Automorphisms of extremal codes and lattices

Gabriele Nebe

Lehrstuhl D für Mathematik

Hannover 05.11.2013

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Doubly-even self-dual codes

Definition

- ▶ A linear binary code *C* of length *n* is a subspace $C \leq \mathbb{F}_2^n$.
- ► The dual code of C is

 $C^{\perp} := \{ x \in \mathbb{F}_2^n \mid (x, c) := \sum_{i=1}^n x_i c_i = 0 \text{ for all } c \in C \}$

- C is called self-dual if $C = C^{\perp}$.
- ► The Hamming weight of a codeword $c \in C$ is $wt(c) := |\{i \mid c_i \neq 0\}|.$
- $\operatorname{wt}(c) \equiv_2 (c, c)$, so $C \subseteq C^{\perp}$ implies $\operatorname{wt}(C) \subset 2\mathbb{Z}$.
- C is called doubly-even if $wt(C) \subset 4\mathbb{Z}$.
- ▶ The minimum distance $d(C) := \min\{\operatorname{wt}(c) \mid 0 \neq c \in C\}.$
- ▶ A self-dual code $C \leq \mathbb{F}_2^n$ is called extremal if $d(C) \geq 4 + 4\lfloor \frac{n}{24} \rfloor$.
- ► The weight enumerator of C is

$$p_C := \sum_{c \in C} x^{n - \operatorname{wt}(c)} y^{\operatorname{wt}(c)} \in \mathbb{C}[x, y]_n.$$

• $\operatorname{Aut}(C) = \{ \sigma \in S_n \mid \sigma(C) \subseteq C \}.$

Examples for self-dual doubly-even codes

Hamming Code

$$h_8: \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

the extended Hamming code, the unique doubly-even self-dual code of length 8,

$$p_{h_8}(x,y) = x^8 + 14x^4y^4 + y^8$$

and $Aut(h_8) = 2^3 : L_3(2)$.

Golay Code

The binary Golay code \mathcal{G}_{24} is the unique doubly-even self-dual code of length 24 with minimum distance ≥ 8 . Aut $(\mathcal{G}_{24}) = M_{24}$

$$p_{\mathcal{G}_{24}} = x^{24} + 759x^{16}y^8 + 2576x^{12}y^{12} + 759x^8y^{16} + y^{24}$$

Application of invariant theory

The weight enumerator of C is $p_C := \sum_{c \in C} x^{n - \text{wt}(c)} y^{\text{wt}(c)} \in \mathbb{C}[x, y]_n$.

Theorem (Gleason, ICM 1970)

Let $C = C^{\perp} \leq \mathbb{F}_2^n$ be doubly even. Then

$$p_C(x,y) = p_C(x,iy), \ p_C(x,y) = p_{C^{\perp}}(x,y) = p_C(\frac{x+y}{\sqrt{2}},\frac{x-y}{\sqrt{2}})$$

$$G_{192} := \langle \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \rangle.$$

$$\blacktriangleright p_C \in \operatorname{Inv}(G_{192}) = \mathbb{C}[p_{h_8}, p_{\mathfrak{S}_{24}}]$$

$$\bullet \ d(C) \le 4 + 4\lfloor \frac{n}{24} \rfloor$$

Doubly-even self-dual codes achieving equality are called extremal.

length	8	24	32	40	48	72	80	≥ 3952
d(C)	4	8	8	8	12	16	16	
extremal	h_8	\mathcal{G}_{24}	5	16,470	QR_{48}	?	≥ 4	0

Automorphism groups of extremal codes

 $\operatorname{Aut}(C) = \{ \sigma \in S_n \mid \sigma(C) \subseteq C \}$ is the automorphism group of $C \leq \mathbb{F}_2^n$.

•
$$\operatorname{Aut}(h_8) = 2^3 \cdot L_3(2)$$

- $\operatorname{Aut}(\mathcal{G}_{24}) = M_{24}$
- Length 32: $L_2(31)$, $2^5 \cdot L_5(2)$, $2^8 \cdot S_8$, $2^8 \cdot L_2(7) \cdot 2$, $2^5 \cdot S_6$.
- Length 40: 10,400 extremal codes with Aut = 1.

