Codes and invariant theory.

Gabriele Nebe

Lehrstuhl D für Mathematik

Third deBrun workshop, Galway, December 2009
RWTHAACHEN

Linear codes over finite fields.

- Let $\mathbb{F}:=\mathbb{F}_{q}$ denote the finite field with q-elements.
- Classically a linear code C over \mathbb{F} is a subspace $C \leq \mathbb{F}^{N}$.
- N is called the length of the code.
- $C^{\perp}:=\left\{v \in \mathbb{F}^{N} \mid v \cdot c=\sum_{i=1}^{N} v_{i} c_{i}=0\right.$ for all $\left.c \in C\right\}$ the dual code.
- C is called self-dual, if $C=C^{\perp}$.
- Important for the error correcting properties of C is the minimum distance

$$
d(C):=\min \left\{d\left(c, c^{\prime}\right) \mid c \neq c^{\prime} \in C\right\}=\min \{w(c) \mid 0 \neq c \in C\}
$$

where

$$
w(c):=\left|\left\{1 \leq i \leq N \mid c_{i} \neq 0\right\}\right|
$$

is the Hamming weight of c and $d\left(c, c^{\prime}\right)=w\left(c-c^{\prime}\right)$ the Hamming distance.

- The Hamming weight enumerator of a code $C \leq \mathbb{F}^{N}$ is

$$
\operatorname{hwe}_{C}(x, y):=\sum_{c \in C} x^{N-w(c)} y^{w(c)} \in \mathbb{C}[x, y]_{N}
$$

The Gleason-Pierce Theorem (1967):

Theorem.

If $C=C^{\perp} \leq \mathbb{F}_{q}^{N}$ such that $w(c) \in m \mathbb{Z}$ for all $c \in C$ and some $m>1$ then either

I $q=2$ and $m=2$ (all self-dual binary codes).
II $q=2$ and $m=4$ (the doubly-even self-dual binary codes).
III $q=3$ and $m=3$ (all self-dual ternary codes).
IV $q=4$ and $m=2$ (all Hermitian self-dual codes).
O $q=4$ and $m=2$ (certain Euclidean self-dual codes).
d q arbitrary, $m=2$ and $\operatorname{hwe}_{C}(x, y)=\left(x^{2}+(q-1) y^{2}\right)^{N / 2}$.

Type

The self-dual codes in this Theorem are called Type I, II, III and IV codes respectively.

Explanation of Gleason-Pierce Theorem.

Reason for divisibility condition

For all elements $0 \neq a$ in $\mathbb{F}_{2}=\{0,1\}$ and $\mathbb{F}_{3}=\{0,1,-1\}$ we have that $a^{2}=1$. So for $c \in \mathbb{F}_{p}^{N}$ the inner product

$$
(c, c) \equiv_{p} w(c) \text { for } p=2,3
$$

Hermitian self-dual codes satisfy

$$
C=\bar{C}^{\perp}=\left\{x \in \mathbb{F}_{p^{2}}^{N} \mid \sum_{i=1}^{N} c_{i} x_{i}^{p}=0 \text { for all } x \in C\right\}
$$

For $0 \neq a \in \mathbb{F}_{4}$ again $a a^{2}=a^{3}=1$, hence $(c, \bar{c}) \equiv_{2} w(c)$.

Invariance of Hamming weight enumerator

It follows from Gleason-Pierce Theorem that the Hamming weight enumerator of the respective codes is a polynomial in x and y^{m}.

Some examples for Type I codes.

The repetition code $i_{2}=\left[\begin{array}{ll}1 & 1\end{array}\right]$ has hwe $i_{i_{2}}(x, y)=x^{2}+y^{2}$. The extended Hamming code

$$
e_{8}=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

has $\operatorname{hwe}_{e_{8}}(x, y)=x^{8}+14 x^{4} y^{4}+y^{8}$ and hence is a Type II code.

The binary Golay code is another Type II code.

$$
g_{24}=\left[\begin{array}{l}
110101110001100000000000 \\
101010111000110000000000 \\
100101011100011000000000 \\
100010101110001100000000 \\
100001010111000110000000 \\
100000101011100011000000 \\
100000010101110001100000 \\
100000001010111000110000 \\
100000000101011100011000 \\
100000000010101110001100 \\
100000000001010111000110 \\
100000000000101011100011
\end{array}\right]
$$

is also of Type II with Hamming weight enumerator

$$
\operatorname{hwe}_{g_{24}}(x, y)=x^{24}+759 x^{16} y^{8}+2576 x^{12} y^{12}+759 x^{8} y^{16}+y^{24}
$$

Type III codes: tetracode and ternary Golay code.

