Codes and invariant theory II.

Gabriele Nebe

Lehrstuhl D für Mathematik

Third deBrun workshop, Galway, December 2009
RWTHAACHEN

Higher genus complete weight enumerators.

Definition

Let $c^{(i)}:=\left(c_{1}^{(i)}, \ldots, c_{N}^{(i)}\right) \in V^{N}, i=1, \ldots, m$, be m not necessarily distinct codewords. For $v:=\left(v_{1}, \ldots, v_{m}\right) \in V^{m}$, let

$$
a_{v}\left(c^{(1)}, \ldots, c^{(m)}\right):=\mid\left\{j \in\{1, \ldots, N\} \mid c_{j}^{(i)}=v_{i} \text { for all } i \in\{1, \ldots, m\}\right\} \mid .
$$

The genus- m complete weight enumerator of C is

$$
\operatorname{cwe}_{m}(C):=\sum_{\left(c^{(1)}, \ldots, c^{(m)}\right) \in C^{m}} \prod_{v \in V^{m}} x_{v}^{a_{v}\left(c^{(1)}, \ldots, c^{(m)}\right)} \in \mathbb{C}\left[x_{v}: v \in V^{m}\right]
$$

$$
\begin{array}{cccccc}
c_{1}^{(1)} & c_{2}^{(1)} & \ldots & c_{j}^{(1)} & \ldots & c_{N}^{(1)} \\
c_{1}^{(2)} & c_{2}^{(2)} & \ldots & c_{j}^{(2)} & \ldots & c_{N}^{(2)} \\
\vdots & \vdots & & \vdots & & \vdots \\
c_{1}^{(m)} & c_{2}^{(m)} & \ldots & c_{j}^{(m)} & \ldots & c_{N}^{(m)} \\
& & & \uparrow & & \\
& & & v \in V^{m} & &
\end{array}
$$

Examples.

$$
\begin{gathered}
C=i_{2}=\{(0,0),(1,1)\}, \text { then } \mathrm{cwe}_{2}(C)=x_{00}^{2}+x_{11}^{2}+x_{01}^{2}+x_{10}^{2} \\
C=e_{8}=\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right] \\
\mathrm{cwe}_{2}\left(e_{8}\right)=x_{00}^{8}+x_{01}^{8}+x_{10}^{8}+x_{11}^{8}+168 x_{00}^{2} x_{01}^{2} x_{10}^{2} x_{11}^{2}+ \\
14\left(x_{00}^{4} x_{01}^{4}+x_{00}^{4} x_{10}^{4}+x_{00}^{4} x_{11}^{4}+x_{01}^{4} x_{10}^{4}+x_{01}^{4} x_{11}^{4}+x_{10}^{4} x_{11}^{4}\right)
\end{gathered}
$$

Higher genus complete weight enumerators.

Remark.

For $C \leq V^{N}$ and $m \in \mathbb{N}$ let
$C(m):=R^{m \times 1} \otimes C=\left\{\left(c^{(1)}, \ldots, c^{(m)}\right)^{\mathrm{Tr}} \mid c^{(1)}, \ldots, c^{(m)} \in C\right\} \leq\left(V^{m}\right)^{N}$
Then $\mathrm{cwe}_{m}(C)=\mathrm{cwe}(C(m))$.
If C is a self-dual isotropic code of Type $T=(R, V, \beta, \Phi)$, then $C(m)$ is a self-dual isotropic code of Type

$$
T^{m}=\left(R^{m \times m}, V^{m}, \beta^{(m)}, \Phi^{(m)}\right)
$$

and hence $\operatorname{cwe}_{m}(C)$ is invariant under $\mathcal{C}_{m}(T):=\mathfrak{C}\left(T^{m}\right)$ the genus-m Clifford-Weil group.

Main theorem implies.

$$
\operatorname{Inv}\left(\mathcal{C}_{m}(T)\right)=\left\langle\text { cwe }_{m}(C): C \text { of Type } T\right\rangle
$$

(if R is a direct product of matrix rings over chain rings).