•
$$\operatorname{Aut}(QR_{48}) = L_2(47).$$

- Sloane (1973): Is there a (72, 36, 16) self-dual code?
- If C is such a (72, 36, 16) code then Aut(C) has order ≤ 5 .

length	8	24	32	40	48	72	80	≥ 3952
d(C)	4	8	8	8	12	16	16	
extremal	h_8	\mathcal{G}_{24}	5	16,470	QR_{48}	?	≥ 4	0

Application of Burnside's orbit counting theorem

Definition

Let $\sigma \in S_n$ of prime order p. Then σ is of Type (z, f), if σ has z p-cycles and f fixed points. zp + f = n.

If $\sigma=(1,2,..,p)(p+1,..,2p)...((z-1)p+1,..,zp)\in {\rm Aut}(C)$ then $C={\rm Fix}_C(\sigma)\oplus E_C(\sigma),$ with

$$\operatorname{Fix}_{C}(\sigma) = \{\underbrace{(c_{p} \dots c_{p}}_{p} \underbrace{c_{2p} \dots c_{2p}}_{p} \dots \underbrace{c_{zp} \dots c_{zp}}_{p} c_{zp+1} \dots c_{n}) \in C\} \cong \pi(\operatorname{Fix}_{C}(\sigma)) = \{(c_{p}c_{2p} \dots c_{zp}c_{zp+1} \dots c_{n}) \in \mathbb{F}_{2}^{z+f} \mid c \in \operatorname{Fix}_{C}(\sigma)\}$$

Fact: If $C = C^{\perp}$ and p is odd, then $\pi(\operatorname{Fix}_{C}(\sigma))$ is a self-dual code of length z + f. In particular

dim(Fix_C(
$$\sigma$$
)) = $\frac{z+f}{2}$ and |Fix_C(σ)| = $2^{(z+f)/2}$.

(日) (日) (日) (日) (日) (日) (日)

Application of Burnside's orbit counting theorem

Theorem (Conway, Pless, 1982) Let $C = C^{\perp} \leq \mathbb{F}_2^n$, $\sigma \in Aut(C)$ of odd prime order p and Type (z, f). Then $2^{(z+f)/2} \equiv 2^{n/2} \pmod{p}$.

Proof: Apply orbit counting: The number of *G*-orbits on a finite set *M* is $\frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}_M(g)|$. Here $G = \langle \sigma \rangle$, M = C, $\operatorname{Fix}_C(g) = \operatorname{Fix}_C(\sigma)$ for all $1 \neq g \in G$, and the number of $\langle \sigma \rangle$ -orbits on *C* is $\frac{1}{p}(2^{n/2} + (p-1)2^{(z+f)/2}) \in \mathbb{N}$.

Corollary.

 $C=C^{\perp} \leq \mathbb{F}_2^n, \, p>n/2$ an odd prime divisor of $|\operatorname{Aut}(C)|,$ then $p\equiv \pm 1 \pmod{8}.$

Here z = 1, f = n - p, (z + f)/2 = (n - (p - 1))/2, so $2^{(p-1)/2}$ is $1 \mod p$ and hence 2 must be a square modulo p.

・ロット 4回ッ 4回ッ 4回ッ 4日・

Application of quadratic forms

Remark

▶
$$C = C^{\perp} \Rightarrow \mathbf{1} = (1, \dots, 1) \in C$$
, since $(c, c) = (c, \mathbf{1})$.

• If C is self-dual then
$$n = 2 \dim(C)$$
 is even and

$$\mathbf{1} \in C^{\perp} = C \subset \mathbf{1}^{\perp} = \{ c \in \mathbb{F}_2^n \mid \operatorname{wt}(c) \text{ even } \}.$$

 Self-dual doubly-even codes correspond to totally isotropic subspaces in the quadratic space

$$E_{n-2} := (\mathbf{1}^{\perp}/\langle \mathbf{1} \rangle, q), q(c+\langle \mathbf{1} \rangle) = \frac{1}{2} \operatorname{wt}(c) \pmod{2} \in \mathbb{F}_2.$$

•
$$C = C^{\perp} \leq \mathbb{F}_2^n$$
 doubly-even $\Rightarrow n \in 8\mathbb{Z}$.