The tetracode.

$$
t_{4}:=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 2 & 1
\end{array}\right] \leq \mathbb{F}_{3}^{4}
$$

is a Type III code with

$$
\operatorname{hwe}_{t_{4}}(x, y)=x^{4}+8 x y^{3}
$$

The ternary Golay code.

$$
g_{12}:=\left[\begin{array}{llllllllllll}
1 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2
\end{array}\right] \leq \mathbb{F}_{3}^{12}
$$

$$
\operatorname{hwe}_{g_{12}}(x, y)=x^{12}+264 x^{6} y^{6}+440 x^{3} y^{9}+24 y^{12}
$$

Hermitian self-dual codes over \mathbb{F}_{4}.

The repetition code $i_{2} \otimes \mathbb{F}_{4}=\left[\begin{array}{ll}1 & 1\end{array}\right]$
has hwe $i_{2} \otimes \mathbb{F}_{4}(x, y)=x^{2}+3 y^{2}$.
The hexacode

$$
h_{6}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & \omega & \omega \\
0 & 1 & 0 & \omega & 1 & \omega \\
0 & 0 & 1 & \omega & \omega & 1
\end{array}\right] \leq \mathbb{F}_{4}^{6}
$$

where $\omega^{2}+\omega+1=0$. The hexacode is a Type IV code and has Hamming weight enumerator

$$
\text { hwe }_{h_{6}}(x, y)=x^{6}+45 x^{2} y^{4}+18 y^{6}
$$

The MacWilliams' theorem (1962).

Theorem

Let $C \leq \mathbb{F}_{q}^{N}$ be a code. Then

$$
\operatorname{hwe}_{C^{\perp}}(x, y)=\frac{1}{|C|} \operatorname{hwe}_{C}(x+(q-1) y, x-y) .
$$

In particular, if $C=C^{\perp}$, then hwe ${ }_{C}$ is invariant under the
MacWilliams' transformation

$$
h_{q}:\binom{x}{y} \mapsto \frac{1}{\sqrt{q}}\left(\begin{array}{rr}
1 & q-1 \\
1 & -1
\end{array}\right)\binom{x}{y} .
$$

Gleason's theorem (ICM, Nice, 1970)

Theorem.

If C is a self-dual code of Type I,II,III or IV then hwe ${ }_{C} \in \mathbb{C}[f, g]$ where

Type	f	g
I	$x^{2}+y^{2}$ i_{2}	$x^{2} y^{2}\left(x^{2}-y^{2}\right)^{2}$ Hamming code e_{8}
II	$x^{8}+14 x^{4} y^{4}+y^{8}$ Hamming code e_{8}	$x^{4} y^{4}\left(x^{4}-y^{4}\right)^{4}$ binary Golay code g_{24}
III	$x^{4}+8 x y^{3}$ tetracode t_{4}	$y^{3}\left(x^{3}-y^{3}\right)^{3}$ ternary Golay code g_{12}
IV	$x^{2}+3 y^{2}$ $i_{2} \otimes \mathbb{F}_{4}$	$y^{2}\left(x^{2}-y^{2}\right)^{2}$ hexacode h_{6}

Proof of Gleason's theorem.

Let $C \leq \mathbb{F}_{q}^{N}$ be a code of Type $T=\mathrm{I}, \mathrm{II}, \mathrm{III}$ or IV. Then $C=C^{\perp}$ hence hwe $_{C}$ is invariant under MacWilliams' transformation h_{q}. Because of the Gleason-Pierce theorem, hwe_{C} is also invariant under the diagonal transformation

$$
d_{m}:=\operatorname{diag}\left(1, \zeta_{m}\right): x \mapsto x, y \mapsto \zeta_{m} y
$$

(where $\zeta_{m}=\exp (2 \pi i / m)$) hence

$$
\operatorname{hwe}(C) \in \operatorname{Inv}\left(\left\langle h_{q}, d_{m}\right\rangle=: G_{T}\right)
$$

lies in the invariant ring of the complex matrix group G_{T}. In all cases G_{T} is a complex reflection group and the invariant ring of G_{T} is the polynomial ring $\mathbb{C}[f, g]$ generated by the two polynomials given in the table.

