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» A linear binary code C of length n is a subspace C < F%.
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Doubly-even self-dual codes
Definition

» A linear binary code C of length n is a subspace C' < F%.
» The dual code of C'is

Ct:={zcFy|(z,c) Zmlcl—OforallcéC}
=1
C is called self-dual if C = C+.
The Hamming weight of a codeword ¢ € C'is
wt(c) == |{i | i # 0}-
C'is called doubly-even if wt(c) € 4Z for all ¢ € C.
The minimum distance d(C) := min{wt(c) | 0 # c € C'}.
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Doubly-even self-dual codes
Definition

» A linear binary code C of length n is a subspace C' < F%.
» The dual code of C'is

Ct:={zcFy|(z,c) Zwlcl—OforallceC}

i=1

C is called self-dual if C = C+.

The Hamming weight of a codeword ¢ € C'is

wt(c) == |{i | i # 0}-

C'is called doubly-even if wt(c) € 4Z for all ¢ € C.

The minimum distance d(C) := min{wt(c) | 0 # c € C'}.
The weight enumerator of C' is

Pe = Yoec YO € Clz, g,
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The minimum distance measures the error correcting quality of a
self-dual code.



Self-dual codes

Remark

» The all-one vector 1 lies in the dual of every even code since
wt(c) =2 (¢,¢) =3 (¢, 1).

» C = C+ <F3then n = 2dim(C).

» Self-dual doubly-even codes correspond to totally isotropic
subspaces in the quadratic space 1-+/(1).



Self-dual codes

Remark

» The all-one vector 1 lies in the dual of every even code since
wt(c) =2 (¢,¢) =3 (¢, 1).

» C = C+ <F3then n = 2dim(C).

» Self-dual doubly-even codes correspond to totally isotropic
subspaces in the quadratic space 1+ /(1).

The extended Hamming code

100 0 0 1 11

01001011
hg:

001 01101

00011110

has pp, (z,y) = 28 + 14z*y* + y® and is the unique doubly-even
self-dual code of length 8.



Extremal codes

The binary Golay code G, is the unique doubly-even self-dual code
of length 24 with minimum distance > 8.

Pgay = 224+ 7592%9° 4+ 257622y + 7592%y"0 + >



Extremal codes
The binary Golay code G4 is the unique doubly-even self-dual code
of length 24 with minimum distance > 8.

Pgay = 224+ 7592%9° 4+ 257622y + 7592%y"0 + >

Theorem (Gleason, ICM 1970)

Let C = C+ < F% be doubly even. Then
> n € 8Z
> pc € Clpng; P,
» d(C) <4+4|5;]
Doubly-even self-dual codes achieving this bound are called extremal.



Extremal codes
The binary Golay code G4 is the unique doubly-even self-dual code
of length 24 with minimum distance > 8.

Pgay = 224+ 7592%9° 4+ 257622y + 7592%y"0 + >

Theorem (Gleason, ICM 1970)
Let C = C+ < F% be doubly even. Then
>» ne8Z

> pc € C[phsapgu]
» d(C) <4+4|5;]
Doubly-even self-dual codes achieving this bound are called extremal.

length 8 16 24 | 32 48 72 1 80
d(C) 4 4 8 | 8| 12 |16] 16
extremal codes | hg | hs L hg,djs | Goa | 5 |QRas | 7 [ >5




Turyn’s construction of the Golay code
Construction of Golay code

Choose two copies C and D of hg such that
CNnD=(1),C+D=1"<TF}

Goy = {(C+d1,c+d2,0+d3)|C€C,di€D,d1+d2+d3€ <1>}



Turyn’s construction of the Golay code
Construction of Golay code

Choose two copies C and D of hg such that
CNnD=(1),C+D=1"<TF}

Gos :={(c+di,c+da,c+d3) | ceC,d; € D,dy +dy+d3 € (1)}
(@) G214 = Say.

(b) Go4 is doubly-even.

(¢) d(G24) = 8.
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Proof: (a) unique expression if ¢ represents classes in hg/(1), so

|Go4| = 2%-2%.2%.2 =212
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Construction of Golay code
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Turyn’s construction of the Golay code
Construction of Golay code
Choose two copies C and D of hg such that
CNnD=(1),C+D=1"<TF}
Goy = {(c+d1,c+d2,c+d3) | c e (7,(1Z € D,dy +dsy+d3 € <1>}
(@) 24 = Gaa-
(b) Go4 is doubly-even.
(C) d(924) = 8.
Proof: (a) unique expression if ¢ represents classes in hg/(1), so
|Go4| = 2%-2%.2%.2 =212
Suffices Goy C Gay: ((c+di,c+da,c+d3), (¢ +d), c +dy,d +dy)) =
3(c, ¢ )+ (e, di+dy+ds) +(di+datds, ) +(dr, dy ) +(dz, dy)+(d3, d3) = 0