Theorem (A. Meyer, N. 2009)

Let $C = C^{\perp} \leq \mathbb{F}_2^n$ doubly-even. Then $\operatorname{Aut}(C) \leq \operatorname{Alt}_n$.

Application of quadratic forms

Aut $(C) = \{ \sigma \in S_n \mid \sigma(C) \subseteq C \}$ is the automorphism group of $C \leq \mathbb{F}_2^n$.

Theorem (A. Meyer, N. 2009)

Let $C = C^{\perp} \leq \mathbb{F}_2^n$ doubly-even. Then $\operatorname{Aut}(C) \leq \operatorname{Alt}_n$.

- Proof. (sketch)
- $\blacktriangleright E_{n-2} := (\mathbf{1}^{\perp}/\langle \mathbf{1} \rangle, q), q(c+\langle \mathbf{1} \rangle) = \frac{1}{2} \operatorname{wt}(c) \pmod{2} \in \mathbb{F}_2.$
- $C/\langle \mathbf{1} \rangle$ is a maximal isotropic subspace E_{n-2} .
- ► The stabilizer in the orthogonal group of E_{n-2} of such a space has trivial Dickson invariant.

• The restriction of the Dickson invariant to S_n is the sign.

Application of Representation Theory

G finite group, $\mathbb{F}_2 G = \{\sum_{g \in G} a_g g \mid a_g \in \mathbb{F}_2\}$ group ring. Then *G* acts on $\mathbb{F}_2 G \cong \mathbb{F}_2^{|G|}$ by permuting the basis elements.

Theorem (Sloane, Thompson, 1988)

There is a *G*-invariant self-dual doubly-even code $C \leq \mathbb{F}_2 G$, if and only if $|G| \in 8\mathbb{N}$ and the Sylow 2-subgroups of *G* are not cyclic.

Theorem (A. Meyer, N., 2009)

Given $G \leq S_n$. Then there is $C = C^{\perp} \leq \mathbb{F}_2^n$ doubly-even such that $G \leq \operatorname{Aut}(C)$, if and only if

- ▶ $n \in 8\mathbb{N}$,
- ► all self-dual composition factors of the F₂G-module Fⁿ₂ occur with even multiplicity, and
- $G \leq \operatorname{Alt}_n$.

$C = C^{\perp} \leq \mathbb{F}_2^{72}$ extremal, $G = \operatorname{Aut}(C)$.

Theorem (Conway, Huffmann, Pless, Bouyuklieva, O'Brien, Willems, Feulner, Borello, Yankov, N., ..)

Let $C \leq \mathbb{F}_2^{72}$ be an extremal doubly even code, $G := \operatorname{Aut}(C) := \{ \sigma \in S_{72} \mid \sigma(C) = C \}$

- Let p be a prime dividing |G|, $\sigma \in G$ of order p.
- If p = 2 or p = 3 then σ has no fixed points. (B)
- If p = 5 or p = 7 then σ has 2 fixed points. (CHPB)
- If p = 2 then C is a free $\mathbb{F}_2\langle \sigma \rangle$ -module. (N)
- G contains no element of prime order \geq 7. (BYFN)
- G contains no element of order 6. (Borello)
- G has no subgroup S_3 . (BN)
- $G \not\cong Alt_4, G \not\cong D_8, G \not\cong C_2 \times C_2 \times C_2$ (BN)
- and hence $|G| \le 5$.

Existence of an extremal code of length 72 is still open.

The Type of a permutation of prime order

Theoretical results, p odd.

Definition (recall)

Let $\sigma \in S_n$ of prime order p. Then σ is of Type (z, f), if σ has z p-cycles and f fixed points. zp + f = n.

Theorem (Conway, Pless) (recall)

Let $C = C^{\perp} \leq \mathbb{F}_2^n$, $\sigma \in Aut(C)$ of odd prime order p and Type (z, f).

Then
$$2^{(z+f)/2} \equiv 2^{n/2} \pmod{p}$$
.

Corollary. $n = 72 \Rightarrow p \neq 37, 43, 53, 59, 61, 67$.

