An extremal even unimodular lattice of dimension 72

Gabriele Nebe

Lehrstuhl D für Mathematik
Kyoto workshop, December 2010

RWIHAACHEN UNIVERSTTY

Doubly-even self-dual codes

Definition

- A linear binary code C of length n is a subspace $C \leq \mathbb{F}_{2}^{n}$.

Doubly-even self-dual codes

Definition

- A linear binary code C of length n is a subspace $C \leq \mathbb{F}_{2}^{n}$.
- The dual code of C is

$$
C^{\perp}:=\left\{x \in \mathbb{F}_{2}^{n} \mid(x, c):=\sum_{i=1}^{n} x_{i} c_{i}=0 \text { for all } c \in C\right\}
$$

- C is called self-dual if $C=C^{\perp}$.

Doubly-even self-dual codes

Definition

- A linear binary code C of length n is a subspace $C \leq \mathbb{F}_{2}^{n}$.
- The dual code of C is

$$
C^{\perp}:=\left\{x \in \mathbb{F}_{2}^{n} \mid(x, c):=\sum_{i=1}^{n} x_{i} c_{i}=0 \text { for all } c \in C\right\}
$$

- C is called self-dual if $C=C^{\perp}$.
- The Hamming weight of a codeword $c \in C$ is $\mathrm{wt}(c):=\left|\left\{i \mid c_{i} \neq 0\right\}\right|$.
- C is called doubly-even if $\mathrm{wt}(c) \in 4 \mathbb{Z}$ for all $c \in C$.
- The minimum distance $d(C):=\min \{\operatorname{wt}(c) \mid 0 \neq c \in C\}$.

Doubly-even self-dual codes

Definition

- A linear binary code C of length n is a subspace $C \leq \mathbb{F}_{2}^{n}$.
- The dual code of C is

$$
C^{\perp}:=\left\{x \in \mathbb{F}_{2}^{n} \mid(x, c):=\sum_{i=1}^{n} x_{i} c_{i}=0 \text { for all } c \in C\right\}
$$

- C is called self-dual if $C=C^{\perp}$.
- The Hamming weight of a codeword $c \in C$ is

$$
\operatorname{wt}(c):=\left|\left\{i \mid c_{i} \neq 0\right\}\right| .
$$

- C is called doubly-even if $\operatorname{wt}(c) \in 4 \mathbb{Z}$ for all $c \in C$.
- The minimum distance $d(C):=\min \{\mathrm{wt}(c) \mid 0 \neq c \in C\}$.
- The weight enumerator of C is

$$
p_{C}:=\sum_{c \in C} x^{n-\mathrm{wt}(c)} y^{\mathrm{wt}(c)} \in \mathbb{C}[x, y]_{n} .
$$

The minimum distance measures the error correcting quality of a self-dual code.

Self-dual codes

Remark

- The all-one vector 1 lies in the dual of every even code since $\mathrm{wt}(c) \equiv_{2}(c, c) \equiv_{2}(c, \mathbf{1})$.
- $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ then $n=2 \operatorname{dim}(C)$.
- Self-dual doubly-even codes correspond to totally isotropic subspaces in the quadratic space $\mathbf{1}^{\perp} /\langle\mathbf{1}\rangle$.

Self-dual codes

Remark

- The all-one vector 1 lies in the dual of every even code since $\mathrm{wt}(c) \equiv_{2}(c, c) \equiv_{2}(c, \mathbf{1})$.
- $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ then $n=2 \operatorname{dim}(C)$.
- Self-dual doubly-even codes correspond to totally isotropic subspaces in the quadratic space $\mathbf{1}^{\perp} /\langle\mathbf{1}\rangle$.

The extended Hamming code

$$
h_{8}:\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

has $p_{h_{8}}(x, y)=x^{8}+14 x^{4} y^{4}+y^{8}$ and is the unique doubly-even self-dual code of length 8.

Extremal codes

The binary Golay code \mathcal{G}_{24} is the unique doubly-even self-dual code of length 24 with minimum distance ≥ 8.

$$
p_{\mathcal{G}_{24}}=x^{24}+759 x^{16} y^{8}+2576 x^{12} y^{12}+759 x^{8} y^{16}+y^{24}
$$

Extremal codes

The binary Golay code \mathcal{G}_{24} is the unique doubly-even self-dual code of length 24 with minimum distance ≥ 8.

$$
p_{\mathfrak{g}_{24}}=x^{24}+759 x^{16} y^{8}+2576 x^{12} y^{12}+759 x^{8} y^{16}+y^{24}
$$

Theorem (Gleason, ICM 1970)

Let $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ be doubly even. Then

- $n \in 8 \mathbb{Z}$
- $p_{C} \in \mathbb{C}\left[p_{h_{8}}, p_{\mathcal{G}_{24}}\right]$
- $d(C) \leq 4+4\left\lfloor\frac{n}{24}\right\rfloor$

Doubly-even self-dual codes achieving this bound are called extremal.

Extremal codes

The binary Golay code \mathcal{G}_{24} is the unique doubly-even self-dual code of length 24 with minimum distance ≥ 8.

$$
p_{\mathcal{G}_{24}}=x^{24}+759 x^{16} y^{8}+2576 x^{12} y^{12}+759 x^{8} y^{16}+y^{24}
$$

Theorem (Gleason, ICM 1970)

Let $C=C^{\perp} \leq \mathbb{F}_{2}^{n}$ be doubly even. Then

- $n \in 8 \mathbb{Z}$
- $p_{C} \in \mathbb{C}\left[p_{h_{8}}, p_{g_{24}}\right]$
- $d(C) \leq 4+4\left\lfloor\frac{n}{24}\right\rfloor$

Doubly-even self-dual codes achieving this bound are called extremal.

length	8	16	24	32	48	72	80
$d(C)$	4	4	8	8	12	16	16
extremal codes	h_{8}	$h_{8} \perp h_{8}, d_{16}^{+}$	\mathcal{G}_{24}	5	$Q R_{48}$	$?$	≥ 5

Turyn's construction of the Golay code

Construction of Golay code

Choose two copies C and D of h_{8} such that

$$
\begin{gathered}
C \cap D=\langle\mathbf{1}\rangle, C+D=\mathbf{1}^{\perp} \leq \mathbb{F}_{2}^{8} \\
\mathcal{G}_{24}:=\left\{\left(c+d_{1}, c+d_{2}, c+d_{3}\right) \mid c \in C, d_{i} \in D, d_{1}+d_{2}+d_{3} \in\langle\mathbf{1}\rangle\right\}
\end{gathered}
$$

Turyn's construction of the Golay code

Construction of Golay code

Choose two copies C and D of h_{8} such that

$$
C \cap D=\langle\mathbf{1}\rangle, C+D=\mathbf{1}^{\perp} \leq \mathbb{F}_{2}^{8}
$$

$\mathcal{G}_{24}:=\left\{\left(c+d_{1}, c+d_{2}, c+d_{3}\right) \mid c \in C, d_{i} \in D, d_{1}+d_{2}+d_{3} \in\langle\mathbf{1}\rangle\right\}$
(a) $\mathcal{G}_{24}=\mathcal{G}_{24}^{\perp}$.
(b) \mathcal{G}_{24} is doubly-even.
(c) $d\left(\mathcal{G}_{24}\right)=8$.

Turyn's construction of the Golay code

Construction of Golay code

Choose two copies C and D of h_{8} such that

$$
C \cap D=\langle\mathbf{1}\rangle, C+D=\mathbf{1}^{\perp} \leq \mathbb{F}_{2}^{8}
$$

$\mathcal{G}_{24}:=\left\{\left(c+d_{1}, c+d_{2}, c+d_{3}\right) \mid c \in C, d_{i} \in D, d_{1}+d_{2}+d_{3} \in\langle\mathbf{1}\rangle\right\}$
(a) $\mathcal{G}_{24}=\mathcal{G}_{24}^{\perp}$.
(b) \mathcal{G}_{24} is doubly-even.
(c) $d\left(\mathcal{G}_{24}\right)=8$.

Proof: (a) unique expression if c represents classes in $h_{8} /\langle\mathbf{1}\rangle$, so

$$
\left|\mathcal{G}_{24}\right|=2^{3} \cdot 2^{4} \cdot 2^{4} \cdot 2=2^{12}
$$

Turyn's construction of the Golay code

Construction of Golay code

Choose two copies C and D of h_{8} such that

$$
C \cap D=\langle\mathbf{1}\rangle, C+D=\mathbf{1}^{\perp} \leq \mathbb{F}_{2}^{8}
$$

$\mathcal{G}_{24}:=\left\{\left(c+d_{1}, c+d_{2}, c+d_{3}\right) \mid c \in C, d_{i} \in D, d_{1}+d_{2}+d_{3} \in\langle\mathbf{1}\rangle\right\}$
(a) $\mathcal{G}_{24}=\mathcal{G}_{24}^{\perp}$.
(b) \mathcal{G}_{24} is doubly-even.
(c) $d\left(\mathcal{G}_{24}\right)=8$.

