Automorphisms of extremal codes and lattices

Gabriele Nebe

Lehrstuhl D für Mathematik
Hannover 05.11.2013
RWTHAACHEN

Doubly-even self-dual codes

Definition

- A linear binary code C of length n is a subspace $C \leq \mathbb{F}_{2}^{n}$.
- The dual code of C is

$$
C^{\perp}:=\left\{x \in \mathbb{F}_{2}^{n} \mid(x, c):=\sum_{i=1}^{n} x_{i} c_{i}=0 \text { for all } c \in C\right\}
$$

- C is called self-dual if $C=C^{\perp}$.
- The Hamming weight of a codeword $c \in C$ is

$$
\operatorname{wt}(c):=\left|\left\{i \mid c_{i} \neq 0\right\}\right| .
$$

- $\mathrm{wt}(c) \equiv_{2}(c, c)$, so $C \subseteq C^{\perp}$ implies $\mathrm{wt}(C) \subset 2 \mathbb{Z}$.
- C is called doubly-even if $\mathrm{wt}(C) \subset 4 \mathbb{Z}$.
- The minimum distance $d(C):=\min \{\operatorname{wt}(c) \mid 0 \neq c \in C\}$.
- A self-dual code $C \leq \mathbb{F}_{2}^{n}$ is called extremal if $d(C) \geq 4+4\left\lfloor\frac{n}{24}\right\rfloor$.
- The weight enumerator of C is

$$
p_{C}:=\sum_{c \in C} x^{n-\mathrm{wt}(c)} y^{\mathrm{wt}(c)} \in \mathbb{C}[x, y]_{n} .
$$

- $\operatorname{Aut}(C)=\left\{\sigma \in S_{n} \mid \sigma(C) \subseteq C\right\}$.

Examples for self-dual doubly-even codes

Hamming Code

$$
h_{8}:\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

the extended Hamming code, the unique doubly-even self-dual code of length 8 ,

$$
p_{h_{8}}(x, y)=x^{8}+14 x^{4} y^{4}+y^{8}
$$

and $\operatorname{Aut}\left(h_{8}\right)=2^{3}: L_{3}(2)$.

Golay Code

The binary Golay code \mathcal{G}_{24} is the unique doubly-even self-dual code of length 24 with minimum distance ≥ 8. Aut $\left(\mathcal{G}_{24}\right)=M_{24}$

$$
p_{\mathcal{G}_{24}}=x^{24}+759 x^{16} y^{8}+2576 x^{12} y^{12}+759 x^{8} y^{16}+y^{24}
$$

Application of invariant theory

The weight enumerator of C is $p_{C}:=\sum_{c \in C} x^{n-\mathrm{wt}(c)} y^{\mathrm{wt}(c)} \in \mathbb{C}[x, y]_{n}$.

Theorem (Gleason, ICM 1970)

Let $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ be doubly even. Then

- $p_{C}(x, y)=p_{C}(x, i y), p_{C}(x, y)=p_{C^{\perp}}(x, y)=p_{C}\left(\frac{x+y}{\sqrt{2}}, \frac{x-y}{\sqrt{2}}\right)$
- $G_{192}:=\left\langle\left(\begin{array}{ll}1 & 0 \\ 0 & i\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)\right\rangle$.
- $p_{C} \in \operatorname{Inv}\left(G_{192}\right)=\mathbb{C}\left[p_{h_{8}}, p_{9_{24}}\right]$
- $d(C) \leq 4+4\left\lfloor\frac{n}{24}\right\rfloor$

Doubly-even self-dual codes achieving equality are called extremal.

length	8	24	32	40	48	72	80	≥ 3952
$d(C)$	4	8	8	8	12	16	16	
extremal	h_{8}	\mathcal{G}_{24}	5	16,470	$Q R_{48}$	$?$	≥ 4	0

Automorphism groups of extremal codes

$$
\operatorname{Aut}(C)=\left\{\sigma \in S_{n} \mid \sigma(C) \subseteq C\right\} \text { is the automorphism group of } C \leq \mathbb{F}_{2}^{n}
$$

