Extremal lattices

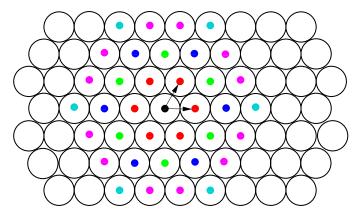
Gabriele Nebe

Lehrstuhl D für Mathematik

Graz, January 11, 2013

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Lattices and sphere packings



Hexagonal Circle Packing

$$\theta = 1 + 6q + 6q^3 + 6q^4 + 12q^7 + 6q^9 + \dots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Density of lattices

Definition

► A lattice *L* in Euclidean *n*-space $(\mathbb{R}^n, (,))$ is the \mathbb{Z} -span of an \mathbb{R} -basis $B = (b_1, \ldots, b_n)$ of \mathbb{R}^n

$$L = \langle b_1, \dots, b_n \rangle_{\mathbb{Z}} = \{ \sum_{i=1}^n a_i b_i \mid a_i \in \mathbb{Z} \}.$$

- $\min(L) := \min\{(\ell, \ell) \mid 0 \neq \ell \in L\}$ is the minimum of L
- $det(L) := det((b_i, b_j))$ the determinant of L
- ► Two lattices L, L' are similar if there is some $a \in \mathbb{R}^*$, $\sigma \in O_n(\mathbb{R})$ such that $a\sigma(L) = L'$.
- L_n = GL_n(ℤ)\GL_n(ℝ)/ℝ*O_n(ℝ) space of similarity classes of n-dimensional lattices.
- ▶ $\gamma : \mathcal{L}_n \to \mathbb{R}_{>0}, [L] \mapsto \frac{\min(L)}{\det(L)^{1/n}}$ Hermite function
- $\gamma_n := \max\{\gamma([L]) \mid [L] \in \mathcal{L}_n\}$ Hermite constant

The sphere packing density of [L] is $\frac{\gamma([L])}{4}^{n/2}$ times the volume of the *n*-dimensional unit sphere.

Dense lattice sphere packings

- Classical problem to find densest sphere packings:
- Dimension 2: Lagrange (lattices), Fejes Tóth (general)
- Dimension 3: Kepler conjecture, proven by T.C. Hales (1998)
- ▶ Dimension ≥ 4: open
- Densest lattice sphere packings:
- Voronoi algorithm (~1900) all locally densest lattices.
- Densest lattices known in dimension 1,2,3,4,5, Korkine-Zolotareff (1872) 6,7,8 Blichfeldt (1935) and 24 Cohn, Kumar (2003).
- Density of lattice measures error correcting quality.

n	1	2	3	4	5	6	7	8	24
L	\mathbb{A}_1	\mathbb{A}_2	\mathbb{A}_3	\mathbb{D}_4	\mathbb{D}_5	\mathbb{E}_6	\mathbb{E}_7	\mathbb{E}_8	Λ_{24}
γ_n	1	1.15	1.26	1.41	1.52	1.67	1.81	2	4

The densest lattices.

Even unimodular lattices

Definition

Let L be an n-dimensional lattice.

The dual lattice is

$$L^{\#} := \{ x \in \mathbb{R}^n \mid (x, \ell) \in \mathbb{Z} \text{ for all } \ell \in L \}$$

(日) (日) (日) (日) (日) (日) (日)

- L is called unimodular if $L = L^{\#} (\Rightarrow \det(L) = 1)$.
- $Q: \mathbb{R}^n \to \mathbb{R}_{\geq 0}, Q(x) := \frac{1}{2}(x, x)$ associated quadratic form
- L is called even if $Q(\ell) \in \mathbb{Z}$ for all $\ell \in L$.

Even unimodular lattices L correspond to regular positive definite integral quadratic forms $Q: L \to \mathbb{Z}$. $L = L^{\#} \Rightarrow \gamma(L) = \min(L)$.