Proof: (a) unique expression if c represents classes in $h_{8} /\langle\mathbf{1}\rangle$, so

$$
\left|\mathcal{G}_{24}\right|=2^{3} \cdot 2^{4} \cdot 2^{4} \cdot 2=2^{12}
$$

Suffices $\mathcal{G}_{24} \subseteq \mathcal{G} \frac{1}{24}$:

Turyn's construction of the Golay code

Construction of Golay code

Choose two copies C and D of h_{8} such that

$$
C \cap D=\langle\mathbf{1}\rangle, C+D=\mathbf{1}^{\perp} \leq \mathbb{F}_{2}^{8}
$$

$\mathcal{G}_{24}:=\left\{\left(c+d_{1}, c+d_{2}, c+d_{3}\right) \mid c \in C, d_{i} \in D, d_{1}+d_{2}+d_{3} \in\langle\mathbf{1}\rangle\right\}$
(a) $\mathcal{G}_{24}=\mathcal{G}_{24}^{\perp}$.
(b) \mathcal{G}_{24} is doubly-even.
(c) $d\left(\mathcal{G}_{24}\right)=8$.

Proof: (a) unique expression if c represents classes in $h_{8} /\langle\mathbf{1}\rangle$, so

$$
\left|\mathcal{G}_{24}\right|=2^{3} \cdot 2^{4} \cdot 2^{4} \cdot 2=2^{12}
$$

Suffices $\mathcal{G}_{24} \subseteq \mathcal{G}_{24}^{\perp}:\left(\left(c+d_{1}, c+d_{2}, c+d_{3}\right),\left(c^{\prime}+d_{1}^{\prime}, c^{\prime}+d_{2}^{\prime}, c^{\prime}+d_{3}^{\prime}\right)\right)=$ $3\left(c, c^{\prime}\right)+\left(c, d_{1}^{\prime}+d_{2}^{\prime}+d_{3}^{\prime}\right)+\left(d_{1}+d_{2}+d_{3}, c^{\prime}\right)+\left(d_{1}, d_{1}^{\prime}\right)+\left(d_{2}, d_{2}^{\prime}\right)+\left(d_{3}, d_{3}^{\prime}\right)=0$

Turyn's construction of the Golay code

Construction of Golay code

Choose two copies C and D of h_{8} such that

$$
C \cap D=\langle\mathbf{1}\rangle, C+D=\mathbf{1}^{\perp} \leq \mathbb{F}_{2}^{8}
$$

$\mathcal{G}_{24}:=\left\{\left(c+d_{1}, c+d_{2}, c+d_{3}\right) \mid c \in C, d_{i} \in D, d_{1}+d_{2}+d_{3} \in\langle\mathbf{1}\rangle\right\}$
(a) $\mathcal{G}_{24}=\mathcal{G}_{24}^{\perp}$.
(b) \mathcal{G}_{24} is doubly-even.
(c) $d\left(\mathcal{G}_{24}\right)=8$.

Proof: (a) unique expression if c represents classes in $h_{8} /\langle\mathbf{1}\rangle$, so

$$
\left|\mathcal{G}_{24}\right|=2^{3} \cdot 2^{4} \cdot 2^{4} \cdot 2=2^{12}
$$

Suffices $\mathcal{G}_{24} \subseteq \mathcal{G}_{24}^{\perp}:\left(\left(c+d_{1}, c+d_{2}, c+d_{3}\right),\left(c^{\prime}+d_{1}^{\prime}, c^{\prime}+d_{2}^{\prime}, c^{\prime}+d_{3}^{\prime}\right)\right)=$ $3\left(c, c^{\prime}\right)+\left(c, d_{1}^{\prime}+d_{2}^{\prime}+d_{3}^{\prime}\right)+\left(d_{1}+d_{2}+d_{3}, c^{\prime}\right)+\left(d_{1}, d_{1}^{\prime}\right)+\left(d_{2}, d_{2}^{\prime}\right)+\left(d_{3}, d_{3}^{\prime}\right)=0$
(b) Follows since C and D are doubly-even, so generators have weight divisible by 4 .

Turyn's construction of the Golay code

Construction of Golay code.
Choose two copies C and D of h_{8} such that

$$
C \cap D=\langle\mathbf{1}\rangle, C+D=\mathbf{1}^{\perp} \leq \mathbb{F}_{2}^{8}
$$

$\mathcal{G}_{24}:=\left\{\left(c+d_{1}, c+d_{2}, c+d_{3}\right) \mid c \in C, d_{i} \in D, d_{1}+d_{2}+d_{3} \in\langle\mathbf{1}\rangle\right\}$ (c) $d\left(\mathcal{G}_{24}\right)=8$.

Proof: (c)
$\mathrm{wt}\left(c+d_{1}, c+d_{2}, c+d_{3}\right)=\mathrm{wt}\left(c+d_{1}\right)+\mathrm{wt}\left(c+d_{2}\right)+\mathrm{wt}\left(c+d_{3}\right)$.

Turyn's construction of the Golay code

Construction of Golay code.
Choose two copies C and D of h_{8} such that

$$
C \cap D=\langle\mathbf{1}\rangle, C+D=\mathbf{1}^{\perp} \leq \mathbb{F}_{2}^{8}
$$

$$
\begin{aligned}
& \mathcal{G}_{24}:=\left\{\left(c+d_{1}, c+d_{2}, c+d_{3}\right) \mid c \in C, d_{i} \in D, d_{1}+d_{2}+d_{3} \in\langle\mathbf{1}\rangle\right\} \\
& \text { (c) } d\left(\mathcal{G}_{24}\right)=8 .
\end{aligned}
$$

Proof: (c)

$$
\mathrm{wt}\left(c+d_{1}, c+d_{2}, c+d_{3}\right)=\mathrm{wt}\left(c+d_{1}\right)+\mathrm{wt}\left(c+d_{2}\right)+\mathrm{wt}\left(c+d_{3}\right)
$$

- 1 non-zero component: $(d, 0,0)$ with $d \in\langle\mathbf{1}\rangle$, weight 8 .

Turyn's construction of the Golay code

Construction of Golay code.

Choose two copies C and D of h_{8} such that

$$
C \cap D=\langle\mathbf{1}\rangle, C+D=\mathbf{1}^{\perp} \leq \mathbb{F}_{2}^{8}
$$

$$
\begin{aligned}
& \mathcal{G}_{24}:=\left\{\left(c+d_{1}, c+d_{2}, c+d_{3}\right) \mid c \in C, d_{i} \in D, d_{1}+d_{2}+d_{3} \in\langle\mathbf{1}\rangle\right\} \\
& \text { (c) } d\left(\mathcal{G}_{24}\right)=8 .
\end{aligned}
$$

Proof: (c)

$$
\mathrm{wt}\left(c+d_{1}, c+d_{2}, c+d_{3}\right)=\mathrm{wt}\left(c+d_{1}\right)+\mathrm{wt}\left(c+d_{2}\right)+\mathrm{wt}\left(c+d_{3}\right)
$$

- 1 non-zero component: $(d, 0,0)$ with $d \in\langle\mathbf{1}\rangle$, weight 8 .
- 2 non-zero components: $\left(d_{1}, d_{2}, 0\right)$ with $d_{1}, d_{2} \in D \cong h_{8}$, weight $\geq d\left(h_{8}\right)+d\left(h_{8}\right)=4+4=8$.

Turyn's construction of the Golay code

Construction of Golay code.

Choose two copies C and D of h_{8} such that

$$
C \cap D=\langle\mathbf{1}\rangle, C+D=\mathbf{1}^{\perp} \leq \mathbb{F}_{2}^{8}
$$

$\mathcal{G}_{24}:=\left\{\left(c+d_{1}, c+d_{2}, c+d_{3}\right) \mid c \in C, d_{i} \in D, d_{1}+d_{2}+d_{3} \in\langle\mathbf{1}\rangle\right\}$ (c) $d\left(\mathcal{G}_{24}\right)=8$.

Proof: (c)
$\mathrm{wt}\left(c+d_{1}, c+d_{2}, c+d_{3}\right)=\mathrm{wt}\left(c+d_{1}\right)+\mathrm{wt}\left(c+d_{2}\right)+\mathrm{wt}\left(c+d_{3}\right)$.