Corollary. If n = 8 then $p \neq 5$ and $p = 3 \Rightarrow$ Type (2, 2). $2^4 \not\equiv 2^{(1+3)/2} \pmod{5}, 2^4 \not\equiv 2^{(1+5)/2} \pmod{3}.$

・ロト・西ト・西ト・西・ うくぐ

Computational results, p odd.

BabyTheorem: n = 8, p = 3

All doubly even self-dual codes of length 8 that have an automorphism of order 3 are equivalent to h_8 .

1

Г 1

Computational results, *p* odd.

Theorem. (Borello, Feulner, N. 2012, 2013)

Let $C = C^{\perp} \leq \mathbb{F}_2^{72}$, $d(C) \geq 16$. Then Aut(C) has no subgroup C_7 , $C_3 \times C_3$, D_{10} , S_3 .

- **Proof.** for $S_3 = \langle \sigma, \tau \mid \sigma^3, \tau^2, (\sigma \tau)^2 \rangle$
- $\sigma = (1, 2, 3)(4, 5, 6) \cdots (67, 68, 69)(70, 71, 72)$
- $\bullet \ \tau = (1,4)(2,6)(3,5)\cdots(67,70)(68,72)(69,71)$
- $C \cong \operatorname{Fix}_C(\sigma) \oplus E_C(\sigma)$ with $E_C(\sigma) \leq \mathbb{F}_4^{24}$ Hermitian self-dual.
- τ acts on $E_C(\sigma)$ by $(\epsilon_1, \epsilon_2, \dots, \epsilon_{23}, \epsilon_{24})^{\tau} = (\overline{\epsilon_2}, \overline{\epsilon_1}, \dots, \overline{\epsilon_{24}}, \overline{\epsilon_{23}})$
- $Fix_{E_C(\sigma)}(\tau) = \{ \epsilon := (\overline{\epsilon_2}, \epsilon_2 \dots, \overline{\epsilon_{24}}, \epsilon_{24}) \in E_C(\sigma) \}$
- $\blacktriangleright \cong \pi(\operatorname{Fix}_{E_C(\sigma)}(\tau)) = \{(\epsilon_2, \dots, \epsilon_{24}) \mid \epsilon \in \operatorname{Fix}_{E_C(\sigma)}(\tau)\} \le \mathbb{F}_4^{12}$
- ► is trace Hermitian self-dual additive code, minimum distance ≥ 4.
- There are 195,520 such codes.
- $\blacktriangleright \langle \operatorname{Fix}_{E_C(\sigma)}(\tau) \rangle_{\mathbb{F}_4} = E_C(\sigma).$
- No $E_C(\sigma)$ has minimum distance ≥ 8 .

$C = C^{\perp} \leq \mathbb{F}_2^{72}$, doubly-even.

Theoretical results, p even.

Theorem. (A. Meyer, N.) (recall)

Let $C = C^{\perp} \leq \mathbb{F}_2^n$ doubly-even. Then $\operatorname{Aut}(C) \leq \operatorname{Alt}_n$.

Corollary. Aut(C) has no element of order 8.

 $\sigma \in \operatorname{Aut}(C)$ of order 8. Then

 $\sigma = (1, 2, \dots, 8)(9, \dots, 16) \dots (65, \dots, 72)$

since σ^4 has no fixed points. So sign(σ) = -1, a contradiction.

(This corollary was known before and is already implied by the Sloane-Thompson Theorem.)

 $C = C^{\perp} \leq \mathbb{F}_2^{72}$, doubly even, extremal, so d(C) = 16Theoretical results, *p* even.

Theorem. (N. 2012)

Let $\tau \in Aut(C)$ of order 2. Then C is a free $\mathbb{F}_2\langle \tau \rangle$ -module.

