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Doubly-even self-dual codes

Definition

» A linear binary code C of length n is a subspace C' < F%.
» The dual code of C'is
Ct:={zeFy|(z,c):=> 1  mic;=0forallceC}
C is called self-dual if C = C+.
The Hamming weight of a codeword ¢ € C'is
wt(c) := [{i | ¢; # 0}.
wt(c) =2 (¢, ¢), s0 C C C* implies wt(C) C 27Z.
C'is called doubly-even if wt(C) C 4Z.
The minimum distance d(C') := min{wt(c) | 0 # ¢ € C'}.
A self-dual code C < Iy is called extremal if d(C') > 4 44| 35 ].
The weight enumerator of C'is
5 = Do z Wy W) € Clz, y],.
Aut(C)={o € S, |o(C)CC}.
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Examples for self-dual doubly-even codes

Hamming Code

10000111
b 0100 1011
810 01 01 1 0 1

00011110

the extended Hamming code, the unique doubly-even self-dual code
of length 8,
Phs (2, y) = 2® + 14a'y® + 4°

and Aut(hs) =2 L3(2)

Golay Code

The binary Golay code Gs4 is the unique doubly-even self-dual code
of length 24 with minimum distance > 8. Aut(G24) = Moy

PGy = 1‘24 + 759$16y8 + 257630123/12 + 759$8y16 + y24



Application of invariant theory
The weight enumerator of C is pc == 3 . 2" Vy™H) € Clz, yl,.

Theorem (Gleason, ICM 1970)

Let C = C+ < F% be doubly even. Then
> po(,y) = po(,1), pe(@,y) = per (2,y) = po (T, %

77)
1 0 1 1
g G192:<<0 i )Jﬁ( 1 -1 )>'
> Pc S InV(G192) — (C[phgapgzz;]
» d(C) <4+4|5]
Doubly-even self-dual codes achieving equality are called extremal.
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length 24 | 32 40 48 | 72| 80 | > 3952
d(C) 4] 8 12 [16] 16
extremal | hg | Gosa | 5 | 16,470 | QR4s | 7 | >4 0
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Automorphism groups of extremal codes

Aut(C) ={o € S,, | o(C) C C} is the automorphism group of C' < F%.

>
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Aut(hs) = 23.L3(2)

Aut(Go4) = Mo

Length 32: Ly (31), 25.L5(2), 28.5s, 28.15(7).2, 2°.S6.
Length 40: 10,400 extremal codes with Aut = 1.
Aut(QRug) = Lo(47).

Sloane (1973): Is there a (72, 36, 16) self-dual code?

If C'is such a (72,36, 16) code then Aut(C) has order < 5.

length 24 | 32 40 48 | 72| 80 | > 3952

oo

d(C) 1] 8 |38 8 12 [16] 16

extremal hs | Goa 5 16,470 QR48 ? >4 0




Application of Burnside’s orbit counting theorem

Definition
Let o € S,, of prime order p. Then ¢ is of Type (z, f), if o has z
p-cycles and f fixed points. zp + f = n.

fo=(1,2,..,0)(p+1,.,2p)...((z = 1)p+ 1, .., 2zp) € Aut(C) then
C =Fixc (o) ® Ec(o), with

Fixc (o) ={(cp...cpcop...Cop.. . Cop...CopCipt1...Cp) € C} =
—— e N —
P P P
7(Fixc(0)) = {(cpCap - - - CopCapii---cn) € B3 | ¢ € Fixc(o)}

Fact: If C = C* and p is 0dd, then 7 (Fixc (o)) is a self-dual code of
length z + f. In particular
z4+ f

dim(Fixc (7)) = 1 and | Fixe (o)) = 20+72,




Application of Burnside’s orbit counting theorem

Theorem (Conway, Pless, 1982)
Let C = C+ < F%, o € Aut(C) of odd prime order p and Type (z, f).

Then 2(z+/2 = 9n/2 (mod p).

Proof: Apply orbit counting:

The number of G-orbits on a finite set M is I—é‘ Ygec | Fixar(g)l-
Here G = (o), M = C, Fixc(g) = Fixc(o) forall 1 # g € G, and the
number of (o)-orbits on C'is 1 (2"/2 + (p — 1)27/)/2) € N.

Corollary.

C = C+ <F%, p>n/2 an odd prime divisor of | Aut(C)|, then p = +1
(mod 8).

Herez=1,f=n—p, (2 +f)/2=(n—(p—1))/2,s0 20~ D/2is 1
mod p and hence 2 must be a square modulo p.



Application of quadratic forms

Remark

» C=Ct=1=(1,...,1) € C,since (c,c) = (c,1).
» If C is self-dual then n = 2dim(C) is even and

1eCt=Cc1t ={cecFy|wt(c)even }.