- 1 non-zero component: $(d, 0,0)$ with $d \in\langle\mathbf{1}\rangle$, weight 8 .
- 2 non-zero components: $\left(d_{1}, d_{2}, 0\right)$ with $d_{1}, d_{2} \in D \cong h_{8}$, weight $\geq d\left(h_{8}\right)+d\left(h_{8}\right)=4+4=8$.
- 3 non-zero components: All have even weight, so weight $\geq 2+2+2=6$. By (b) the weight is a multiple of $4, \mathrm{so} \geq 8$.

Turyn's construction of the Golay code

Construction of Golay code.

Choose two copies C and D of h_{8} such that

$$
\begin{aligned}
& \qquad C \cap D=\langle\mathbf{1}\rangle, C+D=\mathbf{1}^{\perp} \leq \mathbb{F}_{2}^{8} \\
& \mathcal{G}_{24}:=\left\{\left(c+d_{1}, c+d_{2}, c+d_{3}\right) \mid c \in C, d_{i} \in D, d_{1}+d_{2}+d_{3} \in\langle\mathbf{1}\rangle\right\} \\
& \text { (c) } d\left(\mathcal{G}_{24}\right)=8 .
\end{aligned}
$$

Proof: (c)
$\mathrm{wt}\left(c+d_{1}, c+d_{2}, c+d_{3}\right)=\mathrm{wt}\left(c+d_{1}\right)+\mathrm{wt}\left(c+d_{2}\right)+\mathrm{wt}\left(c+d_{3}\right)$.

- 1 non-zero component: $(d, 0,0)$ with $d \in\langle\mathbf{1}\rangle$, weight 8 .
- 2 non-zero components: $\left(d_{1}, d_{2}, 0\right)$ with $d_{1}, d_{2} \in D \cong h_{8}$, weight $\geq d\left(h_{8}\right)+d\left(h_{8}\right)=4+4=8$.
- 3 non-zero components: All have even weight, so weight $\geq 2+2+2=6$. By (b) the weight is a multiple of $4, \mathrm{so} \geq 8$.

Turyn applied to Golay

will not yield an extremal code of length 72. Such an extremal code has no automorphism of order 2 which has fixed points.

A generalization of Turyn's construction.

Theorem

Let $C=C^{\perp}, D=D^{\perp} \leq \mathbb{F}_{q}^{n}$ and $X \leq \mathbb{F}_{q}^{m}$ such that $X \cap X^{\perp}=\{0\}$. Then

$$
\mathcal{T}(C, D, X):=C \otimes X+D \otimes X^{\perp} \leq \mathbb{F}_{q}^{n m}
$$

is a self-dual code, which is doubly-even, if C and D are doubly-even.
Proof: Let $c, c^{\prime} \in C, d, d^{\prime} \in D, x, x^{\prime} \in X$ and $y, y^{\prime} \in X^{\perp}$. Then

$$
\begin{array}{ll}
\left(c \otimes x, c^{\prime} \otimes x^{\prime}\right)=0 & \text { since } C \subseteq C^{\perp} \\
\left(d \otimes y, d^{\prime} \otimes y^{\prime}\right)=0 & \text { since } D \subseteq D^{\perp} \\
(c \otimes x, d \otimes y)=0 & \text { since } x \in X, y \in X^{\perp}
\end{array}
$$

so $\mathcal{T} \subset \mathcal{T}^{\perp}$. Moreover $\operatorname{dim}(\mathcal{T})=\operatorname{dim}(C \otimes X)+\operatorname{dim}\left(D \otimes X^{\perp}\right)-\operatorname{dim}\left(C \otimes X \cap D \otimes X^{\perp}\right)=n m / 2-0$
since $X \cap X^{\perp}=\{0\}$.

A generalization of Turyn's construction.

Theorem

Let $C=C^{\perp}, D=D^{\perp} \leq \mathbb{F}_{q}^{n}$ and $X \leq \mathbb{F}_{q}^{m}$ such that $X \cap X^{\perp}=\{0\}$. Then

$$
\mathcal{T}(C, D, X):=C \otimes X+D \otimes X^{\perp} \leq \mathbb{F}_{q}^{n m}
$$

is a self-dual code, which is doubly-even, if C and D are doubly-even.

Turyn's example.

$X=\langle(1,1,1)\rangle, C \cong D \cong h_{8}$ such that $C \cap D=\langle\mathbf{1}\rangle$ then $\mathcal{T}(C, D, X) \cong \mathcal{G}_{24}$.

Example: Bachoc/Nebe.

$C \cong D \cong h_{8}, C \cap D=\langle\mathbf{1}\rangle$.
$X \cong X^{\perp} \mathbf{a}[10,5,4]$-code, such that $X \cap X^{\perp}=\langle\mathbf{1}\rangle$. Then $\mathcal{T}(C, D, X)$ is a self-orthogonal [80,39,16]-code contained in a unique extremal doubly-even self-dual code.

Lattices and sphere packings

$$
\theta=1+6 q+6 q^{3}+6 q^{4}+12 q^{7}+6 q^{9}+\ldots
$$

Dense lattice sphere packings

- Classical problem to find densest sphere packings:
- Dimension 2: Lagrange (lattices), Fejes Tóth (general)
- Dimension 3: Kepler conjecture, proven by T.C. Hales (1998)
- Dimension \geq 4: open
- Densest lattice sphere packings:
- Voronoi algorithm (~ 1900) all locally densest lattices.
- Densest lattices known in dimension 1,2,3,4,5, Korkine-Zolotareff (1872) 6,7,8 Blichfeldt (1935) and 24 Cohn, Kumar (2003).
- Density of lattice measures error correcting quality.

Even unimodular lattices

Definition

- A lattice L in Euclidean n-space $\left(\mathbb{R}^{n},(),\right)$ is the \mathbb{Z}-span of an \mathbb{R}-basis $B=\left(b_{1}, \ldots, b_{n}\right)$ of \mathbb{R}^{n}

$$
L=\left\langle b_{1}, \ldots, b_{n}\right\rangle_{\mathbb{Z}}=\left\{\sum_{i=1}^{n} a_{i} b_{i} \mid a_{i} \in \mathbb{Z}\right\} .
$$

Even unimodular lattices

Definition

- A lattice L in Euclidean n-space $\left(\mathbb{R}^{n},(),\right)$ is the \mathbb{Z}-span of an \mathbb{R}-basis $B=\left(b_{1}, \ldots, b_{n}\right)$ of \mathbb{R}^{n}

$$
L=\left\langle b_{1}, \ldots, b_{n}\right\rangle_{\mathbb{Z}}=\left\{\sum_{i=1}^{n} a_{i} b_{i} \mid a_{i} \in \mathbb{Z}\right\} .
$$

- The dual lattice is

$$
L^{\#}:=\left\{x \in \mathbb{R}^{n} \mid(x, \ell) \in \mathbb{Z} \text { for all } \ell \in L\right\}
$$

- L is called unimodular if $L=L^{\#}$.

Even unimodular lattices

Definition

- A lattice L in Euclidean n-space $\left(\mathbb{R}^{n},(),\right)$ is the \mathbb{Z}-span of an \mathbb{R}-basis $B=\left(b_{1}, \ldots, b_{n}\right)$ of \mathbb{R}^{n}

$$
L=\left\langle b_{1}, \ldots, b_{n}\right\rangle_{\mathbb{Z}}=\left\{\sum_{i=1}^{n} a_{i} b_{i} \mid a_{i} \in \mathbb{Z}\right\} .
$$

- The dual lattice is

$$
L^{\#}:=\left\{x \in \mathbb{R}^{n} \mid(x, \ell) \in \mathbb{Z} \text { for all } \ell \in L\right\}
$$

- L is called unimodular if $L=L^{\#}$.
- $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}, Q(x):=\frac{1}{2}(x, x)$ associated quadratic form
- L is called even if $Q(\ell) \in \mathbb{Z}$ for all $\ell \in L$.
- $\min (L):=\min \{Q(\ell) \mid 0 \neq \ell \in L\}$ minimum of L.

Even unimodular lattices

Definition

- A lattice L in Euclidean n-space $\left(\mathbb{R}^{n},(),\right)$ is the \mathbb{Z}-span of an \mathbb{R}-basis $B=\left(b_{1}, \ldots, b_{n}\right)$ of \mathbb{R}^{n}

$$
L=\left\langle b_{1}, \ldots, b_{n}\right\rangle_{\mathbb{Z}}=\left\{\sum_{i=1}^{n} a_{i} b_{i} \mid a_{i} \in \mathbb{Z}\right\} .
$$

- The dual lattice is

$$
L^{\#}:=\left\{x \in \mathbb{R}^{n} \mid(x, \ell) \in \mathbb{Z} \text { for all } \ell \in L\right\}
$$

- L is called unimodular if $L=L^{\#}$.
- $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}, Q(x):=\frac{1}{2}(x, x)$ associated quadratic form
- L is called even if $Q(\ell) \in \mathbb{Z}$ for all $\ell \in L$.
- $\min (L):=\min \{Q(\ell) \mid 0 \neq \ell \in L\}$ minimum of L.

