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Lattices and sphere packings
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Hexagonal Circle Packing

θ = 1 + 6q + 6q3 + 6q4 + 12q7 + 6q9 + . . . .



Density of lattices

Definition

I A lattice L in Euclidean n-space (Rn, (, )) is the Z-span of an R-basis
B = (b1, . . . , bn) of Rn

L = 〈b1, . . . , bn〉Z = {
nX
i=1

aibi | ai ∈ Z}.

I min(L) := min{(`, `) | 0 6= ` ∈ L} is the minimum of L
I det(L) := det((bi, bj)) the determinant of L
I Two lattices L,L′ are similar if there is some a ∈ R∗, σ ∈ On(R) such

that aσ(L) = L′.
I Ln = GLn(Z)\GLn(R)/R∗On(R) space of similarity classes of
n-dimensional lattices.

I γ : Ln → R>0, [L] 7→ min(L)

det(L)1/n Hermite function

I γn := max{γ([L]) | [L] ∈ Ln} Hermite constant

The sphere packing density of [L] is γ([L])
4

n/2
times the volume of the

n-dimensional unit sphere.



Dense lattice sphere packings

I Classical problem to find densest sphere packings:
I Dimension 2: Lagrange (lattices), Fejes Tóth (general)
I Dimension 3: Kepler conjecture, proven by T.C. Hales (1998)
I Dimension ≥ 4: open
I Densest lattice sphere packings:
I Voronoi algorithm (∼1900) all locally densest lattices.
I Densest lattices known in dimension 1,2,3,4,5, Korkine-Zolotareff (1872)

6,7,8 Blichfeldt (1935) and 24 Cohn, Kumar (2003).
I Density of lattice measures error correcting quality.

The densest lattices.
n 1 2 3 4 5 6 7 8 24
L A1 A2 A3 D4 D5 E6 E7 E8 Λ24

γn 1 1.15 1.26 1.41 1.52 1.67 1.81 2 4



Even unimodular lattices

Definition
Let L be an n-dimensional lattice.

I The dual lattice is

L# := {x ∈ Rn | (x, `) ∈ Z for all ` ∈ L}

I L is called unimodular if L = L# (⇒ det(L) = 1).
I Q : Rn → R≥0, Q(x) := 1

2
(x, x) associated quadratic form

I L is called even if Q(`) ∈ Z for all ` ∈ L.

Even unimodular lattices L correspond to regular positive definite integral
quadratic forms Q : L→ Z.
L = L# ⇒ γ(L) = min(L).



Theta-series of lattices

Let (L,Q) be an even unimodular lattice of dimension n so a regular positive
definite integral quadratic form Q : L→ Z.

I The theta series of L is

θL =
X
`∈L

qQ(`) = 1 +

∞X
k=min(L)/2

akq
k

where ak = |{` ∈ L | Q(`) = k}|.
I θL defines a holomorphic function on the upper half plane by substituting
q := exp(2πiz).

I Then θL is a modular form of weight n
2

for the full modular group SL2(Z).
I n is a multiple of 8.
I θL ∈M n

2
(SL2(Z)) = C[E4,∆] n

2
where E4 := θE8 = 1 + 240q + . . . is the

normalized Eisenstein series of weight 4 and

∆ = q − 24q2 + 252q3 − 1472q4 + . . . of weight 12



Extremal modular forms

Basis of M4k(SL2(Z)):

Ek4 = 1+ 240kq+ ∗q2+ . . .

Ek−3
4 ∆ = q+ ∗q2+ . . .

Ek−6
4 ∆2 = q2+ . . .

...
E
k−3mk
4 ∆mk = . . . qmk + . . .

where mk = b n
24
c = b k

3
c.