Theta-series of lattices

Let (L, Q) be an even unimodular lattice of dimension n so a regular positive definite integral quadratic form $Q: L \to \mathbb{Z}$.

The theta series of L is

$$\theta_L = \sum_{\ell \in L} q^{Q(\ell)} = 1 + \sum_{k=\min(L)/2}^{\infty} a_k q^k$$

where $a_k = |\{\ell \in L \mid Q(\ell) = k\}|.$

- θ_L defines a holomorphic function on the upper half plane by substituting $q := \exp(2\pi i z)$.
- Then θ_L is a modular form of weight $\frac{n}{2}$ for the full modular group $SL_2(\mathbb{Z})$.
- \blacktriangleright *n* is a multiple of 8.
- ▶ $\theta_L \in \mathcal{M}_{\frac{n}{2}}(SL_2(\mathbb{Z})) = \mathbb{C}[E_4, \Delta]_{\frac{n}{2}}$ where $E_4 := \theta_{E_8} = 1 + 240q + \ldots$ is the normalized Eisenstein series of weight 4 and

$$\Delta = q - 24q^2 + 252q^3 - 1472q^4 + \dots$$
 of weight 12

Extremal modular forms

Basis of $\mathcal{M}_{4k}(SL_2(\mathbb{Z}))$:

$$E_{4}^{k} = 1 + 240kq + *q^{2} + \dots$$

$$E_{4}^{k-3}\Delta = q + *q^{2} + \dots$$

$$E_{4}^{k-6}\Delta^{2} = q^{2} + \dots$$

$$\vdots$$

$$E_{4}^{k-3m_{k}}\Delta^{m_{k}} = \dots \qquad q^{m_{k}} + \dots$$

where $m_k = \lfloor \frac{n}{24} \rfloor = \lfloor \frac{k}{3} \rfloor$.

Definition

This space contains a unique form

$$f^{(k)} := 1 + 0q + 0q^{2} + \ldots + 0q^{m_{k}} + a(f^{(k)})q^{m_{k}+1} + b(f^{(k)})q^{m_{k}+2} + \ldots$$

 $f^{(k)}$ is called the extremal modular form of weight 4k.

$$\begin{aligned} f^{(1)} &= 1 + 240q + \ldots = \theta_{E_8}, \ f^{(2)} &= 1 + 480q + \ldots = \theta_{E_8}^2, \\ f^{(3)} &= 1 + 196, 560q^2 + \ldots = \theta_{\Lambda_{24}}, \\ f^{(6)} &= 1 + 52, 416, 000q^3 + \ldots = \theta_{P_{48p}} = \theta_{P_{48q}} = \theta_{P_{48n}}, \\ f^{(9)} &= 1 + 6, 218, 175, 600q^4 + \ldots = \theta_{\Gamma}. \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Extremal even unimodular lattices

Theorem (Siegel, Jenkins, Rouse)

 $a(f^{(k)}) > 0$ for all k and $b(f^{(k)}) < 0$ for large k ($k \ge 20408$).

Corollary

Let L be an n-dimensional even unimodular lattice. Then

$$\min(L)/2 \le 1 + \lfloor \frac{n}{24} \rfloor = 1 + m_{n/8}.$$

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices $L \leq \mathbb{R}^n$

n	8	16	24	32	40	48	72	80	$\geq 163, 264$
min(L)	2	2	4	4	4	6	8	8	
number of extremal lattices	1	2	1	$\geq 10^7$	$\geq 10^{51}$	≥ 3	≥ 1	≥ 4	0

Extremal even unimodular lattices in jump dimensions

Let L be an extremal even unimodular lattice of dimension 24m so $\min(L)=2m+2$

- ▶ All non-empty layers $\emptyset \neq \{\ell \in L \mid Q(\ell) = a\}$ form spherical 11-designs.
- ► The density of the associated sphere packing realises a local maximum of the density function on the space of all 24*m*-dimensional lattices.
- If m = 1, then $L = \Lambda_{24}$ is unique, Λ_{24} is the Leech lattice.
- The 196560 minimal vectors of the Leech lattice form the unique tight spherical 11-design and realise the maximal kissing number in dimension 24.
- Λ_{24} is the densest 24-dimensional lattice (Cohn, Kumar).
- For m = 2,3 these lattices are the densest known lattices and realise the maximal known kissing number.

