, u_{e}, v_{e}}: x_{a} \mapsto|e A|^{-1 / 2} \sum_{b \in e A} \exp \left(2 \pi i \beta\left(b, v_{e} a\right)\right) x_{b+(1-e) a}
\end{gathered}
$$

Theorem.

Let $C \leq A^{N}$ be a self-dual isotropic code of Type T. Then $p_{C}^{(m)}$ is invariant under $\mathcal{C}_{m}(T)$.

Proof.

Invariance under $m_{r}\left(r \in \mathrm{GL}_{m}(R)\right)$ because C is a code.
Invariance under $d_{\varphi}\left(\varphi \in Q^{(m)}\right)$ because C is isotropic.
Invariance under $h_{e, u_{e}, v_{e}}$ because C is self dual.

The main theorem.(N, Rains, Sloane (1999-2006))
If R is a direct product of matrix rings over chain rings, then

$$
\left.\operatorname{Inv}\left(\mathcal{C}_{m}(T)\right)=\left\langle p_{C}^{(m)}\right| C \text { of Type } T\right\rangle .
$$

Example: \mathcal{C}_{2} (II).

$$
\begin{aligned}
& R=\mathbb{F}_{2}^{2 \times 2}, R^{*}=\mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)=\left\langle a:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), b:=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\right\rangle \\
& A=\mathbb{F}_{2}^{2}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{1}\right\}, \text { symmetric idempotent } e=\operatorname{diag}(1,0) \\
& \mathcal{C}_{2}(\mathrm{II})=\left\langle m_{a}=\left(\begin{array}{l}
1000 \\
0010 \\
0100 \\
0001
\end{array}\right), m_{b}=\left(\begin{array}{l}
1000 \\
0001 \\
0100 \\
0010
\end{array}\right),\right. \\
& \left.h_{e, e, e}=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right), d_{\phi e}=\operatorname{diag}(1, i, 1, i)\right\rangle \text {. }
\end{aligned}
$$

\mathcal{C}_{2} (II) has order 92160 and Molien series

$$
\frac{1+t^{32}}{\left(1-t^{8}\right)\left(1-t^{24}\right)^{2}\left(1-t^{40}\right)}
$$

where the generators correspond to the genus 2 codepolynomials of the codes:

$$
e_{8}, g_{24}, d_{24}^{+}, d_{40}^{+}, \text {and } d_{32}^{+}
$$

\mathcal{C}_{2} (II) has a reflection subgroup of index 2 , No. 31 on the ShephardTodd list.

Higher genus Clifford-Weil groups for the classical Types of codes over finite fields.

$$
\mathcal{C}_{m}(T)=S \cdot(\operatorname{ker}(\lambda) \times \operatorname{ker}(\lambda)) \cdot \mathcal{G}_{m}(T)
$$

$\lambda(\varphi):(x, y) \mapsto \varphi(x+y)-\varphi(x)-\varphi(y)$

R	J	ϵ	$\mathcal{G}_{m}(T)$
$\mathbb{F}_{q} \oplus \mathbb{F}_{q}$	$(r, s)^{J}=(s, r)$	1	$\mathrm{GL}_{2 m}\left(\mathbb{F}_{q}\right)$
$\mathbb{F}_{q^{2}}$	$r^{J}=r^{q}$	1	$U_{2 m}\left(\mathbb{F}_{q^{2}}\right)$
\mathbb{F}_{q}, q odd	$r^{J}=r$	1	$\mathrm{Sp}_{2 m}\left(\mathbb{F}_{q}\right)$
\mathbb{F}_{q}, q odd	$r^{J}=r$	-1	$O_{2 m}^{+}\left(\mathbb{F}_{q}\right)$
\mathbb{F}_{q}, q even	doubly even		$\mathrm{Sp}_{2 m}\left(\mathbb{F}_{q}\right)$
$\mathbb{F}_{q, q}$, even	singly even	$O_{2 m}^{+}\left(\mathbb{F}_{q}\right)$	

Hecke operators for codes.

Motivation.

Determine linear relations between $p_{C}^{(m)}$ for $C \in M_{N}(T)=\left\{C=C^{\perp} \leq A^{N} \mid C\right.$ isotropic $\}$.
$M_{16}(\mathrm{II})=\left[e_{8} \perp e_{8}\right] \cup\left[d_{16}^{+}\right]$and these two codes have the same genus 1 and 2 codepolynomials, but $p^{(3)}\left(e_{8} \perp e_{8}\right)$ and $p^{(3)}\left(d_{16}^{+}\right)$ are linearly independent.
$h\left(M_{24}(\mathrm{II})\right)=9$ and only the genus 6 codepolynomials are linearly independent, there is one relation for the genus 5 codepolynomials.
$h\left(M_{32}(\right.$ II $\left.)\right)=85$ and here the genus 10 codepolynomials are linearly independent, whereas there is a unique relation for the genus 9 codepolynomials.