» Self-dual doubly-even codes correspond to totally isotropic
subspaces in the quadratic space

1
En_5:=(11/(1),q),q(c+ (1)) = §Wt(0) (mod 2) € F.
» C = C+ < F} doubly-even = n € 8Z.

Theorem (A. Meyer, N. 2009)
Let C = C+ < F% doubly-even. Then Aut(C) < Alt,,.



Application of quadratic forms

Aut(C) ={o € S, | o(C) C C} is the automorphism group of C' < F%.

Theorem (A. Meyer, N. 2009)
Let C = C+ < F} doubly-even. Then Aut(C) < Alt,,.

» Proof. (sketch)
E,_o:=(1%/(1),q),q(c+ (1)) = %Wt(C) (mod 2) € Fs.
C'/(1) is a maximal isotropic subspace E,,_».

The stabilizer in the orthogonal group of E,,_» of such a space
has trivial Dickson invariant.

The restriction of the Dickson invariant to .S,, is the sign.
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Application of Representation Theory

G finite group, F2G = {3_ . aq9 | ag € F2} group ring.
Then G acts on FoG = ]F'f' by permuting the basis elements.

Theorem (Sloane, Thompson, 1988)

There is a G-invariant self-dual doubly-even code C' < F,G, if and
only if |G| € 8N and the Sylow 2-subgroups of G are not cyclic.

Theorem (A. Meyer, N., 2009)
Given G < S,,. Then there is C = C+ < % doubly-even such that
G < Aut(0), if and only if

» n € 8N,

» all self-dual composition factors of the FoG-module F% occur with
even multiplicity, and

» G < Alt,.



C = C+ < F? extremal, G = Aut(C).

Theorem (Conway, Huffmann, Pless, Bouyuklieva,
O’Brien, Willems, Feulner, Borello, Yankov, N., ..)
Let C < F7? be an extremal doubly even code,

G :=Aut(C) :={o € S72 | 0(C) = C}

Let p be a prime dividing |G|, o € G of order p.

If p =2 or p = 3 then ¢ has no fixed points. (B)

If p=15or p=7then ¢ has 2 fixed points. (CHPB)

If p=2then C'is a free Fo(c)-module. (N)

G contains no element of prime order > 7. (BYFN)

G contains no element of order 6. (Borello)

G has no subgroup Ss. (BN)

G % Alty, G % Dg, G % Cy x Cy x Cs (BN)

and hence |G| < 5.
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Existence of an extremal code of length 72 is still open.



The Type of a permutation of prime order

Theoretical results, p odd.

Definition (recall)

Let o € S,, of prime order p. Then ¢ is of Type (z, f), if o has z
p-cycles and f fixed points. zp + f = n.

Theorem (Conway, Pless) (recall)
Let C = C+ < F%, o € Aut(C) of odd prime order p and Type (z, f).

Then 2(z+/2 = 9n/2  (mod p).

Corollary. n =72 = p # 37,43,53, 59,61, 67.

Corollary. If n = 8then p # 5 and p = 3 = Type (2, 2).
24 2 2043)/2 (mod 5), 24 # 2045)/2 (mod 3).



Computational results, p odd.

BabyTheorem: n =8,p=3

All doubly even self-dual codes of length 8 that have an

automorphism of order 3 are equivalent to hs.

> 0 =(1,2,3)(4,5,6)(7)(8) € Aut(C)
> ¢ =1+ 0+ 02 e =0+ o? idempotents in Fy (o)
> C=Cey L Cey
» Cey = Fixc (o) isomorphic to a self-dual code in F3, so
C"11100010'
“looo 1110 1]
» Cey & Ec (o) < F% Hermitian self-dual, Ce; = [1,1], so
001 101 1 0 0]
Caili 911010
and hence
1 1 1.0 0 0 1 0
C 00 0 1 1 1 01
01 1.0 1 1 00
1 01101 00

o o




Computational results, p odd.

Theorem. (Borello, Feulner, N. 2012, 2013)

Let C = O+ < F72, d(C) > 16. Then Aut(C) has no subgroup C+,
C3 x C3, D1o, Ss.

Proof. for S3 = (0,7 | 03,72, (07)?)

= (1,2,3)(4,5,6) - - - (67,68,69)(70,71,72)
7=(1,4)(2,6)(3,5)--- (67,70)(68,72)(69,71)
C = Fixg (o) @ Ec (o) with E¢(0) < F2* Hermitian self-dual.
T acts on Ec(o) by (e1,€,. .., €a3,€24) = (€3,€1, ..., €4, €23)
Fixpe (o) (1) = {e:= (€2, €2 .. , €21, €24) € Ec(0)}
= 1(Fixge (o) (1)) = {(e2, . - 624) | € € Fixp (o) (7))} < F}2
is trace Hermitian self-dual additive code, minimum distance > 4.
There are 195,520 such codes.
(Fixpe (o) (T))r, = Ec(0).
No E¢ (o) has minimum distance > 8.

vV V. vV vV vV vV VvV VY VvV VY



C = C*+ < F?2, doubly-even.