The sphere packing density of an even unimodular lattice is proportional to its minimum.

Lattices and codes

Construction A

Let $\left(e_{1}, \ldots, e_{n}\right)$ be an orthogonal basis of \mathbb{R}^{n} with $Q\left(e_{i}\right)=1$ for all i. Let $C \leq \mathbb{F}_{2}^{n}$ be a code. Then

$$
L_{C}:=\left\{\left.\sum_{i=1}^{n} \frac{a_{i}}{2} e_{i} \right\rvert\,\left(\bar{a}_{1}, \ldots, \bar{a}_{n}\right) \in C\right\} \subset \mathbb{R}^{n}
$$

is called the codelattice of C.

Lattices and codes

Construction A

Let $\left(e_{1}, \ldots, e_{n}\right)$ be an orthogonal basis of \mathbb{R}^{n} with $Q\left(e_{i}\right)=1$ for all i. Let $C \leq \mathbb{F}_{2}^{n}$ be a code. Then

$$
L_{C}:=\left\{\left.\sum_{i=1}^{n} \frac{a_{i}}{2} e_{i} \right\rvert\,\left(\bar{a}_{1}, \ldots, \bar{a}_{n}\right) \in C\right\} \subset \mathbb{R}^{n}
$$

is called the codelattice of C.

Duality

- $L_{C}^{\#}=L_{C^{\perp}}$
- L_{C} is even if C is doubly-even
- L_{C} is even unimodular, if C is self-dual and doubly-even.
$L_{h_{8}}=E_{8}$ the unique even unimodular lattice of dimension 8.

The Leech lattice and the Golay code

Construct an even unimodular lattice $\Lambda_{24} \leq \mathbb{R}^{24}$ with minimum 2 from the Golay code.

The Leech lattice and the Golay code

Construct an even unimodular lattice $\Lambda_{24} \leq \mathbb{R}^{24}$ with

 minimum 2 from the Golay code.- Let $L:=L_{\mathcal{G}_{24}}$ be the codelattice of the Golay code.
- Then L is an even unimodular lattice and

$$
\left\{ \pm e_{1}, \ldots, \pm e_{24}\right\}=\{v \in L \mid Q(v)=1\}
$$

The Leech lattice and the Golay code

Construct an even unimodular lattice $\Lambda_{24} \leq \mathbb{R}^{24}$ with minimum 2 from the Golay code.

- Let $L:=L_{\mathcal{G}_{24}}$ be the codelattice of the Golay code.
- Then L is an even unimodular lattice and

$$
\left\{ \pm e_{1}, \ldots, \pm e_{24}\right\}=\{v \in L \mid Q(v)=1\}
$$

- Let $a:=\frac{3}{2} e_{1}+\frac{1}{2} e_{2}+\ldots+\frac{1}{2} e_{24}$.
- Then $Q\left(\frac{1}{2} a\right)=2$.
- Let $L_{a}:=\{v \in L \mid(v, a) \in 2 \mathbb{Z}\}$ and
- $\Lambda_{24}:=L^{(a)}:=\left\langle\frac{1}{2} a, L_{a}\right\rangle$. Then $\min \left(\Lambda_{24}\right)=2$.

Theta-series of lattices

Let (L, Q) be an even unimodular lattice of dimension n so a regular positive definite integral quadratic form $Q: L \rightarrow \mathbb{Z}$.

Theta-series of lattices

Let (L, Q) be an even unimodular lattice of dimension n so a regular positive definite integral quadratic form $Q: L \rightarrow \mathbb{Z}$.

- The theta series of L is

$$
\theta_{L}=\sum_{\ell \in L} q^{Q(\ell)}=1+\sum_{k=\min (L)}^{\infty} a_{k} q^{k}
$$

where $a_{k}=|\{\ell \in L \mid Q(\ell)=k\}|$.

Theta-series of lattices

Let (L, Q) be an even unimodular lattice of dimension n so a regular positive definite integral quadratic form $Q: L \rightarrow \mathbb{Z}$.

- The theta series of L is

$$
\theta_{L}=\sum_{\ell \in L} q^{Q(\ell)}=1+\sum_{k=\min (L)}^{\infty} a_{k} q^{k}
$$

where $a_{k}=|\{\ell \in L \mid Q(\ell)=k\}|$.

- θ_{L} defines a holomorphic function on the upper half plane by substituting $q:=\exp (2 \pi i z)$.
- Then θ_{L} is a modular form of weight $\frac{n}{2}$ for the full modular group $\mathrm{SL}_{2}(\mathbb{Z})$.
- n is a multiple of 8 .

Theta-series of lattices

Let (L, Q) be an even unimodular lattice of dimension n so a regular positive definite integral quadratic form $Q: L \rightarrow \mathbb{Z}$.

- The theta series of L is

$$
\theta_{L}=\sum_{\ell \in L} q^{Q(\ell)}=1+\sum_{k=\min (L)}^{\infty} a_{k} q^{k}
$$

where $a_{k}=|\{\ell \in L \mid Q(\ell)=k\}|$.

- θ_{L} defines a holomorphic function on the upper half plane by substituting $q:=\exp (2 \pi i z)$.
- Then θ_{L} is a modular form of weight $\frac{n}{2}$ for the full modular group $\mathrm{SL}_{2}(\mathbb{Z})$.
- n is a multiple of 8 .
- $\theta_{L} \in \mathcal{M}_{\frac{n}{2}}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)=\mathbb{C}\left[E_{4}, \Delta\right]_{\frac{n}{2}}$ where $E_{4}:=\theta_{E_{8}}=1+240 q+\ldots$ is the normalized Eisenstein series of weight 4 and

$$
\Delta=q-24 q^{2}+252 q^{3}-1472 q^{4}+\ldots \text { of weight } 12
$$

Extremal modular forms

Basis of $\mathcal{M}_{4 k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$:

$$
\begin{array}{lccl}
E_{4}^{k}= & 1+ & 240 k q+ & * q^{2}+ \\
E_{4}^{k-3} \Delta= & & \ldots+ & * q^{2}+ \\
E_{4}^{k-6} \Delta^{2}= & & & q^{2}+ \\
\vdots & & & \\
E_{4}^{k-3 m_{k}} \Delta^{m_{k}}= & \ldots & & q^{m_{k}}+\ldots
\end{array}
$$

where $m_{k}=\left\lfloor\frac{n}{24}\right\rfloor=\left\lfloor\frac{k}{3}\right\rfloor$.

Extremal modular forms

Basis of $\mathcal{M}_{4 k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$:

$$
\begin{array}{lcccl}
E_{4}^{k}= & 1+ & 240 k q+ & * q^{2}+ & \ldots \\
E_{4}^{k-3} \Delta= & q+ & * q^{2}+ & \ldots \\
E_{4}^{k-6} \Delta^{2}= & & q^{2}+ & \ldots \\
\vdots & & & & \\
E_{4}^{k-3 m_{k}} \Delta^{m_{k}}= & \ldots & & q^{m_{k}}+\ldots
\end{array}
$$

where $m_{k}=\left\lfloor\frac{n}{24}\right\rfloor=\left\lfloor\frac{k}{3}\right\rfloor$.

