# Recognition of division algebras. 

Gabriele Nebe, Allan Steel

Lehrstuhl D für Mathematik, University of Sydney

DAG day, Eindhoven, 18.3.2010

RWIHAACHEN

## Motivation.

Construction of irreducible matrix representations.

- $G$ finite group, $K$ a field, $n \in \mathbb{N}, \Delta: G \rightarrow \operatorname{GL}_{n}(K)$ group homomorphism
- $K G$-module structure on $V=K^{1 \times n}$.
- The representation $\Delta$ is called irreducible, if $V$ is a simple $K G$-module, i.e. $V$ and $\{0\}$ are the only $K G$-submodules of $V$.
- There are only finitely many simple $K G$-modules up to isomorphism.
- Goal: Find all irreducible matrix representations of $G$.


## Construct irreducible representations of $G$.

1) Construct representations:

- Permutation representations
- More general induced representations from subgroups
- Tensor products
- Symmetric square
- Alternating square
- More general symmetrizations

2) Find irreducible representations as subquotients.

Meataxe techniques.

## Construct irreducible representations of $G$.

- If char $K=p>0$ then these are realized over a finite subfield. For finite fields meataxe techniques are available to find composition factors and to prove irreducibility.
- If char $K=0$, then these are realized over a number field $K$, a finite extension of $\mathbb{Q}$.
- Over $\mathbb{Q}$ meataxe techniques are used to obtain subrepresentations that are likely to be irreducible.
- Use the endomorphism ring

$$
E=\left\{x \in K^{n \times n} \mid x \Delta(g)=\Delta(g) x \text { for all } g \in G\right\}
$$

- Schur's Lemma: $\Delta$ irreducible $\Longleftrightarrow E$ skewfield.
- Goal: Test if $E$ is a skew field.
- $E$ is a finite dimensional semisimple $\mathbb{Q}$-algebra.


## Computing the endomorphism algebra.

$$
E=\left\{x \in \mathbb{Q}^{n \times n} \mid x \Delta(g)=\Delta(g) x \text { for all } g \in G\right\}
$$

- Obtain $E$ by solving system of linear equations
- or by finding random elements:
- $G=\left\langle g_{1}=1, g_{2}, \ldots, g_{s}\right\rangle$,
- $\pi: \mathbb{Q}^{n \times n} \rightarrow \mathbb{Q}^{n \times n}, \pi(x)=\frac{1}{s} \sum_{i=1}^{s} \Delta\left(g_{i}\right)^{-1} x \Delta\left(g_{i}\right)$ is linear
- 1 is unique eigenvalue $\geq 1$
- eigenspace $E$
- iterating $\pi$ approximates the projection $\pi_{G}: x \mapsto \frac{1}{|G|} \sum_{g \in G} \Delta(g)^{-1} x \Delta(g)$ onto $E \leq \mathbb{Q}^{n \times n}$
- $E=\left\langle\pi^{\infty}\left(b_{1}\right), \ldots, \pi^{\infty}\left(b_{n^{2}}\right)\right\rangle$
- $E=\left\langle\pi^{\infty}\left(x_{1}\right), \ldots, \pi^{\infty}\left(x_{a}\right)\right\rangle_{\mathbb{Q}}$ algebra


## Strategy to determine structure of $E$.

Wedderburn
$E \cong \bigoplus_{i=1}^{t} D_{i}^{n_{i} \times n_{i}}$ with division algebras $D_{i}$.
Algorithm (overview)

- $E=\left\langle b_{1}, \ldots, b_{d}\right\rangle_{\mathbb{Q}}$ given in right regular representation:
- $b_{i} \in \mathbb{Q}^{d \times d}, b_{k} b_{i}=\sum_{j=1}^{d}\left(b_{i}\right)_{j, k} b_{j}$
- find central idempotents, achieve $E=D^{n \times n}$
- calculate the Schur index of $E$ as Icm of local Schur indices
- Use regular trace bilinear form: $\operatorname{Tr}: E \times E \rightarrow K,(a, b) \mapsto \operatorname{tr}_{r e g}(a b)$.
- $\sigma$ real place of $K$, then Schur index $m_{\sigma}$ of $E \otimes_{\sigma} \mathbb{R}$ from signature of $\sigma \circ \mathrm{Tr}$.
- $\wp$ finite place of $K$, then Schur index $m_{\wp}$ of completion $E_{\wp}$ from discriminant of any maximal order.


