The Type of a code Gabriele Nebe, RWTH Aachen University Vlora, April 28, 2008.

RNTHAAG

- A brief history of Types (I,II,III,IV).
- The Gleason-Pierce theorem, Gleason's theorem.
- A formal notion of Type.
- Automorphisms and equivalence of codes of a given Type.

Let $\mathbb{F} := \mathbb{F}_q$ denote the finite field with *q*-elements. Classically a linear code *C* over \mathbb{F} is a subspace $C \leq \mathbb{F}^N$. *N* is called the **length** of the code.

 $C^{\perp} := \{ v \in \mathbb{F}^N \mid v \cdot c = \sum_{i=1}^N v_i c_i = 0 \} \text{ the dual code.}$

C is called **self-dual**, if $C = C^{\perp}$.

Important for the error correcting properties of C is the **distance**

$$d(C) := \min\{d(c, c') \mid c \neq c' \in C\} = \min\{w(c) \mid 0 \neq c \in C\}$$

where

$$w(c) := |\{1 \le i \le N \mid c_i \ne 0\}|$$

is the Hamming weight of c and d(c, c') = w(c-c') the Hamming distance.

The Gleason-Pierce Theorem (1967):

If $C = C^{\perp} \leq \mathbb{F}_q^N$ such that $w(c) \in m\mathbb{Z}$ for all $c \in C$ and some m > 1 then either

I) q = 2 and m = 2 (self-dual binary codes).

II) q = 2 and m = 4 (doubly even self-dual binary codes).

III) q = 3 and m = 3 (ternary codes).

IV) q = 4 and m = 2 (Hermitian self-dual codes).

o) q = 4 and m = 2 (certain Euclidean self-dual codes).

d) q arbitrary, m = 2 and $\text{hwe}_C(x, y) = (x^2 + (q - 1)y^2)^{N/2}$. In this case $C = \perp^{N/2} [1, a]$ is the orthogonal sum of self-dual codes of length 2 where either q is even and a = 1 or $q \equiv 1 \pmod{4}$ and $a^2 = -1$ or C is Hermitian self-dual and $a\overline{a} = -1$.

The self-dual codes in this Theorem are called Type I, II, III and IV codes respectively.

The Hamming weight enumerator of a code $C \leq \mathbb{F}^N$ is

$$\mathsf{hwe}_C(x,y) := \sum_{c \in C} x^{N-w(c)} y^{w(c)} \in \mathbb{C}[x,y]_N$$

Gleason-Pierce Theorem implies that for codes of Type I, II and IV the Hamming weight enumerator is a polynomial in x^2 and y^2 and for Type III codes, it is a polynomial in x and y^3 .

The repetition code $i_2 = \begin{bmatrix} 1 & 1 \end{bmatrix}$ has $hwe_{i_2}(x, y) = x^2 + y^2$. The extended Hamming code

$$e_8 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

has $hwe_{e_8}(x,y) = x^8 + 14x^4y^4 + y^8$ and hence is a Type II code.

The binary Golay code.

is also of Type II with Hamming weight enumerator

$$hwe_{g_{24}}(x,y) = x^{24} + 759x^{16}y^8 + 2576x^{12}y^{12} + 759x^8y^{16} + y^{24}$$

The tetracode.

$$t_4 := \left[\begin{array}{rrrr} 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 1 \end{array} \right] \le \mathbb{F}_3^4$$

is a Type III code with

hwe<sub>$$t_4(x, y) = x^4 + 8xy^3$$
.</sub>

The ternary Golay code.

$$g_{12} := \begin{bmatrix} 1 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 \end{bmatrix} \leq \mathbb{F}_{3}^{12}$$

 $hwe_{g_{12}}(x,y) = x^{12} + 264x^6y^6 + 440x^3y^9 + 24y^{12}$

Hermitian self-dual codes over \mathbb{F}_4 .

The repetition code $i_2 \otimes \mathbb{F}_4 = \begin{bmatrix} 1 & 1 \end{bmatrix}$ has $hwe_{i_2 \otimes \mathbb{F}_4}(x, y) = x^2 + 3y^2$.

The hexacode

$$h_{6} = \begin{bmatrix} 1 & 0 & 0 & 1 & \omega & \omega \\ 0 & 1 & 0 & \omega & 1 & \omega \\ 0 & 0 & 1 & \omega & \omega & 1 \end{bmatrix} \leq \mathbb{F}_{4}^{6}$$

where $\omega^2 + \omega + 1 = 0$. The hexacode is a Type IV code and has Hamming weight enumerator

hwe_{h₆}
$$(x, y) = x^{6} + 45x^{2}y^{4} + 18y^{6}$$
.

