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Sphere packings.



Lattice sphere packings.
Definition.
Let L ∈ Ln. Then min(L) = min{(`, `) | ` ∈ L} is called the minimum
of L and

Min(L) := {x ∈ L | (x, x) = min(L)}

the set of minimal vectors of L. The density of the sphere packing
associated to a lattice L is proportional to the Hermite function

γ(L) :=
min(L)

det(L)1/n

γn := max{γ(L) | L ∈ Ln} is called the Hermite constant.

Remark.
The Hermite function is invariant under orthogonal transformations
and scaling and hence defines a function

γ : Ln/(R>0On(R)) ∼= GLn(Z)\GLn(R)/(R>0On(R))→ R>0.



Densest and locally densest lattices.

Theorem.
The densest lattices are known up to dimension 8 and in dimension
24.

n 1 2 3 4 5 6 7 8 24
γn 1 1.15 1.26 1.41 1.52 1.67 1.81 2 4
L A1 A2 A3 D4 D5 E6 E7 E8 Λ24

extreme 1 1 1 2 3 6 30 2408

Definition.
A lattice L ∈ Ln is called extreme, if its similarity class realises a local
maximum of the Hermite function.

There are only finitely many similarity classes of extreme lattices in
Ln. These are known for n ≤ 8.



Notation and some linear algebra.

I Remember that we consider row vectors x ∈ Rn with the usual
inner product (x, y) =

∑n
i=1 xiyi = xytr.

I For 0 6= x ∈ Rn the orthogonal projection onto 〈x〉 is given by
1

xxtr πx where
πx = xtrx ∈ Rn×nsym .

I The space Rn×nsym carries the Euclidean inner product
(A,B) := trace(AB).

I A ∈ Rn×nsym defines a quadratic form on Rn by
α 7→ pA(α) = αAαtr.

I (A, πx) = pA(x) for all A ∈ Rn×nsym , 0 6= x ∈ Rn.



Perfection and eutaxie.
Definition.
A lattice L ∈ Ln is called perfect, if

〈πx | x ∈ Min(L)〉 = Rn×nsym .

L is called eutactic, if there are λx > 0 for all x ∈ Min(L) such that

In =
∑

x∈Min(L)

λxπx.

It is called strongly eutactic if all λx can be chosen to be equal.

Remarks.

I πx = π−x so if L is perfect, then |Min(L)| ≥ n(n+ 1).
I L = M ⊥ N ⇒ L is not perfect, since
πx ∈ Endsym(RM)⊕ Endsym(RN) for all x ∈ Min(L).

I If L is eutactic, then 〈Min(L)〉R = Rn.



A eutaxie criterion using Aut(L).

Theorem
Let G ≤ Aut(L) be such that the natural representation G→ On(R) is
real irreducible. Then L is strongly eutactic.

Proof.
I Min(L) =: X is a union of G-orbits, so

f : Rn → R, α 7→
∑
x∈X

(x, α)2

is a G-invariant quadratic form on Rn.
I Since Rn is an irreducible G-module, f is a multiple of the inner

product f(α) = c(α, α) for some c ∈ R.
I This implies that In =

∑
x∈X c

−1πx since
I f(α) =

∑
x∈X(xαtr)2 =

∑
x∈X αx

trx︸︷︷︸
πx

αtr = c(α, α) = cαInα
tr.



Indecomposable root lattices are strongly eutactic.

Corollary

I Let L ∈ Ln be an indecomposable root lattice. Then L and its
dual L# are strongly eutactic.

I If h := |R(L)|/n ∈ Z denotes the Coxeter number of L then for all
α ∈ Rn ∑

x∈R(L)

(x, α)2 = 2h(α, α).

I A decomposable root lattice L = R1 ⊥ . . . ⊥ Rs is strongly
eutactic, iff h(R1) = . . . = h(Rs).

Proof.
L (and L#) are strongly eutactic, since S(L) is real irreducible. So∑
x∈R(L)(x, α)2 = c(α, α). Applying the Laplace operator

∆α :=
∑n
i=1

∂2

∂2αi
we get 4|R(L)| = 2nc and hence c = 2|R(L)|/n.