Corollary

The length of a Type II (resp. III) code is a multiple of 8 (resp. 4).
Proof: $\zeta_{8} I_{2} \in G_{\mathrm{II}}$ and $\zeta_{4} I_{2} \in G_{\mathrm{III}}$.

Extremal self-dual codes.

Gleason's theorem allows to bound the minimum weight of a code of a given Type and given length.

Theorem.

Let C be a self-dual code of Type T and length N. Then $d(C) \leq m+m\left\lfloor\frac{N}{\operatorname{deg}(g)}\right\rfloor$.

I If $T=\mathrm{I}$, then $d(C) \leq 2+2\left\lfloor\frac{N}{8}\right\rfloor$.
II If $T=\mathrm{II}$, then $d(C) \leq 4+4\left\lfloor\frac{N}{24}\right\rfloor$.
III If $T=$ III, then $d(C) \leq 3+3\left\lfloor\frac{N}{12}\right\rfloor$.
IV If $T=\mathrm{IV}$, then $d(C) \leq 2+2\left\lfloor\frac{N}{6}\right\rfloor$.
Using the notion of the shadow of a code, the bound for Type I codes may be improved.

$$
d(C) \leq 4+4\left\lfloor\frac{N}{24}\right\rfloor+a
$$

where $a=2$ if $N(\bmod 24)=22$ and 0 else.

Complete weight enumerators,

Let V be a finite abelian group (e.g. $V=\mathbb{F}_{q}$) and $C \subseteq V^{N}$. For $c=\left(c_{1}, \ldots, c_{N}\right) \in V^{N}$ and $v \in V$ put

$$
a_{v}(c):=\left|\left\{i \in\{1, \ldots, N\} \mid c_{i}=v\right\}\right|
$$

Then

$$
\operatorname{cwe}_{C}:=\sum_{c \in C} \prod_{v \in V} x_{v}^{a_{v}(c)} \in \mathbb{C}\left[x_{v}: v \in V\right]
$$

is called the complete weight enumerator of C.
The tetracode.

$$
\begin{gathered}
t_{4}:=\left[\begin{array}{cccc}
1 & 1 & 1 & 0 \\
0 & 1 & 2 & 1
\end{array}\right] \leq \mathbb{F}_{3}^{4} \\
\mathrm{cwe}_{t_{4}}\left(x_{0}, x_{1}, x_{2}\right)=x_{0}^{4}+x_{0} x_{1}^{3}+x_{0} x_{2}^{3}+3 x_{0} x_{1}^{2} x_{2}+3 x_{0} x_{1} x_{2}^{2} \\
\operatorname{hwe}_{t_{4}}(x, y)=\operatorname{cwe}_{t_{4}}(x, y, y)=x^{4}+8 x y^{3}
\end{gathered}
$$

Clear. $\operatorname{hwe}_{C}(x, y)=\operatorname{cwe}_{C}(x, y, \ldots, y)$

Codes and Lattices: Construction A.

Let p be a prime and $\left(b_{1}, \ldots, b_{N}\right)$ be a basis of \mathbb{R}^{N} such that

$$
\left(b_{i}, b_{j}\right)= \begin{cases}0 & \text { if } i \neq j \\ 1 / p & \text { if } i=j\end{cases}
$$

Let $C \leq \mathbb{F}_{p}^{N}=\mathbb{Z}^{N} / p \mathbb{Z}^{N}$ be a code. Then the codelattice L_{C} is

$$
L_{C}:=\left\{\sum_{i=1}^{N} a_{i} b_{i} \mid\left(a_{1} \quad(\bmod p), \ldots, a_{N} \quad(\bmod p)\right) \in C\right\}
$$

Remark.