## Find idempotents in $Z(E)$.

$$
Z=Z(E):=\left\{z \in E \mid z b_{i}=b_{i} z \text { for all } 1 \leq i \leq d\right\}
$$

- $Z \cong \bigoplus_{i=1}^{t} K_{i}$ étale
- regular representation: $Z=\left\langle z_{1}, \ldots, z_{s}\right\rangle \leq \mathbb{Q}^{s \times s}$
- Elementary fact: the $z_{i}$ have a simultaneous diagonalization
- Choose random $z \in Z$, compute its minimal polynomial $f$
- If $f=g h$ is not irreducible, then $\mathbb{Q}^{s}=\operatorname{ker}(g(z)) \oplus \operatorname{ker}(h(z))$ is a $Z$-invariant decomposition of the natural module
- Compute the action of the generators on both invariant submodules and iterate this procedure
- $Z$ is a field, if all $z_{i}$ have irreducible minimal polynomial


## Assume that $E=D^{n \times n}$ is simple.

- $E=D^{n \times n}$
- $K=Z(D)=Z(E)$ number field of degree $k=[K: \mathbb{Q}]$
- $m^{2}=\operatorname{dim}_{K}(D)$ and so $d=\operatorname{dim}_{\mathbb{Q}}(E)=n^{2} m^{2} k$
- know $d$ and $k$
- Goal: compute Schur index $m$ of $E$
- Fact: Let $\mathbb{P}$ denote the set of all places of $K$. Then $D$ is uniquely determined by all its completions $\left(D_{\wp}\right)_{\wp \in \mathbb{P}}$.
- The Schur index $m$ of $E$ is the least common multiple of the Schur indices $m_{\wp}$ of all completions $E_{\wp}:=E \otimes_{K} K_{\wp}$.
- Goal: Determine all local Schur indices $m_{\wp}$ of $E$.
- For $\wp: K \rightarrow \mathbb{C}$ complex place $E \otimes_{K} \mathbb{C}=\mathbb{C}^{m n \times m n}$.
- If $\wp: K \rightarrow \mathbb{R}$ is a real place then

$$
E_{\wp}=E \otimes_{K} \mathbb{R}=\left\{\begin{array}{l}
\mathbb{R}^{n m \times n m} \\
\mathbb{H}^{n m / 2 \times n m / 2}
\end{array}\right. \text { or }
$$

where $\mathbb{H}=\left(\frac{-1,-1}{\mathbb{R}}\right)$.

## The real completion.

Use the trace bilinear form. $\operatorname{Tr}: E \times E \rightarrow K,(a, b) \mapsto \operatorname{tr}_{r e g}(a b)$.
Lemma

- Signature $(\mathbb{H}, \operatorname{Tr})=(1,-3)$.
- Signature $\left(\mathbb{R}^{2 \times 2}, \operatorname{Tr}\right)=(3,-1)$.
- Signature $\left(\mathbb{R}^{n \times n}, \operatorname{Tr}\right)=(n(n+1) / 2,-n(n-1) / 2)$.
- Signature $\left(\mathbb{H}^{n / 2 \times n / 2}, \operatorname{Tr}\right)=(n(n-1) / 2,-n(n+1) / 2)$.


## Proof:

- The Gram matrix of $\operatorname{Tr}$ for the basis $(1, i, j, k)$ of $\mathbb{H}$ is $\operatorname{diag}(4,-4,-4,-4)$.
- The Gram matrix of $\operatorname{Tr}$ for the basis $\left(\begin{array}{cccc}10 \\ 00\end{array}, 00,01,00, ~ 00 ~(0) ~\right.$ is diag $\left(2,2, \begin{array}{ll}02 \\ 20\end{array}\right)$.


