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Codes.

R finite ring, A finite left R-module C < A% is called a code,
N its length and codewords ¢ = (¢1,...,¢c) are rows.

The codepolynomial of C' is

N

1

pc = [ #¢; € Clza | a € Aly = p&
ceC1=1

The genus m codepolynomial of C' is

(1) (m)
pgm) e Z H CBSU(C yereyC ) c C[QUU = Am] |
(D). cm)HecmveA™

where
av(c(l),...,c(m)) ={j€{1,...,N}| c§i) =wv; forallie {1,...,m}}|

for v := (vq,...,vm) € A™,



For C < AN and m € N let
C(m) := R"™*1gC = {(V),...,mHTr | ) m) ey <amN
T hen

m) _

pé’ — Pc(m)-

A typical element of C(m) is a matrix in A™*N  where the rows
are codewords in C.
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The finite Siegel ®-operator. (B. Runge, 1995)

P, pgn) . pgm—l)

IS given by the variable substitution:

xr
T (o1, om) { o)

pgm—l) is obtained from pgm) by counting only those matrices

T R B
I R R
cgm_l) cgm_l) c§m_1) cgvm_l)
0 0 0 0
T
veEeA™

in which the last row is zero.



Lattices and Theta Series.
L < (R¥Y,(,)) a lattice in Euclidean N-space.

The theta series of L is

9r(z) = 3 ¢d
{eL

where g = exp(miz).

The genus m Siegel theta series of L is

K2y = 3 exp(ri Tr(Z(£,0))).
fe L™

The Siegel ®-operator maps ﬁ(Lm) to ﬁ(Lm_l).



Codes and Lattices: Construction A.

Let p be a prime and (by,...,by) be a basis of RY such that

_Jo  ifi#Ej
(b3, b;) —{ 1/p ifi=j

Let C <FY =7 /pZ" be a code. Then the codelattice L is

N
LC = {Z a;b; | (al (mOd p)7 ceey AN (mOd p)) S C}
1=1

Remark.

(@) Ly = L1, so L is unimodular, if C is self-dual.

(b) Ly is even unimodular, if p=2 and C is a Type II code.
(¢) I, =pc(o,...,9p_1) where

S glatem?/p

nN——oo

Va = ﬁ(a-l-pz)bl —

similarly for higher genus theta series and codepolynomials.



T heta series are Modular Forms.

If L =L* and (¢{,¢) € 2Z for all £ € L, even unimodular lattice,
then

9(2) = 3 exp(mi Tr(Z(£,0)) € My 2(SPom(Z))
Le L™

where
A 0 I B 0O —-I
Sp?m(z):<<o A—t"">’<6nlm>’<1m om>

| A € GLin(Z), B = B € 7m*™),



Codepolynomials are Invariants.

R finite ring, A finite left R-module, 8: A x A — Q/Z regular.
For C < AN the dual code is

N
Ct = {v € AN | Y B(v,¢;) =0 for all c € C}.

i=1

Let M :={6": (z,y) — B(z,ry) | r € R} and assume that M = Rp

and is closed under interchanging arguments.

Additional quadratic conditions are given by a subgroup

Q < (Q/Z)4, such that:

® Forall p€Q, Mo) : (z,y) = oz +y) —p(z) —p(y) € M.

® Forallre R, p€ @, o[r] :x— o(rzx) € Q.

® Forallre R, {B8"} :x— B(x,rx) € Q.

Then (R, A, (3,Q) is called a Type.

C' is called a Type T code, if

a) C < AN is an R-module.

b) SN 1 ¢(e;) =0 for all p € Q, c € C (isotropic).
c) C = CL (self-dual)



Examples.
Type I codes (2;)

1 1
R:F2:A7 ﬁ(w7y):§$y7 Q={goa:|—>§a:2=ﬁ(a:,x),0}
Type II code (2r1).

1 1
R:FQZAa 6(w7y) :Exya Q:{¢$HZ$2>2¢:¢73¢70}

Type IV codes (41).

