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Motivation.

Construction of irreducible matrix representations.
» G finite group, K afield, n € N, A : G — GL,(K) group
homomorphism
» KG-module structure on V = K1x",

» The representation A is called irreducible, if V is a simple
KG-module, i.e. V and {0} are the only KG-submodules of
V.

» There are only finitely many simple KG-modules up to
isomorphism.

» Goal: Find all irreducible matrix representations of G.



Construct irreducible representations of G.

1) Construct representations:
» Permutation representations
» More general induced representations from subgroups
» Tensor products
» Symmetric square
» Alternating square
» More general symmetrizations

2) Find irreducible representations as subquotients.
Meataxe techniques.



Construct irreducible representations of G.

If char K = p > 0 then these are realized over a finite
subfield. For finite fields meataxe techniques are available
to find composition factors and to prove irreducibility.

If char K = 0, then these are realized over a number field
K, a finite extension of Q.

Over Q meataxe techniques are used to obtain
subrepresentations that are likely to be irreducible.

Use the endomorphism ring

E ={x e K™ |xA(g) = A(g)x forallg € G}

» Schur's Lemma: A irreducible <= E skewfield.

» Goal: Test if E is a skew field.

v

E is a finite dimensional semisimple Q-algebra.



Computing the endomorphism algebra.

E={xeQ™" | xA(g)=A(g)x forallg € G}

Obtain E by solving system of linear equations

or by finding random elements:

G=(01=1,02,...,0s),

QUM - QN n(x) = £ Ag)IXA(g) is linear
1 is unique eigenvalue > 1

eigenspace E

iterating = approximates the projection

TG 1 X 5] Lgec A(9)'XA(g) onto E < Q™"

E = (#°(b1),...,7°(b,2))

E = (7>(X1), .- vﬂoo(xa»(@ algebra
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Strategy to determine structure of E.

Wedderburn
E =~ @_, D"*" with division algebras D;.

Algorithm (overview)

» E = (b1,...,bqg)q given in right regular representation:

b € Q4*9 byb; = Zjdzl(bi)j,kbj

find central idempotents, achieve E = D"*"

calculate the Schur index of E as Icm of local Schur indices

Use regular trace bilinear form:

Tr:E xE — K, (a,b) — treg(ab).

» o real place of K, then Schur index m,, of E ®, R from
signature of o o Tr.

» o finite place of K, then Schur index m,, of completion E_,
from discriminant of any maximal order.
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Find idempotents in Z(E).

7 —

v

Z(E) ={zcE|zbj=bzforalll<i<d}
Z =@ _, K étale

» regular representation: Z = (z3,...,zs) < Q3”3
» Elementary fact: the z; have a simultaneous

diagonalization
Choose random z € Z, compute its minimal polynomial f

» If f = gh is not irreducible, then Q° = ker(g(z)) @ ker(h(z))

v

is a Z-invariant decomposition of the natural module

Compute the action of the generators on both invariant
submodules and iterate this procedure

Z is afield, if all z; have irreducible minimal polynomial



Assume that E = D"*" is simple.
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E — Dn><n

K =Z(D) = Z(E) number field of degree k = [K : Q]
m? = dimg (D) and so d = dimg(E) = n?m2k

know d and k

Goal: compute Schur index m of E

Fact: Let P denote the set of all places of K. Then D is
uniquely determined by all its completions (D) ocp-
The Schur index m of E is the least common multiple of the
Schur indices m,, of all completions E, := E ®k K.
Goal: Determine all local Schur indices m, of E.

For p : K — C complex place E @ C = C™M>mn,

If o : K — R is a real place then

RAMXxnM or
Eo=E®kR= { [ghm/2xnm/2

where H = (_1@_1)_



The real completion.

Use the trace bilinear form. Tr: E x E — K, (a,b) + trreg(ab).

Lemma
» Signature (H, Tr) = (1, —3).
» Signature (R2*?, Tr) = (3, —-1).
» Signature (R"" Tr) = (n(n+ 1)/2, —n(n — 1)/2).
» Signature (H"/2*"/2 Tr) = (n(n — 1)/2, —n(n + 1)/2).

Proof:
» The Gram matrix of Tr for the basis (1,i,], k) of H is
diag(4, —4, -4, -4).

» The Gram matrix of Tr for the basis ( %8 ; 89 ; 8% : 88

is diag (2,2, 95 ).
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Maximal order is a local property.

» K = Z(E) number field, R ring of integers, E = D"*".
» An R-order A in E is a subring of E which is a finitely
generated R-module and spans E over K.

» Ais called maximal, if it is not contained in a proper
overorder.

» N*:={d € E |tr(da) e R foralla € A}
» Aorder = A C A*.

Theorem.

The algebra E has a maximal order.

The order A is maximal if and only if all its finite completions are
maximal orders.

Proof. A C E any R-order, then A C A* and A*/A is a finite
group. So A has only finitely many overorders and one of them
is maximal.



Local division algebras.

Let R be a complete discrete valuation ring with finite residue
field F = R/7R and quotient field K. Let D be a division
algebra with center K and index m, so m? = dim (D).