- $\operatorname{Aut}\left(h_{8}\right)=2^{3} . L_{3}(2)$
- $\operatorname{Aut}\left(\mathcal{G}_{24}\right)=M_{24}$
- Length 32: $L_{2}(31), 2^{5} . L_{5}(2), 2^{8} . S_{8}, 2^{8} . L_{2}(7) .2,2^{5} . S_{6}$.
- Length 40: 10,400 extremal codes with Aut $=1$.
- $\operatorname{Aut}\left(Q R_{48}\right)=L_{2}(47)$.
- Sloane (1973): Is there a $(72,36,16)$ self-dual code?
- If C is such a $(72,36,16)$ code then $\operatorname{Aut}(C)$ has order ≤ 5.

length	8	24	32	40	48	72	80	≥ 3952
$d(C)$	4	8	8	8	12	16	16	
extremal	h_{8}	\mathcal{G}_{24}	5	16,470	$Q R_{48}$	$?$	≥ 4	0

Application of Burnside's orbit counting theorem

Definition

Let $\sigma \in S_{n}$ of prime order p. Then σ is of Type (z, f), if σ has z p-cycles and f fixed points. $z p+f=n$.

If $\sigma=(1,2, . ., p)(p+1, . ., 2 p) \ldots((z-1) p+1, . ., z p) \in \operatorname{Aut}(C)$ then $C=\operatorname{Fix}_{C}(\sigma) \oplus E_{C}(\sigma)$, with

$$
\begin{aligned}
& \operatorname{Fix}_{C}(\sigma)=\{(\underbrace{c_{p} \ldots c_{p}}_{p} \underbrace{c_{2 p} \ldots c_{2 p}}_{p} \cdots \underbrace{c_{z p} \ldots c_{z p}}_{p} c_{z p+1} \ldots c_{n}) \in C\} \cong \\
& \pi\left(\operatorname{Fix}_{C}(\sigma)\right)=\left\{\left(c_{p} c_{2 p} \ldots c_{z p} c_{z p+1} \ldots c_{n}\right) \in \mathbb{F}_{2}^{z+f} \mid c \in \operatorname{Fix}_{C}(\sigma)\right\}
\end{aligned}
$$

Fact: If $C=C^{\perp}$ and p is odd, then $\pi\left(\operatorname{Fix}_{C}(\sigma)\right)$ is a self-dual code of length $z+f$. In particular

$$
\operatorname{dim}\left(\operatorname{Fix}_{C}(\sigma)\right)=\frac{z+f}{2} \text { and }\left|\operatorname{Fix}_{C}(\sigma)\right|=2^{(z+f) / 2}
$$

Application of Burnside's orbit counting theorem

Theorem (Conway, Pless, 1982)
Let $C=C^{\perp} \leq \mathbb{F}_{2}^{n}, \sigma \in \operatorname{Aut}(C)$ of odd prime order p and Type (z, f).
Then $\quad 2^{(z+f) / 2} \equiv 2^{n / 2} \quad(\bmod p)$.

Proof: Apply orbit counting:
The number of G-orbits on a finite set M is $\frac{1}{|G|} \sum_{g \in G}\left|\operatorname{Fix}_{M}(g)\right|$. Here $G=\langle\sigma\rangle, M=C, \operatorname{Fix}_{C}(g)=\operatorname{Fix}_{C}(\sigma)$ for all $1 \neq g \in G$, and the number of $\langle\sigma\rangle$-orbits on C is $\frac{1}{p}\left(2^{n / 2}+(p-1) 2^{(z+f) / 2}\right) \in \mathbb{N}$.

Corollary.

$C=C^{\perp} \leq \mathbb{F}_{2}^{n}, p>n / 2$ an odd prime divisor of $|\operatorname{Aut}(C)|$, then $p \equiv \pm 1$ $(\bmod 8)$.