Definition

This space contains a unique form
$f^{(k)}:=1+0 q+0 q^{2}+\ldots+0 q^{m_{k}}+a\left(f^{(k)}\right) q^{m_{k}+1}+b\left(f^{(k)}\right) q^{m_{k}+2}+\ldots$
$f^{(k)}$ is called the extremal modular form of weight $4 k$.

$$
\begin{aligned}
& f^{(1)}=1+240 q+\ldots=\theta_{E_{8}}, f^{(2)}=1+480 q+\ldots=\theta_{E_{8}}^{2} \\
& f^{(3)}=1+196,560 q^{2}+\ldots=\theta_{\Lambda_{24}} \\
& f^{(6)}=1+52,416,000 q^{3}+\ldots=\theta_{P_{48 p}}=\theta_{P_{48 q}}=\theta_{P_{48 n}} \\
& f^{(9)}=1+6,218,175,600 q^{4}+\ldots=\theta_{\Gamma}
\end{aligned}
$$

Extremal even unimodular lattices

Theorem (Siegel)
$a\left(f^{(k)}\right)>0$ for all k

Extremal even unimodular lattices

Theorem (Siegel)

$a\left(f^{(k)}\right)>0$ for all k

Corollary

Let L be an n-dimensional even unimodular lattice. Then

$$
\min (L) \leq 1+\left\lfloor\frac{n}{24}\right\rfloor=1+m_{n / 8}
$$

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices

Theorem (Siegel)

$a\left(f^{(k)}\right)>0$ for all k

Corollary

Let L be an n-dimensional even unimodular lattice. Then

$$
\min (L) \leq 1+\left\lfloor\frac{n}{24}\right\rfloor=1+m_{n / 8}
$$

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices $\mathrm{L} \leq \mathbb{R}^{n}$

n	8	16	24	32	40	48	72	80
$\min (\mathrm{~L})$	2	2	4	4	4	6	8	8
number of extremal lattices	1	2	1	$\geq 10^{7}$	$\geq 10^{51}$	≥ 3	≥ 1	≥ 4

Extremal even unimodular lattices

Theorem (Siegel)

$a\left(f^{(k)}\right)>0$ for all k and $b\left(f^{(k)}\right)<0$ for large $k(k \geq 5200)$.

Corollary

Let L be an n-dimensional even unimodular lattice. Then

$$
\min (L) \leq 1+\left\lfloor\frac{n}{24}\right\rfloor=1+m_{n / 8}
$$

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices $\mathrm{L} \leq \mathbb{R}^{n}$

n	8	16	24	32	40	48	72	80
$\min (\mathrm{~L})$	2	2	4	4	4	6	8	8
number of extremal lattices	1	2	1	$\geq 10^{7}$	$\geq 10^{51}$	≥ 3	≥ 1	≥ 4

Extremal even unimodular lattices in jump dimensions

$$
\begin{aligned}
& f^{(3)}=1+196,560 q^{2}+\ldots=\theta_{\Lambda_{24}} . \\
& f^{(6)}=1+52,416,000 q^{3}+\ldots=\theta_{P_{48 p}}=\theta_{P_{48 q}}=\theta_{P_{48 n}} . \\
& f^{(9)}=1+6,218,175,600 q^{4}+\ldots=\theta_{\Gamma} .
\end{aligned}
$$

Let L be an extremal even unimodular lattice of dimension $24 m$ so $\min (L)=m+1$

Extremal even unimodular lattices in jump dimensions

$$
\begin{aligned}
& f^{(3)}=1+196,560 q^{2}+\ldots=\theta_{\Lambda_{24}} . \\
& f^{(6)}=1+52,416,000 q^{3}+\ldots=\theta_{P_{48 p}}=\theta_{P_{48 q}}=\theta_{P_{48 n}} . \\
& f^{(9)}=1+6,218,175,600 q^{4}+\ldots=\theta_{\Gamma} .
\end{aligned}
$$

Let L be an extremal even unimodular lattice of dimension $24 m$ so $\min (L)=m+1$

- All non-empty layers $\emptyset \neq\{\ell \in L \mid Q(\ell)=a\}$ form spherical 11-designs.
- The density of the associated sphere packing realises a local maximum of the density function on the space of all $24 m$-dimensional lattices.

Extremal even unimodular lattices in jump dimensions

$$
\begin{aligned}
& f^{(3)}=1+196,560 q^{2}+\ldots=\theta_{\Lambda_{24}} . \\
& f^{(6)}=1+52,416,000 q^{3}+\ldots=\theta_{P_{48 p}}=\theta_{P_{48 q}}=\theta_{P_{48 n}} . \\
& f^{(9)}=1+6,218,175,600 q^{4}+\ldots=\theta_{\Gamma} .
\end{aligned}
$$

Let L be an extremal even unimodular lattice of dimension $24 m$ so $\min (L)=m+1$

- All non-empty layers $\emptyset \neq\{\ell \in L \mid Q(\ell)=a\}$ form spherical 11-designs.
- The density of the associated sphere packing realises a local maximum of the density function on the space of all $24 m$-dimensional lattices.
- If $m=1$, then $L=\Lambda_{24}$ is unique, Λ_{24} is the Leech lattice.
- The 196560 minimal vectors of the Leech lattice form the unique tight spherical 11-design and realise the maximal kissing number in dimension 24.
- Λ_{24} is the densest 24-dimensional lattice (Cohn, Kumar).

Extremal even unimodular lattices in jump dimensions

$$
\begin{aligned}
& f^{(3)}=1+196,560 q^{2}+\ldots=\theta_{\Lambda_{24}} . \\
& f^{(6)}=1+52,416,000 q^{3}+\ldots=\theta_{P_{48 p}}=\theta_{P_{48 q}}=\theta_{P_{48 n}} . \\
& f^{(9)}=1+6,218,175,600 q^{4}+\ldots=\theta_{\Gamma} .
\end{aligned}
$$

Let L be an extremal even unimodular lattice of dimension $24 m$ so $\min (L)=m+1$

- All non-empty layers $\emptyset \neq\{\ell \in L \mid Q(\ell)=a\}$ form spherical 11-designs.
- The density of the associated sphere packing realises a local maximum of the density function on the space of all $24 m$-dimensional lattices.
- If $m=1$, then $L=\Lambda_{24}$ is unique, Λ_{24} is the Leech lattice.
- The 196560 minimal vectors of the Leech lattice form the unique tight spherical 11-design and realise the maximal kissing number in dimension 24.
- Λ_{24} is the densest 24-dimensional lattice (Cohn, Kumar).
- For $m=2,3$ these lattices are the densest known lattices and realise the maximal known kissing number.

Turyn's construction

- Let (L, Q) be an even unimodular lattice of dimension n .
- Choose sublattices $M, N \leq L$ such that $M+N=L$, $M \cap N=2 L$, and ($M, \frac{1}{2} Q$), ($N, \frac{1}{2} Q$) even unimodular.
- Such a pair (M, N) is called a polarisation of L.

Turyn's construction

- Let (L, Q) be an even unimodular lattice of dimension n .
- Choose sublattices $M, N \leq L$ such that $M+N=L$, $M \cap N=2 L$, and ($M, \frac{1}{2} Q$), ($N, \frac{1}{2} Q$) even unimodular.
- Such a pair (M, N) is called a polarisation of L.
- For $k \in \mathbb{N}$ let $\quad \mathcal{L}(M, N, k):=$
$\left\{\left(m+x_{1}, \ldots, m+x_{k}\right) \in \perp^{k} L \mid m \in M, x_{i} \in N, x_{1}+\ldots+x_{k} \in 2 L\right\}$.
- Define $\tilde{Q}: \mathcal{L}(M, N, k) \rightarrow \mathbb{Z}$,

$$
\tilde{Q}\left(y_{1}, \ldots, y_{k}\right):=\frac{1}{2}\left(Q\left(y_{1}\right)+\ldots+Q\left(y_{k}\right)\right) .
$$

- $(\mathcal{L}(M, N, k), \tilde{Q})$ is an even unimodular lattice of dimension $n k$.

Obtaining Leech from E_{8}

Theorem (Lepowsky, Meurman; Tits)

Let $(L, Q) \cong E_{8}$ be the unique even unimodular lattice of dimension 8 . Then for any polarisation (M, N) of E_{8} the lattice $\mathcal{L}(M, N, 3)$ has minimum ≥ 2.

Obtaining Leech from E_{8}

Theorem (Lepowsky, Meurman; Tits)

Let $(L, Q) \cong E_{8}$ be the unique even unimodular lattice of dimension 8 . Then for any polarisation (M, N) of E_{8} the lattice $\mathcal{L}(M, N, 3)$ has minimum ≥ 2.

Note that $\operatorname{Aut}\left(E_{8}\right)$ acts transitively on the polarisations of E_{8}.

Obtaining Leech from E_{8}

Theorem (Lepowsky, Meurman; Tits)

Let $(L, Q) \cong E_{8}$ be the unique even unimodular lattice of dimension 8 . Then for any polarisation (M, N) of E_{8} the lattice $\mathcal{L}(M, N, 3)$ has minimum ≥ 2.

Note that $\operatorname{Aut}\left(E_{8}\right)$ acts transitively on the polarisations of E_{8}. Proof: Let $y:=\left(y_{1}, y_{2}, y_{3}\right) \in \mathcal{L}(M, N, 3)$.
All $y_{i} \neq 0$:

$$
\tilde{Q}\left(y_{1}, y_{2}, y_{3}\right)=\frac{1}{2} \sum_{i=1}^{3} Q\left(y_{i}\right) \geq\left\lceil\frac{3}{2}\right\rceil=2
$$

Obtaining Leech from E_{8}

Theorem (Lepowsky, Meurman; Tits)

Let $(L, Q) \cong E_{8}$ be the unique even unimodular lattice of dimension 8 . Then for any polarisation (M, N) of E_{8} the lattice $\mathcal{L}(M, N, 3)$ has minimum ≥ 2.