Higher genus Clifford-Weil groups.

$\mathcal{C}_{2}(\mathrm{I})$.

$$
R=\mathbb{F}_{2}^{2 \times 2}, R^{*}=\mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)=\left\langle a:=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), b:=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\right\rangle
$$

$$
V=\mathbb{F}_{2}^{2}=\left\{\binom{0}{0},\binom{1}{0},\binom{0}{1},\binom{1}{1}\right\}, \text { symmetric idempotent } e=\operatorname{diag}(1,0)
$$

$$
\left.\left.\begin{array}{c}
\mathfrak{C}_{2}(\mathrm{I})=\left\langle m_{a}=\left(\begin{array}{l}
1000 \\
0010 \\
0100 \\
0001
\end{array}\right), m_{b}=\left(\begin{array}{l}
1000 \\
0001 \\
0100 \\
0010
\end{array}\right),\right. \\
h_{e, e, e}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1100 \\
1-100 \\
0
\end{array}\right), 1_{1} \\
001-1
\end{array}\right), d_{\varphi e}=\operatorname{diag}(1,-1,1,-1)\right\rangle .
$$

Molien series of $\mathcal{C}_{2}(\mathrm{I})$.

$\mathcal{C}_{2}(\mathrm{I})$ has order 2304 and Molien series

$$
\frac{1+t^{18}}{\left(1-t^{2}\right)\left(1-t^{8}\right)\left(1-t^{12}\right)\left(1-t^{24}\right)}
$$

where the generators correspond to the degree 2 complete weight enumerators of the codes:

$$
i_{2}, e_{8}, d_{12}^{+}, g_{24}, \text { und }\left(d_{10} e_{7} f_{1}\right)^{+}
$$

$W\left(F_{4}\right)$ is a subgroup of index 2 in $\mathfrak{C}_{2}(\mathrm{I})$.

$$
\operatorname{Inv}\left(\mathcal{C}_{2}(\mathrm{I})\right)=\mathbb{C}\left[i_{2}, e_{8}, d_{12}^{+}, g_{24}\right] \oplus\left(d_{10} e_{7} f_{1}\right)^{+} \mathbb{C}\left[i_{2}, e_{8}, d_{12}^{+}, g_{24}\right]
$$

Molien series of $\mathrm{C}_{2}(\mathrm{II})$.

$$
\mathcal{C}_{2}(\mathrm{II})=\left\langle m_{a}, m_{b}, h_{e, e, e}, d_{\phi e}=\operatorname{diag}(1, i, 1, i)\right\rangle
$$

\mathcal{C}_{2} (II) has order 92160 and Molien series

$$
\frac{1+t^{32}}{\left(1-t^{8}\right)\left(1-t^{24}\right)^{2}\left(1-t^{40}\right)}
$$

where the generators correspond to the degree 2 complete weight enumerators of the codes:

$$
e_{8}, g_{24}, d_{24}^{+}, d_{40}^{+}, \text {and } d_{32}^{+}
$$

$\mathcal{C}_{2}($ II $)$ has a reflection subgroup of index 2 , No. 31 on the Shephard-Todd list.

$$
\operatorname{Inv}\left(\mathrm{C}_{2}(\mathrm{II})\right)=\mathbb{C}\left[e_{8}, g_{24}, d_{24}^{+}, d_{40}^{+}\right] \oplus d_{32}^{+} \mathbb{C}\left[e_{8}, g_{24}, d_{24}^{+}, d_{40}^{+}\right]
$$

Higher genus Clifford-Weil groups for Type I, II, III, IV.

$$
\begin{gathered}
\mathcal{C}_{m}(\mathrm{I})=2_{+}^{1+2 m} \cdot O_{2 m}^{+}\left(\mathbb{F}_{2}\right) \\
\mathcal{C}_{m}(\mathrm{II})=Z_{8} \star 2^{1+2 m} \cdot \mathrm{Sp}_{2 m}\left(\mathbb{F}_{2}\right) \\
\mathcal{C}_{m}(\mathrm{III})=Z_{4} \cdot \mathrm{Sp}_{2 m}\left(\mathbb{F}_{3}\right) \\
\mathcal{C}_{m}(\mathrm{IV})=Z_{2} \cdot U_{2 m}\left(\mathbb{F}_{4}\right)
\end{gathered}
$$