Turyn’s construction of the Golay code
Construction of Golay code
Choose two copies C and D of hg such that
CNnD=(1),C+D=1"<TF}
924 = {(c+d1,c+d2,c+d3) | cc C’,dZ S D,dl +d2+d3 S <1>}
(@) 24 = Gaa-
(b) G24 is doubly-even.
(C) d(924) = 8.
Proof: (a) unique expression if ¢ represents classes in hg/(1), so
|924| :23.24'24.2:212
Suffices S24 C Gay: ((c+di, ¢ +da,c+ds), (¢ +d, ¢ +dy, ¢ + dfy)) =
3(c, ) +(c, d\+dy+ds)+(di+da+ds, ) +(dy, dy)+(d2, dy)+(d3, dy) =0

(b) Follows since C' and D are doubly-even, so generators have
weight divisible by 4.



Turyn’s construction of the Golay code
Construction of Golay code.

Choose two copies C and D of hg such that
CNnD=(1),C+D=1+<TF}

Goy := {(c+d1,c+d2,c+d3) | ceC,d; € D,dy +doy +ds € <1>}
(C) d(924) =&.

Proof: (c)
Wt(C =+ d17C+ d2, C + dg) = Wt(C-l— dl) —+ Wt(C-l— dQ) + Wt(C-l— dg)



Turyn’s construction of the Golay code
Construction of Golay code.

Choose two copies C and D of hg such that
CNnD=(1),C+D=1+<TF}

Goy := {(c+d1,c+d2,c+d3) | ceC,d; € D,dy +doy +ds € <1>}
(C) d(924) =&.

Proof: (c)
wt(c+di,c+do,c+ d3) = wt(c+ dq) + wt(c + d2) + wt(c + d3).
» 1 non-zero component: (d,0,0) with d € (1), weight 8.
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Construction of Golay code.
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Construction of Golay code.

Choose two copies C and D of hg such that
CNnD=(1),C+D=1+<TF}
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Proof: (c)
wt(c+di,c+do,c+ d3) = wt(c+ dq) + wt(c + d2) + wt(c + d3).
» 1 non-zero component: (d,0,0) with d € (1), weight 8.
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» 3 non-zero components: All have even weight, so weight
> 2+ 2+ 2= 6. By (b) the weight is a multiple of 4, so > 8.



Turyn’s construction of the Golay code
Construction of Golay code.

Choose two copies C and D of hg such that
CNnD=(1),C+D=1+<TF}

Goy := {(c+d1,c+d2,c+d3) | ceC,d; € D,dy +doy +ds € <1>}
(C) d(924) = 8.

Proof: (c)
wt(c+di,c+do,c+ d3) = wt(c+ dq) + wt(c + d2) + wt(c + d3).
» 1 non-zero component: (d,0,0) with d € (1), weight 8.
» 2 non-zero components: (dy,ds,0) with d;,ds € D = hg,
» 3 non-zero components: All have even weight, so weight
> 2+ 2+ 2= 6. By (b) the weight is a multiple of 4, so > 8.

Turyn applied to Golay

will not yield an extremal code of length 72. Such an extremal code
has no automorphism of order 2 which has fixed points.



A generalization of Turyn’s construction.

Theorem

Let C = C*+,D = D+ <F7 and X <F}" such that X n X+ = {0}.
Then
7(C,D,X)=C®X+D®X*- <F™

is a self-dual code, which is doubly-even, if C' and D are doubly-even.
Proof: Letc,¢’ € C,d,d € D, z,z’ € X and y,y' € X*. Then

(c@x,d®2')=0 since C CC*
(doy,d ®y)=0 since DC D+
(c®z,d®y)=0 sinceze X,y X+

so T c T+. Moreover
dim(7) = dim(C®X)+dim(D@X+)—dim(CRXNDRX ') = nm/2—0

since X N X+ = {0}.



A generalization of Turyn’s construction.

Theorem

Let C = C+,D = D+ <F7 and X <F;" such that X N X+ = {0}.
Then
7(C,D,X)=C®X+D@X*- <F'™

is a self-dual code, which is doubly-even, if C and D are doubly-even.

Turyn’s example.

X =((1,1,1)), C =2 D = hg such that C n D = (1) then
T(C,D, X) = Gog.

Example: Bachoc/Nebe.

C=D=hg,CND=(1).

X = X1 a[l0,5,4]-code, such that X N X+ = (1). Then T(C, D, X)
is a self-orthogonal [80, 39, 16]-code contained in a unique extremal
doubly-even self-dual code.