(日) (日) (日) (日) (日) (日) (日)

• Existence is open for $m \ge 4$.

Extremal even unimodular lattices in jump dimensions

The extremal theta series

$$\begin{split} f^{(3)} &= 1 + 196, 560q^2 + \ldots = \theta_{\Lambda_{24}}, \\ f^{(6)} &= 1 + 52, 416, 000q^3 + \ldots = \theta_{P_{48p}} = \theta_{P_{48p}} = \theta_{P_{48p}}, \\ f^{(9)} &= 1 + 6, 218, 175, 600q^4 + \ldots = \theta_{\Gamma_{72}}. \end{split}$$

The automorphism groups		
$Aut(\Lambda_{24}) \cong 2.Co_1$	order =	$\frac{8315553613086720000}{2^{22}3^95^47^2\cdot 11\cdot 13\cdot 23}$
$\operatorname{Aut}(P_{48p}) \cong (\operatorname{SL}_2(23) \times S_3) : 2$	order	$72864 = 2^5 3^2 11 \cdot 23$
$\operatorname{Aut}(P_{48q}) \cong \operatorname{SL}_2(47)$	order	$103776 = 2^5 3 \cdot 23 \cdot 47$
$\operatorname{Aut}(P_{48n}) \cong (\operatorname{SL}_2(13) \operatorname{Y} \operatorname{SL}_2(5)).2^2$	order	$524160 = 2^7 3^2 5 \cdot 7 \cdot 13$
$Aut(\Gamma_{72}) \cong (SL_2(25) \times PSL_2(7)) : 2$	order	$5241600 = 2^8 3^2 5^2 7 \cdot 13$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ Q Q @

Construction of extremal lattices

From codes.

- Let (e_1, \ldots, e_n) be a *p*-frame, so $(e_i, e_j) = p\delta_{ij}$.
- $Z := \langle e_1, \dots, e_n \rangle_{\mathbb{Z}} \cong \sqrt{p} \mathbb{Z}^n, \, Z^{\#} = \frac{1}{p} Z.$
- $\blacktriangleright Z^{\#}/Z \cong \mathbb{F}_p^n.$
- Given $C \leq \mathbb{F}_p^n$ the codelattice is
- $\Lambda(C) := \{ \frac{1}{p} \sum c_i e_i \mid (\overline{c}_1, \dots, \overline{c}_n) \in C \}$
- $\land (C)^{\#} = \Lambda(C^{\perp}).$
- $\Lambda(C)$ is even if p = 2 and C is doubly even.
- $\min(\Lambda(C)) = \min(p, \frac{d(C)}{p}).$
- $\operatorname{Aut}(C) \leq \operatorname{Aut}(\Lambda(C)).$

Binary extremal codes.

length	8	24	32	40	48	72	80	≥ 3952
d(C)	4	8	8	8	12	16	16	
extremal	h_8	\mathcal{G}_{24}	5	16,470	QR_{48}	?	≥ 4	0

Canonical constructions of lattices

- A canonical construction of a lattice is a construction that is respected by (a big subgroup of) its automorphism group.
- The Leech lattice has at least 23 constructions, none of them is really canonical:
- Leech as a neighbor of a code lattice
- Let G₂₄ ≤ ℝ₂²⁴ be the binary Golay code (the extended quadratic residue code).

