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Motivation.

Construction of irreducible matrix representations.

◮ G finite group, K a field, n ∈ N, ∆ : G → GLn(K ) group
homomorphism

◮ KG-module structure on V = K 1×n.
◮ The representation ∆ is called irreducible, if V is a simple

KG-module, i.e. V and {0} are the only KG-submodules of
V .

◮ There are only finitely many simple KG-modules up to
isomorphism.

◮ Goal: Find all irreducible matrix representations of G.



Construct irreducible representations of G.

1) Construct representations:
◮ Permutation representations
◮ More general induced representations from subgroups
◮ Tensor products
◮ Symmetric square
◮ Alternating square
◮ More general symmetrizations

2) Find irreducible representations as subquotients.
Meataxe techniques.



Construct irreducible representations of G.

◮ If char K = p > 0 then these are realized over a finite
subfield. For finite fields meataxe techniques are available
to find composition factors and to prove irreducibility.

◮ If char K = 0, then these are realized over a number field
K , a finite extension of Q.

◮ Over Q meataxe techniques are used to obtain
subrepresentations that are likely to be irreducible.

◮ Use the endomorphism ring

E = {x ∈ K n×n | x∆(g) = ∆(g)x for all g ∈ G}

◮ Schur’s Lemma: ∆ irreducible ⇐⇒ E skewfield.
◮ Goal: Test if E is a skew field.
◮ E is a finite dimensional semisimple Q-algebra.



Computing the endomorphism algebra.

E = {x ∈ Qn×n | x∆(g) = ∆(g)x for all g ∈ G}

◮ Obtain E by solving system of linear equations
◮ or by finding random elements:
◮ G = 〈g1 = 1, g2, . . . , gs〉,
◮ π : Qn×n → Qn×n, π(x) = 1

s

∑s
i=1 ∆(gi)

−1x∆(gi) is linear
◮ 1 is unique eigenvalue ≥ 1
◮ eigenspace E
◮ iterating π approximates the projection

πG : x 7→ 1
|G|

∑

g∈G ∆(g)−1x∆(g) onto E ≤ Qn×n

◮ E = 〈π∞(b1), . . . , π
∞(bn2)〉

◮ E = 〈π∞(x1), . . . , π
∞(xa)〉Q algebra



Strategy to determine structure of E .

Wedderburn
E ∼=

⊕t
i=1 Dni×ni

i with division algebras Di .

Algorithm (overview)

◮ E = 〈b1, . . . , bd〉Q given in right regular representation:

◮ bi ∈ Qd×d , bkbi =
∑d

j=1(bi)j,kbj

◮ find central idempotents, achieve E = Dn×n

◮ calculate the Schur index of E as lcm of local Schur indices
◮ Use regular trace bilinear form:

Tr : E × E → K , (a, b) 7→ trreg(ab).
◮ σ real place of K , then Schur index mσ of E ⊗σ R from

signature of σ ◦ Tr.
◮ ℘ finite place of K , then Schur index m℘ of completion E℘

from discriminant of any maximal order.



Find idempotents in Z (E).

Z = Z (E) := {z ∈ E | zbi = biz for all 1 ≤ i ≤ d}

◮ Z ∼=
⊕t

i=1 Ki étale
◮ regular representation: Z = 〈z1, . . . , zs〉 ≤ Qs×s

◮ Elementary fact: the zi have a simultaneous
diagonalization

◮ Choose random z ∈ Z , compute its minimal polynomial f
◮ If f = gh is not irreducible, then Qs = ker(g(z)) ⊕ ker(h(z))

is a Z -invariant decomposition of the natural module
◮ Compute the action of the generators on both invariant

submodules and iterate this procedure
◮ Z is a field, if all zi have irreducible minimal polynomial



Assume that E = Dn×n is simple.
◮ E = Dn×n

◮ K = Z (D) = Z (E) number field of degree k = [K : Q]
◮ m2 = dimK (D) and so d = dimQ(E) = n2m2k
◮ know d and k
◮ Goal: compute Schur index m of E
◮ Fact: Let P denote the set of all places of K . Then D is

uniquely determined by all its completions (D℘)℘∈P.
◮ The Schur index m of E is the least common multiple of the

Schur indices m℘ of all completions E℘ := E ⊗K K℘.
◮ Goal: Determine all local Schur indices m℘ of E .
◮ For ℘ : K → C complex place E ⊗K C = Cmn×mn.
◮ If ℘ : K → R is a real place then

E℘ = E ⊗K R =

{

Rnm×nm or
Hnm/2×nm/2

where H =
(

−1,−1
R

)

.