Three different approaches:

1) Determine all the codes and their codepolynomials.

If $\operatorname{dim}(C)=n=N / 2$ there are $\prod_{i=0}^{d-1}\left(2^{n}-2^{i}\right) /\left(2^{d}-2^{i}\right)$ subspaces of dimension d in C.
$N=32, d=10$ yields more than 10^{18} subspaces.
2) Use Molien's theorem:
$\operatorname{Inv}_{N}\left(\mathcal{C}_{m}(\mathrm{II})\right)=\left\langle p_{C}^{(m)} \mid C \in M_{N}(\mathrm{II})\right\rangle$ and if $a_{N}:=\operatorname{dim}\left(\operatorname{Inv}_{N}\left(\mathcal{C}_{m}(\right.\right.$ II $\left.\left.)\right)\right)$ then

$$
\sum_{N=0}^{\infty} a_{N} t^{N}=\frac{1}{\left|\mathcal{C}_{m}(\mathrm{II})\right|} \sum_{g \in \mathcal{C}_{m}(\mathrm{II})}(\operatorname{det}(1-t g))^{-1}
$$

Problem: $\mathcal{C}_{10}(\mathrm{II}) \leq \mathrm{GL}_{1024}(\mathbb{C})$ has order $>10^{69}$.
3) Use Hecke operators.

Fix a Type $T=\left(\mathbb{F}_{q}, \mathbb{F}_{q}, \beta, Q\right)$ of self-dual codes over a finite field with q elements.

$$
M_{N}(T)=\left\{C=C^{\perp} \leq \mathbb{F}_{q}^{N} \mid C \text { isotropic }\right\}=\left[C_{1}\right] \dot{\cup} \ldots \dot{\cup}\left[C_{h}\right]
$$

where [C] denotes the permutation equivalence class of the code C. Then $n:=\frac{N}{2}=\operatorname{dim}(C)$ for all $C \in M_{N}(T)$.
$C, D \in M_{N}(T)$ are called neighbours, if $\operatorname{dim}(C)-\operatorname{dim}(C \cap D)=1$, $C \sim D$.

$$
\begin{gathered}
\mathcal{V}=\mathbb{C}\left[C_{1}\right] \oplus \ldots \oplus \mathbb{C}\left[C_{h}\right] \cong \mathbb{C}^{h} \\
K_{N}(T) \in \operatorname{End}(\mathcal{V}), K_{N}(T):[C] \mapsto \sum_{D \in M_{N}(T), D \sim C}[D] .
\end{gathered}
$$

Kneser-Hecke operator.
(adjacency matrix of neighbouring graph)

Example. $M_{16}(\mathrm{II})=\left[e_{8} \perp e_{8}\right] \cup\left[d_{16}^{+}\right]$

$$
K_{16}(\mathrm{II})=\left(\begin{array}{ll}
78 & 49 \\
70 & 57
\end{array}\right)
$$

\mathcal{V} has a Hermitian positive definite inner product defined by

$$
\left\langle\left[C_{i}\right],\left[C_{j}\right]\right\rangle:=\left|\operatorname{Aut}\left(C_{i}\right)\right| \delta_{i j} .
$$

Theorem. (N. 2006)
The Kneser-Hecke operator K is a self-adjoint linear operator.

$$
\langle v, K w\rangle=\langle K v, w\rangle \text { for all } v, w \in \mathcal{V}
$$

Example. $\frac{7}{10}=\frac{\left|\operatorname{Aut}\left(e_{8} \perp e_{8}\right)\right|}{\left|\operatorname{Aut}\left(d_{16}^{+}\right)\right|}=\frac{49}{70}$ hence

$$
\operatorname{diag}(7,10) K_{16}(\mathrm{II})^{\operatorname{Tr}}=K_{16}(\mathrm{II}) \operatorname{diag}(7,10) .
$$

$$
p^{(m)}: \mathcal{V} \rightarrow \mathbb{C}[X], \sum_{i=1}^{h} a_{i}\left[C_{i}\right] \mapsto \sum_{i=1}^{h} a_{i} p_{C_{i}}^{(m)}
$$