- Then $d(\mathcal{G}_{24}) = 8$.
- $\operatorname{Min}(\Lambda(\mathfrak{G}_{24})) = \{\pm e_1, \dots, \pm e_{24}\}.$
- Neighbor lattice: $v = \frac{1}{2}(3e_1 + ... + e_{24})$
- $\Lambda_{24} := \Lambda(\mathcal{G}_{24})^{(v),2} := \langle \{ x \in \Lambda(\mathcal{G}_{24}) \mid (x,v) \text{ even } \}, \frac{v}{2} \rangle$
- $2^{12}: M_{24} \le \operatorname{Aut}(\Lambda_{24}) = 2.Co_1.$

Canonical constructions of the 48-dimensional lattices

Two of the 48-dimensional extremal lattices have a canonical construction with codes:

Theorem (Koch)

Let $C = C^{\perp} \leq \mathbb{F}_3^{48}$ with d(C) = 15. Then $\Lambda(C)^{(v),2}$ is an extremal even unimodular lattice, where $v = \frac{1}{3}(e_1 + \ldots + e_{48})$.

Theorem (N)

Let $C = C^{\perp} \leq \mathbb{F}_3^{48}$ with d(C) = 15 such that $|\operatorname{Aut}(C)|$ is divisible by some prime $p \geq 5$. Then $C \cong Q_{48}$ or $C \cong P_{48}$. We have $\operatorname{Aut}(Q_{48}) \cong \operatorname{SL}_2(47)$ and $\operatorname{Aut}(P_{48}) \cong (\operatorname{SL}_2(23) \times C_2) : 2$.

(日) (日) (日) (日) (日) (日) (日)

Remark

$$\Lambda(Q_{48})^{(v),2} \cong P_{48q}, \operatorname{Aut}(P_{48q}) \cong \operatorname{SL}_2(47) \\ \Lambda(P_{48})^{(v),2} \cong P_{48p}, \operatorname{Aut}(P_{48p}) \cong (\operatorname{SL}_2(23) \times S_3) : 2$$

How many 48-dimensional extremal lattices are there?

Theorem

Let L be an extremal even unimodular lattice of dimension 48 and $\sigma \in Aut(L)$ of order a such that $\varphi(a) > 24$ Then one of

- a = 120 and $L \cong P_{48n}$
- a = 132 and $L \cong P_{48p}$
- a = 69 and $L \cong P_{48p}$
- a = 47 and $L \cong P_{48q}$
- a = 65 and $L \cong P_{48n}$
- a = 104 and $L \cong P_{48n}$

Proof

- Fixed lattices of prime order automorphisms have dimension ≤ 22 (p ≥ 3), resp. 24 (p = 2) so know that Φ_a divides μ_σ
- ▶ Let $V(\sigma)$ be the subspace on which σ acts with characteristic polynomial Φ_a and $M := L \cap V(\sigma)$ (ideal lattice)
- ▶ and $F := L \cap (V(\sigma)^{\perp})$ (fixed lattice of some element of prime order)
- Compute possible actions of $\sigma_{|F} \in Aut(F)$.
- Compute the (σ_M, σ_F) -invariant unimodular overlattices L of $M \perp F$.
- Use reduction algorithms to prove $\min(L) \leq 4$ or
- if $\min(L) = 6$ then identify L with one of the three known lattices.

Hermitian lattices

Definition.

Let *K* be an imaginary quadratic number field, \mathbb{Z}_K its ring of integers, (V, h) an *n*-dimensional Hermitian positiv definite *K*-vectorspace.