The MacWilliams theorem (1962). Let $C \leq \mathbb{F}_q^N$ be a code. Then

hwe_{C[⊥]}(x, y) =
$$\frac{1}{|C|}$$
 hwe_C(x + (q - 1)y, x - y).

In particular, if $C = C^{\perp}$, then hwe_C is invariant under the

MacWilliams transformation

$$h_q : \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \frac{1}{\sqrt{q}} \begin{pmatrix} 1 & q-1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Gleason's theorem (ICM, Nice, 1970) If C is a self-dual code of Type I,II,III or IV then hwe_C $\in \mathbb{C}[f,g]$ where

Туре	f	g	
Ι	$\begin{array}{c} x^2 + y^2 \\ i_2 \end{array}$	$x^2y^2(x^2-y^2)^2$ Hamming code e_8	
II	$x^8 + 14x^4y^4 + y^8$ Hamming code e_8	$x^4y^4(x^4-y^4)^4$ binary Golay code g_{24}	
III	$x^4 + 8xy^3$ tetracode t_4	$y^3(x^3-y^3)^3$ ternary Golay code g_{12}	
IV	$\begin{array}{c} x^2 + 3y^2 \\ i_2 \otimes \mathbb{F}_4 \end{array}$	$y^2(x^2-y^2)^2$ hexacode h_6	

Proof of Gleason's theorem.

Let $C \leq \mathbb{F}_q$ be a code of Type T = I,II,III or IV. Then $C = C^{\perp}$ hence hwe_C is invariant under MacWilliams transformation h_q . Because of the Gleason-Pierce theorem, hwe_C is also invariant under the diagonal transformation

 $d_m := \operatorname{diag}(1, \zeta_m) : x \mapsto x, y \mapsto \zeta_m y$

(where $\zeta_m = \exp(2\pi i/m)$) hence

hwe(C) \in Inv($\langle h_q, d_m \rangle =: G_T$)

lies in the invariant ring of the complex matrix group G_T . In all cases G_T is a complex reflection group and the invariant ring of G_T is the polynomial ring $\mathbb{C}[f,g]$ generated by the two polynomials given in the table.

Corollary: The length of a Type II code is divisible by 8. Proof: $\zeta_8 I_2 \in G_{\text{II}}$.

Extremal self-dual codes.

Gleason's theorem allows to bound the minimum weight of a code of a given Type and given length.

Theorem. Let *C* be a self-dual code of Type *T* and length *N*. Then $d(C) \leq m + m \lfloor \frac{N}{\deg(g)} \rfloor$. I) If T = I, then $d(C) \leq 2 + 2 \lfloor \frac{N}{8} \rfloor$. II) If T = II, then $d(C) \leq 4 + 4 \lfloor \frac{N}{24} \rfloor$. III) If T = III, then $d(C) \leq 3 + 3 \lfloor \frac{N}{12} \rfloor$. IV) If T = IV, then $d(C) \leq 2 + 2 \lfloor \frac{N}{6} \rfloor$.

Using the notion of the shadow of a code, the bound for Type I codes may be improved.

$$d(C) \le 4 + 4\lfloor \frac{N}{24} \rfloor + a$$

where a = 2 if N (mod 24) = 22 and 0 else.

G. Nebe, E.M. Rains. N.J.A. Sloane,

Self-dual codes and invariant theory.

(ACM volume 17, Springer 2006, 48.10 Euro until July 31st)

- Introduce a formal notion of a Type of a code.
- Prove a Theorem à la Gleason for a quite general class of rings (including higher genus complete weight enumerators of all classical Types of codes)
- many examples how to apply our theory.
- shadows of codes, maximal isotropic codes
- unimodular lattices, maximal even lattices
- extremal codes, classifications, mass formulas
- Quantum codes

A formal notion of a Type of a code.

Let R be a finite ring (with 1), $J: R \to R$ an involution of R,

$$(ab)^J = b^J a^J$$
 and $(a^J)^J = a$ for all $a, b \in R$

and let V be a finite left R-module.

Then $V^* = \operatorname{Hom}_{\mathbb{Z}}(V, \mathbb{Q}/\mathbb{Z})$ is also a left *R*-module via

$$(rf)(v) = f(r^J v)$$
 for $v \in V, f \in V^*, r \in R$.

We assume that $V \cong V^*$ as left *R*-modules, which means that there is an isomorphism

$$\beta^* : V \to V^*, \beta^*(v) : w \to \beta(v, w)$$

 $\beta: V \times V \to \mathbb{Q}/\mathbb{Z}$ is hence biadditive and satisfies

$$\beta(rv, w) = \beta(v, r^J w)$$
 for $r \in R, v, w \in V$.

A code over the alphabet V of length N is an R-submodule $C \leq V^N$.