- $L_{C}^{\#}=L_{C^{\perp}}$, so L_{C} is unimodular, iff C is self-dual.
- L_{C} is even unimodular, if $p=2$ and C is a Type II code.
- $\theta_{L_{C}}=\operatorname{cwe}_{C}\left(\vartheta_{0}, \ldots, \vartheta_{p-1}\right)$ where

$$
\vartheta_{a}=\theta_{(a+p \mathbb{Z}) b_{1}}=\sum_{n=-\infty}^{\infty} q^{(a+p n)^{2} / p} .
$$

Construction A: Examples.

$$
E_{8}=L_{e 8}
$$

The Leech lattice and the Golay code
Let $L:=L_{g_{24}}$.
Then $\min (L)=2$ and $\operatorname{Min}(L)=\left\{ \pm 2 e_{1}, \ldots, \pm 2 e_{24}\right\}$.

$$
\text { Let } v:=3 e_{1}+e_{2}+\ldots+e_{24} \text {. }
$$

Then $(v, v)=\frac{1}{2}(9+23)=16$ and $\left(v, 2 e_{i}\right)$ is odd for all i.
Put $L_{v}:=\{\ell \in L \mid(\ell, v)$ even $\}$.
Then $\Lambda_{24}=\left\langle L_{v}, \frac{1}{2} v\right\rangle$.

The ternary Golay code.

$L_{g_{12}}$ is an odd unimodular lattice of dimension 12 with minimum 2. $\theta_{L_{g_{12}}}=1+264 q+2048 q^{3 / 2}+7944 q^{2}+24576 q^{5 / 2}+\ldots$.

A formal notion of a Type of a code.

Definition of Type, part I

A Type is a quadruple (R, V, Φ, β) such that

- R is a finite ring (with 1) and ${ }^{J}: R \rightarrow R$ an involution of R. $(a b)^{J}=b^{J} a^{J}$ and $\left(a^{J}\right)^{J}=a$ for all $a, b \in R$
- V a finite left R-module.
- $\beta: V \times V \rightarrow \mathbb{Q} / \mathbb{Z}$ regular, ϵ-hermitian:
$\beta(r v, w)=\beta\left(v, r^{J} w\right)$ for $r \in R, v, w \in V$,
$v \mapsto \beta(v, \cdot) \in \operatorname{Hom}(V, \mathbb{Q} / \mathbb{Z})$ isomorphism,
$\epsilon \in Z(R), \epsilon \epsilon^{J}=1 \beta(v, w)=\beta(w, \epsilon v)$ for $v, w \in V$.
- $\Phi \subset \operatorname{Quad}_{0}(V, \mathbb{Q} / \mathbb{Z})$ a set of quadratic mappings on V. with certain additional properties.

Codes of a given Type.

Let (R, V, Φ, β) be a Type.

Definition.

- A code C over the alphabet V is an R-submodule of V^{N}.
- The dual code (with respect to β) is

$$
C^{\perp}:=\left\{x \in V^{N} \mid \beta^{N}(x, c)=\sum_{i=1}^{N} \beta\left(x_{i}, c_{i}\right)=0 \text { for all } c \in C\right\} .
$$

C is called self-dual (with respect to β) if $C=C^{\perp}$.

- Then C is called isotropic (with respect to Φ) if

$$
\phi^{N}(c):=\sum_{i=1}^{N} \phi\left(c_{i}\right)=0 \text { for all } c \in C \text { and } \phi \in \Phi
$$

A formal notion of a Type of a code.

Definition

The quadruple (R, V, Φ, β) as above is called a Type if

- $\Phi \leq \operatorname{Quad}_{0}(V, \mathbb{Q} / \mathbb{Z})$ is a subgroup and for all $r \in R, \phi \in \Phi$ the mapping $\phi[r]: x \mapsto \phi(r x)$ is again in Φ.
Then Φ is an R-qmodule.
- For all $\phi \in \Phi$ there is some $r_{\phi} \in R$ such that

$$
\lambda(\phi)(v, w)=\phi(v+w)-\phi(v)-\phi(w)=\beta\left(v, r_{\phi} w\right) \text { for all } v, w \in V
$$

- For all $r \in R$ the mapping

$$
\phi_{r}: V \rightarrow \mathbb{Q} / \mathbb{Z}, v \mapsto \beta(v, r v) \text { lies in } \Phi .
$$

Type I,II,III,IV in the new language.