Theorem.
The valuation of K extends uniquely to a valuation v of D and

the corresponding valuation ring
M:={d eD|v(d) >0}

is the uniqgue maximal R-order in D.
Let 7p € M be a prime element. Then [(M/mpM) : F] =m
Put

M*:={d e D |tr(da) e R foralla € M}

where tr denotes the regular trace tr : D — K. Then

M* = 72"™M and [M*/M| = [M/mpM|™1 = |F|M(m=1),



R complete dvr, M < D valuation ring, dimg (D) = m2.

Matrix rings.

All maximal R-orders A in D"*" are conjugate to M"*", With
respect to the trace bilinear form, we obtain

N = Wé_m/\ and hence |A*/A| = |F |n2(m27m)'

» Know (nm)? = dimg (D"*") so s = nm, and |F|.
» Calculate A and A* and therewith t = (nm)? — n?m.
» Thenm = (s? —t)/s =s —t/s.



The discriminant of a maximal order.

» E = D"*" central simple algebra over number field
K = Z(E) of dimension s? = (nm)?
» m,, the p-local Schur index of D, so
E, = Dy " with n,m,, = s
» A be a maximal R-order in E
» t, the number of composition factors = R /e of the finite

R-module A*/A.
Theorem.

»t,>0&m, #1
» m,=(s®—-t,)/s=s—t,/s
» The global Schur index is

m=lcm {m, | p € 8} U{m, | o real place of K }



Rational calculation.

Theorem (see Yamada, The Schur subgroup of the
Brauer group).

Let E = D"*" be the endomorphism ring of a rational
representation of a finite group. Then D has uniformly
distributed invariants. This means that Z(D) is Galois over Q
and m,, does not depend on the prime ideal p of Z(D) = K, but
only on the prime numberp € pNQ = pZ

mp :=m, forany p <R, pNQ = pZ.



Discriminant maximal order A over Z.

E =D"",K =2Z(D)=Z(E), s? = (mn)? = dimg (E).
Assume that D has uniformly distributed invariants.
mp :=m, forany p IR, pNQ = pZ.

p IR = Np =Ny /q(p), ap == [{p | pNQ = pZ}|.
Let A be a maximal order in E.

N# = {X € E | treg(X)) € Z for all A\ € A} = R#A*.

§ = disc(K /Q) = |[R*/R].
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Main result

IN# | = 552 H ngs(s—tp)
p

where t, = s/mp.



Computation of maximal order: direct approach.

v

Let A = (A1,...,As2¢) C E be any order.
» Then there is a maximal order M in E such that

ANCMcCM*CA*.

A*/N is a finite R-module.

Algorithm:

Loop over the minimal submodules A C S C A*.

Compute the multiplicative closure M(S) = (S,S?,S3,...)
If M(S) ¢ A* then S is not contained in an order.
Otherwise M(S) is an overorder of A.

Replace A by M(S) and continue.

If no M(S) is an order, then A is already maximal.
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Zassenhaus’ computation of maximal order.

Let A be an order in E.

>

The arithmetic radical AR(A) of A is the intersection of all
maximal right ideals of A that contain |[A*/A.

Then AR(A) is an ideal, hence A C O;(AR(A)) :=

O(A) :={x e E | AR(A)x C AR(A)}.

» A= O(A) if and only if A is hereditary.
» Any overorder of a hereditary order is hereditary.
» If Ais hereditary, but not maximal, say A, is not maximal (o

prime ideal of R), then O,(1) is a proper overorder of A for
any maximal twosided ideal | of A that contains .

» all rational primes p | |A*/A| are handled separately
» Prime after prime we compute a p-maximal order.

Involves only linear equations modulo p.



Example, E = Mat3(Q[¢7 + ¢ 1])-

>
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Input E from file (algebra generators)

Call SchurindexJac(E)

Dimension of E is 12

Centre of dimension 3 and discriminant 72
Determinant of order: 710438, Discriminant 7243
Order is already hereditary

For prime 7: 2 maximal ideals

Idealiser of first ideal is proper overorder
and 7-maximal, so finished with prime 7

For prime 43: 6 maximal ideals

Idealiser of first ideal is proper overorder
and has 5 maximal ideals

Idealiser of second ideal is proper overorder
and has 4 maximal ideals

Idealiser of third ideal is proper overorder
and 43-maximal, so finished with prime 43
Discriminant of maximal order is 1



Situation for 43R = o1 pop3.

R R
>/\_<43R R)’

6 maximal ideals:

[ @ R\ . R RY).
I'_<43R R)'J'_<43R pi>l_172’3

-1
Idealiserofllis/\1:< R ¢ >~< R R )

v
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43R R §2603 R
A1 has 5 maximal ideals: @,/A; and

|i':< pi R),Ji’:( R R>fori:2,3.
p203 R 0203 P

Idealiser of 1} is conjugate to A, = ( R R >

v
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p3 R
has maximal ideals o1/, p2/A> and 15, J5.
The idealiser of 15 is maximal.
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Cyclotomic orders.

> p prime, (a) = (Z/pZ)*,n € Z
> z, € Z(P~1)x(P=1) companion matrix of the p-th cyclotomic

polynomial
01 0 ... 0
0 0 1 0
»/\::<diag(zp,z§,...,zgp_2), T DI
0O ... 0 0 1
n 0 0 O

7,(P—1)?x(p—1)?
» E = QA central simple Q-algebra of dimension (p — 1)?

p=7:

n 2 -2 6 -6 7 10 -10

si | 2373 | 237600 | 233672 | 2336 | 1 | 235876 | 235673«