Higher genus Clifford-Weil groups for the classical Types of codes over finite fields.

$$
\begin{aligned}
\mathcal{C}_{m}(T) & =S .(\operatorname{ker}(\lambda) \times \operatorname{ker}(\lambda)) \cdot \mathcal{G}_{m}(T) \\
\lambda(\phi):(x, y) \mapsto \phi(x+y) & -\phi(x)-\phi(y)
\end{aligned}
$$

R	J	ϵ	$\mathcal{G}_{m}(T)$
$\mathbb{F}_{q} \oplus \mathbb{F}_{q}$	$(r, s)^{J}=(s, r)$	1	$\mathrm{GL}_{2 m}\left(\mathbb{F}_{q}\right)$
$\mathbb{F}_{q^{2}}$	$r^{J}=r^{q}$	1	$U_{2 m}\left(\mathbb{F}_{q^{2}}\right)$
\mathbb{F}_{q}, q odd	$r^{J}=r$	1	$\mathrm{Sp}_{2 m}\left(\mathbb{F}_{q}\right)$
\mathbb{F}_{q}, q odd	$r^{J}=r$	-1	$O_{2 m}^{+}\left(\mathbb{F}_{q}\right)$
\mathbb{F}_{q}, q even	doubly even	$\mathrm{Sp}_{2 m}\left(\mathbb{F}_{q}\right)$	
\mathbb{F}_{q}, q even	singly even	$O_{2 m}^{+}\left(\mathbb{F}_{q}\right)$	

Hecke operators in coding theory.

Motivation.

Determine linear relations between $\mathrm{cwe}_{m}(C)$ for $C \in M_{N}(T)=\left\{C \leq V^{N} \mid C\right.$ of Type $\left.T\right\}$.

- $M_{16}(\mathrm{II})=\left[e_{8} \perp e_{8}\right] \cup\left[d_{16}^{+}\right]$and these two codes have the same genus 1 and 2 weight enumerator, but cwe ${ }_{3}\left(e_{8} \perp e_{8}\right)$ and cwe $_{3}\left(d_{16}^{+}\right)$are linearly independent.
- $h\left(M_{24}(\mathrm{II})\right)=9$ and only the genus 6 weight enumerators are linearly independent, there is one relation for the genus 5 weight enumerators.
- $h\left(M_{32}(\mathrm{II})\right)=85$ and here the genus 10 weight enumerators are linearly independent, whereas there is a unique relation for the genus 9 weight enumerators.

Linear relations between weight enumerators.

Three different approaches:

- Determine all the codes and their weight enumerators. If $\operatorname{dim}(C)=n=N / 2$ there are $\prod_{i=0}^{d-1}\left(2^{n}-2^{i}\right) /\left(2^{d}-2^{i}\right)$ subspaces of dimension d in C.
$N=32, d=10$ yields more than 10^{18} subspaces.
- Use Molien's theorem:
$\operatorname{Inv}_{N}\left(\mathrm{C}_{m}(\mathrm{II})\right)=\left\langle\operatorname{cwe}_{m}(C) \mid C \in M_{N}(\mathrm{II})\right\rangle$ and if $a_{N}:=\operatorname{dim}\left(\operatorname{Inv}_{N}\left(\mathrm{C}_{m}(\mathrm{II})\right)\right)$ then

$$
\sum_{N=0}^{\infty} a_{N} t^{N}=\frac{1}{\left|\mathfrak{C}_{m}(\mathrm{II})\right|} \sum_{g \in \mathrm{C}_{m}(\mathrm{II})}(\operatorname{det}(1-t g))^{-1}
$$

Problem: $\mathfrak{C}_{10}(\mathrm{II}) \leq \mathrm{GL}_{1024}(\mathbb{C})$ has order $>10^{69}$.
with the use of normal subgroup structure, we know the Molien series of these Clifford-Weil groups for $m \leq 4$.

