RMNHAACHEN
 The Type of a code UNIVERSITY

Gabriele Nebe, RWTH Aachen University Vlora, April 28, 2008.

- A brief history of Types (I,II,III,IV).
- The Gleason-Pierce theorem, Gleason's theorem.
- A formal notion of Type.
- Automorphisms and equivalence of codes of a given Type.

Let $\mathbb{F}:=\mathbb{F}_{q}$ denote the finite field with q-elements. Classically a linear code C over \mathbb{F} is a subspace $C \leq \mathbb{F}^{N}$.
N is called the length of the code.
$C^{\perp}:=\left\{v \in \mathbb{F}^{N} \mid v \cdot c=\sum_{i=1}^{N} v_{i} c_{i}=0\right\}$ the dual code. C is called self-dual, if $C=C^{\perp}$.
Important for the error correcting properties of C is the distance

$$
d(C):=\min \left\{d\left(c, c^{\prime}\right) \mid c \neq c^{\prime} \in C\right\}=\min \{w(c) \mid 0 \neq c \in C\}
$$

where

$$
w(c):=\left|\left\{1 \leq i \leq N \mid c_{i} \neq 0\right\}\right|
$$

is the Hamming weight of c and $d\left(c, c^{\prime}\right)=w\left(c-c^{\prime}\right)$ the Hamming distance.

The Gleason-Pierce Theorem (1967):

If $C=C^{\perp} \leq \mathbb{F}_{q}^{N}$ such that $w(c) \in m \mathbb{Z}$ for all $c \in C$ and some $m>1$ then either
I) $q=2$ and $m=2$ (self-dual binary codes).
II) $q=2$ and $m=4$ (doubly even self-dual binary codes).
III) $q=3$ and $m=3$ (ternary codes).
IV) $q=4$ and $m=2$ (Hermitian self-dual codes).
o) $q=4$ and $m=2$ (certain Euclidean self-dual codes).
d) q arbitrary, $m=2$ and $\operatorname{hwe}_{C}(x, y)=\left(x^{2}+(q-1) y^{2}\right)^{N / 2}$. In this case $C=\perp^{N / 2}[1, a]$ is the orthogonal sum of self-dual codes of length 2 where either q is even and $a=1$ or $q \equiv 1(\bmod 4)$ and $a^{2}=-1$ or C is Hermitian self-dual and $a \bar{a}=-1$.

The self-dual codes in this Theorem are called Type I, II, III and IV codes respectively.

The Hamming weight enumerator of a code $C \leq \mathbb{F}^{N}$ is

$$
\operatorname{hwe}_{C}(x, y):=\sum_{c \in C} x^{N-w(c)} y^{w(c)} \in \mathbb{C}[x, y]_{N}
$$

Gleason-Pierce Theorem implies that for codes of Type I, II and IV the Hamming weight enumerator is a polynomial in x^{2} and y^{2} and for Type III codes, it is a polynomial in x and y^{3}.

The repetition code $i_{2}=\left[\begin{array}{ll}1 & 1\end{array}\right]$ has hwe $_{i_{2}}(x, y)=x^{2}+y^{2}$. The extended Hamming code

$$
e_{8}=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0
\end{array}\right]
$$

has hwe $e_{8}(x, y)=x^{8}+14 x^{4} y^{4}+y^{8}$ and hence is a Type II code.

The binary Golay code.

$$
g_{24}=\left[\begin{array}{l}
110101110001100000000000 \\
101010111000110000000000 \\
100101011100011000000000 \\
100010101110001100000000 \\
100001010111000110000000 \\
100000101011100011000000 \\
100000010101110001100000 \\
100000001010111000110000 \\
100000000101011100011000 \\
10000000010101110001100 \\
100000000001010111000110 \\
100000000000101011100011
\end{array}\right]
$$

is also of Type II with Hamming weight enumerator

$$
\text { hwe }_{g_{24}}(x, y)=x^{24}+759 x^{16} y^{8}+2576 x^{12} y^{12}+759 x^{8} y^{16}+y^{24}
$$

The tetracode.

$$
t_{4}:=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
0 & 1 & 2 & 1
\end{array}\right] \leq \mathbb{F}_{3}^{4}
$$

is a Type III code with

$$
\text { hwe }_{t_{4}}(x, y)=x^{4}+8 x y^{3}
$$

The ternary Golay code.

$$
\begin{aligned}
& g_{12}:=\left[\begin{array}{cccccccccccc}
1 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 1 & 0 & 2
\end{array}\right] \leq \mathbb{F}_{3}^{12} \\
& \text { hwe }_{g_{12}}(x, y)=x^{12}+264 x^{6} y^{6}+440 x^{3} y^{9}+24 y^{12}
\end{aligned}
$$

Hermitian self-dual codes over \mathbb{F}_{4}.