1 1
R=TF4=A, flz,y) = trace(sy), Q = {p: v+ 7,0}

where = = z2.
Additive codes over F,. (411)

1 1
R = IFQ? A= IF47 ,B(CE,y) — Etrace(wg)v Q= {90 L T waa O}



Clifford-Weil groups.
Let T:= (R, A,3,Q) be a Type. Then the
associated Clifford-Weil group C(T) is a subgroup of GL|A|(<C)

C(T) = (mr,dp, heuewv. |7 € R*,p € Q,e = ueve € R symmetric idempotent )
Let (zq4la € A) denote a basis of Cl4l. Then

My . Tq Tra, dgp . Lg eXp(Qﬂ"LgO(CL))QUa

heguesve * Ta = €Al T2 3" exp(2miB(b, vea)) Tyt (1-eya
bceA

Similarly the genus m Clifford-Weil group

Cm(T) = <mr,dgp, he,ueﬂ)e | T C GLm(R),SO - Q(m), € = UeVe € Rme sym. id. >

< GL4m(C)



My © Taq > Tra, dyp : Ta — eXP(2mip(a))zq

heueve : Ta = |eA| T2 Y exp(2miB(b, vea)) Ty (1-¢)a
bceA

Theorem.

Let C < AN be a self-dual isotropic code of Type T. Then pg”)
is invariant under Cp, (7).

Proof.

Invariance under m, (r € GL,,(R)) because C is a code.
Invariance under dy (¢ € Q(m)) because C is isotropic.
Invariance under he y,. v, DeCause C is self dual.

The main theorem.(N, Rains, Sloane (1999-2006))
If R is a direct product of matrix rings over chain rings, then

Inv(Cin(T)) = (pém) | C' of Type T).



Example: C,(II).

_ m2X2 ok _, . ({01 _ (0 1
R =ctmm == (0 3). 0= (1)

A= IF% = {(8) : (é) : (2) : G)},symmetric idempotent e = diag(1,0)

1000 1000
0010 0001
Co(D) = (ma=|4100|> ™ = | 0100 |-
0001 0010
1100
. |1-100

he,e,e:ﬁ 0011 |’ d¢€:d|ag(1,z,1,z)>.

001-1



C>(II) has order 92160 and Molien series

14 32
(1 _ t8)(1 _ t24)2(1 _ t40)

where the generators correspond to the genus 2 codepolynomials
of the codes:

e, 924, d34, diy, and d,

C>(II) has a reflection subgroup of index 2, No. 31 on the Shephard-
Todd list.



Higher genus Clifford-Weil groups for the classical Types of
codes over finite fields.

Con(T) = S.(ker()\) x ker(A)).Gm(T)

AMp)  (z,y) — ol +y) — p(z) — p(y)

R J e | Gm(T)
F, ¢ Fy (r,s)) = (s,7) | 1 | GLoy,(Fy)
F. r/ =i 1 | Ugp(F 2)
Fy, g odd rd =r 1 | Spoy,,(Fy)
Fy, ¢ odd rd =r —1 OéI_m(Fq)
Fy, g even | doubly even Spom (Fq)
Fq, q even | singly even O;‘m(Fq)




Hecke operators for codes.

Motivation.
Determine linear relations between pg”’) for
C e Mn(T) ={C =C+ < AN | C isotropic }.

Mig(Il) = [eg L eg] U [df'6] and these two codes have the same
genus 1 and 2 codepolynomials, but p(3)(eg 1 eg) and p(3) (dfy)
are linearly independent.

h(M»>4(11)) = 9 and only the genus 6 codepolynomials are linearly
independent, there is one relation for the genus 5 codepolynomi-
als.

h(M3>(II)) = 85 and here the genus 10 codepolynomials are lin-
early independent, whereas there is a unique relation for the genus
O codepolynomials.



Three different approaches:

1) Determine all the codes and their codepolynomials.

If dim(C) = n = N/2 there are [[%Z5(2" — 2%) /(24 — 2%) subspaces
of dimension d in C.

N = 32,d = 10 yields more than 1018 subspaces.