Rules: ∆α(x, α)m = m(m− 1)(x, x)(x, α)m−2 and
∆α(α, α)m = 2m(2m− 2 + n)(α, α)m−1



Voronoi’s theorem.

Theorem (Voronoi, ∼ 1900).

A lattice L is extreme, if and only if it is perfect and eutactic.

Theorem.
All indecomposable root lattices are extreme.

Proof. We have seen that all indecomposable root lattices are
strongly eutactic (hence eutactic) since their automorphism group is
real irreducible.
Perfection is shown by inspection of their minimal vectors.
Min(An) = {ei − ej | 1 ≤ i 6= j ≤ n+ 1} ⊃ Min(An−1)
By induction we assume that An−1 is perfect.
{πei−en+1 | 1 ≤ i ≤ n} is linearly independent modulo
〈πx | x ∈ Min(An−1)〉 hence
dim(〈πx | x ∈ Min(An)〉) ≥ n(n−1)

2 + n = n(n+1)
2 .



Strongly perfect lattices.

Definition (B. Venkov)

A lattice L is called strongly perfect if Min(L) is a spherical 5-design,
so if for all p ∈ R[x1, . . . , xn]deg≤5

1
|Min(L)|

∑
x∈Min(L)

p(x) =
∫
S

p(t)dt

where S is the sphere containing Min(L).

The following are equivalent.

I X := Min(L) is a 5-design.
I X := Min(L) is a 4-design.
I
∑
x∈X f(x) = 0 for all harmonic polynomials f ∈ R[x1, . . . , xn] of

degree 2 and 4. harmonic means homogeneous and ∆(f) = 0.



Continued.

The following are equivalent.

I X := Min(L) is a 5-design.
I X := Min(L) is a 4-design.
I
∑
x∈X f(x) = 0 for all harmonic polynomials f ∈ R[x1, . . . , xn] of

degree 2 and 4. f harmonic means ∆(f) = 0
I There is some c ∈ R such that

∑
x∈X(x, α)4 = c(α, α)2 for all

α ∈ Rn.
I

(D4)
∑
x∈X(x, α)4 = 3|X|m2

n(n+2) (α, α)2

(D2)
∑
x∈X(x, α)2 = |X|m

n (α, α)

for all α ∈ Rn where m = min(L).



Strongly perfect lattices are extreme.

Theorem.
Let L be a strongly perfect lattice. Then L is strongly eutactic and
perfect and hence extreme.

Proof. (a) The 2-design property is equivalent to L being strongly
eutactic, because by (D2)∑

x∈X
(x, α)2︸ ︷︷ ︸
απxαtr

=
m|X|
n

(α, α)︸ ︷︷ ︸
αInαtr

for all α ∈ Rn where X = Min(L), m = min(L).



Strongly perfect lattices are extreme.

Theorem.
Let L be a strongly perfect lattice. Then L is strongly eutactic and
perfect and hence extreme.

Proof. (b) 4-design implies perfection: A ∈ Rn×nsym defines
pA : α 7→ αAαtr.

U := 〈πx | x ∈ X〉 = Rn×nsym ⇔ U⊥ = {0}.

So assume that A ∈ U⊥, so

0 = trace(xtrxA) = trace(xAxtr) = xAxtr = pA(x) for all x ∈ X

By the design property we then have∫
S

p2
A(t)dt =

1
|X|

∑
x∈X

pA(x)2 = 0

and hence A = 0.



Strongly perfect lattices.

Theorem.
Let L be strongly perfect. Then min(L) min(L#) ≥ (n+ 2)/3.

Proof. Let α ∈ Min(L#). Then

(D4)− (D2) =
∑
x∈X

(x, α)2((x, α)2 − 1)︸ ︷︷ ︸
≥0

=
|X|m
n

(α, α)
(3m(α, α)

n+ 2
− 1
)

︸ ︷︷ ︸
⇒≥0

Remember
(D4)

∑
x∈X(x, α)4 = 3|X|m2

n(n+2) (α, α)2

(D2)
∑
x∈X(x, α)2 = |X|m

n (α, α)



The strongly perfect root lattices.