Definition
This space contains a unique form

f (k) := 1 + 0q + 0q2 + . . .+ 0qmk + a(f (k))qmk+1 + b(f (k))qmk+2 + . . .

f (k) is called the extremal modular form of weight 4k.

f (1) = 1 + 240q + . . . = θE8 , f (2) = 1 + 480q + . . . = θ2
E8 ,

f (3) = 1 + 196, 560q2 + . . . = θΛ24 ,
f (6) = 1 + 52, 416, 000q3 + . . . = θP48p = θP48q = θP48n ,
f (9) = 1 + 6, 218, 175, 600q4 + . . . = θΓ.



Extremal even unimodular lattices

Theorem (Siegel, Jenkins, Rouse)

a(f (k)) > 0 for all k and b(f (k)) < 0 for large k (k ≥ 20408).

Corollary

Let L be an n-dimensional even unimodular lattice. Then

min(L)/2 ≤ 1 + b n
24
c = 1 +mn/8.

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices L≤ Rn

n 8 16 24 32 40 48 72 80 ≥ 163, 264

min(L) 2 2 4 4 4 6 8 8
number of
extremal 1 2 1 ≥ 107 ≥ 1051 ≥ 3 ≥ 1 ≥ 4 0
lattices



Extremal even unimodular lattices in jump dimensions

Let L be an extremal even unimodular lattice of dimension 24m so
min(L) = 2m+ 2

I All non-empty layers ∅ 6= {` ∈ L | Q(`) = a} form spherical 11-designs.
I The density of the associated sphere packing realises a local maximum

of the density function on the space of all 24m-dimensional lattices.
I If m = 1, then L = Λ24 is unique, Λ24 is the Leech lattice.
I The 196560 minimal vectors of the Leech lattice form the unique tight

spherical 11-design and realise the maximal kissing number in
dimension 24.

I Λ24 is the densest 24-dimensional lattice (Cohn, Kumar).
I For m = 2, 3 these lattices are the densest known lattices and realise the

maximal known kissing number.
I Existence is open for m ≥ 4.



Extremal even unimodular lattices in jump dimensions

The extremal theta series
f (3) = 1 + 196, 560q2 + . . . = θΛ24 .
f (6) = 1 + 52, 416, 000q3 + . . . = θP48p = θP48q = θP48n .
f (9) = 1 + 6, 218, 175, 600q4 + . . . = θΓ72 .

The automorphism groups
Aut(Λ24) ∼= 2.Co1 order 8315553613086720000

= 222395472 · 11 · 13 · 23

Aut(P48p) ∼= (SL2(23)× S3) : 2 order 72864 = 253211 · 23

Aut(P48q) ∼= SL2(47) order 103776 = 253 · 23 · 47

Aut(P48n) ∼= (SL2(13)Y SL2(5)).22 order 524160 = 27325 · 7 · 13

Aut(Γ72) ∼= (SL2(25)× PSL2(7)) : 2 order 5241600 = 2832527 · 13



Construction of extremal lattices

From codes.

I Let (e1, . . . , en) be a p-frame, so (ei, ej) = pδij .
I Z := 〈e1, . . . , en〉Z ∼=

√
pZn, Z# = 1

p
Z.

I Z#/Z ∼= Fnp .
I Given C ≤ Fnp the codelattice is
I Λ(C) := { 1

p

P
ciei | (c1, . . . , cn) ∈ C}

I Λ(C)# = Λ(C⊥).
I Λ(C) is even if p = 2 and C is doubly even.
I min(Λ(C)) = min(p, d(C)

p
).

I Aut(C) ≤ Aut(Λ(C)).

Binary extremal codes.

length 8 24 32 40 48 72 80 ≥ 3952

d(C) 4 8 8 8 12 16 16

extremal h8 G24 5 16, 470 QR48 ? ≥ 4 0



Canonical constructions of lattices

I A canonical construction of a lattice is a construction that is respected by
(a big subgroup of) its automorphism group.