Here $z=1, f=n-p,(z+f) / 2=(n-(p-1)) / 2$, so $2^{(p-1) / 2}$ is 1 $\bmod p$ and hence 2 must be a square modulo p.

Application of quadratic forms

Remark

- $C=C^{\perp} \Rightarrow \mathbf{1}=(1, \ldots, 1) \in C$, since $(c, c)=(c, \mathbf{1})$.
- If C is self-dual then $n=2 \operatorname{dim}(C)$ is even and

$$
\mathbf{1} \in C^{\perp}=C \subset \mathbf{1}^{\perp}=\left\{c \in \mathbb{F}_{2}^{n} \mid \operatorname{wt}(c) \text { even }\right\} .
$$

- Self-dual doubly-even codes correspond to totally isotropic subspaces in the quadratic space

$$
E_{n-2}:=\left(\mathbf{1}^{\perp} /\langle\mathbf{1}\rangle, q\right), q(c+\langle\mathbf{1}\rangle)=\frac{1}{2} \mathrm{wt}(c) \quad(\bmod 2) \in \mathbb{F}_{2} .
$$

- $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ doubly-even $\Rightarrow n \in 8 \mathbb{Z}$.

Theorem (A. Meyer, N. 2009)

Let $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ doubly-even. Then $\operatorname{Aut}(C) \leq \operatorname{Alt}_{n}$.

Application of quadratic forms

$$
\operatorname{Aut}(C)=\left\{\sigma \in S_{n} \mid \sigma(C) \subseteq C\right\} \text { is the automorphism group of } C \leq \mathbb{F}_{2}^{n}
$$

Theorem (A. Meyer, N. 2009)

Let $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ doubly-even. Then $\operatorname{Aut}(C) \leq \operatorname{Alt}_{n}$.

- Proof. (sketch)
- $E_{n-2}:=\left(\mathbf{1}^{\perp} /\langle\mathbf{1}\rangle, q\right), q(c+\langle\mathbf{1}\rangle)=\frac{1}{2} \operatorname{wt}(c)(\bmod 2) \in \mathbb{F}_{2}$.
- $C /\langle\mathbf{1}\rangle$ is a maximal isotropic subspace E_{n-2}.
- The stabilizer in the orthogonal group of E_{n-2} of such a space has trivial Dickson invariant.
- The restriction of the Dickson invariant to S_{n} is the sign.

Application of Representation Theory

G finite group, $\mathbb{F}_{2} G=\left\{\sum_{g \in G} a_{g} g \mid a_{g} \in \mathbb{F}_{2}\right\}$ group ring.
Then G acts on $\mathbb{F}_{2} G \cong \mathbb{F}_{2}^{|G|}$ by permuting the basis elements.

Theorem (Sloane, Thompson, 1988)

There is a G-invariant self-dual doubly-even code $C \leq \mathbb{F}_{2} G$, if and only if $|G| \in 8 \mathbb{N}$ and the Sylow 2-subgroups of G are not cyclic.

Theorem (A. Meyer, N., 2009)
Given $G \leq S_{n}$. Then there is $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ doubly-even such that
$G \leq \operatorname{Aut}(C)$, if and only if

- $n \in 8 \mathbb{N}$,
- all self-dual composition factors of the $\mathbb{F}_{2} G$-module \mathbb{F}_{2}^{n} occur with even multiplicity, and
- $G \leq \mathrm{Alt}_{n}$.

$C=C^{\perp} \leq \mathbb{F}_{2}^{72}$ extremal, $G=\operatorname{Aut}(C)$.

Theorem (Conway, Huffmann, Pless, Bouyuklieva, O'Brien, Willems, Feulner, Borello, Yankov, N., ..)