Theorem.
The strongly perfect root lattices are A1, A2, D4, E6, E7, E8.

Proof. Let L be a strongly perfect root lattice.
We use the necessary condition that min(L) min(L#) ≥ n+2

3 to
exclude the other cases.

I L = An, then min(L#) = n
n+1 and

min(An) min(A#
n ) =

2n
n+ 1

≥ n+ 2
3
⇔ (n− 1)(n− 2) ≤ 0

I L = Dn. Then min(L#) = 1 and

min(Dn) min(D#
n ) = 2 ≥ n+ 2

3
⇔ n ≤ 4

I min(E6) min(E#
6 ) = 24

3 , min(E7) min(E#
7 ) = 23

2 ,
min(E8)2 = 4 > 10

3 .



A1, A2, D4, E6, E7, E8 are strongly perfect.
Need to show that for all α ∈ Rn

p(α) =
∑
x∈X

(x, α)4 − 3|X|m2

n(n+ 2)
(α, α)2 = 0

Introduce a Euclidean inner product by

< f, g >:= g(
∂

∂x1
, . . . ,

∂

∂xn
)(f) for f, g ∈ R[x1, . . . , xn]deg=t

If g(α) = (α, α)t/2, then < f, g >= ∆t/2(f) and if g(α) = (x, α)t then
< f, g >= f(x).
Hence < p, p >=

∑
x,y∈X(x, y)4 − 3|X|2m4

n(n+2) .

Corollary.

A lattice L ∈ Ln with min(L) = m is strongly perfect, if and only if

∑
x,y∈Min(L)

(x, y)4 =
3|Min(L)|2m4

n(n+ 2)
.



Some applications of representation theory.

I Recall that the automorphism group of a lattice L is
G := Aut(L) = {σ ∈ On(R) | σ(L) = L}.

I G acts on La = {` ∈ L | 1
2 (`, `) = Q(`) = a}.

I In particular Min(L) is a union of G orbits.
I

α 7→
∑

x∈Min(L)

(x, α)d

is a G-invariant polynomial of degree d.
I Invd(G) := {p ∈ R[x1, . . . , xn] | p is G− invariant ,deg(p) = d} is

a finite-dimensional vector space of which the dimension is
calculated from the character table.

I Since −1 ∈ G the space Invd(G) = 0 for odd d.
I (α, α)d ∈ Inv2d(G).



No harmonic invariants.

Theorem.
Let G = Aut(L) and assume that 〈(α, α)d〉 = Inv2d(G) for all
d = 1, . . . , t. Then all G-orbits and all non-empty layers of L are
spherical 2t-designs.

Corollary.

I If Rn is an irreducible RG-module then Inv2(G) = 〈(α, α)〉 and L
is strongly eutactic.

I If additionally Inv4(G) = 〈(α, α)2〉, then L is strongly perfect.



The Barnes-Wall lattices of dimension 2d.

I Let d ∈ N, m := bd2c, A := Fd2 and (ea | a ∈ A) an orthogonal
basis of R2d

with (ea, ea) = 2−m.
I For an affine subspace X = a+ U , a ∈ A,U ≤ A let
χX :=

∑
x∈X ex ∈ R2d

.
I Then (χX , χX) = 2−m|X| = 2k−m, where
k = dim(X) := dim(U).

I Let A(d, k) denote the set of all affine subspaces of A of
dimension k.

I For X ∈ A(d, 2k) the norm (χX , χX) = 22k−m.
I Define the Barnes-Wall lattice

BWd := 〈2m−kχX | k = 0, . . . ,m,X ∈ A(d, 2k)〉Z.



The Barnes-Wall lattices of dimension 2d.

Some properties of BWd.

I min(BWd) = 2m, where m = bd2c, det(BWd) =
{

2m d even
1 d odd .