I The Leech lattice has at least 23 constructions, none of them is really
canonical:

I Leech as a neighbor of a code lattice
I Let G24 ≤ F24

2 be the binary Golay code (the extended quadratic residue
code).

I Then d(G24) = 8.
I Min(Λ(G24)) = {±e1, . . . ,±e24}.
I Neighbor lattice: v = 1

2
(3e1 + . . .+ e24)

I Λ24 := Λ(G24)(v),2 := 〈{x ∈ Λ(G24) | (x, v) even }, v
2
〉

I 212 : M24 ≤ Aut(Λ24) = 2.Co1.



Canonical constructions of the 48-dimensional lattices

Two of the 48-dimensional extremal lattices have a canonical construction
with codes:

Theorem (Koch)

Let C = C⊥ ≤ F48
3 with d(C) = 15. Then Λ(C)(v),2 is an extremal even

unimodular lattice, where v = 1
3
(e1 + . . .+ e48).

Theorem (N)

Let C = C⊥ ≤ F48
3 with d(C) = 15 such that |Aut(C)| is divisible by some

prime p ≥ 5. Then C ∼= Q48 or C ∼= P48. We have Aut(Q48) ∼= SL2(47) and
Aut(P48) ∼= (SL2(23)× C2) : 2.

Remark
Λ(Q48)(v),2 ∼= P48q, Aut(P48q) ∼= SL2(47)
Λ(P48)(v),2 ∼= P48p, Aut(P48p) ∼= (SL2(23)× S3) : 2



How many 48-dimensional extremal lattices are there?
Theorem
Let L be an extremal even unimodular lattice of dimension 48 and
σ ∈ Aut(L) of order a such that ϕ(a) > 24 Then one of

I a = 120 and L ∼= P48n

I a = 132 and L ∼= P48p

I a = 69 and L ∼= P48p

I a = 47 and L ∼= P48q

I a = 65 and L ∼= P48n

I a = 104 and L ∼= P48n

Proof
I Fixed lattices of prime order automorphisms have dimension ≤ 22

(p ≥ 3), resp. 24 (p = 2) so know that Φa divides µσ
I Let V (σ) be the subspace on which σ acts with characteristic polynomial

Φa and M := L ∩ V (σ) (ideal lattice)
I and F := L ∩ (V (σ)⊥) (fixed lattice of some element of prime order)
I Compute possible actions of σ|F ∈ Aut(F ).
I Compute the (σM , σF )-invariant unimodular overlattices L of M ⊥ F .
I Use reduction algorithms to prove min(L) ≤ 4 or
I if min(L) = 6 then identify L with one of the three known lattices.



Hermitian lattices

Definition.
Let K be an imaginary quadratic number field, ZK its ring of integers, (V, h)
an n-dimensional Hermitian positiv definite K-vectorspace.

I A lattice P ≤ V is a finitely generated ZK -module that contains a basis
of V .

I The minimum of P is min(P ) := min{h(`, `) | 0 6= ` ∈ P}.
I The Hermitian Hermite function γh(P ) := min(P )

det(P )1/n measures the
density of P .

I If P = 〈b1, . . . , bn〉ZK is a free ZK -module then
det(P ) = det(h(bi, bj))i,j .

I The Hermitian dual lattice is

P ∗ := {v ∈ V | h(v, `) ∈ ZK for all ` ∈ P}

We call P Hermitian unimodular, if P = P ∗ (then det(P ) = 1).



K = Q[
√
−7], ZK = Z[α], α = (1 +

√
−7)/2

Then α2 − α+ 2 = 0, β = α = 1− α, αβ = 2 and Z[α] has a Euclidean
algorithm, for any x ∈ K there is some a ∈ Z[α] such that N(x− a) ≤ 4

7
.

The densest 2-dimensional lattice

Denote by Pa the Z[α]-lattice with Gram matrix
„

1 2/
√
−7

−2/
√
−7 1

«
.

Then min(Pa) = 1 and det(Pa) = 3/7.