- Use Hecke operators.

Kneser-Hecke operators.

- Fix a Type $T=\left(\mathbb{F}_{q}, \mathbb{F}_{q}, \beta, \Phi\right)$ of self-dual codes over a finite field with q elements.

$$
M_{N}(T)=\left\{C \leq \mathbb{F}_{q}^{N} \mid C \text { of Type } T\right\}=\left[C_{1}\right] \dot{\cup} \ldots \dot{\cup}\left[C_{h}\right]
$$

where $[C]$ denotes the permutation equivalence class of the code C.

$$
\mathcal{V}=\mathbb{C}\left[C_{1}\right] \oplus \ldots \oplus \mathbb{C}\left[C_{h}\right] \cong \mathbb{C}^{h}
$$

- Then $n:=\frac{N}{2}=\operatorname{dim}(C)$ for all $C \in M_{N}(T)$.
- $C, D \in M_{N}(T)$ are called neighbours, if $\operatorname{dim}(C)-\operatorname{dim}(C \cap D)=1, C \sim D$.

$$
K_{N}(T) \in \operatorname{End}(\mathcal{V}), K_{N}(T):[C] \mapsto \sum_{D \in M_{N}(T), D \sim C}[D] .
$$

Kneser-Hecke operator.

- $K_{N}(T)$ is the adjacency matrix of the neighbouring graph.

Examples for Kneser-Hecke operators.

Example. $M_{16}(\mathrm{II})=\left[e_{8} \perp e_{8}\right] \cup\left[d_{16}^{+}\right]$

$$
K_{16}(\mathrm{II})=\left(\begin{array}{cc}
78 & 49 \\
70 & 57
\end{array}\right)
$$

The Hilbert space \mathcal{V}.

ν has a Hermitian positive definite inner product defined by

$$
\left\langle\left[C_{i}\right],\left[C_{j}\right]\right\rangle:=\left|\operatorname{Aut}\left(C_{i}\right)\right| \delta_{i j} .
$$

Theorem. (N. 2006)
The Kneser-Hecke operator K is a self-adjoint linear operator.

$$
\langle v, K w\rangle=\langle K v, w\rangle \text { for all } v, w \in \mathcal{V}
$$

Example.

$$
\begin{aligned}
& \frac{7}{10}=\frac{\left|\operatorname{Aut}\left(e_{8} \perp e_{8}\right)\right|}{\left|\operatorname{Aut}\left(d_{16}^{+}\right)\right|} \text {hence } \\
& \qquad \operatorname{diag}(7,10) K_{16}(\mathrm{II})^{\operatorname{Tr}}=K_{16}(\mathrm{II}) \operatorname{diag}(7,10) .
\end{aligned}
$$

The filtration of \mathcal{V}.

$$
\mathrm{cwe}_{m}: \mathcal{V} \rightarrow \mathbb{C}[X], \sum_{i=1}^{h} a_{i}\left[C_{i}\right] \mapsto \sum_{i=1}^{h} a_{i} \mathrm{cwe}_{m}\left(C_{i}\right)
$$

is a linear mapping with kernel

$$
\mathcal{V}_{m}:=\operatorname{ker}\left(\mathrm{cwe}_{m}\right)
$$

Then

$$
\mathcal{V}=: \mathcal{V}_{-1} \geq \mathcal{V}_{0} \geq \mathcal{V}_{1} \geq \ldots \geq \mathcal{V}_{n}=\{0\}
$$

is a filtration of \mathcal{V} yielding the orthogonal decomposition

$$
\begin{gathered}
\mathcal{V}=\bigoplus_{m=0}^{n} y_{m} \text { where } y_{m}=\mathcal{V}_{m-1} \cap \mathcal{V}_{m}^{\perp} \\
\mathcal{V}_{0}=\left\{\sum_{i=1}^{h} a_{i}\left[C_{i}\right] \mid \sum a_{i}=0\right\}
\end{gathered}
$$

and

$$
\mathcal{V}_{0}^{\perp}=y_{0}=\left\langle\sum_{i=1}^{h} \frac{1}{\left|\operatorname{Aut}\left(C_{i}\right)\right|}\left[C_{i}\right]\right\rangle .
$$

Eigenvalues of Kneser-Hecke operator.