The repetition code $i_{2} \otimes \mathbb{F}_{4}=\left[\begin{array}{ll}1 & 1\end{array}\right]$
has hwe $_{i_{2} \otimes \mathbb{F}_{4}}(x, y)=x^{2}+3 y^{2}$.

The hexacode

$$
h_{6}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 1 & \omega & \omega \\
0 & 1 & 0 & \omega & 1 & \omega \\
0 & 0 & 1 & \omega & \omega & 1
\end{array}\right] \leq \mathbb{F}_{4}^{6}
$$

where $\omega^{2}+\omega+1=0$. The hexacode is a Type IV code and has Hamming weight enumerator

$$
\mathrm{hwe}_{h_{6}}(x, y)=x^{6}+45 x^{2} y^{4}+18 y^{6}
$$

The MacWilliams theorem (1962).
Let $C \leq \mathbb{F}_{q}^{N}$ be a code. Then

$$
\operatorname{hwe}_{C^{\perp}}(x, y)=\frac{1}{|C|} \operatorname{hwe}_{C}(x+(q-1) y, x-y) .
$$

In particular, if $C=C^{\perp}$, then hwe $_{C}$ is invariant under the

MacWilliams transformation

$$
h_{q}:\binom{x}{y} \mapsto \frac{1}{\sqrt{q}}\left(\begin{array}{rr}
1 & q-1 \\
1 & -1
\end{array}\right)\binom{x}{y} .
$$

Gleason's theorem (ICM, Nice, 1970) If C is a self-dual code of Type I,II,III or IV then hwe $_{C} \in \mathbb{C}[f, g]$ where

Type	f	g
I	$x^{2}+y^{2}$ i_{2}	$x^{2} y^{2}\left(x^{2}-y^{2}\right)^{2}$ Hamming code e_{8}
II	$x^{8}+14 x^{4} y^{4}+y^{8}$ Hamming code e_{8}	$x^{4} y^{4}\left(x^{4}-y^{4}\right)^{4}$ binary Golay code g_{24}
III	$x^{4}+8 x y^{3}$ tetracode t_{4}	$y^{3}\left(x^{3}-y^{3}\right)^{3}$ ternary Golay code g_{12}
IV	$x^{2}+3 y^{2}$ $i_{2} \otimes \mathbb{F}_{4}$	$y^{2}\left(x^{2}-y^{2}\right)^{2}$ hexacode h_{6}

Proof of Gleason's theorem.

Let $C \leq \mathbb{F}_{q}$ be a code of Type $T=\mathrm{I}$,II,III or IV. Then $C=C^{\perp}$ hence hwe $_{C}$ is invariant under MacWilliams transformation h_{q}. Because of the Gleason-Pierce theorem, hwe_{C} is also invariant under the diagonal transformation

$$
d_{m}:=\operatorname{diag}\left(1, \zeta_{m}\right): x \mapsto x, y \mapsto \zeta_{m} y
$$

(where $\zeta_{m}=\exp (2 \pi i / m)$) hence

$$
\operatorname{hwe}(C) \in \operatorname{Inv}\left(\left\langle h_{q}, d_{m}\right\rangle=: G_{T}\right)
$$

lies in the invariant ring of the complex matrix group G_{T}. In all cases G_{T} is a complex reflection group and the invariant ring of G_{T} is the polynomial ring $\mathbb{C}[f, g]$ generated by the two polynomials given in the table.

Corollary: The length of a Type II code is divisible by 8. Proof: $\zeta_{8} I_{2} \in G_{\mathrm{II}}$.

Extremal self-dual codes.

Gleason's theorem allows to bound the minimum weight of a code of a given Type and given length.