Type I codes (2 $\mathrm{I}_{\text {I }}$)

$$
R=\mathbb{F}_{2}=V, \beta(x, y)=\frac{1}{2} x y, \Phi=\left\{\varphi: x \mapsto \frac{1}{2} x^{2}=\beta(x, x), 0\right\}
$$

Type II code (2 $2_{\text {II }}$).

$$
R=\mathbb{F}_{2}=V, \beta(x, y)=\frac{1}{2} x y, \Phi=\left\{\phi: x \mapsto \frac{1}{4} x^{2}, 2 \phi=\varphi, 3 \phi, 0\right\}
$$

Type III codes (3).

$$
R=\mathbb{F}_{3}=V, \beta(x, y)=\frac{1}{3} x y, \Phi=\left\{\varphi: x \mapsto \frac{1}{3} x^{2}=\beta(x, x), 2 \varphi, 0\right\}
$$

Type IV codes $\left(4^{H}\right)$.

$$
R=\mathbb{F}_{4}=V, \beta(x, y)=\frac{1}{2} \operatorname{tr}(x \bar{y}), \Phi=\left\{\varphi: x \mapsto \frac{1}{2} x \bar{x}, 0\right\}
$$

where $\bar{x}=x^{2}$.

The Clifford-Weil group associated to a Type.

Definition.

Let $T:=(R, V, \beta, \Phi)$ be a Type. Then the associated Clifford-Weil group $\mathcal{C}(T)$ is a subgroup of $\mathrm{GL}_{|V|}(\mathbb{C})$

$$
\left.\mathcal{C}(T)=\left\langle m_{r}, d_{\phi}, h_{e, u_{e}, v_{e}}\right| r \in R^{*}, \phi \in \Phi, e=u_{e} v_{e} \in R \text { sym. id. }\right\rangle
$$

Let $\left(e_{v} \mid v \in V\right)$ denote a basis of $\mathbb{C}^{|V|}$. Then

$$
\begin{gathered}
m_{r}: e_{v} \mapsto e_{r v}, \quad d_{\phi}: e_{v} \mapsto \exp (2 \pi i \phi(v)) e_{v} \\
h_{e, u_{e}, v_{e}}: e_{v} \mapsto|e V|^{-1 / 2} \sum_{w \in e V} \exp \left(2 \pi i \beta\left(w, v_{e} v\right)\right) e_{w+(1-e) v}
\end{gathered}
$$

Invariance of complete weight enumerators.

Theorem.

Let $C \leq V^{N}$ be a self-dual isotropic code of Type T. Then cwe ${ }_{C}$ is invariant under $\mathcal{C}(T)$.

Proof.

 Invariance under $m_{r}\left(r \in R^{*}\right)$ because C is a code. Invariance under $d_{\phi}(\phi \in \Phi)$ because C is isotropic. Invariance under $h_{e, u_{e}, v_{e}}$ because C is self dual.The main theorem.(N,, Rains, Sloane (1999-2006))
If R is a direct product of matrix rings over chain rings, then

$$
\left.\operatorname{Inv}(\mathcal{C}(T))=\left\langle\operatorname{cwe}_{C}\right| C \text { of Type } T\right\rangle
$$

The Clifford-Weil groups for Type I and II.

Type I codes (2 2_{I})

$$
\begin{aligned}
& R=\mathbb{F}_{2}=V, \beta(x, y)=\frac{1}{2} x y, \Phi=\left\{\varphi: x \mapsto \frac{1}{2} x^{2}=\beta(x, x), 0\right\} \\
& \mathcal{C}(\mathrm{I})=\left\langle d_{\varphi}=\operatorname{diag}(1,-1), h_{1,1,1}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)=h_{2}\right\rangle=G_{\mathrm{I}}
\end{aligned}
$$

Type II codes ($2_{\text {II }}$).

$$
\begin{gathered}
R=\mathbb{F}_{2}=V, \beta(x, y)=\frac{1}{2} x y, \Phi=\left\{\phi: x \mapsto \frac{1}{4} x^{2}, 2 \phi=\varphi, 3 \phi, 0\right\} \\
\mathrm{C}(\mathrm{II})=\left\langle d_{\phi}=\operatorname{diag}(1, i), h_{2}\right\rangle=G_{\mathrm{II}}
\end{gathered}
$$

The Clifford-Weil groups for Type III and IV.