Let $C \leq \mathbb{F}_{2}^{72}$ be an extremal doubly even code,
$G:=\operatorname{Aut}(C):=\left\{\sigma \in S_{72} \mid \sigma(C)=C\right\}$

- Let p be a prime dividing $|G|, \sigma \in G$ of order p.
- If $p=2$ or $p=3$ then σ has no fixed points. (B)
- If $p=5$ or $p=7$ then σ has 2 fixed points. (CHPB)
- If $p=2$ then C is a free $\mathbb{F}_{2}\langle\sigma\rangle$-module. (N)
- G contains no element of prime order ≥ 7. (BYFN)
- G contains no element of order 6. (Borello)
- G has no subgroup S_{3}. (BN)
- $G \neq \mathrm{Alt}_{4}, G \neq D_{8}, G \neq C_{2} \times C_{2} \times C_{2}$ (BN)
- and hence $|G| \leq 5$.

Existence of an extremal code of length 72 is still open.

The Type of a permutation of prime order

 Theoretical results, p odd.
Definition (recall)

Let $\sigma \in S_{n}$ of prime order p. Then σ is of Type (z, f), if σ has z p-cycles and f fixed points. $z p+f=n$.

Theorem (Conway, Pless) (recall)
Let $C=C^{\perp} \leq \mathbb{F}_{2}^{n}, \sigma \in \operatorname{Aut}(C)$ of odd prime order p and Type (z, f).
Then $\quad 2^{(z+f) / 2} \equiv 2^{n / 2} \quad(\bmod p)$.

Corollary. $n=72 \Rightarrow p \neq 37,43,53,59,61,67$.

Corollary. If $n=8$ then $p \neq 5$ and $p=3 \Rightarrow$ Type $(2,2)$.

$$
2^{4} \not \equiv 2^{(1+3) / 2}(\bmod 5), 2^{4} \not \equiv 2^{(1+5) / 2}(\bmod 3) .
$$

Computational results, p odd.

BabyTheorem: $n=8, p=3$

All doubly even self-dual codes of length 8 that have an automorphism of order 3 are equivalent to h_{8}.

- $\sigma=(1,2,3)(4,5,6)(7)(8) \in \operatorname{Aut}(C)$
- $e_{0}=1+\sigma+\sigma^{2}, e_{1}=\sigma+\sigma^{2}$ idempotents in $\mathbb{F}_{2}\langle\sigma\rangle$
- $C=C e_{0} \perp C e_{1}$
- $C e_{0}=\operatorname{Fix}_{C}(\sigma)$ isomorphic to a self-dual code in \mathbb{F}_{2}^{4}, so

$$
C e_{0}:\left[\begin{array}{llllllll}
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1
\end{array}\right]
$$

- $C e_{1} \cong E_{C}(\sigma) \leq \mathbb{F}_{4}^{2}$ Hermitian self-dual, $C e_{1} \cong[1,1]$, so

$$
C e_{1}:\left[\begin{array}{llllllll}
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right]
$$

and hence

$$
C:\left[\begin{array}{llllllll}
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Computational results, p odd.

Theorem. (Borello, Feulner, N. 2012, 2013)
Let $C=C^{\perp} \leq \mathbb{F}_{2}^{72}, d(C) \geq 16$. Then $\operatorname{Aut}(C)$ has no subgroup C_{7}, $C_{3} \times C_{3}, D_{10}, S_{3}$.