Lattices and sphere packings

> A
goa0ss;
‘v‘A ‘Ov A‘
0209020
094 %o«o
o ﬁq 0

Hexagonal Circle Packing

0 =1+6q+6¢>+6¢*+12¢" +6¢° +....



Dense lattice sphere packings

» Classical problem to find densest sphere packings:
» Dimension 2: Lagrange (lattices), Fejes Toth (general)

» Dimension 3: Kepler conjecture, proven by T.C. Hales
(1998)

» Dimension > 4: open
» Densest lattice sphere packings:
» Voronoi algorithm (~1900) all locally densest lattices.

» Densest lattices known in dimension 1,2,3,4,5,
Korkine-Zolotareff (1872) 6,7,8 Blichfeldt (1935) and
24 Cohn, Kumar (2003).

» Density of lattice measures error correcting quality.



Even unimodular lattices
Definition
» A lattice L in Euclidean n-space (R", (,)) is the Z-span of an

R-basis B = (by,...,b,) of R

L= <b1,...,bn>z = {Zazbl | a; € Z}
i=1



Even unimodular lattices
Definition
» A lattice L in Euclidean n-space (R", (,)) is the Z-span of an

R-basis B = (by,...,b,) of R
L= <b1,...,bn>z = {Zazbl | a; € Z}
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L#* .= {z cR" | (z,f) € Zforall{ € L}

» L is called unimodular if L = L#.



Even unimodular lattices
Definition

» A lattice L in Euclidean n-space (R", (,)) is the Z-span of an
R-basis B = (by,...,b,) of R

L= <b1,...,bn>z = {Zazbl | a; € Z}
i=1

The dual lattice is

v

L#* .= {z cR" | (z,f) € Zforall{ € L}

L is called unimodular if L = L#.

Q : R" — Rx¢,Q(z) := (=, x) associated quadratic form
Lis called evenif Q(¢) € Zforall ¢ € L.

min(L) := min{Q(¥) | 0 # £ € L} minimum of L.
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Even unimodular lattices
Definition

» A lattice L in Euclidean n-space (R", (,)) is the Z-span of an
R-basis B = (by,...,b,) of R

L= <b1,...,bn>z = {Zazbl | a; € Z}
i=1

The dual lattice is

v

L#* .= {z cR" | (z,f) € Zforall{ € L}

L is called unimodular if L = L#.

Q : R" — Rx¢,Q(z) := (=, x) associated quadratic form
Lis called evenif Q(¢) € Zforall ¢ € L.

min(L) := min{Q(¥) | 0 # £ € L} minimum of L.

vV V. v Vv

The sphere packing density of an even unimodular lattice is
proportional to its minimum.



Lattices and codes

Construction A

Let (e1,...,e,) be an orthogonal basis of R™ with Q(e;) = 1 for all 4.
Let C < F% be a code. Then

Lo = {Zéez | (61,...,6n) € O} CR"
1=1

is called the codelattice of C.



Lattices and codes

Construction A

Let (e1,...,e,) be an orthogonal basis of R™ with Q(e;) = 1 for all 4.
Let C < F% be a code. Then

n o B B .
Lo 3:{2561 | (@1,...,a,) € C} CR
i=1

is called the codelattice of C.

Duality

» L% =Leu
» Lc is even if C is doubly-even
» L¢ is even unimodular, if C'is self-dual and doubly-even.

Ly, = Es the unigue even unimodular lattice of dimension 8.



The Leech lattice and the Golay code

Construct an even unimodular lattice Ay, < R?* with
minimum 2 from the Golay code.



The Leech lattice and the Golay code

Construct an even unimodular lattice Ay, < R?* with
minimum 2 from the Golay code.

» Let L := Lg,, be the codelattice of the Golay code.

» Then L is an even unimodular lattice and
{:l:el," 'ai624} = {U €L | Q(U) = ]‘}



The Leech lattice and the Golay code

Construct an even unimodular lattice Ay, < R?* with
minimum 2 from the Golay code.

» Let L := Lg,, be the codelattice of the Golay code.
» Then L is an even unimodular lattice and
{xe1,...,ten} ={v e L| Q) =1}.
Leta:=3e1 + Sea+ ...+ 2eau.

Then Q(%a) = 2.

Let L, :={ve L| (v,a) € 2Z} and

Aoy := L@ = <%a, L,). Then min(Agy) = 2.

vV V. Vv VY

<La,a/2> L

La



Theta-series of lattices

Let (L, Q) be an even unimodular lattice of dimension n so a regular
positive definite integral quadratic form @ : L — Z.
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Let (L, Q) be an even unimodular lattice of dimension n so a regular
positive definite integral quadratic form @ : L — Z.

» The theta series of L is

0= ¢®“ =1+ i arq"

leL k=min(L)

where a, = |{£ € L | Q(¢) = k}|.