Type III codes (3).

$$
\begin{gathered}
R=\mathbb{F}_{3}=V, \beta(x, y)=\frac{1}{3} x y, \Phi=\left\{\varphi: x \mapsto \frac{1}{3} x^{2}=\beta(x, x), 2 \varphi, 0\right\} \\
\mathcal{C}(\mathrm{III})=\left\langle m_{2}=\left(\begin{array}{l}
100 \\
001 \\
010
\end{array}\right), d_{\varphi}=\operatorname{diag}\left(1, \zeta_{3}, \zeta_{3}\right), h_{1,1,1}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \zeta_{3} \zeta_{3}^{2} \\
1 \zeta_{3}^{2} \zeta_{3}
\end{array}\right)\right\rangle
\end{gathered}
$$

Type IV codes $\left(4^{H}\right)$.

$$
\begin{gathered}
R=\mathbb{F}_{4}=V, \beta(x, y)=\frac{1}{2} \operatorname{tr}(x \bar{y}), \Phi=\left\{\varphi: x \mapsto \frac{1}{2} x \bar{x}, 0\right\} \\
\mathcal{C}(\mathrm{IV})=\left\langle m_{\omega}=\left(\begin{array}{l}
1000 \\
0001 \\
0100 \\
0010
\end{array}\right), d_{\varphi}=\operatorname{diag}(1,-1,-1,-1), h_{1,1,1}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1-1 \\
1 & 1-1 & -1 & 1
\end{array}\right)\right\rangle
\end{gathered}
$$

Symmetrizations.

Definition

Let (R, J) be a ring with involution. Then the central unitary group is

$$
\mathrm{ZU}(R, J):=\left\{g \in Z(R) \mid g g^{J}=g^{J} g=1\right\}
$$

Theorem.
Let $T=(R, V, \beta, \Phi)$ be a Type and

$$
U:=\{u \in \mathrm{ZU}(R, J) \mid \phi(u v)=\phi(v) \text { for all } \phi \in \Phi, v \in V\} .
$$

Then $m(U):=\left\{m_{u} \mid u \in U\right\}$ is in the center of $\mathcal{C}(T)$.

Example.

$R=\mathbb{F}_{2}$ or $R=\mathbb{F}_{3}$ then $\mathrm{ZU}(R, \mathrm{id})=R-\{0\}$.
If $R=\mathbb{F}_{4}$ then $\mathrm{ZU}(R, \mathrm{id})=\{1\}$, but $\mathrm{ZU}(R,-)=R-\{0\}$.

Symmetrized Clifford-Weil groups.

Definition.

Let $U \leq \mathrm{ZU}(R, J)$ and X_{0}, \ldots, X_{n} be the U-orbits on V.
The U-symmetrized Clifford-Weil group is

$$
\mathcal{C}^{(U)}(T)=\left\{g^{(U)} \mid g \in \mathcal{C}(T)\right\} \leq \mathrm{GL}_{n+1}(\mathbb{C})
$$

If

$$
g\left(\frac{1}{\left|X_{i}\right|} \sum_{v \in X_{i}} e_{v}\right)=\sum_{j=0}^{n} a_{i j}\left(\frac{1}{\left|X_{j}\right|} \sum_{w \in X_{j}} e_{w}\right)
$$

then

$$
g^{(U)}\left(x_{i}\right)=\sum_{j=0}^{n} a_{i j} x_{j}
$$

Remark.

The invariant ring of $\mathcal{C}^{(U)}(T)$ consists of the U-symmetrized invariants of $\mathcal{C}(T)$.

Symmetrized weight enumerators.

Definition.

Let U permute the elements of V and let $C \leq V^{N}$. Let X_{0}, \ldots, X_{n} denote the orbits on U on V and for $c=\left(c_{1}, \ldots, c_{N}\right) \in C$ and $0 \leq j \leq n$ define

$$
a_{j}(c)=\mid\left\{1 \leq i \leq N \mid c_{i} \in X_{j}\right\}
$$

Then the U-symmetrized weight-enumerator of C is

$$
\operatorname{cwe}_{C}^{(U)}=\sum_{c \in C} \prod_{j=0}^{n} x_{j}^{a_{j}(c)} \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]
$$

Remark.

If the invariant ring of $\mathcal{C}(T)$ is spanned by the complete weight enumerators of self-dual codes of Type T, then the invariant ring of $\mathcal{C}^{(U)}(T)$ is spanned by the U-symmetrized weight-enumerators of self-dual codes of Type T.