Theorem. Let C be a self-dual code of Type T and length N. Then $d(C) \leq m+m\left\lfloor\frac{N}{\operatorname{deg}(g)}\right\rfloor$.
I) If $T=\mathrm{I}$, then $d(C) \leq 2+2\left\lfloor\frac{N}{8}\right\rfloor$.
II) If $T=$ II, then $d(C) \leq 4+4\left\lfloor\frac{N}{24}\right\rfloor$.
III) If $T=$ III, then $d(C) \leq 3+3\left\lfloor\frac{N}{12}\right\rfloor$.
IV) If $T=\mathrm{IV}$, then $d(C) \leq 2+2\left\lfloor\frac{N}{6}\right\rfloor$.

Using the notion of the shadow of a code, the bound for Type I codes may be improved.

$$
d(C) \leq 4+4\left\lfloor\frac{N}{24}\right\rfloor+a
$$

where $a=2$ if $N(\bmod 24)=22$ and 0 else.

G. Nebe, E.M. Rains. N.J.A. Sloane,

Self-dual codes and invariant theory.

(ACM volume 17, Springer 2006, 48.10 Euro until July 31st)

- Introduce a formal notion of a Type of a code.
- Prove a Theorem à la Gleason for a quite general class of rings (including higher genus complete weight enumerators of all classical Types of codes)
- many examples how to apply our theory.
- shadows of codes, maximal isotropic codes
- unimodular lattices, maximal even lattices
- extremal codes, classifications, mass formulas
- Quantum codes

A formal notion of a Type of a code.

Let R be a finite ring (with 1), ${ }^{J}: R \rightarrow R$ an involution of R,

$$
(a b)^{J}=b^{J} a^{J} \text { and }\left(a^{J}\right)^{J}=a \text { for all } a, b \in R
$$

and let V be a finite left R-module.
Then $V^{*}=\operatorname{Hom}_{\mathbb{Z}}(V, \mathbb{Q} / \mathbb{Z})$ is also a left R-module via

$$
(r f)(v)=f\left(r^{J} v\right) \text { for } v \in V, f \in V^{*}, r \in R .
$$

We assume that $V \cong V^{*}$ as left R-modules, which means that there is an isomorphism

$$
\beta^{*}: V \rightarrow V^{*}, \beta^{*}(v): w \rightarrow \beta(v, w)
$$

$\beta: V \times V \rightarrow \mathbb{Q} / \mathbb{Z}$ is hence biadditive and satisfies

$$
\beta(r v, w)=\beta\left(v, r^{J} w\right) \text { for } r \in R, v, w \in V \text {. }
$$

A code over the alphabet V of length N is an R-submodule $C \leq V^{N}$.
The dual code (with respect to β) is

$$
C^{\perp}:=\left\{x \in V^{N} \mid \beta^{N}(x, c)=\sum_{i=1}^{N} \beta\left(x_{i}, c_{i}\right)=0 \text { for all } c \in C\right\}
$$

C is called self-dual (with respect to β) if $C=C^{\perp}$.
To obtain $\left(C^{\perp}\right)^{\perp}=C$ we impose the condition that β is ϵ Hermitian for some central unit ϵ in R, satisfying $\epsilon^{J} \epsilon=1$,

$$
\beta(v, w)=\beta(w, \epsilon v) \text { for } v, w \in V
$$

If $\epsilon=1$ then β is symmetric, if $\epsilon=-1$ then β is skew-symmetric.

Isotropic codes.

For any self-orthogonal code $C \subset C^{\perp}$

$$
\beta^{N}(c, r c)=0 \text { for all } c \in C, r \in R
$$

The mapping $x \mapsto \beta(x, r x)$ is a quadratic mapping in Quad $_{0}(V, \mathbb{Q} / \mathbb{Z}):=\{\phi: V \rightarrow \mathbb{Q} / \mathbb{Z} \mid \phi(0)=0$ and
$\phi(x+y+z)-\phi(x+y)-\phi(x+z)-\phi(y+z)+\phi(x)+\phi(y)+\phi(z)=0\}$.
This is the set of all mappings $\varphi: V \rightarrow \mathbb{Q} / \mathbb{Z}$ for which

$$
\lambda(\varphi): V \times V \rightarrow \mathbb{Q} / \mathbb{Z},(v, w) \mapsto \varphi(v+w)-\varphi(v)-\varphi(w)
$$

is biadditive. Let $\Phi \subset \operatorname{Quad}_{0}(V, \mathbb{Q} / \mathbb{Z})$ and let $C \leq V^{N}$ be a code.
Then C is called isotropic (with respect to Φ) if

$$
\phi^{N}(c):=\sum_{i=1}^{N} \phi\left(c_{i}\right)=0 \text { for all } c \in C \text { and } \phi \in \Phi
$$