Theta-series of lattices

Let (L, Q) be an even unimodular lattice of dimension n so a regular
positive definite integral quadratic form @ : L — Z.

» The theta series of L is

0= =1+ > ad*
leL k=min(L)
where a, = |{£ € L | Q(¢) = k}|.

» 0 defines a holomorphic function on the upper half plane by
substituting ¢ := exp(2miz).

» Then ¢ is a modular form of weight % for the full modular group
SLo(Z).

» n is a multiple of 8.



Theta-series of lattices
Let (L, Q) be an even unimodular lattice of dimension n so a regular
positive definite integral quadratic form @ : L — Z.
» The theta series of L is

o=> ¢°“=1+ > a
LeL k=min(L)
where a, = |{£ € L | Q(¢) = k}|.
» 0, defines a holomorphic function on the upper half plane by
substituting ¢ := exp(2miz).
» Then ¢ is a modular form of weight % for the full modular group
SLo(Z).
» n is a multiple of 8.
> 0 € M%(SLQ(Z)) = (C[E47A]% where B, := 9E8 =14+240q9+ ...
is the normalized Eisenstein series of weight 4 and

A = q—24¢° + 252¢° — 1472¢* + ... of weight 12



Extremal modular forms

Basis of My (SL2(Z)):
EkF = 1+  240kq+  *q*+
EY3A = g+ x>+
.Eff_?’m’“Amk = qmr+

where my, = | 2] = | £].



Extremal modular forms
Basis of My (SL2(Z)):

Bt — 1+ 240kg+ xq>+
EE3A = g+ x>+
EF6A2 = *+
.Eig—?)mk AME — e qu+

where my, = | 2] = | £].
Definition

This space contains a unique form
F® =140+ 0¢% + ...+ 0g™ + a(f*))g™F! + b(f*)g™ 2 + ...
f*) is called the extremal modular form of weight 4.

SO =14240q+ ... =0, fP =1+480¢+...=06%,
f®) =14196,560¢> + ... = 64,,,

f© =1+52,416,000¢° + ... = Op,,, = Op,, = Opy,.»
fO =1+6,218,175,600¢* + ... = 6.



Extremal even unimodular lattices

Theorem (Siegel)
a(f®)) > 0 for all k



Extremal even unimodular lattices
Theorem (Siegel)

a(f®)) > 0 for all k

Corollary
Let L be an n-dimensional even unimodular lattice. Then

min(L) <1+ L%J = 14 mps.

Lattices achieving this bound are called extremal.



Extremal even unimodular lattices

Theorem (Siegel)
a(f®)) > 0 for all k

Corollary

Let L be an n-dimensional even unimodular lattice. Then

min(L) < 1+ L%J =1+ mys.

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices L< R"

lattices

n 8|16 | 24 32 40 48 72 80
mnlL) |22 | 4| 4 ] 6 | 8 | 8
number of
extremal |1 2 [ 1 |>107 | >10% | >3 | >1 | >4




Extremal even unimodular lattices

Theorem (Siegel)

a(f*)) > 0forall k& and b(f*) < 0 for large k (k > 5200).

Corollary

Let L be an n-dimensional even unimodular lattice. Then

min(L) < 1+ L%J =1+ mys.

Lattices achieving this bound are called extremal.

Extremal even unimodular lattices L< R"

lattices

n 8|16 | 24 32 40 48 72 80
mnlL) |22 | 4| 4 ] 6 | 8 | 8
number of
extremal |1 2 [ 1 |>107 | >10% | >3 | >1 | >4




Extremal even unimodular lattices in jump dimensions
B =14196,560¢ + ... =0,,,.
f© =1+52,416,000¢° + ... = Op,,, = Op,,, = Opy,,-
f =1+6,218,175,600¢* + ... = 0.

Let L be an extremal even unimodular lattice of
dimension 24m so min(L) =m + 1



Extremal even unimodular lattices in jump dimensions
B =14196,560¢ + ... =0,,,.
f© =1+52,416,000¢° + ... = Op,,, = Op,,, = Opy,,-
f =1+6,218,175,600¢* + ... = 0.

Let L be an extremal even unimodular lattice of
dimension 24m so min(L) = m + 1

» All non-empty layers 0 # {¢ € L | Q(¢) = a} form spherical
11-designs.

» The density of the associated sphere packing realises a local
maximum of the density function on the space of all
24m-dimensional lattices.



Extremal even unimodular lattices in jump dimensions

f®) =1+4196,560% + ... = O,
FO =1452,416,0006° + ... = Op,, = Op,y, = Op,s,.
f® =1+46,218,175,600¢* + ... = 6r.