Note that $\operatorname{Aut}\left(E_{8}\right)$ acts transitively on the polarisations of E_{8}. Proof: Let $y:=\left(y_{1}, y_{2}, y_{3}\right) \in \mathcal{L}(M, N, 3)$.
All $y_{i} \neq 0$:

$$
\tilde{Q}\left(y_{1}, y_{2}, y_{3}\right)=\frac{1}{2} \sum_{i=1}^{3} Q\left(y_{i}\right) \geq\left\lceil\frac{3}{2}\right\rceil=2 .
$$

$y_{1} \neq 0 \neq y_{2}$: Then $y_{i} \in N$ and

$$
\tilde{Q}(y) \geq 1+1+0=2 .
$$

Obtaining Leech from E_{8}

Theorem (Lepowsky, Meurman; Tits)

Let $(L, Q) \cong E_{8}$ be the unique even unimodular lattice of dimension 8 . Then for any polarisation (M, N) of E_{8} the lattice $\mathcal{L}(M, N, 3)$ has minimum ≥ 2.

Note that $\operatorname{Aut}\left(E_{8}\right)$ acts transitively on the polarisations of E_{8}. Proof: Let $y:=\left(y_{1}, y_{2}, y_{3}\right) \in \mathcal{L}(M, N, 3)$.
All $y_{i} \neq 0$:

$$
\tilde{Q}\left(y_{1}, y_{2}, y_{3}\right)=\frac{1}{2} \sum_{i=1}^{3} Q\left(y_{i}\right) \geq\left\lceil\frac{3}{2}\right\rceil=2 .
$$

$y_{1} \neq 0 \neq y_{2}$: Then $y_{i} \in N$ and

$$
\tilde{Q}(y) \geq 1+1+0=2 .
$$

Only one $y_{i} \neq 0$ then $y_{i} \in 2 L$ and $\tilde{Q}(y) \geq 2$.

Turyn's construction for $k=3$

$(m+a, m+b, m+c)$ in $\begin{cases}L \perp L \perp L & m \text { in } M \\ L(M, N, 3) & a, b, c \text { in } N \\ 2 L \perp 2 L \perp 2 L & a+b+c \text { in } 2 L\end{cases}$

$$
d:=\min (L, Q)=\min \left(M, \frac{1}{2} Q\right)=\min \left(N, \frac{1}{2} Q\right)
$$

Then $\left\lceil\frac{3 d}{2}\right\rceil \leq \min (\mathcal{L}(M, N, 3)) \leq 2 d$.

Turyn's construction for $k=3$

$(m+a, m+b, m+c)$ in $\begin{cases}L \perp L \perp L & m \text { in } M \\ L(M, N, 3) & a, b, c \text { in } N \\ 2 L \perp 2 L \perp 2 L & a+b+c \text { in } 2 L\end{cases}$

$$
d:=\min (L, Q)=\min \left(M, \frac{1}{2} Q\right)=\min \left(N, \frac{1}{2} Q\right)
$$

Then $\left\lceil\frac{3 d}{2}\right\rceil \leq \min (\mathcal{L}(M, N, 3)) \leq 2 d$.
Proof:

$$
(a, 0,0) \quad a=2 \ell \in 2 L \text { with } \frac{1}{2} Q(2 \ell)=2 \mathbb{Q}(\ell) \geq 2 d .
$$

Turyn's construction for $k=3$

$(m+a, m+b, m+c)$ in $\begin{cases}L \perp L \perp L & m \text { in } M \\ L(M, N, 3) & a, b, c \text { in } N \\ 2 L \perp 2 L \perp 2 L & a+b+c \text { in } 2 L\end{cases}$

$$
d:=\min (L, Q)=\min \left(M, \frac{1}{2} Q\right)=\min \left(N, \frac{1}{2} Q\right)
$$

Then $\left\lceil\frac{3 d}{2}\right\rceil \leq \min (\mathcal{L}(M, N, 3)) \leq 2 d$.
Proof:
$(a, 0,0) \quad a=2 \ell \in 2 L$ with $\frac{1}{2} Q(2 \ell)=2 \mathbb{Q}(\ell) \geq 2 d$.
$(a, b, 0) \quad a, b \in N$ with $\frac{1}{2} Q(a)+\frac{1}{2} Q(b) \geq 2 d$.

Turyn's construction for $k=3$

$(m+a, m+b, m+c)$ in $\begin{cases}L \perp L \perp L & m \text { in } M \\ L(M, N, 3) & a, b, c \text { in } N \\ 2 L \perp 2 L \perp 2 L & a+b+c \text { in } 2 L\end{cases}$

$$
d:=\min (L, Q)=\min \left(M, \frac{1}{2} Q\right)=\min \left(N, \frac{1}{2} Q\right)
$$

Then $\left\lceil\frac{3 d}{2}\right\rceil \leq \min (\mathcal{L}(M, N, 3)) \leq 2 d$.
Proof:
$(a, 0,0) \quad a=2 \ell \in 2 L$ with $\frac{1}{2} Q(2 \ell)=2 \mathbb{Q}(\ell) \geq 2 d$.
$(a, b, 0) \quad a, b \in N$ with $\frac{1}{2} Q(a)+\frac{1}{2} Q(b) \geq 2 d$.
(a, b, c) then $\frac{1}{2}(Q(a)+Q(b)+Q(c)) \geq \frac{3}{2} d$.

Turyn's construction for $k=3$

$(m+a, m+b, m+c)$ in $\begin{cases}L \perp L \perp L & m \text { in } M \\ L(M, N, 3) & a, b, c \text { in } N \\ 2 L \perp 2 L \perp 2 L & a+b+c \text { in } 2 L\end{cases}$

$$
d:=\min (L, Q)=\min \left(M, \frac{1}{2} Q\right)=\min \left(N, \frac{1}{2} Q\right)
$$

Then $\left\lceil\frac{3 d}{2}\right\rceil \leq \min (\mathcal{L}(M, N, 3)) \leq 2 d$.
Proof:
$(a, 0,0) \quad a=2 \ell \in 2 L$ with $\frac{1}{2} Q(2 \ell)=2 \mathbb{Q}(\ell) \geq 2 d$.
$(a, b, 0) \quad a, b \in N$ with $\frac{1}{2} Q(a)+\frac{1}{2} Q(b) \geq 2 d$.
(a, b, c) then $\frac{1}{2}(Q(a)+Q(b)+Q(c)) \geq \frac{3}{2} d$.
72-dimensional lattices from Leech (Griess)
If $(L, Q) \cong\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong \Lambda_{24}$ then $3 \leq \min (\mathcal{L}(M, N, 3)) \leq 4$.

The vectors v with $Q(v)=3$

Assume that $(L, Q) \cong\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong \Lambda_{24}$

The vectors v with $Q(v)=3$

Assume that $(L, Q) \cong\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong \Lambda_{24}$

- All 4095 non-zero classes of $M / 2 L$ are represented by vectors m with $Q(m)=4$.
- For $m \in M$ let $N_{m}:=\{a \in N \mid(a, m) \in 2 \mathbb{Z}\}$ and $N^{(m)}:=\left\langle N_{m}, m\right\rangle$.
- $\left(N^{(m)}, \frac{1}{2} Q\right)$ is even unimodular lattice with root system $24 A_{1}$.

The vectors v with $Q(v)=3$

Assume that $(L, Q) \cong\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong \Lambda_{24}$

- All 4095 non-zero classes of $M / 2 L$ are represented by vectors m with $Q(m)=4$.
- For $m \in M$ let $N_{m}:=\{a \in N \mid(a, m) \in 2 \mathbb{Z}\}$ and $N^{(m)}:=\left\langle N_{m}, m\right\rangle$.
- $\left(N^{(m)}, \frac{1}{2} Q\right)$ is even unimodular lattice with root system $24 A_{1}$.
- $y_{\tilde{Q}}:=\left(y_{1}, y_{2}, y_{3}\right)=(m+a, m+b, m+c) \in \mathcal{L}(M, N, 3)$ with $\tilde{Q}(y)=3$ then $y_{i} \in N^{(m)}$ are roots and $m+y_{1}+y_{2}+y_{3} \in 2 L$.