The quadruple (R, V, β, Φ) is called a Type if
a) $\Phi \leq \operatorname{Quad}_{0}(V, \mathbb{Q} / \mathbb{Z})$ is a subgroup and for all $r \in R, \phi \in \Phi$ the mapping $\phi[r]: x \mapsto \phi(r x)$ is again in Φ.
Then Φ is an R-qmodule.
b) For all $\phi \in \Phi$ there is some $r_{\phi} \in R$ such that

$$
\lambda(\phi)(v, w)=\beta\left(v, r_{\phi} w\right) \text { for all } v, w \text { in } V .
$$

c) For all $r \in R$ the mapping

$$
\phi_{r}: V \rightarrow \mathbb{Q} / \mathbb{Z}, v \mapsto \beta(v, r v) \text { lies in } \Phi .
$$

Type I codes (2 I_{I})

$$
R=\mathbb{F}_{2}=V, \beta(x, y)=\frac{1}{2} x y, \Phi=\left\{\varphi: x \mapsto \frac{1}{2} x^{2}=\beta(x, x), 0\right\}
$$

Type II code (2 $2_{\text {II }}$).

$$
R=\mathbb{F}_{2}=V, \beta(x, y)=\frac{1}{2} x y, \Phi=\left\{\phi: x \mapsto \frac{1}{4} x^{2}, 2 \phi=\varphi, 3 \phi, 0\right\}
$$

Type III codes (3).
$R=\mathbb{F}_{3}=V, \beta(x, y)=\frac{1}{3} x y, \Phi=\left\{\varphi: x \mapsto \frac{1}{3} x^{2}=\beta(x, x), 2 \varphi, 0\right\}$

Type IV codes $\left(4^{H}\right)$.

$$
R=\mathbb{F}_{4}=V, \beta(x, y)=\frac{1}{2} \operatorname{trace}(x \bar{y}), \Phi=\left\{\varphi: x \mapsto \frac{1}{2} x \bar{x}, 0\right\}
$$

where $\bar{x}=x^{2}$.

Additive codes over $\mathbb{F}_{4} .\left(4^{H+}\right)$

$$
R=\mathbb{F}_{2}, V=\mathbb{F}_{4}, \beta(x, y)=\frac{1}{2} \operatorname{trace}(x \bar{y}), \Phi=\left\{\varphi: x \mapsto \frac{1}{2} x \bar{x}, 0\right\}
$$

Generalized doubly-even codes over $\mathbb{F}_{q}, q=2^{f}\left(q_{\text {II }}^{E}\right)$.
$R=\mathbb{F}_{q}=V, \beta(x, y)=\frac{1}{2} \operatorname{trace}(x y), \Phi=\left\{x \mapsto \frac{1}{4} \operatorname{trace}\left(a x^{2}\right): a \in \mathbb{F}_{q}\right\}$.

Euclidean self-dual codes over $\mathbb{F}_{q}, q=p^{f}$ odd, $\left(q^{E}\right)$.
$R=\mathbb{F}_{q}=V, \beta(x, y)=\frac{1}{p} \operatorname{trace}(x y), \Phi=\left\{\varphi_{a}: x \mapsto \frac{1}{p} \operatorname{trace}\left(a x^{2}\right): a \in \mathbb{F}_{q}\right\}$.

Euclidean self-dual codes over \mathbb{F}_{q} containing the all ones vector, $q=p^{f}$ odd, $\left(q_{1}^{E}\right) . ~ R=\mathbb{F}_{q}=V$,
$\beta(x, y)=\frac{1}{p} \operatorname{trace}(x y), \Phi=\left\{\varphi_{a, b}: x \mapsto \frac{1}{p}\left(\operatorname{trace}\left(a x^{2}+b x\right)\right): a, b \in \mathbb{F}_{q}\right\}$.

The automorphism group of a Type.
Let $T:=(R, V, \beta, \Phi)$ be a Type. Then $\operatorname{Aut}(T):=$
$\left\{\varphi \in \operatorname{End}_{R}(V) \mid \beta(\varphi(v), \varphi(w))=\beta(v, w), \phi(\varphi(v))=\phi(v)\right.$ for all $\left.v, w \in V, \phi \in \Phi\right\}$ is the automorphism group of the Type T.

Examples.