Gleason's Theorem revisited.

Remark

For Type I,II,III,IV the central unitary group $\mathrm{ZU}(R, J)$ is transitive on $V-\{0\}$, so there are only two orbits:

$$
x \leftrightarrow\{0\}, y \leftrightarrow V-\{0\}
$$

and the symmetrized weight enumerators are the Hamming weight enumerators.

$$
\mathcal{C}(\mathrm{III})=\left\langle m_{2}=\left(\begin{array}{l}
100 \\
001 \\
010
\end{array}\right), d_{\varphi}=\operatorname{diag}\left(1, \zeta_{3}, \zeta_{3}\right), h_{1,1,1}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 \zeta_{3} \zeta_{3}^{2} \\
1 \zeta_{3}^{2} \zeta_{3}
\end{array}\right)\right\rangle
$$

yields the symmetrized Clifford-Weil group $G_{\text {III }}=\mathcal{C}^{(U)}($ III $)$

$$
\mathcal{C}^{(U)}(\mathrm{III})=\left\langle m_{2}^{(U)}=I_{2}, d_{\varphi}^{(U)}=\operatorname{diag}\left(1, \zeta_{3}\right), h_{1,1,1}^{(U)}=h_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{rr}
1 & 2 \\
1-1
\end{array}\right)\right\rangle
$$

The symmetrized Clifford-Weil group of Type IV.

$$
\mathcal{C}(\mathrm{IV})=\left\langle m_{\omega}=\left(\begin{array}{l}
1000 \\
0001 \\
0100 \\
0010
\end{array}\right), d_{\varphi}=\operatorname{diag}(1,-1,-1,-1), h_{1,1,1}=\frac{1}{2}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & -1 & -1 \\
1 & 1 & -1 \\
1 & -1 & -1
\end{array}\right)\right\rangle
$$

yields the symmetrized Clifford-Weil group $G_{\text {IV }}=\mathcal{C}^{(U)}($ IV $)$

$$
\mathrm{C}^{(U)}(\mathrm{IV})=\left\langle m_{\omega}^{(U)}=I_{2}, d_{\varphi}^{(U)}=\operatorname{diag}(1,-1), h_{1,1,1}^{(U)}=h_{4}=\frac{1}{2}\left(\begin{array}{rr}
1 & 3 \\
1 & -1
\end{array}\right)\right\rangle
$$

Hermitian codes over \mathbb{F}_{9}

$$
\left(9^{H}\right): R=V=\mathbb{F}_{9}, \beta(x, y)=\frac{1}{3} \operatorname{tr}(x \bar{y}), \Phi=\left\{\varphi: x \mapsto \frac{1}{3} x \bar{x}, 2 \varphi, 0\right\} .
$$

Let α be a primitive element of \mathbb{F}_{9} and put $\zeta=\zeta_{3} \in \mathbb{C}$. Then with respect to the \mathbb{C}-basis

$$
\left(0,1, \alpha, \alpha^{2}, \alpha^{3}, \alpha^{4}, \alpha^{5}, \alpha^{6}, \alpha^{7}\right)
$$

of $\mathbb{C}[V]$, the associated Clifford-Weil group $\mathcal{C}\left(9^{H}\right)$ is generated by $d_{\varphi}:=\operatorname{diag}\left(1, \zeta, \zeta^{2}, \zeta, \zeta^{2}, \zeta, \zeta^{2}, \zeta, \zeta^{2}\right)$,

$$
m_{\alpha}:=\left(\begin{array}{l}
100000000 \\
000000001 \\
010000000 \\
001000000 \\
000100000 \\
000010000 \\
000001000 \\
000000100 \\
000000010
\end{array}\right), h:=\frac{1}{3}\left(\begin{array}{llllllll}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array} 1\right.
$$

Hermitian codes over \mathbb{F}_{9}

$\mathcal{C}\left(9^{H}\right)$ is a group of order 192 with Molien series

$$
\frac{\theta(t)}{\left(1-t^{2}\right)^{2}\left(1-t^{4}\right)^{2}\left(1-t^{6}\right)^{3}\left(1-t^{8}\right)\left(1-t^{12}\right)}
$$

where

$$
\begin{aligned}
\theta(t):=1 & +3 t^{4}+24 t^{6}+74 t^{8}+156 t^{10}+321 t^{12}+525 t^{14}+705 t^{16} \\
& +905 t^{18}+989 t^{20}+931 t^{22}+837 t^{24}+640 t^{26}+406 t^{28} \\
& +243 t^{30}+111 t^{32}+31 t^{34}+9 t^{36}+t^{38}
\end{aligned}
$$

So the invariant ring of $\mathcal{C}\left(9^{H}\right)$ has at least

$$
\theta(1)+9=6912+9=6921
$$

generators and the maximal degree (=length of the code) is 38. What about Hamming weight enumerators ?