Theorem. (N. 2006)

The space $y_{m}=y_{m}(N)$ is the $K_{N}(T)$-eigenspace to the eigenvalue $\nu_{N}^{(m)}(T)$ with $\nu_{N}^{(m)}(T)>\nu_{N}^{(m+1)}(T)$ for all m.

Type	$\nu_{N}^{(m)}(T)$
q_{I}^{E}	$\left(q^{n-m}-q-q^{m}+1\right) /(q-1)$
q_{I}^{E}	$\left(q^{n-m-1}-q^{m}\right) /(q-1)$
q^{E}	$\left(q^{n-m}-q^{m}\right) /(q-1)$
q_{1}^{E}	$\left(q^{n-m-1}-q^{m}\right) /(q-1)$
q^{H}	$\left(q^{n-m+1 / 2}-q^{m}-q^{1 / 2}+1\right) /(q-1)$
q_{1}^{H}	$\left(q^{n-m-1 / 2}-q^{m}-q^{1 / 2}+1\right) /(q-1)$

Corollary.

The neighbouring graph is connected.
Proof. The maximal eigenvalue ν_{0} of the adjacency matrix is simple with eigenspace y_{0}.

Example: Type II, length 16.

$$
\begin{aligned}
& M_{16}(\mathrm{II})=\left[e_{8} \perp e_{8}\right] \cup\left[d_{16}^{+}\right] \\
& \left(2^{8-m-1}-2^{m}: m=0,1,2,3\right)=(127,62,28,8) \\
& K_{16}(\mathrm{II})=\left(\begin{array}{ll}
78 & 49 \\
70 & 57
\end{array}\right)
\end{aligned}
$$

has eigenvalues 127 and 8 with eigenvectors $(7,10)$ and $(1,-1)$. Hence

$$
\begin{gathered}
y_{0}=\left\langle 7\left[e_{8} \perp e_{8}\right]+10\left[d_{16}^{+}\right]\right\rangle \\
y_{1}=y_{2}=0 \\
y_{3}=\left\langle\left[e_{8} \perp e_{8}\right]-\left[d_{16}^{+}\right]\right\rangle .
\end{gathered}
$$

Example: Type II, length 24.

$$
\begin{aligned}
& M_{24}(\mathrm{II})=\left[e_{8}^{3}\right] \cup\left[e_{8} d_{16}\right] \cup\left[e_{7}^{2} d_{10}\right] \cup\left[d_{8}^{3}\right] \cup\left[d_{24}\right] \cup\left[d_{12}^{2}\right] \cup\left[d_{6}^{4}\right] \cup\left[d_{4}^{6}\right] \cup\left[g_{24}\right] \\
& K_{24}(\mathrm{II})= \\
& \left(\begin{array}{rrrrrrrrr}
213 & 147 & 344 & 343 & 0 & 0 & 0 & 0 & 0 \\
70 & 192 & 896 & 490 & 7 & 392 & 0 & 0 & 0 \\
10 & 14 & 504 & 490 & 0 & 49 & 980 & 0 & 0 \\
1 & 3 & 192 & 447 & 0 & 36 & 1152 & 216 & 0 \\
0 & 990 & 0 & 0 & 133 & 924 & 0 & 0 & 0 \\
0 & 60 & 480 & 900 & 1 & 206 & 400 & 0 & 0 \\
0 & 0 & 72 & 216 & 0 & 3 & 1108 & 648 & 0 \\
0 & 0 & 0 & 45 & 0 & 0 & 720 & 1218 & 64 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1771 & 276
\end{array}\right) \\
& \left\langle 99\left[e_{8}^{3}\right]-297\left[e_{8} d_{16}\right]-3465\left[d_{8}^{3}\right]+7\left[d_{24}\right]+924\left[d_{12}^{2}\right]\right. \\
& \left.+4928\left[d_{6}^{4}\right]-2772\left[d_{4}^{6}\right]+576\left[g_{24}\right]\right\rangle=\operatorname{ker}\left(\mathrm{cwe}_{5}\right)=\mathcal{V}_{5}
\end{aligned}
$$