I BW1 = Z2, BW2 = D4, BW3 = E8.
I BW4 densest known lattice in dimension 16.
I BW5 extremal even unimodular lattice.
I Aut(BWd) ∼= 21+2d

+ .Ω+
2d(2) if d > 3.

I For d ≥ 2 the Barnes-Wall lattice BWd is a strongly perfect
lattice, in fact Christine Bachoc has shown that all
Aut(BWd)-orbits form spherical 6-designs using coding theory.



The Thompson-Smith lattice of dimension 248.

I Let G =Th denote the sporadic simple Thompson group.
I Then G has a 248-dimensional rational representation
ρ : G→ O(248,Q).

I Since G is finite, ρ(G) fixes a lattice L ≤ Q248.
I Modular representation theory tells us that for all primes p the

FpG-module L/pL is simple.
I Therefore L = L# and L is even (otherwise L0/2L < L/2L

would be a proper G-invariant submodule).
I Inv2d(G) = 〈(α, α)d〉 for d = 1, 2, 3. So all layers of L form

spherical 6-designs and in particular L is strongly perfect.
I min(L) min(L#) = min(L)2 ≥ 248+2

3 > 83.3, so min(L) ≥ 10.
I There is a v ∈ L with (v, v) = 12, so min(L) ∈ {10, 12}.



Classification of strongly perfect lattices.

Theorem.

I All strongly perfect lattices of dimension ≤ 12 are known
(Nebe/Venkov).

I All integral strongly perfect lattices of minimum 2 and 3 are
known (Venkov).

I All lattices L ∈ L14 such that L and L# are strongly perfect (dual
strongly perfect) are known (Nebe/Venkov).

I Elisabeth Nossek will classify the dual strongly perfect lattices in
dimension 13,15,. . ..

I All integral lattices L of minimum ≤ 5 such that Min(L) is a
6-design are known (Martinet).

I All lattices L of dimension ≤ 24 such that Min(L) is a 6-design
are known (Nebe/Venkov).



Certain extremal lattices are strongly perfect.
Theorem.
Let L = L# ∈ Ln be an even unimodular lattice and p ∈ R[x1, . . . , xn],
deg(p) = t > 0, ∆(p) = 0. Then

θL,p :=
∑
`∈L

p(`)qQ(`) =
∞∑
j=1

(
∑
`∈Lj

p(`))qj ∈M0
n/2+t.

If 2m = min(L) then θL,p is divisible by ∆m ∈M0
12m.

In particular if n/2 + t < 12m, then θL,p = 0 and hence
∑
`∈Lj

p(`) = 0
for all j and all harmonic polynomials of degree t.

Theorem.
Let L be an extremal even unimodular lattice of dimension
n = 24a+ 8b with b = 0, 1, 2.

I All nonempty Lj are (11− 4b)-designs.
I If b = 0 or b = 1 then L is strongly perfect and hence extreme.
I All extremal even unimodular lattices of dimension 32 are

extreme.



Proof of Theorem for n = 24a.

I L extremal means min(L) = 2 + 2a.
I Let p be a harmonic polynomial of degree t > 0.
I Then θL,p = ?q1+a + . . ., hence θL,p is a multiple of ∆1+a.
I ∆1+a has weight 12(1 + a) = 12a+ 12.
I θL,p has weight 12a+ t.
I So if t ≤ 11 then θL,p = 0.
I This means that

∑
`∈Lj

p(`) = 0 for all j, so the nonempty Lj are
spherical 11-designs.

A similar proof applies to n = 24a+ 8b for b = 1, 2.



Even unimodular lattices of dimension 24.

Remember.
Let L = L# ∈ Ln be an even unimodular lattice and p ∈ R[x1, . . . , xn],
deg(p) = t > 0, ∆(p) = 0. Then

θL,p :=
∑
`∈L

p(`)qQ(`) =
∞∑
j=1

(
∑
`∈Lj

p(`))qj ∈M0
n/2+t.

If 2m = min(L) then θL,p is divisible by ∆m ∈M0
12m.

Application for n = 24.