Theoretical results, p even.

Theorem. (A. Meyer, N.) (recall)
Let C = C+ < F? doubly-even. Then Aut(C) < Alt,,.

Corollary. Aut(C') has no element of order 8.
o € Aut(C) of order 8. Then

o=(1,2,...,8)(9,...,16)...(65,...,72)
since o* has no fixed points. So sign(c) = —1, a contradiction.

(This corollary was known before and is already implied by the
Sloane-Thompson Theorem.)



C = O+ < F?2, doubly even, extremal, so d(C) = 16

Theoretical results, p even.

Theorem. (N. 2012)
Let 7 € Aut(C) of order 2. Then C'is a free Fy(7)-module.

Let R = Fy(7) the free Fo(7)-module, S = F, the simple one.
Then C = R* @ S° with 2a + b = 36.
F:=Fixc(r)={ceC|er=c} 2 S C(1-71) =85

7 =(1,2)(3,4)...(71,72).

F = 7(F),n(c) = (co,ca,¢6,--.,Cr2) € F30.

Fact: 7(F) =n(C(1 - 7))t 2 D =D+ 2> 7(C(1—-1)).

d(F) > d(C)=16,s0d(D) > d(n(F)) > 8.

There are 41 such extremal self-dual codes D (Gaborit etal).
No code D has a proper overcode with minimum distance > 8.
This can also be seen a priori considering weight enumerators.
So n(F) =D andhence a+b=18,s0a =18,b=0.
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Theorem: C'is a free Fy(7)-module.
Corollary. Aut(C) has no element of order 8.

g € Aut(C) of order 8. Then C is a free F5(g*)-module, hence also a
free Fo(g)-module of rank dim(C)/8 = 36/8 = 9/2 a contradiction.

Corollary. Aut(C') has no subgroup Qs.

Use a theorem by J. Carlson: If M is an FoQg-module such that the
restriction of M to the center of Qs is free, then M is free.

Corollary. Aut(C') has no subgroup U = Cy x Cy, Cg or
Cho-

» LetT € U of order 2, F = Fixo(7) 2 7(F) = D = D+ < F3S.
» Then D is one of the 41 extremal codes classified by Gaborit etal.
» U/(r) = Cyor C; acts on D.

» None of the 41 extremal codes D has a fixed point free
automorphism of order 4 or an automorphism of order 5 with
exactly one fixed point.



Alty = (a,b,0) > (a,b) = Vj, (Borello, N. 2013)

Computational results: No Alty < Aut(C).

DJ.
1
L D D =
= Ve, + Ve,
Fix{a F‘ii((’(b)

41 poss.

3 possibilities for D
dim(D+/D) = 20, 20, 22.

C/D < D*+/D

maximal isotropic subspace.
V, acts trivially on D+ /D =: V.
V=Vey®Vey

is an Fo(o)-module.

Unique possibility for Cey.

Ce; < Vep Hermitian

maximal singular F,-subspace.
Compute

all these subspaces as orbit
under the unitary group of Ve;.
No extremal code is found.



Lattices and sphere packings

> A
goa0ss;
‘v‘A ‘Ov A‘
0209020
094 %o«o
o ﬁq 0

Hexagonal Circle Packing

0 =1+6q+6¢>+6¢*+12¢" +6¢° +....



Extremal even unimodular lattices
Definition
» A lattice L in Euclidean n-space (R", (,)) is the Z-span of an
R-basis B = (b1, ..., b,) of R”

L=(by,...,ba)z={>_aibi | a; € Z}.
=Jl

The dual lattice is

v

L# :={z €R" | (z,0) € Zforall{ € L}

L is called unimodular if L = L#.

Lis called even if (¢,¢) € 2Z for all ¢ € L.

Then @ : L — 7Z,¢— %(6, ¢) is an integral quadratic form.

min(L) := min{Q(¥¢) | 0 # £ € L} the minimum of L.

L extremal if L = L# and min(L) > 1+ [ ].

Aut(L) :={g € OR",(,)) | g(L) = L} automorphism group of L.
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Application of modular forms

The sphere packing density of a unimodular lattice is proportional to
its minimum.

From the theory of modular forms one gets an upper bound for the
minimum:

Extremal lattices
Let L be an n-dimensional even unimodular lattice. Then

n e 8Nand min(L) < 1+ LQ%J.

Lattices achieving equality are called extremal.