The Dimension of $y_{m}(N)$ for doubly-even binary self-dual codes.

N, m	0	1	2	3	4	5	6	7	8	9	≥ 10
8	1										
16	1	0	0	1							
24	1	1	1	2	2	1	1				
32	1	1	2	5	10	15	21	18	8	3	1

The Molien series of $\mathrm{C}_{m}(\mathrm{II})$ is

$$
1+t^{8}+a(m) t^{16}+b(m) t^{24}+c(m) t^{32}+\ldots
$$

where

m	1	2	3	4	5	6	7	8	9	≥ 10
a	1	1	2	2	2	2	2	2	2	2
b	2	3	5	7	8	9	9	9	9	9
c	2	4	9	19	34	55	73	81	84	85

$\operatorname{dim}\left(y_{m}(N)\right)$ for binary self-dual codes.

N, m	0	1	2	3	4	5	6	7	8	9	10	11
2	1											
4	1											
6	1											
8	1	1										
10	1	1										
12	1	1	1									
14	1	1	1	1								
16	1	2	1	2	1							
18	1	2	2	2	2							
20	1	2	3	4	4	2						
22	1	2	3	6	7	4	2					
24	1	3	5	9	15	13	7	2				
26	1	3	6	12	23	29	20	8	1			
28	1	3	7	18	40	67	75	39	10	1		
30	1	3	8	23	65	142	228	189	61	10	1	
32	1	4	10	33	111	341	825	1176	651	127	15	1

Application to Molien series.

The Molien series of $\mathcal{C}_{m}(\mathrm{I})$ is

$$
1+t^{2}+t^{4}+t^{6}+2 t^{8}+2 t^{10}+\sum_{N=12}^{\infty} a_{N}(m) t^{N}
$$

where

$$
a_{N}(m):=\operatorname{dim}\left\langle\operatorname{cwe}_{m}(C): C=C^{\perp} \leq \mathbb{F}_{2}^{N}\right\rangle
$$

is given in the following table:

m, N	12	14	16	18	20	22	24	26	28	30	32
2	3	3	4	5	6	6	9	10	11	12	15
3	3	4	6	7	10	12	18	22	29	35	48
4	3	4	7	9	14	19	33	45	69	100	159
5	3	4	7	9	16	23	46	74	136	242	500
6	3	4	7	9	16	25	53	94	211	470	1325
7	3	4	7	9	16	25	55	102	250	659	2501
8	3	4	7	9	16	25	55	103	260	720	3152
9	3	4	7	9	16	25	55	103	261	730	3279
10	3	4	7	9	16	25	55	103	261	731	3294
≥ 11	3	4	7	9	16	25	55	103	261	731	3295

A group theoretic interpretation of the Kneser-Hecke operator.

In modular forms theory, Hecke operators are double cosets of the modular group. So I tried to find a similar interpretation for the Kneser-Hecke operator.
Let $T=(R, V, \beta, \Phi)$ be a Type. Then the invariant ring $\operatorname{Inv}\left(\mathrm{C}_{m}(T)\right)=\left\langle\operatorname{cwe}_{m}(C)\right| C$ of Type $\left.T\right\rangle$