Let L be an extremal even unimodular lattice of
dimension 24m so min(L) = m + 1

>

All non-empty layers ) # {¢ € L | Q(¢) = a} form spherical
11-designs.

The density of the associated sphere packing realises a local
maximum of the density function on the space of all
24m-dimensional lattices.

If m =1, then L = Ay, is unique, Aoy is the Leech lattice.

The 196560 minimal vectors of the Leech lattice form the unique
tight spherical 11-design and realise the maximal kissing number
in dimension 24.

Aoy is the densest 24-dimensional lattice (Cohn, Kumar).



Extremal even unimodular lattices in jump dimensions

B =14196,560¢ + ... =0,,,.
FO =1+452,416,000¢> + ... = Op,y, = Opyg, = Op,s,
f© =146,218,175,600¢* + ... = 6.

Let L be an extremal even unimodular lattice of
dimension 24m so min(L) = m + 1

>

All non-empty layers ) # {¢ € L | Q(¢) = a} form spherical
11-designs.

The density of the associated sphere packing realises a local
maximum of the density function on the space of all
24m-dimensional lattices.

If m =1, then L = Ay, is unique, Aoy is the Leech lattice.

The 196560 minimal vectors of the Leech lattice form the unique
tight spherical 11-design and realise the maximal kissing number
in dimension 24.

Aoy is the densest 24-dimensional lattice (Cohn, Kumar).

For m = 2, 3 these lattices are the densest known lattices and
realise the maximal known kissing number.



Turyn’s construction 2L

» Let (L, Q) be an even unimodular lattice of dimension n.

» Choose sublattices M, N < L suchthat M + N =L,
M NN =2L,and (M, 1Q), (N, 1Q) even unimodular.

» Such a pair (M, N) is called a polarisation of L.



Turyn’s construction 2L

» Let (L, Q) be an even unimodular lattice of dimension n.

» Choose sublattices M, N < L suchthat M + N =L,
M NN =2L,and (M, 1Q), (N, 1Q) even unimodular.

» Such a pair (M, N) is called a polarisation of L.
» For k € N let L(M,N,k) =

{(m+z1,...,m+xy) €L* L|me M,z; € N x1+... 4+, € 2L}
» Define Q : L(M,N,k) — Z,
~ 1
Qyr, - yk) = i(Q(yl) + .+ Qyw))-

» (L(M, N, k),Q) is an even unimodular lattice of dimension nk.



Obtaining Leech from Ex

Theorem (Lepowsky, Meurman; Tits)

Let (L, Q) = Eg be the unique even unimodular lattice of dimension 8.
Then for any polarisation (M, N) of Eg the lattice £(M, N, 3) has
minimum > 2.
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Theorem (Lepowsky, Meurman; Tits)

Let (L, Q) = Eg be the unique even unimodular lattice of dimension 8.
Then for any polarisation (M, N) of Eg the lattice £(M, N, 3) has
minimum > 2.

Note that Aut(Fjs) acts transitively on the polarisations of Es.



Obtaining Leech from Ex

Theorem (Lepowsky, Meurman; Tits)

Let (L, Q) = Eg be the unique even unimodular lattice of dimension 8.
Then for any polarisation (M, N) of Eg the lattice £(M, N, 3) has
minimum > 2.

Note that Aut(Fjs) acts transitively on the polarisations of Es.
Proof: Let y := (y1,y2,v3) € L(M, N, 3).
All y; #0:

Qy1,Y2,y3) = %ZQ(%) >[=1=2.



Obtaining Leech from Ex

Theorem (Lepowsky, Meurman; Tits)

Let (L, Q) = Eg be the unique even unimodular lattice of dimension 8.
Then for any polarisation (M, N) of Eg the lattice £(M, N, 3) has
minimum > 2.

Note that Aut(Fjs) acts transitively on the polarisations of Es.
Proof: Let y := (y1,y2,v3) € L(M, N, 3).
All y; #0:

Qy1,Y2,y3) = %ZQ(%) >[=1=2.

y1 # 0 # y2: Theny; € N and

Qy) >1+1+0=2.



Obtaining Leech from Ex

Theorem (Lepowsky, Meurman; Tits)

Let (L, Q) = Eg be the unique even unimodular lattice of dimension 8.
Then for any polarisation (M, N) of Eg the lattice £(M, N, 3) has
minimum > 2.

Note that Aut(Fjs) acts transitively on the polarisations of Es.
Proof: Let y := (y1,y2,v3) € L(M, N, 3).
All y; #0:

Qy1,Y2,y3) = %ZQ(%) >[=1=2.

y1 # 0 # y2: Theny; € N and

Qy) >1+1+0=2.

Only one y; # 0 then y; € 2L and Q(y) > 2.



