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® A brief history of Types (IIIIIIIV).

® The Gleason-Pierce theorem, Gleason’'s theorem.

® A formal notion of Type.

® Automorphisms and equivalence of codes of a given Type.



Let IF := IF; denote the finite field with g-elements.

Classically a linear code C over F is a subspace C < FV.

N is called the length of the code.
Ct:={veFN|v.-c=XNvec; =0} the dual code.

C is called self-dual, if C = C+.

Important for the error correcting properties of C' is the distance

d(C) ;= min{d(c,d) |c £ € C} = min{w(c) |0 #ceC}
where
w(c) ' = {1 <i< N|c¢ # 0}

is the Hamming weight of c and d(c, ¢’) = w(c—c) the Hamming
distance.



The Gleason-Pierce Theorem (1967):

If C = C+ < FY such that w(c) € mZ for all ¢ € C and some
m > 1 then either

I) g =2 and m = 2 (self-dual binary codes).

II) g =2 and m = 4 (doubly even self-dual binary codes).

III) ¢ = 3 and m = 3 (ternary codes).

IV) g =4 and m = 2 (Hermitian self-dual codes).

0) g = 4 and m = 2 (certain Euclidean self-dual codes).

d) ¢ arbitrary, m = 2 and hweq(z,y) = (2 + (¢ — 1)y2)N/2. 1In
this case C =1N/2[1,a] is the orthogonal sum of self-dual codes
of length 2 where either g is even and a = 1 or ¢ =1 (mod 4)
and a2 = —1 or C is Hermitian self-dual and aa = —1.

The self-dual codes in this Theorem are called Type I, II, III and
IV codes respectively.



The Hamming weight enumerator of a code C < FV is

hwer(x,y) = Z aZN_w(C)yw(c) € Clz,yln
ceC

Gleason-Pierce Theorem implies that for codes of Type I, II and
IV the Hamming weight enumerator is a polynomial in 2 and y2
and for Type III codes, it is a polynomial in z and y3.

The repetition code i, = [ 11 } has hwe;, (z,y) = 22 + y2.
The extended Hamming code

1 0O 000111
~lo1001011
“=|lo00101101
00011110,

has hweeg(x,y) = 28 + 14x%y* + »® and hence is a Type II code.



The binary Golay code.

(110101110001100000000000]
101010111000110000000000
100101011100011000000000
100010101110001100000000
100001010111000110000000

_ {100000101011100011000000

924 = 1100000010101110001100000
100000001010111000110000
100000000101011100011000
100000000010101110001100
100000000001010111000110
100000000000101011100011

is also of Type II with Hamming weight enumerator

hweg,,(z,y) = %% 4+ 759216y® 4 257621%y1? + 75948y 10 4 424



The tetracode.

tg :

iIs a Type III code with

The ternary Golay code.
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Hermitian self-dual codes over [,4.

The repetition code i» Q4 = [ 1 1 ]
has hwe; o, (z,y) = 2 + 3y2.

The hexacode

he =

NN
O O
= O O
& &
& ~ &

W
w §F2
1

where w? +w+1=0. The hexacode is a Type IV code and has
Hamming weight enumerator

hwey, (z,y) = 20 4 452°%y* 4+ 184°.



The MacWilliams theorem (1962).
Let C <FY be a code. Then

1
hwe, . (z,y) = iC] hwec(z + (¢ — Dy, z —y).

In particular, if C = CL, then hwes is invariant under the

MacWilliams transformation

w () w6



Gleason’s theorem (ICM, Nice, 1970) If C is a self-dual code
of Type LILIII or IV then hweys € C[f, g] where

Type / g
I 2+ y2 :132y2(a:2 _ y2)2
1 Hamming code eg
11 73 + 14$4y4 + y8 az4y4(x4 _ y4>4
Hamming code eg| binary Golay code goa
I11 % + 8xy3 y3 (a3 —y3)3
tetracode 4 ternary Golay code g1o
IV 2+ 3y2 yz(xz - y2)2

1o ® Fyq hexacode hg




Proof of Gleason’s theorem.

Let C' < Fq be a code of Type T'= LILIIl or IV. Then C = CcL
hence hweg is invariant under MacWilliams transformation hy.
Because of the Gleason-Pierce theorem, hwes is also invariant
under the diagonal transformation

dm = diag(1,{m) iz — z,y — Cmy

(where (m = exp(2ni/m)) hence

hwe(C) € Inv({hq, dm) =: GT)

lies in the invariant ring of the complex matrix group G7. In all
cases G is a complex reflection group and the invariant ring of
G is the polynomial ring C[f, g] generated by the two polynomials
given in the table.

Corollary: The length of a Type Il code is divisible by 8.
Proof. (gly € Gyg.



Extremal self-dual codes.

Gleason’s theorem allows to bound the minimum weight of a
code of a given Type and given length.

Theorem. Let C be a self-dual code of Type T and length N.
Then d(C) < m—l—mLWN(g)J.

I) If T =1, then d(C) <2+ 2|%].

II) If T =11, then d(C) < 4+ 457 ].

1) If T =1II, then d(C) < 3+ 3[1%].

IV) If T =1V, then d(C) <2+ 2|3].

Using the notion of the shadow of a code, the bound for Type I
codes may be improved.

AC) <a+4l_ | +a

where a =2 if N (mod 24) = 22 and 0 else.