- A lattice P ≤ V is a finitely generated Z_K-module that contains a basis of V.
- The minimum of P is $\min(P) := \min\{h(\ell, \ell) \mid 0 \neq \ell \in P\}.$
- ► The Hermitian Hermite function \(\gamma_h(P)\) := \(\frac{\mm min(P)}{\det(P)^{1/n}\)}\) measures the density of P.
- ▶ If $P = \langle b_1, \dots, b_n \rangle_{\mathbb{Z}_K}$ is a free \mathbb{Z}_K -module then $\det(P) = \det(h(b_i, b_j))_{i,j}$.
- The Hermitian dual lattice is

 $P^* := \{ v \in V \mid h(v, \ell) \in \mathbb{Z}_K \text{ for all } \ell \in P \}$

A D F A 同 F A E F A E F A Q A

We call P Hermitian unimodular, if $P = P^*$ (then det(P) = 1).

$$K = \mathbb{Q}[\sqrt{-7}], \mathbb{Z}_K = \mathbb{Z}[\alpha], \alpha = (1 + \sqrt{-7})/2$$

Then $\alpha^2 - \alpha + 2 = 0$, $\beta = \overline{\alpha} = 1 - \alpha$, $\alpha\beta = 2$ and $\mathbb{Z}[\alpha]$ has a Euclidean algorithm, for any $x \in K$ there is some $a \in \mathbb{Z}[\alpha]$ such that $N(x - a) \leq \frac{4}{7}$.

The densest 2-dimensional lattice

Then $\min(P_a) = 1$ and $\det(P_a) = 3/7$.

Denote by P_a the $\mathbb{Z}[lpha]$ -lattice with Gram matrix (

$$\left(\begin{array}{cc}1&2/\sqrt{-7}\\-2/\sqrt{-7}&1\end{array}\right).$$

The Barnes-lattice

$$\begin{split} P_b &= \langle (\beta, \beta, 0), (0, \beta, \beta), (\alpha, \alpha, \alpha) \rangle \leq \mathbb{Z}[\alpha]^3 \text{ with Hermitian form} \\ h: P_b \times P_b \to \mathbb{Z}[\alpha], h((a_1, a_2, a_3), (b_1, b_2, b_3)) &= \frac{1}{2} \sum_{i=1}^3 a_i \overline{b_i} \text{ is Hermitian} \\ \text{unimodular, } \operatorname{Aut}_{\mathbb{Z}[\alpha]}(P_b) &\cong \pm \operatorname{PSL}_2(7), \gamma_h(P_b) = \min(P_b) = 2. \end{split}$$

Densest $\mathbb{Z}[\alpha]$ -lattices

Trace lattices

- Any Hermitian \mathbb{Z}_K -lattice (P, h) is also a \mathbb{Z} -lattice (L, Q) of dimension 2n,
- where L = P and $Q(x) := h(x, x) \in \mathbb{R} \cap K = \mathbb{Q}$.
- ► Then the polar form of Q is (x, y) = Trace_{K/Q}(h(x, y)) and (L, Q) is called the trace lattice of (P, h).
- $\min(L) = 2\min(P), L^{\#} = \mathbb{Z}_{K}^{\#}P^{*} \text{ and } \det(L) = d_{K}^{n}\det(P)^{2}.$
- $\blacksquare \mathbb{Z}_K^{\#} = \{ x \in K \mid \operatorname{Trace}_{K/\mathbb{Q}}(x\ell) \in \mathbb{Z} \text{ for all } \ell \in \mathbb{Z}_K \}$

•
$$d_K = \det(\mathbb{Z}_K, \operatorname{Trace}(x\overline{y})) = |\mathbb{Z}_K^{\#}/\mathbb{Z}_K|$$

\mathbb{E}_8 as trace lattice

$$P_c := \mathbb{Z}[\alpha]^4 + \langle \frac{1}{\sqrt{-7}}(1, 1, 1, 3), \frac{1}{\sqrt{-7}}(0, 1, 3, -2) \rangle \le K^4$$

Then min(P_c) = 1, det(P_c) = (1/7)², P_c^* = \sqrt{-7}P_c, Trace(P_c) = \mathbb{E}_8

Theorem

 P_a , P_b and P_c are the densest $\mathbb{Z}[\alpha]$ -lattices in dimension 2,3,4. $\gamma_2(\mathbb{Z}[\alpha]) = \sqrt{7/3}, \gamma_3(\mathbb{Z}[\alpha]) = 2, \gamma_4(\mathbb{Z}[\alpha]) = \sqrt{7}.$