Turyn’s construction for k = 3
LLLLlL

minM
(m+a,m+b,m+c) in tL(M,N,3) ab,cinN
a+b+cin 2L
2L12L 2L

d := min(L, Q) = min(M, 1Q) = min(N, 1Q)

2
Then [34] < min(£(M, N, 3)) < 2d.



Turyn’s construction for k = 3

LLLLL min M
(m+a,m+b,m+c) in tL(M,N,3) ab,cinN
a+b+cin 2L
2L12L 121

d := min(L, Q) = min(M, 1Q) = min(N, 1Q)

2
Then [34] < min(£(M, N, 3)) < 2d.

Proof:
(a,0,0) a =20 € 2L with 1Q(2¢) = 2Q(¢) > 2d.



Turyn’s construction for k = 3
LLLLlL

minM
(m+a,m+b,m+c) in tL(M,N,3) ab,cinN
a+b+cin 2L
2L12L 2L

d := min(L, Q) = min(M, 1Q) = min(N, 1Q)

2
Then [34] < min(£(M, N, 3)) < 2d.

Proof:
(a,0,0) a =20 € 2L with 1Q(2¢) = 2Q(¢) > 2d.
(a,b,0) a,b e N with %Q(a) + %Q(b) > 2d.



Turyn’s construction for k = 3

LLLLL min M
(m+a,m+b,m+c) in tL(M,N,3) ab,cinN
a+b+cin 2L
2L12L 121

d := min(L, Q) = min(M, 1Q) = min(N, 1Q)
Then [34] < min(£(M, N, 3)) < 2d.
Proof:

(a,0,0) a = 2¢ € 2L with 1Q(2¢) = 2Q(¢) > 2d.
(a,6,0) a,b e N with 1Q(a) + 1Q(b) > 24.
(a,,¢) then 3(Q(a) + Q(b) + Q(c)) > 3d.



Turyn’s construction for k = 3

LLLLL min M
(m+a,m+b,m+c) in tL(M,N,3) ab,cinN
a+b+cin 2L
2L12L 121

d := min(L, Q) = min(M, 1Q) = min(N, 1Q)
Then [34] < min(£(M, N, 3)) < 2d.
Proof:

(a,0,0) a = 2¢ € 2L with 1Q(2¢) = 2Q(¢) > 2d.
(a,6,0) a,b e N with 1Q(a) + 1Q(b) > 24.
(a,,¢) then 3(Q(a) + Q(b) + Q(c)) > 3d.

72-dimensional lattices from Leech (Griess)
If (L,Q) = (M, 3Q) = (N, 3Q)

=~ Aoy then 3 < IIllI’l([.J(]M'7 N, 3)) <4
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The vectors v with Q(v) = 3

Assume that (L, Q) = (M, 1Q) = (N,1Q) = Ay

» All 4095 non-zero classes of M /2L are represented by vectors m
with Q(m) = 4.

» Form € M let N,,, :={a € N | (a,m) € 2Z} and
N .= (N,,, m).

» (N0, 1Q) is even unimodular lattice with root system 244,
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Assume that (L, Q) = (M, 1Q) = (N,1Q) = Ay

» All 4095 non-zero classes of M /2L are represented by vectors m
with Q(m) = 4.

» Form € M let N,,, :={a € N | (a,m) € 2Z} and
Nm) .= (N, m).

» (N0, 1Q) is even unimodular lattice with root system 244,

> y = (y1,¥2,43) = (m+a,m+b,m+c) € L(M,N,3) with
Q(y) = 3 then y; € N(™) are roots and m + y1 + y2 + y3 € 2L.



The vectors v with Q(v) = 3

Assume that (L, Q) = (M, 1Q) = (N,1Q) = Ay
» All 4095 non-zero classes of M /2L are represented by vectors m
with Q(m) = 4.
» Form € M let N,,, :={a € N | (a,m) € 2Z} and
Nm) .= (N, m).
» (N0, 1Q) is even unimodular lattice with root system 244,
> y = (y1,¥2,43) = (m+a,m+b,m+c) € L(M,N,3) with

Q(y) = 3 then y; € N(™ are roots and m + y; + y2 + y3 € 2L.
Enumerate short vectors in L(M, N, 3)

For all 4095 nonzero classes m + 2L € M /2L and all 242 pairs (y1,y2)
of roots in N("™) check if (2L, m + y1 + ) has minimum > 3.



The vectors v with Q(v) = 3

Assume that (L, Q) = (M, 1Q) = (N,1Q) = Ay

» All 4095 non-zero classes of M /2L are represented by vectors m
with Q(m) = 4.

» Form € M let N,,, :={a € N | (a,m) € 2Z} and
Nm) .= (N, m).