- Proof. for $S_{3}=\left\langle\sigma, \tau \mid \sigma^{3}, \tau^{2},(\sigma \tau)^{2}\right\rangle$
- $\sigma=(1,2,3)(4,5,6) \cdots(67,68,69)(70,71,72)$
- $\tau=(1,4)(2,6)(3,5) \cdots(67,70)(68,72)(69,71)$
- $C \cong \operatorname{Fix}_{C}(\sigma) \oplus E_{C}(\sigma)$ with $E_{C}(\sigma) \leq \mathbb{F}_{4}^{24}$ Hermitian self-dual.
- τ acts on $E_{C}(\sigma)$ by $\left(\epsilon_{1}, \epsilon_{2}, \ldots, \epsilon_{23}, \epsilon_{24}\right)^{\tau}=\left(\overline{\epsilon_{2}}, \overline{\epsilon_{1}}, \ldots, \overline{\epsilon_{24}}, \overline{\epsilon_{23}}\right)$
- $\operatorname{Fix}_{E_{C}(\sigma)}(\tau)=\left\{\epsilon:=\left(\overline{\epsilon_{2}}, \epsilon_{2} \ldots, \overline{\epsilon_{24}}, \epsilon_{24}\right) \in E_{C}(\sigma)\right\}$
- $\cong \pi\left(\operatorname{Fix}_{E_{C}(\sigma)}(\tau)\right)=\left\{\left(\epsilon_{2}, \ldots, \epsilon_{24}\right) \mid \epsilon \in \operatorname{Fix}_{E_{C}(\sigma)}(\tau)\right\} \leq \mathbb{F}_{4}^{12}$
- is trace Hermitian self-dual additive code, minimum distance ≥ 4.
- There are 195,520 such codes.
- $\left\langle\operatorname{Fix}_{E_{C}(\sigma)}(\tau)\right\rangle_{\mathbb{F}_{4}}=E_{C}(\sigma)$.
- No $E_{C}(\sigma)$ has minimum distance ≥ 8.
$C=C^{\perp} \leq \mathbb{F}_{2}^{72}$, doubly-even.
Theoretical results, p even.

Theorem. (A. Meyer, N.) (recall)
Let $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ doubly-even. Then $\operatorname{Aut}(C) \leq \operatorname{Alt}_{n}$.
Corollary. $\operatorname{Aut}(C)$ has no element of order 8 .
$\sigma \in \operatorname{Aut}(C)$ of order 8. Then

$$
\sigma=(1,2, \ldots, 8)(9, \ldots, 16) \ldots(65, \ldots, 72)
$$

since σ^{4} has no fixed points. So $\operatorname{sign}(\sigma)=-1$, a contradiction.
(This corollary was known before and is already implied by the Sloane-Thompson Theorem.)
$C=C^{\perp} \leq \mathbb{F}_{2}^{72}$, doubly even, extremal, so $d(C)=16$ Theoretical results, p even.

Theorem. (N. 2012)

Let $\tau \in \operatorname{Aut}(C)$ of order 2 . Then C is a free $\mathbb{F}_{2}\langle\tau\rangle$-module.

- Let $R=\mathbb{F}_{2}\langle\tau\rangle$ the free $\mathbb{F}_{2}\langle\tau\rangle$-module, $S=\mathbb{F}_{2}$ the simple one.
- Then $C=R^{a} \oplus S^{b}$ with $2 a+b=36$.
- $F:=\operatorname{Fix}_{C}(\tau)=\{c \in C \mid c \tau=c\} \cong S^{a+b}, C(1-\tau) \cong S^{a}$.
- $\tau=(1,2)(3,4) \ldots(71,72)$.
- $F \cong \pi(F), \pi(c)=\left(c_{2}, c_{4}, c_{6}, \ldots, c_{72}\right) \in \mathbb{F}_{2}^{36}$.
- Fact: $\pi(F)=\pi(C(1-\tau))^{\perp} \supseteq D=D^{\perp} \supseteq \pi(C(1-\tau))$.
- $d(F) \geq d(C)=16$, so $d(D) \geq d(\pi(F)) \geq 8$.
- There are 41 such extremal self-dual codes D (Gaborit etal).
- No code D has a proper overcode with minimum distance ≥ 8.
- This can also be seen a priori considering weight enumerators.
- So $\pi(F)=D$ and hence $a+b=18$, so $a=18, b=0$.

Theorem: C is a free $\mathbb{F}_{2}\langle\tau\rangle$-module.

Corollary. Aut (C) has no element of order 8.

 $g \in \operatorname{Aut}(C)$ of order 8 . Then C is a free $\mathbb{F}_{2}\left\langle g^{4}\right\rangle$-module, hence also a free $\mathbb{F}_{2}\langle g\rangle$-module of rank $\operatorname{dim}(C) / 8=36 / 8=9 / 2$ a contradiction.
Corollary. Aut (C) has no subgroup Q_{8}.