is a linear mapping with kernel

$$
\mathcal{V}_{m}:=\operatorname{ker}\left(p^{(m)}\right)
$$

Then

$$
\mathcal{V}=: \mathcal{V}_{-1} \geq \mathcal{V}_{0} \geq \mathcal{V}_{1} \geq \ldots \geq \mathcal{V}_{n}=\{0\}
$$

is a filtration of \mathcal{V} yielding the orthogonal decomposition

$$
\mathcal{V}=\bigoplus_{m=0}^{n} \mathcal{Y}_{m} \text { where } \mathcal{Y}_{m}=\mathcal{V}_{m-1} \cap \mathcal{V}_{m}^{\perp}
$$

$$
\mathcal{V}_{0}=\left\{\sum_{i=1}^{h} a_{i}\left[C_{i}\right] \mid \sum_{i=1}^{h} a_{i}=0\right\}
$$

and

$$
\mathcal{V}_{0}^{\perp}=\mathcal{Y}_{0}=\left\langle\sum_{i=1}^{h} \frac{1}{\left|\operatorname{Aut}\left(C_{i}\right)\right|}\left[C_{i}\right]\right\rangle
$$

Theorem. (N. 2006)
The space $\mathcal{Y}_{m}=\mathcal{Y}_{m}(N)$ is the $K_{N}(T)$-eigenspace to the eigenvalue $\nu_{N}^{(m)}(T)$ with $\nu_{N}^{(m)}(T)>\nu_{N}^{(m+1)}(T)$ for all m.

Type	$\nu_{N}^{(m)}(T)$
q_{I}^{E}	$\left(q^{n-m}-q-q^{m}+1\right) /(q-1)$
q_{II}^{E}	$\left(q^{n-m-1}-q^{m}\right) /(q-1)$
q^{E}	$\left(q^{n-m}-q^{m}\right) /(q-1)$
q_{1}^{E}	$\left(q^{n-m-1}-q^{m}\right) /(q-1)$
q^{H}	$\left(q^{n-m+1 / 2}-q^{m}-q^{1 / 2}+1\right) /(q-1)$
q_{1}^{H}	$\left(q^{n-m-1 / 2}-q^{m}-q^{1 / 2}+1\right) /(q-1)$

Corollary. The neighbouring graph is connected. Proof. The maximal eigenvalue ν_{0} of the adjacency matrix is simple with eigenspace \mathcal{Y}_{0}.

Example: $M_{16}(\mathrm{II})=\left[e_{8} \perp e_{8}\right] \cup\left[d_{16}^{+}\right]$
$\left(2^{8-m-1}-2^{m}: m=0,1,2,3\right)=(127,62,28,8)$

$$
K_{16}(\mathrm{II})=\left(\begin{array}{ll}
78 & 49 \\
70 & 57
\end{array}\right)
$$

has eigenvalues 127 and 8 with eigenvectors $(7,10)$ and $(1,-1)$. Hence

$$
\begin{gathered}
\mathcal{Y}_{0}=\left\langle 7\left[e_{8} \perp e_{8}\right]+10\left[d_{16}^{+}\right]\right\rangle \\
\mathcal{Y}_{1}=\mathcal{Y}_{2}=0 \\
\mathcal{Y}_{3}=\left\langle\left[e_{8} \perp e_{8}\right]-\left[d_{16}^{+}\right]\right\rangle
\end{gathered}
$$

Even unimodular lattices.

$$
\mathcal{L}_{N}=\left\{L=L^{*} \leq \mathbb{R}^{N} \mid L \text { even }\right\}=\left[L_{1}\right] \dot{\cup} \ldots \dot{\cup}\left[L_{h}\right]
$$

where [L] denotes the isometry class of the lattice L. $L, M \in \mathcal{L}_{N}$ are called \mathbf{p}-neighbours, if $[L: L \cap M]=p$, notation: $L \sim M$.

$$
\begin{gathered}
\mathcal{V}=\mathbb{C}\left[L_{1}\right] \oplus \ldots \oplus \mathbb{C}\left[L_{h}\right] \cong \mathbb{C}^{h} \\
K_{N / 2}(p) \in \operatorname{End}(\mathcal{V}), K_{N / 2}(p):[L] \mapsto \sum_{M \in \mathcal{\mathcal { L } _ { N } , M \sim L}}[M] .
\end{gathered}
$$

Kneser-Hecke operator.
(adjacency matrix of neighbouring graph)