» (N0, 1Q) is even unimodular lattice with root system 244,

> y = (y1,¥2,43) = (m+a,m+b,m+c) € L(M,N,3) with
Q(y) = 3 then y; € N(™) are roots and m + y1 + y2 + y3 € 2L.
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For all 4095 nonzero classes m + 2L € M /2L and all 242 pairs (y1,y2)
of roots in N(™) check if (2L, m + y; + y2) has minimum > 3.

Note that the stabilizer S in Aut(L) of (M, N) acts. May restrict to
orbit representatives M /2L.
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Assume that (L, Q) = (M, 1Q) = (N,1Q) = Ay

» All 4095 non-zero classes of M /2L are represented by vectors m
with Q(m) = 4.

» Form € M let N,,, :={a € N | (a,m) € 2Z} and
Nm) .= (N, m).

» (N0, 1Q) is even unimodular lattice with root system 244,

> y = (y1,¥2,43) = (m+a,m+b,m+c) € L(M,N,3) with
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Note that the stabilizer S in Aut(L) of (M, N) acts. May restrict to
orbit representatives M /2L.

Closer analysis reduces number of pairs (y1,y2) to 8 - 16.



The vectors v with Q(v) = 3

Assume that (L, Q) = (M, 1Q) = (N,1Q) = Ay

» All 4095 non-zero classes of M /2L are represented by vectors m
with Q(m) = 4.

» Form € M let N,,, :={a € N | (a,m) € 2Z} and
N .= (N,,,m).

» (N0, 1Q) is even unimodular lattice with root system 244,

> y = (y1,¥2,43) = (m+a,m+b,m+c) € L(M,N,3) with
Q(y) = 3 then y; € N(™) are roots and m + y1 + y2 + y3 € 2L.

Enumerate short vectors in L(M, N, 3)

For all 4095 nonzero classes m + 2L € M /2L and all 242 pairs (y1,y2)
of roots in N(™) check if (2L, m + y; + y2) has minimum > 3.

Note that the stabilizer S in Aut(L) of (M, N) acts. May restrict to
orbit representatives M /2L.

Closer analysis reduces number of pairs (y1,y2) to 8 - 16.

At most 4095 - 8 - 16 = 524, 160 lattices of dimension 24.



Stehlé, Watkins proof of extremality
Theorem (Stehlé, Watkins (2010))

Let L be an even unimodular lattice of dimension 72 with min(L) > 3.
Then L is extremal, if and only if it contains at least 6, 218, 175, 600
vectors v with Q(v) = 4.



Stehlé, Watkins proof of extremality
Theorem (Stehlé, Watkins (2010))

Let L be an even unimodular lattice of dimension 72 with min(L) > 3.
Then L is extremal, if and only if it contains at least 6, 218, 175, 600
vectors v with Q(v) = 4.

Proof: L is an even unimodular lattice of minimum > 3, so its theta

series is
O =14a3q® +asg* +... = f(g) + asA3.
fO =1 + 6,218,175,600¢* +...
A3 = ¢ —72¢* +...

S0 ay = 6,218, 175,600 — 72as > 6,218, 175,600 if and only if a3 = 0.



Stehlé, Watkins proof of extremality
Theorem (Stehlé, Watkins (2010))

Let L be an even unimodular lattice of dimension 72 with min(L) > 3.
Then L is extremal, if and only if it contains at least 6, 218, 175, 600
vectors v with Q(v) = 4.

Proof: L is an even unimodular lattice of minimum > 3, so its theta

series is
0 =1+as3q® +asq* +... = f(g) + asA3.
fO =1 + 6,218,175,600¢* +...
A3 = 7 —72¢* +...

S0 ay = 6,218, 175,600 — 72as > 6,218, 175,600 if and only if a3 = 0.

Remark

A similar proof works in all jump dimensions 24k (extremal minimum =
k + 1) for lattices of minimum > £.

For dimensions 24k + 8 and lattices of minimum > k one needs to
count vectors v with Q(v) = k + 2.



How to find polarisations
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» Rough estimate shows that there are about 10'° orbits of
polarisations (M, N) of the Leech lattice such that
(M, 3Q) = (N, 5Q) = Aoy,



How to find polarisations
L

2L

» Rough estimate shows that there are about 10'° orbits of
polarisations (M, N) of the Leech lattice such that
(Ma %Q) = (Na %Q) = A24-

» Griess proposes M = (f — 1)L, N = (g — 1)L, ¢*> = f* = -1,
(fg) fixed point free odd order: No extremal lattice.

» Bachoc and Nebe (1995) used Hermitian polarisations to
construct extremal 80-dimensional lattices.



How to find polarisations
L Z[a]

2L (ab)=(2)

» Rough estimate shows that there are about 10'° orbits of
polarisations (M, N) of the Leech lattice such that
(M, 3Q) = (N, 5Q) = Aoy,

» Griess proposes M = (f — 1)L, N = (g — 1)L, ¢*> = f* = -1,
(fg) fixed point free odd order: No extremal lattice.