## Maximal order is a local property.

- $K=Z(E)$ number field, $R$ ring of integers, $E=D^{n \times n}$.
- An $R$-order $\Lambda$ in $E$ is a subring of $E$ which is a finitely generated $R$-module and spans $E$ over $K$.
- $\Lambda$ is called maximal, if it is not contained in a proper overorder.
- $\Lambda^{*}:=\{d \in E \mid \operatorname{tr}(d a) \in R$ for all $a \in \Lambda\}$
- $\wedge$ order $\Rightarrow \Lambda \subset \Lambda^{*}$.


## Theorem.

The algebra $E$ has a maximal order.
The order $\Lambda$ is maximal if and only if all its finite completions are maximal orders.
Proof. $\Lambda \subset E$ any $R$-order, then $\Lambda \subset \Lambda^{*}$ and $\Lambda^{*} / \Lambda$ is a finite group. So $\Lambda$ has only finitely many overorders and one of them is maximal.

## Local division algebras.

Let $R$ be a complete discrete valuation ring with finite residue field $F=R / \pi R$ and quotient field $K$. Let $D$ be a division algebra with center $K$ and index $m$, so $m^{2}=\operatorname{dim}_{K}(D)$.

## Theorem.

The valuation of $K$ extends uniquely to a valuation $v$ of $D$ and the corresponding valuation ring

$$
M:=\{d \in D \mid v(d) \geq 0\}
$$

is the unique maximal $R$-order in $D$.
Let $\pi_{D} \in M$ be a prime element. Then $\left[\left(M / \pi_{D} M\right): F\right]=m$.
Put

$$
M^{*}:=\{d \in D \mid \operatorname{tr}(d a) \in R \text { for all } a \in M\}
$$

where $\operatorname{tr}$ denotes the regular trace $\mathrm{tr}: D \rightarrow K$. Then

$$
M^{*}=\pi_{D}^{1-m} M \text { and }\left|M^{*} / M\right|=\left|M / \pi_{D} M\right|^{m-1}=|F|^{m(m-1)}
$$

## $R$ complete dvr, $M \leq D$ valuation ring, $\operatorname{dim}_{K}(D)=m^{2}$.

Matrix rings.
All maximal $R$-orders $\Lambda$ in $D^{n \times n}$ are conjugate to $M^{n \times n}$. With respect to the trace bilinear form, we obtain

$$
\Lambda^{*}=\pi_{D}^{1-m} \Lambda \text { and hence }\left|\Lambda^{*} / \Lambda\right|=|F|^{n^{2}\left(m^{2}-m\right)} .
$$

- Know $(n m)^{2}=\operatorname{dim}_{K}\left(D^{n \times n}\right)$ so $s=n m$, and $|F|$.
- Calculate $\Lambda$ and $\Lambda^{*}$ and therewith $t=(n m)^{2}-n^{2} m$.
- Then $m=\left(s^{2}-t\right) / s=s-t / s$.


## The discriminant of a maximal order.

- $E=D^{n \times n}$ central simple algebra over number field $K=Z(E)$ of dimension $s^{2}=(n m)^{2}$
- $m_{\wp}$ the $\wp$-local Schur index of $D$, so $E_{\wp} \cong D_{\wp}^{n_{\wp} \times n_{\wp}}$ with $n_{\wp} m_{\wp}=s$
- $\Lambda$ be a maximal $R$-order in $E$
- $t_{\wp}$ the number of composition factors $\cong R / \wp$ of the finite $R$-module $\Lambda^{*} / \Lambda$.

Theorem.