Extremal even unimodular lattices.

n 8|16 | 24 32 40 48 | 72 | 80
mnLy [1] 12 2 2 3 [ 4] 4
number of

extremal |1 | 2 1 | >107 | >10°' | >4 | >1| >4
lattices




Extremal even unimodular lattices in jump dimensions
The extremal theta series

f® =14196,560¢2 + ... =0,,,.
f© =1+52,416,000¢° + ... = Op,,, = Op,, = Op, = Opyg,.-
f® =146,218,175,600¢* + ... = Or,,.

The automorphism groups

Aut(Agy) = 2.Co; order 8315553613086720000
22239547211 13 23

Aut(Pysp) = (SL2(23) x S3) : 2 order 72864 = 253211 23
Aut(Pyg,) = SLy(47) order 103776 = 253 23 47
Aut(Pss,) = (SLy(13)Y SLy(5)).22  order 524160 = 27325 7 13
Aut(Pys,) > soluble order mult. of 1200 = 24352

Aut(T'72) = (SLy(25) x PSLy(7)) : 2 order 5241600 = 2832527 13



The Type of an automorphism.
Let L < R™ be some even unimodular lattice and ¢ € Aut(L) of prime
order p. The fixed lattice
F:=TFixp(o) ={velL|ov=v}<L

has dimension d, and ¢ acts on M := F* as a pth root of unity, so
n=d+z(p—1).

F#* 1 M*>L=L%>F_1M>pL
with det(F) = |F#/F| = |M# /M| = det(M) = p*

Definition: p-(z,d)-s is called the Type of o.

Proposition: s < min(d, z) and z — s is even.



48-dimensional extremal lattices

Theorem (N. 2013)

Let L be an extremal even unimodular lattice of dimension 48 and p

be a prime dividing | Aut(L)|. Then p = 47,23 or p < 13.
Let 0 € Aut(L) of order p. The fixed lattice F' := Fixy, (o) is:

p dim F' det(F) F example
47 2 47 unique Pygq
23 4 232 unique Pusq, Pisy
13 0 {0} Pysp
11 8 11% unique Pys,,

7 0 {0} Pygn

7 6 75 VTAY not known

5 0 {0} Pygrn, Pigm

5 8 58 V5Fs Pygm

5 16 58 [2 Altlo]lﬁ P/18m

310,8,16..22 7 possibilities

2 0 {0} o=-1

2 24 224 V2Aa4 Pysp

2 24 224 V2024 Pysn, Pagp, Pagm




Application of number theory

Observation

The maximal dimension of the fixed lattice of some automorphism of
prime order p is < 22 if p is odd and < 24 if p = 2.

Corollary

Let L be an extremal even unimodular lattice of dimension 48 and
o € Aut(L) of order a. Then the minimal polynomial 4, is a multiple
of the a-th cyclotomic polynomial ¢,.

Definition

Let V(o) be the maximal subspace of QL, on which ¢ acts with
minimal polynomial ¢,. Then V(o) = QI[(,)* for some z > 1. Let
M:=LNV(s)and F:=LNV(c)t. Then M is a Z[(,]-sublattice of
V(e) and M L F is a sublattice of finite index in L.



The main classification result.
Theorem (N. 2013)

L even unimodular, extremal, dim(L) = 48 and o € Aut(L) of order a
such that p(a) > 24. Then one of

» a =120 and L = Pyg,,

» a=132and L = P,

» a=069and L = Py,

» a=47and L = Pyg,

» a=065and L & Pyg,

» a =104 and L = Pyg,

The strategy of the proof is to

first classify the candidates for M (ideal lattice)

and F' (fixed lattice of some element of prime order)

and the possible actions of o € Aut(F).

Then compute the (o, op)-invariant unimodular overlattices L
of M L F.

Use reduction algorithms to prove min(L) < 2 or

» if min(L) = 3 then identify L with one of the known lattices.

>
>
>
>
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Construction of the lattice Pys,),.
Proposition (N. 2014)

Let L be an extremal even unimodular lattice of dimension 48, such
that Aut(L) contains an automorphism o of Type 5 — (8,16) — s. Then
s =8, F := Fixz(0) = [2. Aty .2], M := Fixy (o) is such that M# is
the unique unimodular Z[¢s]-lattice of dimension 8 with min(1/) > 3,

M1F c L=1L# c M# | F#
~— ~—

58 58

Theorem (N. 2014)

L = Pyg,, is the unique extremal lattice whose automorphism group
contains an element of Type 5 — (8,16) — 8.

(about 15 CPU years of computation)

G := Aut(Pys,) contains a soluble subgroup S = Stab (a1 )y (L) of
order 243 52. The Sylow 2-subgroup of G is DgYC, and the Sylow
5-subgroup of G is C5 x Cs.