The real completion.

Use the trace bilinear form. Tr : E × E → K , (a, b) 7→ trreg(ab).

Lemma

◮ Signature (H, Tr) = (1,−3).
◮ Signature (R2×2, Tr) = (3,−1).
◮ Signature (Rn×n, Tr) = (n(n + 1)/2,−n(n − 1)/2).
◮ Signature (Hn/2×n/2, Tr) = (n(n − 1)/2,−n(n + 1)/2).

Proof:
◮ The Gram matrix of Tr for the basis (1, i , j , k) of H is

diag(4,−4,−4,−4).

◮ The Gram matrix of Tr for the basis ( 10
00 , 00

01 , 01
00 , 00

10 )

is diag (2, 2, 02
20 ).



Maximal order is a local property.

◮ K = Z (E) number field, R ring of integers, E = Dn×n.
◮ An R-order Λ in E is a subring of E which is a finitely

generated R-module and spans E over K .
◮ Λ is called maximal, if it is not contained in a proper

overorder.
◮ Λ∗ := {d ∈ E | tr(da) ∈ R for all a ∈ Λ}

◮ Λ order ⇒ Λ ⊂ Λ∗.

Theorem.
The algebra E has a maximal order.
The order Λ is maximal if and only if all its finite completions are
maximal orders.

Proof. Λ ⊂ E any R-order, then Λ ⊂ Λ∗ and Λ∗/Λ is a finite
group. So Λ has only finitely many overorders and one of them
is maximal.



Local division algebras.
Let R be a complete discrete valuation ring with finite residue
field F = R/πR and quotient field K . Let D be a division
algebra with center K and index m, so m2 = dimK (D).

Theorem.
The valuation of K extends uniquely to a valuation v of D and
the corresponding valuation ring

M := {d ∈ D | v(d) ≥ 0}

is the unique maximal R-order in D.
Let πD ∈ M be a prime element. Then [(M/πDM) : F ] = m.
Put

M∗ := {d ∈ D | tr(da) ∈ R for all a ∈ M}

where tr denotes the regular trace tr : D → K . Then

M∗ = π1−m
D M and |M∗/M| = |M/πDM|m−1 = |F |m(m−1).



R complete dvr, M ≤ D valuation ring, dimK (D) = m2.

Matrix rings.
All maximal R-orders Λ in Dn×n are conjugate to Mn×n. With
respect to the trace bilinear form, we obtain

Λ∗ = π1−m
D Λ and hence |Λ∗/Λ| = |F |n

2(m2−m).

◮ Know (nm)2 = dimK (Dn×n) so s = nm, and |F |.
◮ Calculate Λ and Λ∗ and therewith t = (nm)2 − n2m.
◮ Then m = (s2 − t)/s = s − t/s.



The discriminant of a maximal order.

◮ E = Dn×n central simple algebra over number field
K = Z (E) of dimension s2 = (nm)2

◮ m℘ the ℘-local Schur index of D, so
E℘

∼= Dn℘×n℘

℘ with n℘m℘ = s
◮ Λ be a maximal R-order in E
◮ t℘ the number of composition factors ∼= R/℘ of the finite

R-module Λ∗/Λ.

Theorem.

◮ t℘ > 0 ⇔ m℘ 6= 1
◮ m℘ = (s2 − t℘)/s = s − t℘/s
◮ The global Schur index is

m = lcm {m℘ | ℘ ∈ S} ∪ {mσ | σ real place of K}



Rational calculation.

Theorem (see Yamada, The Schur subgroup of the
Brauer group).
Let E = Dn×n be the endomorphism ring of a rational
representation of a finite group. Then D has uniformly
distributed invariants. This means that Z (D) is Galois over Q

and m℘ does not depend on the prime ideal ℘ of Z (D) = K , but
only on the prime number p ∈ ℘ ∩ Q = pZ

mp := m℘ for any ℘ E R, ℘ ∩ Q = pZ.



Discriminant maximal order Λ over Z.

◮ E = Dn×n, K = Z (D) = Z (E), s2 = (mn)2 = dimK (E).
◮ Assume that D has uniformly distributed invariants.
◮ mp := m℘ for any ℘ E R, ℘ ∩ Q = pZ.