Use a theorem by J. Carlson: If M is an $\mathbb{F}_{2} Q_{8}$-module such that the restriction of M to the center of Q_{8} is free, then M is free.

Corollary. Aut (C) has no subgroup $U \cong C_{2} \times C_{4}, C_{8}$ or C_{10}.

- Let $\tau \in U$ of order 2, $F=\operatorname{Fix}_{C}(\tau) \cong \pi(F)=D=D^{\perp} \leq \mathbb{F}_{2}^{36}$.
- Then D is one of the 41 extremal codes classified by Gaborit etal.
- $U /\langle\tau\rangle \cong C_{4}$ or C_{5} acts on D.
- None of the 41 extremal codes D has a fixed point free automorphism of order 4 or an automorphism of order 5 with exactly one fixed point.

$\mathrm{Alt}_{4}=\langle a, b, \sigma\rangle \unrhd\langle a, b\rangle=V_{4}$, (Borello, N. 2013)

 Computational results: $\mathrm{No} \mathrm{Alt}_{4} \leq \operatorname{Aut}(C)$.

3 possibilities for D $\operatorname{dim}\left(D^{\perp} / D\right)=20,20,22$.
$C / D \leq D^{\perp} / D$
maximal isotropic subspace.
V_{4} acts trivially on $D^{\perp} / D=: V$.
$V=V e_{0} \oplus V e_{1}$
is an $\mathbb{F}_{2}\langle\sigma\rangle$-module.
Unique possibility for $C e_{0}$. $C e_{1} \leq V e_{1}$ Hermitian maximal singular \mathbb{F}_{4}-subspace. Compute all these subspaces as orbit under the unitary group of $V e_{1}$. No extremal code is found.

Lattices and sphere packings

$$
\theta=1+6 q+6 q^{3}+6 q^{4}+12 q^{7}+6 q^{9}+\ldots
$$

Extremal even unimodular lattices

Definition

- A lattice L in Euclidean n-space $\left(\mathbb{R}^{n},(),\right)$ is the \mathbb{Z}-span of an \mathbb{R}-basis $B=\left(b_{1}, \ldots, b_{n}\right)$ of \mathbb{R}^{n}

$$
L=\left\langle b_{1}, \ldots, b_{n}\right\rangle_{\mathbb{Z}}=\left\{\sum_{i=1}^{n} a_{i} b_{i} \mid a_{i} \in \mathbb{Z}\right\} .
$$

- The dual lattice is

$$
L^{\#}:=\left\{x \in \mathbb{R}^{n} \mid(x, \ell) \in \mathbb{Z} \text { for all } \ell \in L\right\}
$$

- L is called unimodular if $L=L^{\#}$.
- L is called even if $(\ell, \ell) \in 2 \mathbb{Z}$ for all $\ell \in L$.
- Then $Q: L \rightarrow \mathbb{Z}, \ell \mapsto \frac{1}{2}(\ell, \ell)$ is an integral quadratic form.
- $\min (L):=\min \{Q(\ell) \mid 0 \neq \ell \in L\}$ the minimum of L.
- L extremal if $L=L^{\#}$ and $\min (L) \geq 1+\left\lfloor\frac{n}{24}\right\rfloor$.
- $\operatorname{Aut}(L):=\left\{g \in O\left(\mathbb{R}^{n},(),\right) \mid g(L)=L\right\}$ automorphism group of L.