- $t_{\wp}>0 \Leftrightarrow m_{\wp} \neq 1$
- $m_{\wp}=\left(s^{2}-t_{\wp}\right) / s=s-t_{\wp} / s$
- The global Schur index is

$$
m=\operatorname{lcm}\left\{m_{\wp} \mid \wp \in \mathcal{S}\right\} \cup\left\{m_{\sigma} \mid \sigma \text { real place of } K\right\}
$$

## Rational calculation.

Theorem (see Yamada, The Schur subgroup of the Brauer group).
Let $E=D^{n \times n}$ be the endomorphism ring of a rational representation of a finite group. Then $D$ has uniformly distributed invariants. This means that $Z(D)$ is Galois over $\mathbb{Q}$ and $m_{\wp}$ does not depend on the prime ideal $\wp$ of $Z(D)=K$, but only on the prime number $p \in \wp \cap \mathbb{Q}=p \mathbb{Z}$

$$
m_{p}:=m_{\wp} \text { for any } \wp \unlhd R, \wp \cap \mathbb{Q}=p \mathbb{Z} \text {. }
$$

## Discriminant maximal order $\wedge$ over $\mathbb{Z}$.

- $E=D^{n \times n}, K=Z(D)=Z(E), s^{2}=(m n)^{2}=\operatorname{dim}_{K}(E)$.
- Assume that $D$ has uniformly distributed invariants.
- $m_{p}:=m_{\wp}$ for any $\wp \unlhd R, \wp \cap \mathbb{Q}=p \mathbb{Z}$.
- $\wp \unlhd R \Rightarrow N_{p}:=N_{K / Q}(\wp), a_{p}:=|\{\wp \mid \wp \cap \mathbb{Q}=p \mathbb{Z}\}|$.
- Let $\Lambda$ be a maximal order in $E$.
- $\Lambda^{\#}:=\left\{x \in E \mid \operatorname{tr}_{\text {reg }}(x \lambda) \in \mathbb{Z}\right.$ for all $\left.\lambda \in \Lambda\right\}=R^{\#} \Lambda^{*}$.
- $\delta:=\operatorname{disc}(K / \mathbb{Q})=\left|R^{\#} / R\right|$.

Main result

$$
\left|\Lambda^{\#} / \Lambda\right|=\delta^{s^{2}} \prod_{p} N_{p}^{a_{\rho} s\left(s-t_{p}\right)}
$$

where $t_{p}=s / m_{p}$.

## Computation of maximal order: direct approach.

- Let $\Lambda=\left\langle\lambda_{1}, \ldots, \lambda_{s^{2} k}\right\rangle \subset E$ be any order.
- Then there is a maximal order $M$ in $E$ such that

$$
\Lambda \subset M \subset M^{*} \subset \Lambda^{*}
$$

- $\Lambda^{*} / \Lambda$ is a finite $R$-module.
- Algorithm:
- Loop over the minimal submodules $\Lambda \subset S \subset \Lambda^{*}$.
- Compute the multiplicative closure $M(S)=\left\langle S, S^{2}, S^{3}, \ldots\right\rangle$
- If $M(S) \not \subset \Lambda^{*}$ then $S$ is not contained in an order.
- Otherwise $M(S)$ is an overorder of $\Lambda$.
- Replace $\wedge$ by $M(S)$ and continue.
- If no $M(S)$ is an order, then $\Lambda$ is already maximal.


## Zassenhaus' computation of maximal order.

Let $\wedge$ be an order in $E$.

- The arithmetic radical $A R(\Lambda)$ of $\Lambda$ is the intersection of all maximal right ideals of $\Lambda$ that contain $\left|\Lambda^{*} / \Lambda\right|$.
- Then $A R(\Lambda)$ is an ideal, hence $\Lambda \subset O_{r}(A R(\Lambda)):=$ $O(\Lambda):=\{x \in E \mid A R(\Lambda) x \subseteq A R(\Lambda)\}$.
- $\Lambda=O(\Lambda)$ if and only if $\Lambda$ is hereditary.
- Any overorder of a hereditary order is hereditary.
- If $\wedge$ is hereditary, but not maximal, say $\Lambda_{\wp}$ is not maximal ( $\wp$ prime ideal of $R$ ), then $O_{r}(I)$ is a proper overorder of $\Lambda$ for any maximal twosided ideal $/$ of $\Lambda$ that contains $\wp$.
- all rational primes $p \|\left|\Lambda^{*} / \Lambda\right|$ are handled separately
- Prime after prime we compute a $p$-maximal order.
- Involves only linear equations modulo $p$.