Example. $\mathcal{L}_{16}=\left[E_{8} \perp E_{8}\right] \cup\left[D_{16}^{+}\right]$

$$
K_{8}(2)=\left(\begin{array}{ll}
14670 & 18225 \\
12870 & 20025
\end{array}\right)
$$

\mathcal{V} has a Hermitian positive definite inner product defined by

$$
\left\langle\left[L_{i}\right],\left[L_{j}\right]\right\rangle:=\left|\operatorname{Aut}\left(L_{i}\right)\right| \delta_{i j} .
$$

Theorem. (Venkov, N. 2001)
The Kneser-Hecke operator K is a self-adjoint linear operator.

$$
\langle v, K w\rangle=\langle K v, w\rangle \text { for all } v, w \in \mathcal{V}
$$

Example. $\frac{405}{286}=\frac{\left|\operatorname{Aut}\left(E_{8} \perp E_{8}\right)\right|}{\left|\operatorname{Aut}\left(D_{16}^{+}\right)\right|}=\frac{18225}{12870}$ hence $\operatorname{diag}(405,286) K_{8}(2)^{\operatorname{Tr}}=K_{8}(2) \operatorname{diag}(405,286)$.

$$
\vartheta^{(m)}: \mathcal{V} \rightarrow \mathcal{M}_{N / 2}\left(\operatorname{Sp}_{2 m}(\mathbb{Z})\right), \sum_{i=1}^{h} a_{i}\left[L_{i}\right] \mapsto \sum_{i=1}^{h} a_{i} \vartheta_{L_{i}}^{(m)}
$$

is a linear mapping with kernel

$$
\mathcal{V}_{m}:=\operatorname{ker}\left(\vartheta^{(m)}\right)
$$

Then

$$
\mathcal{V}=: \mathcal{V}_{-1} \geq \mathcal{V}_{0} \geq \mathcal{V}_{1} \geq \ldots \geq \mathcal{V}_{N}=\{0\}
$$

is a filtration of \mathcal{V} yielding the orthogonal decomposition

$$
\begin{gathered}
\star_{L} \quad \mathcal{V}=\bigoplus_{m=0}^{N} \mathcal{Y}_{m} \text { where } \mathcal{Y}_{m}=\mathcal{V}_{m-1} \cap \mathcal{V}_{m}^{\perp} \\
\mathcal{V}_{0}=\left\{\sum_{i=1}^{h} a_{i}\left[L_{i}\right] \mid \sum a_{i}=0\right\} \text { and } \mathcal{V}_{0}^{\perp}=\mathcal{Y}_{0}=\left\langle\sum_{i=1}^{h} \frac{1}{\left|\operatorname{Aut}\left(L_{i}\right)\right|}\left[L_{i}\right]\right\rangle .
\end{gathered}
$$

Theorem. \star_{L} is invariant under $K_{N / 2}(p)$
(but the eigenspace decomposition is usually much finer and I do not know how to predict eigenvalues).

Example: $\mathcal{L}_{16}=\left[E_{8} \perp E_{8}\right] \cup\left[D_{16}^{+}\right]$

$$
K_{8}(2)=\left(\begin{array}{ll}
14670 & 18225 \\
12870 & 20025
\end{array}\right)
$$

has eigenvalues 32895 and 1800 with eigenvectors $(286,405)$ and $(1,-1)$.
Here $\vartheta^{(m)}=p^{(m)}\left(\vartheta_{a}: a \in \mathbb{F}_{2}^{m}\right)$ and all lattices come from codes.

$$
\begin{gathered}
\mathcal{Y}_{0}=\left\langle 286\left[E_{8} \perp E_{8}\right]+405\left[D_{16}^{+}\right]\right\rangle \\
\mathcal{Y}_{1}=\mathcal{Y}_{2}=\mathcal{Y}_{3}=0 \\
\mathcal{Y}_{4}=\left\langle\left[E_{8} \perp E_{8}\right]-\left[D_{16}^{+}\right]\right\rangle .
\end{gathered}
$$

Dimension 24: The 24 Niemeier lattices. (N, Venkov)

Here $h=24$ and only 9 of the lattices are codelattices. With B. Venkov we calculated $K_{12}(2)$ and its eigenspace decomposition.

j	0	1	2	3	4	5	6	7	8	9	10	11	12
$\operatorname{dim}\left(\mathcal{Y}_{j}\right)$	1	1	1	1	2	2	3	3^{*}	4^{*}	2^{*}	2^{*}	1	1

* means that the dimension is only conjectured.