Application of modular forms

The sphere packing density of a unimodular lattice is proportional to its minimum.
From the theory of modular forms one gets an upper bound for the minimum:

Extremal lattices

Let L be an n-dimensional even unimodular lattice. Then

$$
n \in 8 \mathbb{N} \text { and } \min (L) \leq 1+\left\lfloor\frac{n}{24}\right\rfloor
$$

Lattices achieving equality are called extremal.
Extremal even unimodular lattices.

n	8	16	24	32	40	48	72	80
$\min (\mathrm{~L})$	1	1	2	2	2	3	4	4
number of extremal lattices	1	2	1	$\geq 10^{7}$	$\geq 10^{51}$	≥ 4	≥ 1	≥ 4

Extremal even unimodular lattices in jump dimensions

The extremal theta series

$$
\begin{aligned}
& f^{(3)}=1+196,560 q^{2}+\ldots=\theta_{\Lambda_{24}} . \\
& f^{(6)}=1+52,416,000 q^{3}+\ldots=\theta_{P_{48 p}}=\theta_{P_{48 q}}=\theta_{P_{48 n}}=\theta_{P_{48 m}} . \\
& f^{(9)}=1+6,218,175,600 q^{4}+\ldots=\theta_{\Gamma_{72}} .
\end{aligned}
$$

The automorphism groups

$\operatorname{Aut}\left(\Lambda_{24}\right) \cong 2 . \mathrm{Co}_{1}$	order $=$	8315553613086720000 $2^{22} 3^{9} 5^{4} 7^{2} 111323$
$\operatorname{Aut}\left(P_{48 p}\right) \cong\left(\mathrm{SL}_{2}(23) \times S_{3}\right): 2$	order	$72864=2^{5} 3^{2} 1123$
$\operatorname{Aut}\left(P_{48 q}\right) \cong \mathrm{SL}_{2}(47)$	order	$103776=2^{5} 32347$
$\operatorname{Aut}\left(P_{48 n}\right) \cong\left(\mathrm{SL}_{2}(13) \mathrm{YSL}_{2}(5)\right) .2^{2}$	order	$524160=2^{7} 3^{2} 5713$
$\operatorname{Aut}\left(P_{48 m}\right) \geq \operatorname{soluble}$	order	mult. of $1200=2^{4} 35^{2}$
$\operatorname{Aut}\left(\Gamma_{72}\right) \cong\left(\mathrm{SL}_{2}(25) \times \mathrm{PSL}_{2}(7)\right): 2$	order	$5241600=2^{8} 3^{2} 5^{2} 713$

The Type of an automorphism.

Let $L \leq \mathbb{R}^{n}$ be some even unimodular lattice and $\sigma \in \operatorname{Aut}(L)$ of prime order p. The fixed lattice

$$
F:=\operatorname{Fix}_{L}(\sigma):=\{v \in L \mid \sigma v=v\} \leq L
$$

has dimension d, and σ acts on $M:=F^{\perp}$ as a p th root of unity, so $n=d+z(p-1)$.

$$
F^{\#} \perp M^{\#} \geq L=L^{\#} \geq F \perp M \geq p L
$$

with $\operatorname{det}(F)=\left|F^{\#} / F\right|=\left|M^{\#} / M\right|=\operatorname{det}(M)=p^{s}$
Definition: $\mathrm{p}-(\mathrm{z}, \mathrm{d})$-s is called the Type of σ.

Proposition: $s \leq \min (d, z)$ and $z-s$ is even.

48-dimensional extremal lattices

Theorem (N. 2013)

Let L be an extremal even unimodular lattice of dimension 48 and p be a prime dividing $|\operatorname{Aut}(L)|$. Then $p=47,23$ or $p \leq 13$.
Let $\sigma \in \operatorname{Aut}(L)$ of order p. The fixed lattice $F:=\operatorname{Fix}_{L}(\sigma)$ is:

p	$\operatorname{dim} F$	$\operatorname{det}(F)$	F	example		
47	2	47	unique	$P_{48 q}$		
23	4	23^{2}	unique	$P_{48 q}, P_{48 p}$		
13	0		$\{0\}$	$P_{48 n}$		
11	8	11^{4}	unique	$P_{48 p}$		
7	0		$\{0\}$	$P_{48 n}$		
7	6	7^{5}	$\sqrt{7} A_{6}^{\#}$	not known		
5	0		$\{0\}$	$P_{48 n}, P_{48 m}$		
5	8	5^{8}	$\sqrt{5} E_{8}$	$P_{48 m}$		
5	16	5^{8}	$\left[2 . \text { Alt }_{10}\right]_{16}$	$P_{48 m}$		
3	$0,8,16 . .22$	7 possibilities				
2	0	0				$\sigma=-1$
2	24	2^{24}	$\sqrt{2} \Lambda_{24}$	$P_{48 n}$		
2	24	2^{24}	$\sqrt{2} O_{24}$	$P_{48 n}, P_{48 p}, P_{48 m}$		