## Example, $E=\operatorname{Mat}_{3}\left(\mathbb{Q}\left[\zeta_{7}+\zeta_{7}^{-1}\right]\right)$.

- Input E from file (algebra generators)
- Call SchurIndexJac(E)
- Dimension of $E$ is 12
- Centre of dimension 3 and discriminant $7^{2}$
- Determinant of order: $7^{10} 43^{6}$, Discriminant $7^{2} 43^{6}$
- Order is already hereditary
- For prime 7: 2 maximal ideals
- Idealiser of first ideal is proper overorder
- and 7-maximal, so finished with prime 7
- For prime 43: 6 maximal ideals
- Idealiser of first ideal is proper overorder
- and has 5 maximal ideals
- Idealiser of second ideal is proper overorder
- and has 4 maximal ideals
- Idealiser of third ideal is proper overorder
- and 43-maximal, so finished with prime 43
- Discriminant of maximal order is 1


## Situation for $43 R=\wp_{1} \wp_{2} \wp_{3}$.

- $\Lambda=\left(\begin{array}{rr}R & R \\ 43 R & R\end{array}\right)$,
- 6 maximal ideals:
- $I_{i}=\left(\begin{array}{rr}\wp_{i} & R \\ 43 R & R\end{array}\right), J_{i}=\left(\begin{array}{rr}R & R \\ 43 R & \wp_{i}\end{array}\right) i=1,2,3$
- Idealiser of $l_{1}$ is $\Lambda_{1}=\left(\begin{array}{rr}R & \wp_{1}^{-1} \\ 43 R & R\end{array}\right) \sim\left(\begin{array}{rr}R & R \\ \wp_{2} \wp_{3} & R\end{array}\right)$.
- $\Lambda_{1}$ has 5 maximal ideals: $\wp_{1} \Lambda_{1}$ and
- $l_{i}^{\prime}=\left(\begin{array}{rr}\wp_{i} & R \\ \wp_{2} \wp_{3} & R\end{array}\right), J_{i}^{\prime}=\left(\begin{array}{rr}R & R \\ \wp_{2} \wp_{3} & \wp_{i}\end{array}\right)$ for $i=2,3$.
- Idealiser of $l_{2}^{\prime}$ is conjugate to $\Lambda_{2}=\left(\begin{array}{rr}R & R \\ \wp_{3} & R\end{array}\right)$
- has maximal ideals $\wp_{1} \Lambda_{2}, \wp_{2} \Lambda_{2}$ and $l_{3}^{\prime \prime}, J_{3}^{\prime \prime}$.
- The idealiser of $l_{3}^{\prime \prime}$ is maximal.


## Cyclotomic orders.

- p prime, $\langle a\rangle=(\mathbb{Z} / p \mathbb{Z})^{*}, n \in \mathbb{Z}$
- $z_{p} \in \mathbb{Z}^{(p-1) \times(p-1)}$ companion matrix of the $p$-th cyclotomic polynomial
$-\Lambda:=\left\langle\operatorname{diag}\left(z_{p}, z_{p}^{a}, \ldots, z_{p}^{z^{p-2}}\right),\left(\begin{array}{ccccc}0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \ldots & 0 & 0 & 1 \\ n & 0 & \ldots & 0 & 0\end{array}\right)\right\rangle \leq$

$$
\mathbb{Z}^{(p-1)^{2} \times(p-1)^{2}}
$$

- $E=\mathbb{Q} \wedge$ central simple $\mathbb{Q}$-algebra of dimension $(p-1)^{2}$

|  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| n | 2 | -2 | 6 | -6 | 7 | 10 | -10 |
| si | $2^{3} 7^{3}$ | $2^{3} 7^{6} \infty$ | $2^{3} 3^{6} 7^{2}$ | $2^{3} 3^{6} \infty$ | 1 | $2^{3} 5^{6} 7^{6}$ | $2^{3} 5^{6} 7^{3} \infty$ |