Hermitian tensor products (Renaud Coulangeon)

Minimal vectors in tensor products

Let (L, h_L) and (M, h_M) be Hermitian \mathbb{Z}_K -lattices, $n = \dim_{\mathbb{Z}_K}(L) \le m := \dim_{\mathbb{Z}_K}(M)$. Each $v \in L \otimes M$ is the sum of at most npure tensors. Write

$$v = \sum_{i=1}^{r} \ell_i \otimes m_i$$
, such that $r =: rk(v)$ minimal.

Put $A := (h_L(\ell_i, \ell_j))$ and $B := (h_M(m_i, m_j))$, then

 $h(v, v) = \operatorname{Trace} A\overline{B} \ge r \det(A)^{1/r} \det(B)^{1/r}.$

so $\min(L \otimes M) \ge \min\{rd_r(L)^{1/r}d_r(M)^{1/r} \mid r = 1, \dots, n\}$

where $d_r(L) = \min\{\det(T) \mid T \leq L, Rg(T) = r\}$. In particular $d_r(L)^{1/r} \geq \min(L)/\gamma_r(\mathbb{Z}_K)$ where $\gamma_r(\mathbb{Z}_K)$ is the Hermitian Hermite constant.

・ロト・四ト・モー・ 中下・ 日・ うらぐ

Extremal lattices as Hermitian tensor products

The Leech lattice

Let $P := P_b \otimes_{\mathbb{Z}[\alpha]} P_c$. Then $\min(P) = 2$ and $\operatorname{Trace}(P)$ is an extremal even unimodular lattice of dimension 24, so $\operatorname{Trace}(P) \cong \Lambda_{24}$.

<u>Proof:</u> Trace(*P*) is even unimodular, since P_b Hermitian unimodular and $\mathbb{E}_8 = \text{Trace}(P_c)$ even unimodular. Show that $\min(P) \ge 2$:

r	1	2	3
$d_r(P_b)$	2	2	1
$d_r(P_c)$	1	3/7	$\geq 1/8$
$rd_r(P_b)^{1/r}d_r(P_c)^{1/r}$	2	1,85	1, 5

 $\min(L \otimes M) \ge \min\{rd_r(L)^{1/r}d_r(M)^{1/r} \mid r = 1, \dots, n\}$

The discovery of the 72-dimensional extremal even unimodular lattice

1967 Turyn: Constructed the Golay code \mathcal{G}_{24} from the Hamming code

- 78,82,84 Tits; Lepowsky, Meurman; Quebbemann: Construction of the Leech lattice Λ_{24} from \mathbb{E}_8
 - 1996 Gross, Elkies: Λ_{24} from Hermitian structure of \mathbb{E}_8
 - 1996 N.: Tried similar construction of extremal 72-dimensional lattices (Bordeaux).
 - 1998 Bachoc, N.: Two extremal 80-dimensional lattices using Quebbemann's generalization and the Hermitian structure of \mathbb{E}_8
 - 2010 Griess: Reminds Lepowsky, Meurman construction of Leech. proposes to construct 72-dimensional lattices from Λ_{24}
 - 2010 N.: Used one of the nine $\mathbb{Z}[\alpha = \frac{1+\sqrt{-7}}{2}]$ structures P_i of Λ_{24} to find extremal 72-dimensional lattice $\Gamma_{72} = \text{Trace}(P_i \otimes_{\mathbb{Z}[\alpha]} P_b)$.
 - 2011 Parker, N.: Check all other polarisations of Λ_{24} to show that Γ_{72} is the unique extremal lattice obtained from Λ_{24} by Turyn's construction. Chance: $1:10^{16}$ to find extremely good polarisation.