The dual code (with respect to β) is

$$C^{\perp} := \{ x \in V^N \mid \beta^N(x, c) = \sum_{i=1}^N \beta(x_i, c_i) = 0 \text{ for all } c \in C \} .$$

C is called **self-dual** (with respect to β) if $C = C^{\perp}$. To obtain $(C^{\perp})^{\perp} = C$ we impose the condition that β is ϵ -Hermitian for some central unit ϵ in *R*, satisfying $\epsilon^{J}\epsilon = 1$,

$$\beta(v,w) = \beta(w,\epsilon v)$$
 for $v,w \in V$.

If $\epsilon = 1$ then β is symmetric,

if $\epsilon = -1$ then β is skew-symmetric.

Isotropic codes.

For any **self-orthogonal** code $C \subset C^{\perp}$

$$eta^N(c,rc)=$$
0 for all $c\in C,r\in R.$

The mapping $x \mapsto \beta(x, rx)$ is a **quadratic mapping** in $Quad_0(V, \mathbb{Q}/\mathbb{Z}) := \{\phi : V \to \mathbb{Q}/\mathbb{Z} \mid \phi(0) = 0 \text{ and} \}$

$$\phi(x+y+z) - \phi(x+y) - \phi(x+z) - \phi(y+z) + \phi(x) + \phi(y) + \phi(z) = 0\}$$

This is the set of all mappings $\varphi: V \to \mathbb{Q}/\mathbb{Z}$ for which

$$\lambda(\varphi): V \times V \to \mathbb{Q}/\mathbb{Z}, (v, w) \mapsto \varphi(v + w) - \varphi(v) - \varphi(w)$$

is biadditive. Let $\Phi \subset \text{Quad}_0(V, \mathbb{Q}/\mathbb{Z})$ and let $C \leq V^N$ be a code. Then C is called **isotropic** (with respect to Φ) if

$$\phi^N(c) := \sum_{i=1}^N \phi(c_i) = 0$$
 for all $c \in C$ and $\phi \in \Phi$.

The quadruple (R, V, β, Φ) is called a **Type** if

a) $\Phi \leq \text{Quad}_0(V, \mathbb{Q}/\mathbb{Z})$ is a subgroup and for all $r \in R$, $\phi \in \Phi$ the mapping $\phi[r] : x \mapsto \phi(rx)$ is again in Φ . Then Φ is an *R*-qmodule.

b) For all $\phi \in \Phi$ there is some $r_{\phi} \in R$ such that

$$\lambda(\phi)(v,w) = \beta(v,r_{\phi}w)$$
 for all v,w inV.

c) For all $r \in R$ the mapping

$$\phi_r: V \to \mathbb{Q}/\mathbb{Z}, v \mapsto \beta(v, rv)$$
 lies in Φ .

Type I codes $(2_{\rm I})$

$$R = \mathbb{F}_2 = V, \ \beta(x, y) = \frac{1}{2}xy, \ \Phi = \{\varphi : x \mapsto \frac{1}{2}x^2 = \beta(x, x), 0\}$$

Type II code (2_{II}) .

$$R = \mathbb{F}_2 = V, \ \beta(x, y) = \frac{1}{2}xy, \ \Phi = \{\phi : x \mapsto \frac{1}{4}x^2, 2\phi = \varphi, 3\phi, 0\}$$

Type III codes (3).

$$R = \mathbb{F}_{3} = V, \ \beta(x, y) = \frac{1}{3}xy, \ \Phi = \{\varphi : x \mapsto \frac{1}{3}x^{2} = \beta(x, x), 2\varphi, 0\}$$

Type IV codes (4^H) .

$$R = \mathbb{F}_4 = V, \ \beta(x, y) = \frac{1}{2} \operatorname{trace}(x\overline{y}), \ \Phi = \{\varphi : x \mapsto \frac{1}{2}x\overline{x}, 0\}$$

where $\overline{x} = x^2$.

Additive codes over \mathbb{F}_4 . (4^{*H*+})

$$R = \mathbb{F}_2, \ V = \mathbb{F}_4, \ \beta(x, y) = \frac{1}{2} \operatorname{trace}(x\overline{y}), \ \Phi = \{\varphi : x \mapsto \frac{1}{2}x\overline{x}, 0\}$$

Generalized doubly-even codes over \mathbb{F}_q , $q = 2^f$ (q_{II}^E).

$$R = \mathbb{F}_q = V, \ \beta(x, y) = \frac{1}{2} \operatorname{trace}(xy), \ \Phi = \{x \mapsto \frac{1}{4} \operatorname{trace}(ax^2) : a \in \mathbb{F}_q\}.$$

Euclidean self-dual codes over \mathbb{F}_q , $q = p^f$ odd, (q^E) .

$$R = \mathbb{F}_q = V, \ \beta(x, y) = \frac{1}{p} \operatorname{trace}(xy), \ \Phi = \{\varphi_a : x \mapsto \frac{1}{p} \operatorname{trace}(ax^2) : a \in \mathbb{F}_q\}.$$

Euclidean self-dual codes over \mathbb{F}_q containing the all ones vector, $q = p^f$ odd, (q_1^E) . $R = \mathbb{F}_q = V$,

$$\beta(x,y) = \frac{1}{p} \operatorname{trace}(xy), \ \Phi = \{\varphi_{a,b} : x \mapsto \frac{1}{p} (\operatorname{trace}(ax^2 + bx)) : a, b \in \mathbb{F}_q\}.$$

The automorphism group of a Type.