Hermitian codes over $\mathbb{F}_{4}: \operatorname{Aut}\left(4^{H}\right)=\mathbb{F}_{4}^{*}=\left\{1, \omega, \omega^{2}\right\}$
Euclidean codes over $\mathbb{F}_{4}: \operatorname{Aut}\left(4^{E}\right)=\{1\}$.

Equivalence of codes of a given Type.

$$
\operatorname{Aut}_{N}(T):=\operatorname{Aut}(T) \imath S_{N}=\left\{\left(\varphi_{1}, \ldots, \varphi_{N}\right) \pi \mid \pi \in S_{N}, \varphi_{i} \in \operatorname{Aut}(T)\right\}
$$

Two codes $C, D \leq V^{N}$ of Type T are called T-equivalent, if there is $\sigma \in \mathrm{Aut}_{N}(T)$ such that $\sigma(C)=D$.
The automorphism group of C is

$$
\operatorname{Aut}_{T}(C):=\left\{\sigma \in \operatorname{Aut}(T) \imath S_{N} \mid \sigma(C)=C\right\}
$$

The codes $(1,1)$ and $(1, \omega)$ are equivalent as Hermitian codes over \mathbb{F}_{4} but not as Euclidean codes.

So equivalence is not a property of the codes alone but a property of the Type.

Classification and mass formulae.

Annika Günther will show in her talk a method to classify all self-dual codes of a given Type. This method is based on an algorithm originally formulated by Martin Kneser to enumerate unimodular lattices (up to equivalence).

Also for Type T codes $C \leq V^{N}$ one is mainly interested in equivalence classes

$$
[C]:=\left\{D \leq V^{N} \text { of Type } T \mid D=\pi(C) \text { for some } \pi \in \text { Aut }_{N}(T)\right\}
$$

Number of equivalence classes of codes of Type T

N	I	II	III	IV
2	$1(1)$	-	-	$1(1)$
4	$1(1)$	-	$1(1)$	$1(1)$
6	$1(1)$	-	-	$2(1)$
8	$2(1)$	$1(1)$	$1(1)$	$3(1)$
10	2	-	-	$5(2)$
12	3	-	$3(1)$	10
14	4	-	-	$21(1)$
16	7	$2(2)$	$7(1)$	$55(4)$
18	9	-	-	244
20	16	-	$24(6)$	
22	25	-	-	
24	55	$9(1)$	$338(2)$	
26	103	-	-	
28	261	-	(6931)	
30	731	-	-	
32	3295	$85(5)$	-	
34	24147	-	-	

In brackets the number of extremal codes.

The mass formula.

Let $M_{N}(T):=\left\{C \leq V^{N} \mid C\right.$ of Type $\left.T\right\}, m_{N}(T):=\left|M_{N}(T)\right|$ and $a_{N}(T):=\left|\operatorname{Aut}_{N}(T)\right|$.
Then $M_{N}(T)=\dot{U}_{j=1}^{h}\left[C_{j}\right]$ is the disjoint union of equivalence classes.

$$
\text { mass formula: } \sum_{j=1}^{h} \frac{1}{\left|\operatorname{Aut}\left(C_{j}\right)\right|}=\frac{m_{N}(T)}{a_{N}(T)} \text {. }
$$

Proof. Aut $_{N}(T)$ acts on $M_{N}(T)$ and the equivalence classes are precisely the $\mathrm{Aut}_{N}(T)$-orbits. So

$$
\left|\left[C_{j}\right]\right|=\frac{\left|\operatorname{Aut}_{N}(T)\right|}{\left|\operatorname{Aut}\left(C_{j}\right)\right|}
$$

is the index of the stabilizer and

$$
\left|M_{N}(T)\right|=\sum_{j=1}^{h}\left|\left[C_{j}\right]\right|=\sum_{j=1}^{h} \frac{\left|\operatorname{Aut}_{N}(T)\right|}{\left|\operatorname{Aut}\left(C_{j}\right)\right|} .
$$

Type	$m_{N}(T)$	$a_{N}(T)$
I	$\prod_{i=1}^{N / 2-1}\left(2^{i}+1\right)$	$N!$
II	$2 \prod_{i=1}^{N / 2-2}\left(2^{i}+1\right)$	$N!$
III	$2 \prod_{i=1}^{N / 2-1}\left(3^{i}+1\right)$	$2^{N} N!$
IV	$\prod_{i=0}^{N / 2-1}\left(2^{2 i+1}+1\right)$	$3^{N} N!$