» Bachoc and Nebe (1995) used Hermitian polarisations to
construct extremal 80-dimensional lattices.

» «, 3 € End(L) such that (azx,y) = (z, By) and of = 2.

» M :=aL, N := (L.



Hermitian polarisations
Let « € End(L) such that
» a? —a+2 =0 (Z[a] = integers in Q[v/—T7]).
> (az,y) = (z,0y) where =1—-a =1a.

Then M := L, N := (L defines a polarisation of L such that
(L,Q) = (M, Q) = (N, 5Q).



Hermitian polarisations
Let « € End(L) such that
» a? —a+2 =0 (Z[a] = integers in Q[v/—T7]).
> (ax,y) = (z,Py) where s =1—a =a.
Then M := L, N := (L defines a polarisation of L such that
(L, Q) = (M, 3Q) = (N, 3Q).
Remark
L(aL,BL,3) = L ®z4) P, Wwhere

P, =((8,8,0),(0, 8, 8), (v, o, @) Z[ ]

with the half the standard Hermitian form
1S —
h: Py x Py — Z[a], h((a1, a2, as), (b1, b2, b3)) = 3 Zaibi-

=1

Py is Hermitian unimodular and Auty,)(FP) = £ PSLy(7). So
Aut(L(aL,BL,3)) > Autyzj) (L) x PSLy(7).



Hermitian structures of the Leech lattice

Theorem (M. Hentschel, 2009)

There are exactly nine Z[a]-structures of the Leech lattice.

group order
1 SLo(25) 2135213
2 2.Ag x Dg 27325
3 SL,(13).2 213.7-13
4 (SL2 ) X A5) 263252
5 (SLQ( ) X A5) 263252
6 soluble 2933
7 iPSLQ(?) X (C7 : Cg) 243272
8 PSLy(7) x 2.47 2733572
9 2.J5.2 2933527




Hermitian structures of the Leech lattice

Theorem (M. Hentschel, 2009)

There are exactly nine Z[a]-structures of the Leech lattice.

group order #Q(v) =3
1 SLo(25) 2135213 0
2 2.4 x Dg 27325 2-20, 160
3 SLo(13).2 213.7-13 | 2-52,416
4 (SLy(5) x As).2 263252 2100, 800
5 (SLy(5) x A5).2 263252 2 -100, 800
6 soluble 2933 2.177,408
7| £PSLy(7) x (C7: C3) | 2%3272 2 - 306,432
8 PSL,(7) x 2.47 2733572 | 2-504,000
9 2.J5.2 2933527 | 21,209, 600




The extremal 72-dimensional lattice I

Main result

» T is an extremal even unimodular lattice of dimension 72.
» Aut(T") contains U := (PSLy(7) x SL2(25)) : 2.

» U is an absolutely irreducible subgroup of GL72(Q).

» All U-invariant lattices are similar to T".

» T realises the densest known sphere packing

» and maximal known kissing number in dimension 72.

» Structure of " can be used for decoding: Annika Meyer



The extremal 72-dimensional lattice I

Main result

» T is an extremal even unimodular lattice of dimension 72.
» Aut(I") contains U := (PSLy(7) x SL2(25)) : 2.

» U is an absolutely irreducible subgroup of GL72(Q).

» All U-invariant lattices are similar to T".

» T realises the densest known sphere packing

» and maximal known kissing number in dimension 72.

» Structure of " can be used for decoding: Annika Meyer

Remark (Masaaki Harada, 2010)

The lattice T gives extremal doubly-even codes over Z/4kZ of length
72 for k > 2.
Certain odd neighbors of T" yield optimal odd unimodular lattices.



A generalisation of Turyn’s construction for lattices.
Theorem (Quebbemann)

Let (L, Q) < R™ be an even lattice, p a prime not dividing det(L).
Then L has a polarisation mod p:
L=M+N, MNN =pL and (M, 1Q), (N,
Let X <F,". Then

1
5 Q) even.

L(M,N,X) :=((z10a,...,2ma), (y1b, ..., ymb) |
a€MbEN, (Tt ,Tm) €X, W1, Tpm) € X)

is an even lattice of dimension nm of determinant det(L)™.

Examples.

» X =((1,1)),p=3,L=A~Az, M =aL, N =(1-a)L with
a = (14 +/—11)/2 such that Aut, (As4) = SLy(13) yields
extremal 48-dimensional lattice Pys,,.

» L~ Fg, X = [10,5,4]-code, p = 2 (+neighbor): Two
80-dimensional extremal lattices (Bachoc, Nebe 1995).