Hermitian codes over \mathbb{F}_{9}

$$
U:=\mathrm{ZU}\left(9^{H}\right)=\left\{x \in \mathbb{F}_{9}^{*} \mid x \bar{x}=x^{4}=1\right\}=\left(\mathbb{F}_{9}^{*}\right)^{2}
$$

has 3 orbits on $V=\mathbb{F}_{9}$:

$$
\{0\}=X_{0},\left\{1, \alpha^{2}, \alpha^{4}, \alpha^{6}\right\}=: X_{1},\left\{\alpha, \alpha^{3}, \alpha^{5}, \alpha^{7}\right\}=: X_{2}
$$

$\mathcal{C}^{(U)}\left(9^{H}\right)=\left\langle d_{\varphi}^{(U)}:=\operatorname{diag}\left(1, \zeta, \zeta^{2}\right), m_{\alpha}^{(U)}:=\left(\begin{array}{c}100 \\ 001 \\ 010\end{array}\right), h^{(U)}:=\frac{1}{3}\left(\begin{array}{ccc}1 & 4 & 4 \\ 1 & 1-2 \\ 1-2 & 1\end{array}\right)\right\rangle$
of order $\frac{192}{4}=48$ of which the invariant ring is a polynomial ring spanned by the U-symmetrized weight enumerators

$$
\begin{aligned}
& q_{2}=x_{0}^{2}+8 x_{1} x_{2}, \quad q_{4}=x_{0}^{4}+16\left(x_{0} x_{1}^{3}+x_{0} x_{2}^{3}+3 x_{1}^{2} x_{2}^{2}\right) \\
& q_{6}=x_{0}^{6}+8\left(x_{0}^{3} x_{1}^{3}+x_{0}^{3} x_{2}^{3}+2 x_{1}^{6}+2 x_{2}^{6}\right) \\
& +72\left(x_{0}^{2} x_{1}^{2} x_{2}^{2}+2 x_{0} x_{1}^{4} x_{2}+2 x_{0} x_{1} x_{2}^{4}\right)+320 x_{1}^{3} x_{2}^{3}
\end{aligned}
$$

of the three codes with generator matrices

$$
\left[\begin{array}{ll}
1 & \alpha
\end{array}\right],\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 2 & 1
\end{array}\right],\left[\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & \alpha & 2 \alpha & 0 & 1 & 2
\end{array}\right]
$$

Hermitian codes over \mathbb{F}_{9}

Their Hamming weight enumerators are

$$
\begin{aligned}
& r_{2}=q_{2}(x, y, y) \quad:=x^{2}+8 y^{2}, \\
& r_{4}=q_{4}(x, y, y) \quad:=x^{4}+32 x y^{3}+48 y^{4}, \\
& r_{6}=q_{6}(x, y, y):=x^{6}+16 x^{3} y^{3}+72 x^{2} y^{4}+288 x y^{5}+352 y^{6} .
\end{aligned}
$$

The polynomials r_{2}, r_{4} and r_{6} generate the ring $\operatorname{Ham}\left(9^{H}\right)$ spanned by the Hamming weight enumerators of the codes of Type 9^{H}. $\operatorname{Ham}\left(9^{H}\right)=\mathbb{C}\left[r_{2}, r_{4}\right] \oplus r_{6} \mathbb{C}\left[r_{2}, r_{4}\right]$ with the syzygy

$$
r_{6}^{2}=\frac{3}{4} r_{2}^{4} r_{4}-\frac{3}{2} r_{2}^{2} r_{4}^{2}-\frac{1}{4} r_{4}^{3}-r_{2}^{3} r_{6}+3 r_{2} r_{4} r_{6}
$$

Note that $\operatorname{Ham}\left(9^{H}\right)$ is not the invariant ring of a finite group.