- Let $R = \mathbb{F}_2 \langle \tau \rangle$ the free $\mathbb{F}_2 \langle \tau \rangle$ -module, $S = \mathbb{F}_2$ the simple one.
- Then $C = R^a \oplus S^b$ with 2a + b = 36.

$$\blacktriangleright F := \operatorname{Fix}_C(\tau) = \{ c \in C \mid c\tau = c \} \cong S^{a+b}, C(1-\tau) \cong S^a.$$

•
$$\tau = (1,2)(3,4)\dots(71,72)$$

•
$$F \cong \pi(F), \pi(c) = (c_2, c_4, c_6, \dots, c_{72}) \in \mathbb{F}_2^{36}.$$

► Fact:
$$\pi(F) = \pi(C(1-\tau))^{\perp} \supseteq D = D^{\perp} \supseteq \pi(C(1-\tau)).$$

►
$$d(F) \ge d(C) = 16$$
, so $d(D) \ge d(\pi(F)) \ge 8$.

- There are 41 such extremal self-dual codes D (Gaborit etal).
- No code D has a proper overcode with minimum distance ≥ 8 .
- This can also be seen a priori considering weight enumerators.
- So $\pi(F) = D$ and hence a + b = 18, so a = 18, b = 0.

Theorem: *C* is a free $\mathbb{F}_2\langle \tau \rangle$ -module.

Corollary. Aut(C) has no element of order 8.

 $g \in \operatorname{Aut}(C)$ of order 8. Then C is a free $\mathbb{F}_2\langle g^4 \rangle$ -module, hence also a free $\mathbb{F}_2\langle g \rangle$ -module of rank $\dim(C)/8 = 36/8 = 9/2$ a contradiction.

Corollary. Aut(C) has no subgroup Q_8 .

Use a theorem by J. Carlson: If M is an \mathbb{F}_2Q_8 -module such that the restriction of M to the center of Q_8 is free, then M is free.

Corollary. Aut(C) has no subgroup $U \cong C_2 \times C_4$, C_8 or C_{10} .

- Let $\tau \in U$ of order 2, $F = \operatorname{Fix}_C(\tau) \cong \pi(F) = D = D^{\perp} \leq \mathbb{F}_2^{36}$.
- ► Then *D* is one of the 41 extremal codes classified by Gaborit etal.
- $U/\langle \tau \rangle \cong C_4$ or C_5 acts on D.
- None of the 41 extremal codes D has a fixed point free automorphism of order 4 or an automorphism of order 5 with exactly one fixed point.

Alt₄ = $\langle a, b, \sigma \rangle \supseteq \langle a, b \rangle = V_4$, (Borello, N. 2013) Computational results: No Alt₄ \leq Aut(*C*).

3 possibilities for D $\dim(D^{\perp}/D) = 20, 20, 22.$ $C/D < D^{\perp}/D$ maximal isotropic subspace. $\begin{array}{|c|c|c|c|c|} \textbf{D}_{\textbf{/D}}^{\textbf{L}} = \textbf{V} & V_4 \text{ acts } \dots \\ \textbf{D}_{\textbf{/D}}^{\textbf{L}} = \textbf{V} & V = Ve_0 \oplus Ve_1 \\ & \text{is an } \mathbb{F}_2 \langle \sigma \rangle \text{-module.} \\ \text{I nique possibility fc} \end{array}$ V_4 acts trivially on $D^{\perp}/D =: V$. Unique possibility for Ce_0 . $Ce_1 < Ve_1$ Hermitian maximal singular \mathbb{F}_4 -subspace. Compute all these subspaces as orbit under the unitary group of Ve_1 . No extremal code is found.

Lattices and sphere packings

Hexagonal Circle Packing

$$\theta = 1 + 6q + 6q^3 + 6q^4 + 12q^7 + 6q^9 + \dots$$

Extremal even unimodular lattices

Definition

► A lattice L in Euclidean n-space (ℝⁿ, (,)) is the Z-span of an R-basis B = (b₁,..., b_n) of ℝⁿ

$$L = \langle b_1, \dots, b_n \rangle_{\mathbb{Z}} = \{ \sum_{i=1}^n a_i b_i \mid a_i \in \mathbb{Z} \}.$$

The dual lattice is

$$L^{\#} := \{ x \in \mathbb{R}^n \mid (x, \ell) \in \mathbb{Z} \text{ for all } \ell \in L \}$$

- L is called unimodular if $L = L^{\#}$.
- L is called even if $(\ell, \ell) \in 2\mathbb{Z}$ for all $\ell \in L$.
- Then $Q: L \to \mathbb{Z}, \ell \mapsto \frac{1}{2}(\ell, \ell)$ is an integral quadratic form.
- $\min(L) := \min\{Q(\ell) \mid 0 \neq \ell \in L\}$ the minimum of L.
- L extremal if $L = L^{\#}$ and $\min(L) \ge 1 + \lfloor \frac{n}{24} \rfloor$.
- $\operatorname{Aut}(L) := \{g \in O(\mathbb{R}^n, (,)) \mid g(L) = L\}$ automorphism group of L.