Know that M0
14 = {0} so if L is an even 24-dimensional unimodular

lattice and p a harmonic polynomial of degree 2, then θL,p = 0.
In particular all even unimodular 24-dimensional lattices are strongly
eutactic.



Venkov’s classication of the even unimodular lattices
of dimension 24.

Theorem (Venkov).

Let L be an even unimodular lattice of dimension 24.
I The root system R(L) is either empty or has full rank.
I The indecomposable components of R(L) have the same

Coxeter number.

Proof. Assume that R(L) 6= ∅. Since L is strongly eutactic∑
x∈R(L)

(x, α)2 =
|R(L)|

12
(α, α) for all α ∈ R24

In particular R(L)⊥ = {0}.
If R(L) = R1 ⊥ . . . ⊥ Rs, ni = dim(Ri), and α ∈ 〈Ri〉R, then∑

x∈R(L)

(x, α)2 =
∑
x∈Ri

(x, α)2 =
2|Ri|
ni

(α, α).

Hence h(Ri) = |Ri|
ni

= |R(L)|
24 is independent of i.



The even unimodular lattices of dimension 24.

The possible root systems are found combinatorically from the
classification of indecomposable root systems and their Coxeter
numbers:

∅, 24A1, 12A2, 8A3, 6A4, 4A6, 3A8, 2A12, A24,
6D4, 4D6, 3D8, 2D12, D24, 4E6, 3E8,
4A5 ⊥ D4, 2A7 ⊥ 2D5, 2A9 ⊥ D6, A15 ⊥ D9,
E8 ⊥ D16, 2E7 ⊥ D10, E7 ⊥ A17, E6 ⊥ D7 ⊥ A11

Theorem.
For each of the 24 possible root systems there is a unique even
unimodular lattice in dimension 24 having this root system.



Proof of Theorem for R 6= ∅.

Proof. Let M := 〈R(L)〉Z ⊂ L = L# ⊂M#. The inner product
induces a bilinear form

bM : M#/M ×M#/M → Q/Z, (x+M,y +M) 7→ (x, y) + Z

with associated quadratic form

qM : M#/M → Q/Z, x+M 7→ Q(x) + Z =
1
2

(x, x) + Z.

The even unimodular lattices L that contain M correspond to totally
isotropic self-dual subgroups

(L/M)⊥ = L/M ≤M#/M with qM (L/M) = {0}.

R(L) = R(M) iff for all ` ∈ L−M ,

min(`+M) = min{2Q(`+m) | m ∈M} ≥ 4.



Example. Root system 6A4.

A#
4 /A4 = 〈x〉 ∼= F5.

A#
4 = 〈A4, x〉 with min(ax+ A4) =

{
4/5 for a = 1,−1
6/5 for a = 2,−2 .

Unimodular overlattices of 6A4 correspond to self-dual codes
C = C⊥ ≤ F6

5.

C1 :

 1 0 0 2 0 0
0 1 0 0 2 0
0 0 1 0 0 2

 , C2 :

 1 0 0 2 1 2
0 1 0 1 2 3
0 0 1 3 2 1


yield the lattices

L1 = 〈6A4, x1 + 2x4, x2 + 2x5, x3 + 2x6〉 ∼= 4E8

L2 = 〈6A4, x1 +2x4 +x5 +2x6, x2 +x4 +2x5 +3x6, x3 +3x4 +2x5 +x6〉

with R(L2) = 6A4.



24-dimensional even unimodular lattices.
Theorem.
For each of the 24 possible root systems there is a unique even
unimodular lattice in dimension 24 having this root system.

Remark.
The uniqueness of the Leech lattice, the unique even unimodular
lattice of dimension 24 with no roots is proven differently. It follows for
instance from the uniqueness of the Golay code, but also by applying
the mass formula:

h∑
i=1

|Aut(Li)|−1 = m2k =
|Bk|
2k

k−1∏
j=1

B2j

4j

where L1, . . . , Lh represent the isometry classes of even unimodular
lattices in R2k.

m24 =
1027637932586061520960267

129477933340026851560636148613120000000