The Barnes-lattice
Pb = 〈(β, β, 0), (0, β, β), (α, α, α)〉 ≤ Z[α]3 with Hermitian form
h : Pb × Pb → Z[α], h((a1, a2, a3), (b1, b2, b3)) = 1

2

P3
i=1 aibi is Hermitian

unimodular, AutZ[α](Pb) ∼= ±PSL2(7), γh(Pb) = min(Pb) = 2. Gram matrix0@ 2 1 β
1 2 β
α α 3

1A



Densest Z[α]-lattices
Trace lattices

I Any Hermitian ZK -lattice (P, h) is also a Z-lattice (L,Q) of dimension 2n,
I where L = P and Q(x) := h(x, x) ∈ R ∩K = Q.
I Then the polar form of Q is (x, y) = TraceK/Q(h(x, y)) and (L,Q) is

called the trace lattice of (P, h).
I min(L) = 2 min(P ), L# = Z#

KP
∗ and det(L) = dnK det(P )2.

I Z#
K = {x ∈ K | TraceK/Q(x`) ∈ Z for all ` ∈ ZK}

I dK = det(ZK ,Trace(xy)) = |Z#
K/ZK |

E8 as trace lattice

Pc := Z[α]4 + 〈 1√
−7

(1, 1, 1, 3),
1√
−7

(0, 1, 3,−2)〉 ≤ K4

Then min(Pc) = 1, det(Pc) = (1/7)2, P ∗c =
√
−7Pc, Trace(Pc) = E8

Theorem
Pa, Pb and Pc are the densest Z[α]-lattices in dimension 2,3,4.
γ2(Z[α]) =

p
7/3, γ3(Z[α]) = 2, γ4(Z[α]) =

√
7.



Hermitian tensor products (Renaud Coulangeon)

Minimal vectors in tensor products

Let (L, hL) and (M,hM ) be Hermitian ZK -lattices,
n = dimZK (L) ≤ m := dimZK (M). Each v ∈ L⊗M is the sum of at most n
pure tensors. Write

v =
rX
i=1

`i ⊗mi, such that r =: rk(v) minimal.

Put A := (hL(`i, `j)) and B := (hM (mi,mj)), then

h(v, v) = TraceAB ≥ r det(A)1/r det(B)1/r.

so min(L⊗M) ≥ min{rdr(L)1/rdr(M)1/r | r = 1, . . . , n}

where dr(L) = min{det(T ) | T ≤ L,Rg(T ) = r}.
In particular dr(L)1/r ≥ min(L)/γr(ZK) where γr(ZK) is the Hermitian
Hermite constant.



Extremal lattices as Hermitian tensor products

The Leech lattice
Let P := Pb ⊗Z[α] Pc. Then min(P ) = 2 and Trace(P ) is an extremal even
unimodular lattice of dimension 24, so Trace(P ) ∼= Λ24.

Proof: Trace(P ) is even unimodular, since Pb Hermitian unimodular and
E8 = Trace(Pc) even unimodular. Show that min(P ) ≥ 2:

r 1 2 3

dr(Pb) 2 2 1

dr(Pc) 1 3/7 ≥ 1/8

rdr(Pb)
1/rdr(Pc)

1/r 2 1, 85 1, 5

min(L⊗M) ≥ min{rdr(L)1/rdr(M)1/r | r = 1, . . . , n}



The discovery of the 72-dimensional extremal even unimodular lattice

1967 Turyn: Constructed the Golay code G24 from the Hamming code

78,82,84 Tits; Lepowsky, Meurman; Quebbemann:
Construction of the Leech lattice Λ24 from E8

1996 Gross, Elkies: Λ24 from Hermitian structure of E8

1996 N.: Tried similar construction of extremal 72-dimensional lattices
(Bordeaux).

1998 Bachoc, N.: Two extremal 80-dimensional lattices using Quebbemann’s
generalization and the Hermitian structure of E8

2010 Griess: Reminds Lepowsky, Meurman construction of Leech.
proposes to construct 72-dimensional lattices from Λ24

2010 N.: Used one of the nine Z[α = 1+
√
−7

2
] structures Pi of Λ24 to find

extremal 72-dimensional lattice Γ72 = Trace(Pi ⊗Z[α] Pb).