Application of modular forms

The sphere packing density of a unimodular lattice is proportional to its minimum.

From the theory of modular forms one gets an upper bound for the minimum:

Extremal lattices

Let L be an n-dimensional even unimodular lattice. Then

$$n \in 8\mathbb{N}$$
 and $\min(L) \leq 1 + \lfloor \frac{n}{24} \rfloor$.

Lattices achieving equality are called extremal.

Extremal even unimodular lattices.

n	8	16	24	32	40	48	72	80
min(L)	1	1	2	2	2	3	4	4
number of extremal lattices	1	2	1	$\geq 10^7$	$\geq 10^{51}$	≥ 4	≥ 1	≥ 4

Extremal even unimodular lattices in jump dimensions

The extremal theta series

$$\begin{aligned} f^{(3)} &= 1 + 196,560q^2 + \ldots = \theta_{\Lambda_{24}}, \\ f^{(6)} &= 1 + 52,416,000q^3 + \ldots = \theta_{P_{48p}} = \theta_{P_{48q}} = \theta_{P_{48n}} = \theta_{P_{48n}} \\ f^{(9)} &= 1 + 6,218,175,600q^4 + \ldots = \theta_{\Gamma_{72}}. \end{aligned}$$

The automorphism groups		
$\operatorname{Aut}(\Lambda_{24}) \cong 2.Co_1$	order =	$\frac{8315553613086720000}{2^{22}3^95^47^211} \frac{13}{23}$
$\operatorname{Aut}(P_{48p}) \cong (\operatorname{SL}_2(23) \times S_3) : 2$	order	$72864 = 2^5 3^2 11\ 23$
$\operatorname{Aut}(P_{48q}) \cong \operatorname{SL}_2(47)$	order	$103776 = 2^53 \ 23 \ 47$
$\operatorname{Aut}(P_{48n}) \cong (\operatorname{SL}_2(13) \operatorname{Y} \operatorname{SL}_2(5)).2^2$	order	$524160 = 2^7 3^2 5\ 7\ 13$
$\operatorname{Aut}(P_{48m}) \ge $ soluble	order	mult. of $1200 = 2^4 35^2$
$\operatorname{Aut}(\Gamma_{72}) \cong (\operatorname{SL}_2(25) \times \operatorname{PSL}_2(7)) : 2$	order	$5241600 = 2^8 3^2 5^2 7 \ 13$

The Type of an automorphism.

Let $L \leq \mathbb{R}^n$ be some even unimodular lattice and $\sigma \in Aut(L)$ of prime order p. The fixed lattice

$$F := \operatorname{Fix}_L(\sigma) := \{ v \in L \mid \sigma v = v \} \le L$$

has dimension d, and σ acts on $M := F^{\perp}$ as a pth root of unity, so n = d + z(p-1).

$$F^{\#} \perp M^{\#} \ge L = L^{\#} \ge F \perp M \ge pL$$

with $\det(F) = |F^{\#}/F| = |M^{\#}/M| = \det(M) = p^{s}$

Definition: p(z,d)-s is called the Type of σ .

Proposition: $s \leq \min(d, z)$ and z - s is even.