The finite Siegel Φ-operator

$$
\Phi_{m}: \operatorname{Inv}\left(\mathrm{C}_{m}(T)\right) \rightarrow \operatorname{Inv}\left(\mathrm{C}_{m-1}(T)\right), \mathrm{cwe}_{m}(C) \mapsto \mathrm{cwe}_{m-1}(C)
$$

defines a surjective graded \mathbb{C}-algebra homomorphism between invariant rings of complex matrix groups of different degree.
Φ is given by the variable substitution:

$$
x_{\left(v_{1}, \ldots, v_{m}\right)} \mapsto \begin{cases}x_{\left(v_{1}, \ldots, v_{m-1}\right)} & \text { if } v_{m}=0 \\ 0 & \text { else }\end{cases}
$$

Explanation for formula for Φ

cwe $_{m-1}(C)$ is obtained from cwe $_{m}(C)$ by counting only those matrices

in which the last row is zero.
This is expressed by the variable substitution

$$
x_{\left(v_{1}, \ldots, v_{m}\right)} \mapsto \begin{cases}x_{\left(v_{1}, \ldots, v_{m-1}\right)} & \text { if } v_{m}=0 \\ 0 & \text { else }\end{cases}
$$

A canonical right inverse of Φ.

$$
(p, q)_{m}:=p\left(\frac{\partial}{\partial x}\right)(\bar{q}) \text { for } p, q \in \mathbb{C}\left[x_{v}: v \in V^{m}\right]_{N}
$$

defines a positive definite Hermitian product on the homogeneous component $\mathbb{C}\left[x_{v}: v \in V^{m}\right]_{N}$.
The monomials of degree N form an orthogonal basis and

$$
\left(\prod_{v \in V^{m}} x_{v}^{n_{v}}, \prod_{v \in V^{m}} x_{v}^{n_{v}}\right)_{m}=\prod_{v \in V^{m}}\left(n_{v}!\right)
$$

Then $\Phi_{m}: \operatorname{ker}\left(\Phi_{m}\right)^{\perp} \rightarrow \operatorname{Inv}\left(\mathcal{C}_{m-1}(T)\right)$ is an isomorphism with inverse

$$
\varphi_{m}: \operatorname{Inv}\left(\mathrm{C}_{m-1}(T)\right) \rightarrow \operatorname{Inv}\left(\mathrm{C}_{m}(T)\right), x_{\left(v_{1}, \ldots, v_{m-1}\right)} \mapsto R\left(x_{\left(v_{1}, \ldots, v_{m-1}, 0\right)}\right)
$$

where $R(p)=\frac{1}{\left|\mathfrak{C}_{m}(T)\right|} \sum_{g \in \mathfrak{C}_{m}(T)} p(g x)$ is the Reynolds operator (the orthogonal projection onto the invariant ring).
Note that R is not a ring homomorphism.

The orthogonal decomposition of the invariant space.

This yields an orthogonal decomposition of the space of degree N invariants of $\mathrm{C}_{m}(T)$

$$
\begin{gathered}
\operatorname{Inv}_{N}\left(\mathrm{C}_{m}(T)\right)=\operatorname{ker}\left(\Phi_{m}\right) \perp \varphi_{m}^{-1}\left(\operatorname{Inv}_{N}\left(\mathrm{C}_{m-1}(T)\right)\right)= \\
\operatorname{ker}\left(\Phi_{m}\right) \perp \varphi_{m}^{-1}\left(\operatorname{ker}\left(\Phi_{m-1}\right) \perp \varphi_{m-1}^{-1}\left(\operatorname{Inv}_{N}\left(\mathrm{C}_{m-2}\right)(T)\right)\right)= \\
Y_{m} \perp Y_{m-1} \perp \ldots \perp Y_{0}
\end{gathered}
$$

such that for all $0 \leq k \leq m$ the mapping

$$
\mathrm{cwe}_{m}: y_{k} \rightarrow Y_{k} .
$$

is an isomorphism of vector spaces.

$$
\begin{array}{ccccccccccc}
\mathcal{V}= & y_{n} & \perp \ldots \perp & y_{m+1} & \perp & y_{m} & \perp & y_{m-1} & \perp \ldots \perp & y_{0} \\
\mathrm{cwe}_{m} & \downarrow & \ldots & \downarrow & & \downarrow & & \downarrow & \ldots & \downarrow \\
T))= & 0 & \perp \ldots \perp & 0 & \perp & Y_{m} & \perp & Y_{m-1} & \perp \ldots \perp & Y_{0}
\end{array}
$$

$K_{N}(T)$ and double cosets.