◮ ℘ E R ⇒ Np := NK/Q(℘), ap := |{℘ | ℘ ∩ Q = pZ}|.
◮ Let Λ be a maximal order in E .
◮ Λ# := {x ∈ E | trreg(xλ) ∈ Z for all λ ∈ Λ} = R#Λ∗.
◮ δ := disc(K/Q) = |R#/R|.

Main result

|Λ#/Λ| = δs2 ∏

p

Naps(s−tp)
p

where tp = s/mp.



Computation of maximal order: direct approach.

◮ Let Λ = 〈λ1, . . . , λs2k 〉 ⊂ E be any order.
◮ Then there is a maximal order M in E such that

Λ ⊂ M ⊂ M∗ ⊂ Λ∗.

◮ Λ∗/Λ is a finite R-module.
◮ Algorithm:
◮ Loop over the minimal submodules Λ ⊂ S ⊂ Λ∗.
◮ Compute the multiplicative closure M(S) = 〈S, S2, S3, . . .〉

◮ If M(S) 6⊂ Λ∗ then S is not contained in an order.
◮ Otherwise M(S) is an overorder of Λ.
◮ Replace Λ by M(S) and continue.
◮ If no M(S) is an order, then Λ is already maximal.



Zassenhaus’ computation of maximal order.

Let Λ be an order in E .

◮ The arithmetic radical AR(Λ) of Λ is the intersection of all
maximal right ideals of Λ that contain |Λ∗/Λ|.

◮ Then AR(Λ) is an ideal, hence Λ ⊂ Or (AR(Λ)) :=
O(Λ) := {x ∈ E | AR(Λ)x ⊆ AR(Λ)}.

◮ Λ = O(Λ) if and only if Λ is hereditary.
◮ Any overorder of a hereditary order is hereditary.
◮ If Λ is hereditary, but not maximal, say Λ℘ is not maximal (℘

prime ideal of R), then Or (I) is a proper overorder of Λ for
any maximal twosided ideal I of Λ that contains ℘.

◮ all rational primes p | |Λ∗/Λ| are handled separately
◮ Prime after prime we compute a p-maximal order.
◮ Involves only linear equations modulo p.



Example, E = Mat3(Q[ζ7 + ζ−1
7 ]).

◮ Input E from file (algebra generators)
◮ Call SchurIndexJac(E)
◮ Dimension of E is 12
◮ Centre of dimension 3 and discriminant 72

◮ Determinant of order: 710436, Discriminant 72436

◮ Order is already hereditary
◮ For prime 7: 2 maximal ideals
◮ Idealiser of first ideal is proper overorder
◮ and 7-maximal, so finished with prime 7
◮ For prime 43: 6 maximal ideals
◮ Idealiser of first ideal is proper overorder
◮ and has 5 maximal ideals
◮ Idealiser of second ideal is proper overorder
◮ and has 4 maximal ideals
◮ Idealiser of third ideal is proper overorder
◮ and 43-maximal, so finished with prime 43
◮ Discriminant of maximal order is 1



Situation for 43R = ℘1℘2℘3.

◮ Λ =

(

R R
43R R

)

,

◮ 6 maximal ideals:

◮ Ii =

(

℘i R
43R R

)

, Ji =

(

R R
43R ℘i

)

i = 1, 2, 3

◮ Idealiser of I1 is Λ1 =

(

R ℘−1
1

43R R

)

∼

(

R R
℘2℘3 R

)

.

◮ Λ1 has 5 maximal ideals: ℘1Λ1 and

◮ I′i =

(

℘i R
℘2℘3 R

)

, J ′
i =

(

R R
℘2℘3 ℘i

)

for i = 2, 3.

◮ Idealiser of I′2 is conjugate to Λ2 =

(

R R
℘3 R

)

◮ has maximal ideals ℘1Λ2, ℘2Λ2 and I′′3 , J ′′
3 .

◮ The idealiser of I′′3 is maximal.



Cyclotomic orders.

◮ p prime, 〈a〉 = (Z/pZ)∗, n ∈ Z

◮ zp ∈ Z(p−1)×(p−1) companion matrix of the p-th cyclotomic
polynomial

◮ Λ := 〈diag(zp, za
p , . . . , zap−2

p ),















0 1 0 . . . 0
0 0 1 . . . 0
...

. . . . . . . . .
...

0 . . . 0 0 1
n 0 . . . 0 0















〉 ≤

Z(p−1)2×(p−1)2

◮ E = QΛ central simple Q-algebra of dimension (p − 1)2

p = 7:
n 2 -2 6 -6 7 10 -10
si 2373 2376∞ 233672 2336∞ 1 235676 235673∞