48-dimensional extremal lattices

Theorem (N. 2013)

Let *L* be an extremal even unimodular lattice of dimension 48 and *p* be a prime dividing $|\operatorname{Aut}(L)|$. Then p = 47, 23 or $p \le 13$. Let $\sigma \in \operatorname{Aut}(L)$ of order *p*. The fixed lattice $F := \operatorname{Fix}_L(\sigma)$ is:

р	$\dim F$	$\det(F)$	F	example	
47	2	47	unique	P_{48q}	
23	4	23^{2}	unique	P_{48q}, P_{48p}	
13	0		$\{0\}$	P_{48n}	
11	8	11^{4}	unique	P_{48p}	
7	0		$\{0\}$	P_{48n}	
7	6	7^{5}	$\sqrt{7}A_{6}^{\#}$	not known	
5	0		{0}	P_{48n}, P_{48m}	
5	8	5^{8}	$\sqrt{5}E_8$	P_{48m}	
5	16	5^{8}	$[2. Alt_{10}]_{16}$	P_{48m}	
3	0,8,1622	7 possibilities			
2	0		{0}	$\sigma = -1$	
2	24	2^{24}	$\sqrt{2}\Lambda_{24}$	P_{48n}	
2	24	2^{24}	$\sqrt{2}O_{24}$	$P_{48n}, P_{48p}, P_{48m}$	

э.

Application of number theory

Observation

The maximal dimension of the fixed lattice of some automorphism of prime order p is ≤ 22 if p is odd and ≤ 24 if p = 2.

Corollary

Let *L* be an extremal even unimodular lattice of dimension 48 and $\sigma \in Aut(L)$ of order *a*. Then the minimal polynomial μ_{σ} is a multiple of the *a*-th cyclotomic polynomial ϕ_a .

Definition

Let $V(\sigma)$ be the maximal subspace of $\mathbb{Q}L$, on which σ acts with minimal polynomial ϕ_a . Then $V(\sigma) \cong \mathbb{Q}[\zeta_a]^z$ for some $z \ge 1$. Let $M := L \cap V(\sigma)$ and $F := L \cap V(\sigma)^{\perp}$. Then M is a $\mathbb{Z}[\zeta_a]$ -sublattice of $V(\sigma)$ and $M \perp F$ is a sublattice of finite index in L.

The main classification result.

Theorem (N. 2013)

L even unimodular, extremal, $\dim(L) = 48$ and $\sigma \in Aut(L)$ of order a such that $\varphi(a) > 24$. Then one of

- a = 120 and $L \cong P_{48n}$
- ▶ a = 132 and $L \cong P_{48p}$
- ▶ a = 69 and $L \cong P_{48p}$
- ▶ a = 47 and $L \cong P_{48q}$
- ▶ a = 65 and $L \cong P_{48n}$
- a = 104 and $L \cong P_{48n}$

The strategy of the proof is to

- ▶ first classify the candidates for *M* (ideal lattice)
- and F (fixed lattice of some element of prime order)
- and the possible actions of $\sigma_{|F} \in Aut(F)$.
- ► Then compute the (σ_M, σ_F) -invariant unimodular overlattices L of $M \perp F$.
- Use reduction algorithms to prove $\min(L) \leq 2$ or
- if $\min(L) = 3$ then identify L with one of the known lattices.

Construction of the lattice P_{48m} .

Proposition (N. 2014)

Let *L* be an extremal even unimodular lattice of dimension 48, such that $\operatorname{Aut}(L)$ contains an automorphism σ of Type 5 - (8, 16) - s. Then $s = 8, F := \operatorname{Fix}_L(\sigma) \cong [2, \operatorname{Alt}_{10} .2], M := \operatorname{Fix}_L(\sigma)^{\perp}$ is such that $M^{\#}$ is the unique unimodular $\mathbb{Z}[\zeta_5]$ -lattice of dimension 8 with $\min(M) \ge 3$,

$$M \perp F \underbrace{\subset}_{5^8} L = L^{\#} \underbrace{\subset}_{5^8} M^{\#} \perp F^{\#}$$

Theorem (N. 2014)

 $L = P_{48m}$ is the unique extremal lattice whose automorphism group contains an element of Type 5 - (8, 16) - 8. (about 15 CPU years of computation) $G := \operatorname{Aut}(P_{48m})$ contains a soluble subgroup $S = \operatorname{Stab}_{\operatorname{Aut}(M \perp F)}(L)$ of order $2^{4}3$ 5^2 . The Sylow 2-subgroup of G is $D_8 YC_4$ and the Sylow 5-subgroup of G is $C_5 \times C_5$.