The Kneser-Hecke operator $K_{N}(T)$ acts on $\operatorname{Inv}_{N}\left(\mathrm{C}_{m}(T)\right)$ as $\delta_{m}\left(K_{N}(T)\right)$ having $Y_{m} \perp Y_{m-1} \perp \ldots \perp Y_{0}$ as the eigenspace decomposition.

$$
\mathcal{C}_{m}(T)=\underbrace{S \cdot(\operatorname{ker}(\lambda) \times \operatorname{ker}(\lambda))}_{\varepsilon_{m}(T)} \cdot \mathcal{G}_{m}(T)
$$

Choose a suitable subgroup \mathcal{U}_{1} of $\mathcal{E}_{m}(T)$ that corresponds to a 1 -dimensional subspace of $(\operatorname{ker}(\lambda) \times \operatorname{ker}(\lambda))$ and let

$$
p_{1}:=\frac{1}{q} \sum_{u \in \mathcal{U}_{1}} u \in \mathbb{C}^{q^{m} \times q^{m}}
$$

be the orthogonal projection onto the fixed space of \mathcal{U}_{1} and let

$$
H_{m}(T):=\mathfrak{C}_{m}(T) p_{1} \mathfrak{C}_{m}(T)=\bigcup_{U \in X} p_{U} \mathfrak{C}_{m}(T)
$$

Then this double coset acts on $\operatorname{Inv}_{N}\left(\mathcal{C}_{m}(T)\right)$ via

$$
\Delta_{N}\left(H_{m}(T)\right): f \mapsto \frac{1}{|X|} \sum_{U \in X} f\left(x p_{U}\right)
$$

Explicit description as sum of double cosets.

Theorem.(N. 2006)

$$
(q-1) \delta_{m}\left(K_{N}(T)\right)=q^{n-m-e}\left((q-1) \Delta_{N}\left(H_{m}(T)\right)+\mathrm{id}\right)-\left(q^{m}+a\right) \mathrm{id}
$$

where $n=N / 2$ and e, a are as follows:

T	q^{E}	q_{I}^{E}	q_{1}^{E}	q_{II}^{E}	q_{1}^{H}	q^{H}
a	0	$q-1$	0	0	$\sqrt{q}-1$	$\sqrt{q}-1$
e	0	0	1	1	$1 / 2$	$-1 / 2$

Conclusion.

- formal notion of Type $T=(R, V, \beta, \Phi)$.
- self-dual code C of Type T.
- genus-m complete weight enumerators
- the associated Clifford-Weil group $\mathcal{C}_{m}(T)$, a finite complex matrix group of degree $|V|^{m}$ such that

$$
\left.\operatorname{Inv}_{N}\left(\mathfrak{C}_{m}(T)\right)=\left\langle\operatorname{cwe}_{m}(C)\right| C=C^{\perp} \leq V^{N} \text { of Type } T\right\rangle
$$

- In particular the scalar subgroup $\mathcal{C}_{m}(T) \cap \mathbb{C}^{*}$ id is cyclic of order

$$
\min \left\{N \mid \text { there is a code } C \leq V^{N} \text { of Type } T\right\} .
$$

- $\mathcal{C}_{m}(T)$ has a nice group theoretic structure.
- $\Phi_{m}: \operatorname{Inv}\left(\mathfrak{C}_{m}(T)\right) \rightarrow \operatorname{Inv}\left(\mathfrak{C}_{m-1}(T)\right)$
- if R is a field then:
- As in modular forms theory, the invariant ring of $\mathcal{C}_{m}(T)$ can be investigated using Hecke operators.
- The Hecke algebra is generated by the incidence matrix of the Kneser neighbouring graph.
- Obtain linear relations between weight enumerators.