Application of number theory

Observation

The maximal dimension of the fixed lattice of some automorphism of prime order p is ≤ 22 if p is odd and ≤ 24 if $p=2$.

Corollary

Let L be an extremal even unimodular lattice of dimension 48 and $\sigma \in \operatorname{Aut}(L)$ of order a. Then the minimal polynomial μ_{σ} is a multiple of the a-th cyclotomic polynomial ϕ_{a}.

Definition

Let $V(\sigma)$ be the maximal subspace of $\mathbb{Q} L$, on which σ acts with minimal polynomial ϕ_{a}. Then $V(\sigma) \cong \mathbb{Q}\left[\zeta_{a}\right]^{z}$ for some $z \geq 1$. Let $M:=L \cap V(\sigma)$ and $F:=L \cap V(\sigma)^{\perp}$. Then M is a $\mathbb{Z}\left[\zeta_{a}\right]$-sublattice of $V(\sigma)$ and $M \perp F$ is a sublattice of finite index in L.

The main classification result.

Theorem (N. 2013)

L even unimodular, extremal, $\operatorname{dim}(L)=48$ and $\sigma \in \operatorname{Aut}(L)$ of order a such that $\varphi(a)>24$. Then one of

- $a=120$ and $L \cong P_{48 n}$
- $a=132$ and $L \cong P_{48 p}$
- $a=69$ and $L \cong P_{48 p}$
- $a=47$ and $L \cong P_{48 q}$
- $a=65$ and $L \cong P_{48 n}$
- $a=104$ and $L \cong P_{48 n}$

The strategy of the proof is to

- first classify the candidates for M (ideal lattice)
- and F (fixed lattice of some element of prime order)
- and the possible actions of $\sigma_{\mid F} \in \operatorname{Aut}(F)$.
- Then compute the (σ_{M}, σ_{F})-invariant unimodular overlattices L of $M \perp F$.
- Use reduction algorithms to prove $\min (L) \leq 2$ or
- if $\min (L)=3$ then identify L with one of the known lattices.

Construction of the lattice $P_{48 m}$.

Proposition (N. 2014)

Let L be an extremal even unimodular lattice of dimension 48, such that $\operatorname{Aut}(L)$ contains an automorphism σ of Type $5-(8,16)-s$. Then $s=8, F:=\operatorname{Fix}_{L}(\sigma) \cong\left[2\right.$. $\left.\operatorname{Alt}_{10} .2\right], M:=\operatorname{Fix}_{L}(\sigma)^{\perp}$ is such that $M^{\#}$ is the unique unimodular $\mathbb{Z}\left[\zeta_{5}\right]$-lattice of dimension 8 with $\min (M) \geq 3$,

$$
M \perp F \underbrace{\subset}_{5^{8}} L=L^{\#} \underbrace{\subset}_{5^{8}} M^{\#} \perp F^{\#}
$$

Theorem (N. 2014)

$L=P_{48 m}$ is the unique extremal lattice whose automorphism group contains an element of Type $5-(8,16)-8$. (about 15 CPU years of computation) $G:=\operatorname{Aut}\left(P_{48 m}\right)$ contains a soluble subgroup $S=\operatorname{Stab}_{\text {Aut }(M \perp F)}(L)$ of order $2^{4} 35^{2}$. The Sylow 2-subgroup of G is $D_{8} \mathrm{Y} C_{4}$ and the Sylow 5-subgroup of G is $C_{5} \times C_{5}$.