Hecke operators as double cosets. (Lattices.)

$$
t_{m}^{(m-1)}\left(p^{2}\right):=\operatorname{diag}(1, \underbrace{p, \ldots, p}_{m-1}, p^{2}, \underbrace{p, \ldots, p}_{m-1}) \in \mathrm{GSp}_{2 m}(\mathbb{Z})
$$

Then the double coset

$$
T_{m}^{(m-1)}\left(p^{2}\right):=\operatorname{Sp}_{2 m}(\mathbb{Z}) t_{m}^{(m-1)}\left(p^{2}\right) \operatorname{Sp}_{2 m}(\mathbb{Z})=\dot{\cup}_{j=1}^{d} \operatorname{Sp}_{2 m}(\mathbb{Z}) \gamma_{j}
$$

acts on the space of modular forms $\mathcal{M}_{k}\left(\operatorname{Sp}_{2 m}(\mathbb{Z})\right)$ and also on the subspace spanned by theta series by

$$
\delta_{k}\left(T_{m}^{(m-1)}\left(p^{2}\right)\right): f \mapsto \sum_{j=1}^{d} f_{k} \gamma_{j}
$$

The Kneser-Hecke operator $K_{k}(p)$ also acts on this space via $\Delta_{m}\left(K_{k}(p)\right)$.

Theorem. (Yoshida 1985) There are explicit constants $c=c(m, k, p), d=d(m, k, p)$ such that

$$
\delta_{k}\left(T_{m}^{(m-1)}\left(p^{2}\right)\right)=c \mathrm{id}+d \Delta_{m}\left(K_{k}(p)\right)
$$

Hecke operators as double cosets. (Codes.)
Let (R, A, β, Q) be a Type.
The associated extraspecial group

$$
\begin{array}{ll}
\mathcal{E}_{m}:=\left(A^{m} \times A^{m}\right) \bowtie \mathbb{Q} / \mathbb{Z}, & \text { with multiplication } \\
(a, b, q)\left(a^{\prime}, b^{\prime}, q^{\prime}\right)= & \left(a+a^{\prime}, b+b^{\prime}, q+q^{\prime}+\beta\left(b^{\prime}, a\right)\right)
\end{array}
$$

acts irreducibly on $\mathbb{C}\left[A^{m}\right]=\left\langle x_{v}: v \in A^{m}\right\rangle_{\mathbb{C}}$ via

$$
(a, b, q) x_{v}:=\exp (2 \pi i(q+\beta(v, a))) x_{v+b}
$$

Remark. The associated Clifford-Weil group $\mathcal{C}_{m} \leq \mathrm{GL}\left(\mathbb{C}\left[A^{m}\right]\right)$ normalizes \mathcal{E}_{m}.
$\mathcal{U}_{j}:=\left\{(a, 0,0) \mid a=\left(0^{m-j}, a_{1}, \ldots, a_{j}\right) \in A^{m}\right\} \leq \mathcal{E}_{m}$ and $\mathcal{T}_{j}=\mathcal{C}_{m} p_{\mathcal{U}_{j}} \mathcal{C}_{m}$ where for $U \leq \mathcal{E}_{m}$ the endomorphism

$$
p_{U}:=\frac{1}{|U|} \sum_{u \in U} u
$$

denotes the orthogonal projection onto the fixed space of U. Note that $p_{U}=0$ if $U \cap Z \neq\{(0,0,0)\}$ where $Z=\{(0,0, q) \mid q \in \mathbb{Q} / \mathbb{Z}\}=Z\left(\mathcal{E}_{m}\right)$.

Theorem. (N. 2006) If $A=R=\mathbb{F}_{q}$ is a finite field, then

$$
\mathcal{H}\left(\mathcal{C}_{m}\right)=\left\langle\mathcal{T}_{j} \mid 0 \leq j \leq m\right\rangle_{\mathbb{C}-\text { algebra }}=\mathbb{C}\left[\mathcal{T}_{1}\right]
$$

is a commutative subalgebra of $\operatorname{End}\left(\operatorname{Inv}\left(\mathcal{C}_{m}\right)\right)$ consisting of selfadjoint linear operators acting on the subspace of degree N invariants via, say, δ_{N}.
Then there are explicit constants c, d
(depending on q, the Type T, the genus m and the length N) such that

$$
\delta_{N}\left(\mathcal{T}_{1}\right)=c \mathrm{id}+d \Delta_{m}\left(K_{N}(T)\right)
$$