The vectors v with $Q(v)=3$

Assume that $(L, Q) \cong\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong \Lambda_{24}$

- All 4095 non-zero classes of $M / 2 L$ are represented by vectors m with $Q(m)=4$.
- For $m \in M$ let $N_{m}:=\{a \in N \mid(a, m) \in 2 \mathbb{Z}\}$ and $N^{(m)}:=\left\langle N_{m}, m\right\rangle$.
- $\left(N^{(m)}, \frac{1}{2} Q\right)$ is even unimodular lattice with root system $24 A_{1}$.
- $y_{\tilde{Q}}:=\left(y_{1}, y_{2}, y_{3}\right)=(m+a, m+b, m+c) \in \mathcal{L}(M, N, 3)$ with $\tilde{Q}(y)=3$ then $y_{i} \in N^{(m)}$ are roots and $m+y_{1}+y_{2}+y_{3} \in 2 L$.

Enumerate short vectors in $\mathcal{L}(M, N, 3)$

For all 4095 nonzero classes $m+2 L \in M / 2 L$ and all 24^{2} pairs (y_{1}, y_{2}) of roots in $N^{(m)}$ check if $\left\langle 2 L, m+y_{1}+y_{2}\right\rangle$ has minimum ≥ 3.

The vectors v with $Q(v)=3$

Assume that $(L, Q) \cong\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong \Lambda_{24}$

- All 4095 non-zero classes of $M / 2 L$ are represented by vectors m with $Q(m)=4$.
- For $m \in M$ let $N_{m}:=\{a \in N \mid(a, m) \in 2 \mathbb{Z}\}$ and $N^{(m)}:=\left\langle N_{m}, m\right\rangle$.
- $\left(N^{(m)}, \frac{1}{2} Q\right)$ is even unimodular lattice with root system $24 A_{1}$.
- $y_{\tilde{Q}}:=\left(y_{1}, y_{2}, y_{3}\right)=(m+a, m+b, m+c) \in \mathcal{L}(M, N, 3)$ with $\tilde{Q}(y)=3$ then $y_{i} \in N^{(m)}$ are roots and $m+y_{1}+y_{2}+y_{3} \in 2 L$.

Enumerate short vectors in $\mathcal{L}(M, N, 3)$

For all 4095 nonzero classes $m+2 L \in M / 2 L$ and all 24^{2} pairs (y_{1}, y_{2}) of roots in $N^{(m)}$ check if $\left\langle 2 L, m+y_{1}+y_{2}\right\rangle$ has minimum ≥ 3. Note that the stabilizer S in $\operatorname{Aut}(L)$ of (M, N) acts. May restrict to orbit representatives $M / 2 L$.

The vectors v with $Q(v)=3$

Assume that $(L, Q) \cong\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong \Lambda_{24}$

- All 4095 non-zero classes of $M / 2 L$ are represented by vectors m with $Q(m)=4$.
- For $m \in M$ let $N_{m}:=\{a \in N \mid(a, m) \in 2 \mathbb{Z}\}$ and $N^{(m)}:=\left\langle N_{m}, m\right\rangle$.
- $\left(N^{(m)}, \frac{1}{2} Q\right)$ is even unimodular lattice with root system $24 A_{1}$.
- $y_{\tilde{Q}}:=\left(y_{1}, y_{2}, y_{3}\right)=(m+a, m+b, m+c) \in \mathcal{L}(M, N, 3)$ with $\tilde{Q}(y)=3$ then $y_{i} \in N^{(m)}$ are roots and $m+y_{1}+y_{2}+y_{3} \in 2 L$.

Enumerate short vectors in $\mathcal{L}(M, N, 3)$

For all 4095 nonzero classes $m+2 L \in M / 2 L$ and all 24^{2} pairs (y_{1}, y_{2}) of roots in $N^{(m)}$ check if $\left\langle 2 L, m+y_{1}+y_{2}\right\rangle$ has minimum ≥ 3. Note that the stabilizer S in $\operatorname{Aut}(L)$ of (M, N) acts. May restrict to orbit representatives $M / 2 L$.
Closer analysis reduces number of pairs $\left(y_{1}, y_{2}\right)$ to $8 \cdot 16$.

The vectors v with $Q(v)=3$

Assume that $(L, Q) \cong\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong \Lambda_{24}$

- All 4095 non-zero classes of $M / 2 L$ are represented by vectors m with $Q(m)=4$.
- For $m \in M$ let $N_{m}:=\{a \in N \mid(a, m) \in 2 \mathbb{Z}\}$ and $N^{(m)}:=\left\langle N_{m}, m\right\rangle$.
- $\left(N^{(m)}, \frac{1}{2} Q\right)$ is even unimodular lattice with root system $24 A_{1}$.
- $y_{\tilde{Q}}:=\left(y_{1}, y_{2}, y_{3}\right)=(m+a, m+b, m+c) \in \mathcal{L}(M, N, 3)$ with $\tilde{Q}(y)=3$ then $y_{i} \in N^{(m)}$ are roots and $m+y_{1}+y_{2}+y_{3} \in 2 L$.

Enumerate short vectors in $\mathcal{L}(M, N, 3)$

For all 4095 nonzero classes $m+2 L \in M / 2 L$ and all 24^{2} pairs (y_{1}, y_{2}) of roots in $N^{(m)}$ check if $\left\langle 2 L, m+y_{1}+y_{2}\right\rangle$ has minimum ≥ 3. Note that the stabilizer S in $\operatorname{Aut}(L)$ of (M, N) acts. May restrict to orbit representatives $M / 2 L$.
Closer analysis reduces number of pairs $\left(y_{1}, y_{2}\right)$ to $8 \cdot 16$. At most $4095 \cdot 8 \cdot 16=524,160$ lattices of dimension 24.

Stehlé, Watkins proof of extremality

Theorem (Stehlé, Watkins (2010))

Let L be an even unimodular lattice of dimension 72 with $\min (L) \geq 3$. Then L is extremal, if and only if it contains at least $6,218,175,600$ vectors v with $Q(v)=4$.

Stehlé, Watkins proof of extremality

Theorem (Stehlé, Watkins (2010))

Let L be an even unimodular lattice of dimension 72 with $\min (L) \geq 3$. Then L is extremal, if and only if it contains at least $6,218,175,600$ vectors v with $Q(v)=4$.

Proof: L is an even unimodular lattice of minimum ≥ 3, so its theta series is

$$
\begin{aligned}
& \theta_{L}=1+a_{3} q^{3}+a_{4} q^{4}+\ldots=f^{(9)}+a_{3} \Delta^{3} . \\
& f^{(9)}=1+6,218,175,600 q^{4}+\ldots \\
& \Delta^{3}=
\end{aligned} q^{3} \quad-72 q^{4}+\ldots .
$$

So $a_{4}=6,218,175,600-72 a_{3} \geq 6,218,175,600$ if and only if $a_{3}=0$.

Stehlé, Watkins proof of extremality

Theorem (Stehlé, Watkins (2010))

Let L be an even unimodular lattice of dimension 72 with $\min (L) \geq 3$. Then L is extremal, if and only if it contains at least $6,218,175,600$ vectors v with $Q(v)=4$.

Proof: L is an even unimodular lattice of minimum ≥ 3, so its theta series is

$$
\begin{aligned}
& \theta_{L}=1+a_{3} q^{3}+a_{4} q^{4}+\ldots=f^{(9)}+a_{3} \Delta^{3} . \\
& f^{(9)}=1+6,218,175,600 q^{4}+\ldots \\
& \Delta^{3}=1 \quad q^{3} r
\end{aligned}
$$

So $a_{4}=6,218,175,600-72 a_{3} \geq 6,218,175,600$ if and only if $a_{3}=0$.

Remark

A similar proof works in all jump dimensions $24 k$ (extremal minimum $=$ $k+1$) for lattices of minimum $\geq k$.
For dimensions $24 k+8$ and lattices of minimum $\geq k$ one needs to count vectors v with $Q(v)=k+2$.

How to find polarisations

- Rough estimate shows that there are about 10^{10} orbits of polarisations (M, N) of the Leech lattice such that $\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong \Lambda_{24}$.

How to find polarisations

- Rough estimate shows that there are about 10^{10} orbits of polarisations (M, N) of the Leech lattice such that $\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong \Lambda_{24}$.
- Griess proposes $M=(f-1) L, N=(g-1) L, g^{2}=f^{2}=-1$, ($f g$) fixed point free odd order: No extremal lattice.
- Bachoc and Nebe (1995) used Hermitian polarisations to construct extremal 80-dimensional lattices.