Let $T := (R, V, \beta, \Phi)$ be a Type. Then Aut(T) :=

 $\{\varphi \in \operatorname{End}_R(V) \mid \beta(\varphi(v), \varphi(w)) = \beta(v, w), \phi(\varphi(v)) = \phi(v) \text{ for all } v, w \in V, \phi \in \Phi\}$ is the **automorphism group** of the Type *T*.

Examples.

Hermitian codes over \mathbb{F}_4 : Aut $(4^H) = \mathbb{F}_4^* = \{1, \omega, \omega^2\}$

Euclidean codes over \mathbb{F}_4 : Aut $(4^E) = \{1\}$.

Equivalence of codes of a given Type.

Aut_N(T) := Aut(T) $\wr S_N = \{(\varphi_1, \dots, \varphi_N)\pi \mid \pi \in S_N, \varphi_i \in Aut(T)\}$ Two codes $C, D \leq V^N$ of Type T are called T-equivalent, if there is $\sigma \in Aut_N(T)$ such that $\sigma(C) = D$. The automorphism group of C is

$$\operatorname{Aut}_T(C) := \{ \sigma \in \operatorname{Aut}(T) \wr S_N \mid \sigma(C) = C \}$$

The codes (1,1) and $(1,\omega)$ are equivalent as Hermitian codes over \mathbb{F}_4 but not as Euclidean codes.

So equivalence is not a property of the codes alone but a property of the Type.

Classification and mass formulae.

Annika Günther will show in her talk a method to classify all self-dual codes of a given Type. This method is based on an algorithm originally formulated by Martin Kneser to enumerate unimodular lattices (up to equivalence).

Also for Type T codes $C \leq V^N$ one is mainly interested in equivalence classes

$$[C] := \{ D \leq V^N \text{ of Type } T \mid D = \pi(C) \text{ for some } \pi \in \operatorname{Aut}_N(T) \}.$$

Number of equivalence classes of codes of Type ${\cal T}$

N	Ι	II	III	IV
2	1(1)	_		1(1)
4	1(1)	—	1(1)	1(1)
6	1(1)	—	—	2(1)
8	2(1)	1(1)	1(1)	3(1)
10	2	—	—	5(2)
12	3	—	3(1)	10
14	4	—	—	21(1)
16	7	2(2)	7(1)	55(4)
18	9	—	—	244
20	16	—	24(6)	
22	25	—	—	
24	55	9(1)	338(2)	
26	103	—	—	
28	261	—	(6931)	
30	731	—	—	
32	3295	85(5)		
34	24147	—	—	

In brackets the number of extremal codes.

The mass formula.

Let $M_N(T) := \{C \leq V^N \mid C \text{ of Type } T\}$, $m_N(T) := |M_N(T)|$ and $a_N(T) := |\operatorname{Aut}_N(T)|$. Then $M_N(T) = \bigcup_{j=1}^h [C_j]$ is the disjoint union of equivalence classes.

mass formula:
$$\sum_{j=1}^{h} \frac{1}{|\operatorname{Aut}(C_j)|} = \frac{m_N(T)}{a_N(T)}.$$

Proof. Aut_N(T) acts on $M_N(T)$ and the equivalence classes are precisely the Aut_N(T)-orbits. So

$$|[C_j]| = \frac{|\operatorname{Aut}_N(T)|}{|\operatorname{Aut}(C_j)|}$$

is the index of the stabilizer and

$$|M_N(T)| = \sum_{j=1}^h |[C_j]| = \sum_{j=1}^h \frac{|\operatorname{Aut}_N(T)|}{|\operatorname{Aut}(C_j)|}.$$

Type	$m_N(T)$	$a_N(T)$
Ι	$\prod_{i=1}^{N/2-1} (2^i + 1)$	N!
II	$2\prod_{i=1}^{N/2-2}(2^i+1)$	N!
III	$2\prod_{i=1}^{N/2-1}(3^i+1)$	$2^N N!$
IV	$\prod_{i=0}^{N/2-1} (2^{2i+1} + 1)$	3 ^N N!