2011 Parker, N.: Check all other polarisations of Λ24 to show that Γ72 is the
unique extremal lattice obtained from Λ24 by Turyn’s construction.
Chance: 1 : 1016 to find extremely good polarisation.



Dimension 72

Theorem (Coulangeon, N)

Let P be an Hermitian Z[α]-lattice with min(P ) = 2. Then min(P ⊗ Pb) ≥ 3
and min(P ⊗ Pb) > 3 if and only if P has no sublattice isometric to Pb.

Proof.
r 1 2 3

dr(Pb)
1/r 2

√
2 1

dr(P )1/r 2 ≥ 2
p

3/7 ≥ 1

rdr(Pb)
1/rdr(P )1/r 4 ≥ 3.7 ≥ 3

And d3(P ) > 1 if Pb is not a sublattice of P .

Corollary

Let P be some 12-dimensional Z[α]-lattice such that Trace(P ) ∼= Λ24. Then
min(P ⊗ Pb) ≥ 3 and min(P ⊗ Pb) = 4 if P does not contain Pb.



Hermitian structures of the Leech lattice

Theorem (Hentschel 2009)

There are exactly nine Z[α]-structures of the Leech lattice.

group #Pb ≤ Pi
1 SL2(25) 0

2 2.A6 ×D8 2 · 20, 160

3 SL2(13).2 2 · 52, 416

4 (SL2(5)×A5).2 2 · 100, 800

5 (SL2(5)×A5).2 2 · 100, 800

6 2933 2 · 177, 408

7 ±PSL2(7)× (C7 : C3) 2 · 306, 432

8 PSL2(7)× 2.A7 2 · 504, 000

9 2.J2.2 2 · 1, 209, 600

Theorem (Coulangeon, N)

d3(Pi) = 1 for i = 2, . . . , 9 and d3(P1) > 1, so min(P1 ⊗ Pb) = 4.



Stehlé, Watkins proof of extremality

Theorem (Stehlé, Watkins (2010))

Let L be an even unimodular lattice of dimension 72 with min(L) ≥ 6. Then
L is extremal, if and only if it contains at least 6, 218, 175, 600 vectors v with
Q(v) = 4.

Proof: L is an even unimodular lattice of minimum ≥ 6, so its theta series is

θL = 1 + a3q
3 + a4q

4 + . . . = f (9) + a3∆3.

f (9) = 1 + 6, 218, 175, 600q4 + . . .
∆3 = q3 −72q4 + . . .

So a4 = 6, 218, 175, 600− 72a3 ≥ 6, 218, 175, 600 if and only if a3 = 0.

Remark
A similar proof works in all jump dimensions 24k (extremal minimum = 2k+ 2)
for lattices of minimum ≥ 2k.
For dimensions 24k + 8 and lattices of minimum ≥ 2k one needs to count
vectors v with Q(v) = k + 2.



The extremal 72-dimensional lattice Γ72

Main result

I Γ72 is an extremal even unimodular lattice of dimension 72.
I Γ72 has a canonical construction as trace lattice of Hermitian tensor

product.
I Aut(Γ72) = U := (PSL2(7)× SL2(25)) : 2.
I U is an absolutely irreducible subgroup of GL72(Q).
I All U-invariant lattices are similar to Γ72.
I Γ72 is an ideal lattice in the 91st cyclotomic number field.
I Γ72 realises the densest known sphere packing
I and maximal known kissing number in dimension 72.
I Structure of Γ72 can be used for decoding (Annika Meyer)