Dimension 72

Theorem (Coulangeon, N)

Let *P* be an Hermitian $\mathbb{Z}[\alpha]$ -lattice with $\min(P) = 2$. Then $\min(P \otimes P_b) \ge 3$ and $\min(P \otimes P_b) > 3$ if and only if *P* has no sublattice isometric to P_b .

Proof.

r	1	2	3
$d_r (P_b)^{1/r}$	2	$\sqrt{2}$	1
$d_r(P)^{1/r}$	2	$\geq 2\sqrt{3/7}$	≥ 1
$rd_r(P_b)^{1/r}d_r(P)^{1/r}$	4	≥ 3.7	≥ 3

And $d_3(P) > 1$ if P_b is not a sublattice of P.

Corollary

Let *P* be some 12-dimensional $\mathbb{Z}[\alpha]$ -lattice such that $\operatorname{Trace}(P) \cong \Lambda_{24}$. Then $\min(P \otimes P_b) \ge 3$ and $\min(P \otimes P_b) = 4$ if *P* does not contain P_b .

Theorem (Hentschel 2009)

There are exactly nine $\mathbb{Z}[\alpha]$ -structures of the Leech lattice.

	group	$\#P_b \le P_i$
1	$SL_2(25)$	0
2	$2.A_6 \times D_8$	$2 \cdot 20,160$
3	$SL_{2}(13).2$	$2 \cdot 52,416$
4	$(\operatorname{SL}_2(5) \times A_5).2$	$2 \cdot 100,800$
5	$(\operatorname{SL}_2(5) \times A_5).2$	$2 \cdot 100,800$
6	$2^{9}3^{3}$	$2 \cdot 177,408$
7	$\pm \operatorname{PSL}_2(7) \times (C_7:C_3)$	$2 \cdot 306, 432$
8	$PSL_2(7) \times 2.A_7$	$2 \cdot 504,000$
9	$2.J_2.2$	$2 \cdot 1, 209, 600$

Theorem (Coulangeon, N)

 $d_3(P_i) = 1$ for i = 2, ..., 9 and $d_3(P_1) > 1$, so $\min(P_1 \otimes P_b) = 4$.

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Stehlé, Watkins proof of extremality

Theorem (Stehlé, Watkins (2010))

Let *L* be an even unimodular lattice of dimension 72 with $\min(L) \ge 6$. Then *L* is extremal, if and only if it contains at least 6, 218, 175, 600 vectors *v* with Q(v) = 4.

Proof: L is an even unimodular lattice of minimum ≥ 6 , so its theta series is

$$\theta_L = 1 + a_3 q^3 + a_4 q^4 + \dots = f^{(9)} + a_3 \Delta^3.$$

$$f^{(9)} = 1 + 6,218,175,600q^4 + \dots$$

$$\Delta^3 = q^3 - 72q^4 + \dots$$

So $a_4 = 6,218,175,600 - 72a_3 \ge 6,218,175,600$ if and only if $a_3 = 0$.

Remark

A similar proof works in all jump dimensions 24k (extremal minimum = 2k + 2) for lattices of minimum $\geq 2k$.

For dimensions 24k + 8 and lattices of minimum $\geq 2k$ one needs to count vectors v with Q(v) = k + 2.

The extremal 72-dimensional lattice Γ_{72}

Main result

- Γ₇₂ is an extremal even unimodular lattice of dimension 72.
- Γ₇₂ has a canonical construction as trace lattice of Hermitian tensor product.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- $\operatorname{Aut}(\Gamma_{72}) = \mathcal{U} := (\operatorname{PSL}_2(7) \times \operatorname{SL}_2(25)) : 2.$
- U is an absolutely irreducible subgroup of GL₇₂(ℚ).
- All \mathcal{U} -invariant lattices are similar to Γ_{72} .
- Γ₇₂ is an ideal lattice in the 91st cyclotomic number field.
- Γ₇₂ realises the densest known sphere packing
- and maximal known kissing number in dimension 72.
- Structure of Γ₇₂ can be used for decoding (Annika Meyer)