2) Use Molien’s theorem:

IV (Cm(ID) = (b | € € My (ID)

and if ay := dim(Invy(Cn(I1))) then
S antN = — S (det(1 - tg))!
N=0 [Crn (ID) g€Cm ()

Problem: C1p(II) < GL1g24(C) has order > 10°9.

3) Use Hecke operators.



Fix a Type T = (Fy, Fq, 3,Q) of self-dual codes over a finite field
with g elements.

Mn(T) ={C =C+< IFéV | C isotropic } = [C1] U ... U [C}]

where [C] denotes the permutation equivalence class of the
code C. Then n:= % =dim(C) for all C € My(T).

C,D € Mpn(T) are called neighbours, if dim(C)—-dim(CNnD) =1,
C ~ D.

YV =C[C1]®...®C[C),] = Ch

Kn(T) € End(V), Kn(T) : [C] — > [D].
DeMy(T),D~C
Kneser-Hecke operator.
(adjacency matrix of neighbouring graph)



Example. Mig(II) = [eg L eg] U [d’i'_es]

49

mQ/\\

70

78 49
K1e(ID) = ( 70 57

57



VY has a Hermitian positive definite inner product defined by

(1G], [C5]) == [ Aut(C})]6;5.

Theorem. (N. 2006)
The Kneser-Hecke operator K is a self-adjoint linear operator.

(v, Kw) = (Kv,w) for all v,w € V.

Example. {5 = |A“t(e8i€8)| = 32 hence
\Aut(d16)|

diag(7,10)K1(11) " = K16(11) diag(7, 10).

49

78 Q/\ 57

70



h " (m)
p™ 1V = CIX], Y ailCil = Y aing,
i=1 =1

IS a linear mapping with kernel
Vi i= ker(p(m)).
Then
V=V 12>2Vg>V1>...2V,= {0}
is a filtration of V yielding the orthogonal decomposition

n
V= Ym where Ypm =V,,_1 N V.

m=0

h h
Vo=1{> alC]]| ) a;=0}
i=1 i=1

and

h
1
Vi =Y, =
0 =Yo= {2 R

[Ci])-




Theorem. (N. 2006)
The space Vi = Y (N) is the Kn(T)-eigenspace to the eigen-
value z/](\,m)(T) with u](\,m)(T) > uj(vm+1>(T) for all m.

Type M (1)
qt’ ("™ —q—qm+1)/(g—1)
qit (vt — ™) /(g — 1)

B (@™ —q™)/(qg—1)

¥ ("™t —¢™) /(¢ — 1)

H (qn—m—l—l/Q o qm . q1/2 + 1)/(q . 1)
H

1

(qn—m—l/Q — g™ — q1/2 + 1)/(q . 1)

L)

K

L)

L

Corollary. The neighbouring graph is connected.
Proof. The maximal eigenvalue vg of the adjacency matrix is
simple with eigenspace ).



Example: Mig(1l) = [eg L eg] U [dif]
(28-—m—=1_om . =10,1,2,3) = (127,62,28,8)

78 49
K1e(ID) = ( 70 57 >

has eigenvalues 127 and 8 with eigenvectors (7,10) and (1,—-1).
Hence

Vo = (Tleg L eg] + 10[d7g])
V1 =Y>=0

Vs = (leg L eg] — [dJg]).



Even unimodular lattices.
Ly ={L=L*<RY|Leven }=[L1]U...U[L]

where [L] denotes the isometry class of the lattice L.
L,M € Ly are called p-neighbours, if [L: LN M] = p,
notation: L ~ M.

YV =C[L1]®...®C[L,] = C"

Kyj2(p) € End(V), Ko@) : (L~ Y [M].
MeLlpn,M~L

Kneser-Hecke operator.
(adjacency matrix of neighbouring graph)



Example. L1 = [EFg L Eg] U [Df%]

% =~
12870

14670 18225
Kg(2) = ( 12870 20025 )



YV has a Hermitian positive definite inner product defined by

([Li]; [Ljs]) = | Aut(L;)[6;5-

Theorem. (Venkov, N. 2001)
The Kneser-Hecke operator K is a self-adjoint linear operator.