How to find polarisations

- Rough estimate shows that there are about 10^{10} orbits of polarisations (M, N) of the Leech lattice such that $\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right) \cong \Lambda_{24}$.
- Griess proposes $M=(f-1) L, N=(g-1) L, g^{2}=f^{2}=-1$, ($f g$) fixed point free odd order: No extremal lattice.
- Bachoc and Nebe (1995) used Hermitian polarisations to construct extremal 80-dimensional lattices.
- $\alpha, \beta \in \operatorname{End}(L)$ such that $(\alpha x, y)=(x, \beta y)$ and $\alpha \beta=2$.
- $M:=\alpha L, N:=\beta L$.

Hermitian polarisations

Let $\alpha \in \operatorname{End}(L)$ such that

- $\alpha^{2}-\alpha+2=0(\mathbb{Z}[\alpha]=$ integers in $\mathbb{Q}[\sqrt{-7}])$.
- $(\alpha x, y)=(x, \beta y)$ where $\beta=1-\alpha=\bar{\alpha}$.

Then $M:=\alpha L, N:=\beta L$ defines a polarisation of L such that $(L, Q) \cong\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right)$.

Hermitian polarisations

Let $\alpha \in \operatorname{End}(L)$ such that

- $\alpha^{2}-\alpha+2=0(\mathbb{Z}[\alpha]=$ integers in $\mathbb{Q}[\sqrt{-7}])$.
- $(\alpha x, y)=(x, \beta y)$ where $\beta=1-\alpha=\bar{\alpha}$.

Then $M:=\alpha L, N:=\beta L$ defines a polarisation of L such that $(L, Q) \cong\left(M, \frac{1}{2} Q\right) \cong\left(N, \frac{1}{2} Q\right)$.

Remark

$\mathcal{L}(\alpha L, \beta L, 3)=L \otimes_{\mathbb{Z}[\alpha]} P_{b}$ where

$$
P_{b}=\langle(\beta, \beta, 0),(0, \beta, \beta),(\alpha, \alpha, \alpha)\rangle \mathbb{Z}[\alpha]^{3}
$$

with the half the standard Hermitian form

$$
h: P_{b} \times P_{b} \rightarrow \mathbb{Z}[\alpha], h\left(\left(a_{1}, a_{2}, a_{3}\right),\left(b_{1}, b_{2}, b_{3}\right)\right)=\frac{1}{2} \sum_{i=1}^{3} a_{i} \overline{b_{i}} .
$$

P_{b} is Hermitian unimodular and $\mathrm{Aut}_{\mathbb{Z}[\alpha]}\left(P_{b}\right) \cong \pm \operatorname{PSL}_{2}(7)$. So $\operatorname{Aut}(\mathcal{L}(\alpha L, \beta L, 3)) \geq \operatorname{Aut}_{\mathbb{Z}[\alpha]}(L) \times \operatorname{PSL}_{2}(7)$.

Hermitian structures of the Leech lattice

Theorem (M. Hentschel, 2009)
There are exactly nine $\mathbb{Z}[\alpha]$-structures of the Leech lattice.

	group	order	
1	$\mathrm{SL}_{2}(25)$	$2^{4} 3 \cdot 5^{2} 13$	
2	$2 . A_{6} \times D_{8}$	$2^{7} 3^{2} 5$	
3	$\mathrm{SL}_{2}(13) .2$	$2^{4} 3 \cdot 7 \cdot 13$	
4	$\left(\mathrm{SL}_{2}(5) \times A_{5}\right) .2$	$2^{6} 3^{2} 5^{2}$	
5	$\left(\mathrm{SL}_{2}(5) \times A_{5}\right) .2$	$2^{6} 3^{2} 5^{2}$	
6	soluble	$2^{9} 3^{3}$	
7	$\pm \mathrm{PSL}_{2}(7) \times\left(C_{7}: C_{3}\right)$	$2^{4} 3^{2} 7^{2}$	
8	$\mathrm{PSL}_{2}(7) \times 2 . A_{7}$	$2^{7} 3^{3} 5 \cdot 7^{2}$	
9	$2 . J_{2} .2$	$2^{9} 3^{3} 5^{2} 7$	

Hermitian structures of the Leech lattice

Theorem (M. Hentschel, 2009)
There are exactly nine $\mathbb{Z}[\alpha]$-structures of the Leech lattice.

	group	order	\# Q(v) = 3
1	$\mathrm{SL}_{2}(25)$	$2^{4} 3 \cdot 5^{2} 13$	0
2	$2 . A_{6} \times D_{8}$	$2^{7} 3^{2} 5$	$2 \cdot 20,160$
3	$\mathrm{SL}_{2}(13) .2$	$2^{4} 3 \cdot 7 \cdot 13$	$2 \cdot 52,416$
4	$\left(\mathrm{SL}_{2}(5) \times A_{5}\right) \cdot 2$	$2^{6} 3^{2} 5^{2}$	$2 \cdot 100,800$
5	$\left(\mathrm{SL}_{2}(5) \times A_{5}\right) \cdot 2$	$2^{6} 3^{2} 5^{2}$	$2 \cdot 100,800$
6	soluble	$2^{9} 3^{3}$	$2 \cdot 177,408$
7	$\pm \mathrm{PSL}_{2}(7) \times\left(C_{7}: C_{3}\right)$	$2^{4} 3^{2} 7^{2}$	$2 \cdot 306,432$
8	$\mathrm{PSL}_{2}(7) \times 2 . A_{7}$	$2^{7} 3^{3} 5 \cdot 7^{2}$	$2 \cdot 504,000$
9	$2 . J_{2} .2$	$2^{9} 3^{3} 5^{2} 7$	$2 \cdot 1,209,600$

The extremal 72-dimensional lattice Γ

Main result

- Γ is an extremal even unimodular lattice of dimension 72.
- $\operatorname{Aut}(\Gamma)$ contains $\mathcal{U}:=\left(\mathrm{PSL}_{2}(7) \times \mathrm{SL}_{2}(25)\right): 2$.
- \mathcal{U} is an absolutely irreducible subgroup of $\mathrm{GL}_{72}(\mathbb{Q})$.
- All U-invariant lattices are similar to Γ.
- Γ realises the densest known sphere packing
- and maximal known kissing number in dimension 72.
- Structure of Γ can be used for decoding: Annika Meyer

The extremal 72-dimensional lattice Γ

Main result

- Γ is an extremal even unimodular lattice of dimension 72.
- $\operatorname{Aut}(\Gamma)$ contains $\mathcal{U}:=\left(\mathrm{PSL}_{2}(7) \times \mathrm{SL}_{2}(25)\right): 2$.
- \mathcal{U} is an absolutely irreducible subgroup of $\mathrm{GL}_{72}(\mathbb{Q})$.
- All U-invariant lattices are similar to Γ.
- Γ realises the densest known sphere packing
- and maximal known kissing number in dimension 72.
- Structure of Γ can be used for decoding: Annika Meyer

Remark (Masaaki Harada, 2010)

The lattice Γ gives extremal doubly-even codes over $\mathbb{Z} / 4 k \mathbb{Z}$ of length 72 for $k \geq 2$.
Certain odd neighbors of Γ yield optimal odd unimodular lattices.

A generalisation of Turyn's construction for lattices.

Theorem (Quebbemann)

Let $(L, Q) \leq \mathbb{R}^{n}$ be an even lattice, p a prime not dividing $\operatorname{det}(L)$. Then L has a polarisation $\bmod p$:
$L=M+N, M \cap N=p L$ and $\left(M, \frac{1}{p} Q\right),\left(N, \frac{1}{p} Q\right)$ even.
Let $X \leq \mathbb{F}_{p}^{m}$. Then

$$
\begin{aligned}
& \mathcal{L}(M, N, X):=\left\langle\left(x_{1} a, \ldots, x_{m} a\right),\left(y_{1} b, \ldots, y_{m} b\right)\right| \\
& \left.a \in M, b \in N,\left(\bar{x}_{1}, \ldots, \bar{x}_{m}\right) \in X,\left(\bar{y}_{1}, \ldots, \bar{y}_{m}\right) \in X^{\perp}\right\rangle
\end{aligned}
$$

is an even lattice of dimension $n m$ of determinant $\operatorname{det}(L)^{m}$.

Examples.

- $X=\langle(1,1)\rangle, p=3, L=\Lambda_{24}, M=\alpha L, N=(1-\alpha) L$ with $\alpha=(1+\sqrt{-11}) / 2$ such that $\operatorname{Aut}_{\alpha}\left(\Lambda_{24}\right) \cong \mathrm{SL}_{2}(13)$ yields extremal 48-dimensional lattice $P_{48 n}$.
- $L \cong E_{8}, X=[10,5,4]$-code, $p=2$ (+neighbor): Two 80-dimensional extremal lattices (Bachoc, Nebe 1995).