(v, Kw) = (Kv,w) for all v,w € V.

405 __ |Aut(FEglEg)| _ 18225
Example. 555 = [Aut(DT)[ | 12870

hence
diag(405,286)Kg(2) " = Kg(2) diag(405, 286).

14670 18225 20025

C

12870



h h
9 2V My 5(SPam (), 3 @il o 3 ao§™
i=1 =1

IS a linear mapping with kernel
o= ker(9(M)).
Then
V=V_1>2Vo2>V12>...2Vy={0}.
is a filtration of V vielding the orthogonal decomposition

N
xr, V= EB Ym where Yy, = m_lﬂvnﬁ.

m=0

, h
— a.; . a,; = J_: — 1
Vo= {3 ailLil| Yai=0} and V6 =0 =(} 1o

[L;]).

Theorem. x is invariant under Ky »(p)
(but the eigenspace decomposition is usually much finer and I do not know

how to predict eigenvalues).



Example: L1 = [Eg L Eg] U [Df%]

_ [ 14670 18225
Kg(2) = ( 12870 20025 )

has eigenvalues 32895 and 1800 with eigenvectors (286,405) and

(1,-1).
Here 9(m) = p(M) (9, : a € F5') and all lattices come from codes.

Yo = (286[Fg L Eg] + 405[D{])
Vi =)Vor=Y3=0

V4 = ([Eg L Eg] — [D{]).



Dimension 24: The 24 Niemeier lattices. (N, Venkov)

Here h = 24 and only 9 of the lattices are codelattices. With B.
Venkov we calculated K15(2) and its eigenspace decomposition.

713891011 |12
3*14*|2% 2% 1|1

i Jol1l2[3
dim(Y;)

—
=
—
=
N B
N O
w O

* means that the dimension is only conjectured.



Hecke operators as double cosets. (Lattices.)

1 ]
tf’(/rlm )(pQ) : dlag(17E7'"7p,7p27£7"'7p,) 6 GSme(Z)
m—1

m—1

Then the double coset

T D (02) := Spom (TSP (02) SPom(Z) =Ui—1 SPom(Z)v;

acts on the space of modular forms My (Sp2,,(Z)) and also on
the subspace spanned by theta series by

d
(TN V@) F e Y fiys
j=1

The Kneser-Hecke operator Ki(p) also acts on this space via
Am(Ki(p)).

Theorem. (Yoshida 1985) There are explicit constants
c=c(m,k,p),d =d(m,k,p) such that

5 (TS D (52)) = cid +dAm (K (p)).



Hecke operators as double cosets. (Codes.)
Let (R, A,3,Q) be a Type.
The associated extraspecial group

Em = (A™ x AM™)p< Q/Z, with multiplication
(a,b,q)(a,V,q") = (a+d,b4+V,q4+ ¢ + B0, a))

acts irreducibly on C[A™] = (zy : v € A™)¢ via

(a,b,q)zy := exp(2mi(q + B(v,a)))zy4s

Remark. The associated Clifford-Weil group C,, < GL(C[A™])
normalizes &,,.



Uj:={(a,0,0) |a= (0", a1,...,a;) € A"} < &En and T; = Crmpyy,Cm
where for U < &, the endomorphism

denotes the orthogonal projection onto the fixed space of U.
Note that py =0 if UNn Z # {(0,0,0)} where

Z ={(0,0,q) | g € Q/Z} = Z(Em).

Theorem. (N. 2006) If A= R =T, is a finite field, then

H(Cm) — <73 | 0< ;< m>C—algebra — C[Tl]
is a commutative subalgebra of End(Inv(C,,)) consisting of self-
adjoint linear operators acting on the subspace of degree N in-
variants via, say, oy.
Then there are explicit constants c,d
(depending on ¢, the Type T, the genus m and the length N)
such that

Sn(T1) = cid +dAm (KN (T)).