G. Nebe, E.M. Rains. N.J.A. Sloane,
Self-dual codes and invariant theory.
(ACM volume 17, Springer 2006, 48.10 Euro until July 31st)

® Introduce a formal notion of a Type of a code.

® Prove a Theorem a la Gleason for a quite general class of
rings (including higher genus complete weight enumerators of all
classical Types of codes)

® many examples how to apply our theory.

® shadows of codes, maximal isotropic codes

® unimodular lattices, maximal even lattices

® oxtremal codes, classifications, mass formulas

® Quantum codes



A formal notion of a Type of a code.

Let R be a finite ring (with 1), Y : R — R an involution of R,
(ab)’! =b’a’ and (a’)/ =a for all a,b e R

and let V be a finite left R-module.
Then V¥ = Homy,(V,Q/Z) is also a left R-module via

(rf)(v) = f(r'v) for v e V, f € V¥, r € R.

We assume that V = V* as left R-modules, which means that
there is an isomorphism

BV =V (v) tw — B(v,w)
B:V xV — Q/Z is hence biadditive and satisfies

B(rv,w) = B(v,r’w) for r € R,v,w € V.



A code over the alphabet V of length N is an R-submodule
Cc<vN
The dual code (with respect to 3) is

N
Ct = {x € v | BN(z,¢c) = > B(zi,¢;) =0 forall ce C} .
1=1

C is called self-dual (with respect to ) if C = C+.

To obtain (CH)L = C we impose the condition that 8 is e-
Hermitian for some central unit € in R, satisfying ele = 1,

B(v,w) = B(w, ev) for v,w € V.

If e =1 then (B is symmetric,
if e =—1 then 3 is skew-symmetric.



Isotropic codes.

For any self-orthogonal code C c ¢+

BN(e,rc) =0 for all ce C,r € R.

The mapping =z — G(x,rz) is a quadratic mapping in
Quado(V,Q/Z) := {¢: V — Q/Z | $(0) = 0 and

P(xt+y+z)—d(z+y)—o(z+2)—d(y+2)+o(z)+é(y)+¢(z) =0} .
This is the set of all mappings ¢ : V — Q/Z for which

M) iV XV = Q/Z,(v,w) — o(v+w) — p(v) — p(w)

is biadditive. Let ® C Quadg(V,Q/Z) and let C < VY be a code.
Then C is called isotropic (with respect to @) if

N
o™ (c) = ¢(c;) =0 for all c€ C and ¢ € .
i=1



The quadruple (R,V,3,®) is called a Type if

a) ® < Quadg(V,Q/Z) is a subgroup and for all r € R, ¢ € ® the
mapping ¢[r] : x — ¢(rx) is again in P.

Then & is an R-gmodule.

b) For all ¢ € ® there is some r, € R such that

M) (v, w) = B(v,rpw) for all v, w inV.

c) For all » € R the mapping

or:V —Q/Z,v— B(v,rv) lies in b.



Type I codes (2;)

1 1
R=TFr=V, B(z,y) = Joy, ®={p: 2~ _o° = (z,2),0}
Type II code (2r1).

1 1
R:FQZVa ﬁ(ajay) zaxya (D:{¢ : $H2x272¢:¢73¢70}

Type III codes (3).

1 1
R=F3=V, B,y) = Zay, & ={p: 2 -2® = B(z,2),2¢,0}

Type IV codes (41).

1 1
R=F,=V, B(x,y) = Etrace(a:y), S ={p:x+— 5:{35, 0}

where 7 = z2.



Additive codes over F,. (4771)

1 1
R =1y, V =TIy, 6(377?/) — Etrace(xg)a P = {90 L T EZBT,O}

Generalized doubly-even codes over F,, ¢ = 2/ (qﬁj).

1 1
R=F,=V, B(z,y) = Etrace(acy), b ={zr— Ztrace(axz) ra € Fgt

Euclidean self-dual codes over Fy, ¢ = p/ odd, (¢P).

1 1
R=F,=V, B(z,y) = ;trace(xy), b ={pg:c— ;trace(an) ca e Fgt.

Euclidean self-dual codes over I, containing the all ones
vector, ¢ =p/ odd, (¢f). R=F, =V,

1 1
B(z,y) = —trace(zy), ® = {pgp: x> ~(trace(az’+bz)) : a,b € Fq}.
p p



T he automorphism group of a Type.

Let T := (R,V,3,®P) be a Type. Then Aut(T) :=

{o € Endr(V) [ B(e(v), o(w)) = B(v,w), ¢(p(v)) = ¢(v) for all v,w € V,¢ € P}

is the automorphism group of the Type T.
Examples.
Hermitian codes over Fy: Aut(4f) =F; = {1,w,w?}

Euclidean codes over Fs: Aut(4f) = {1}.



Equivalence of codes of a given Type.

Autn(T) := Aut(T) 1Sy = {(p1,---,oN)T | T € SN, p; € Aut(T)}

Two codes C, D < VN of Type T are called T-equivalent, if there
is o € Auty(T) such that o(C) = D.
The automorphism group of C is

Autp(C) :={o € Aut(T) 1Sy | o(C) = C}

The codes (1,1) and (1,w) are equivalent as Hermitian codes
over [F4 but not as Euclidean codes.

So equivalence is not a property of the codes alone but a property
of the Type.



Classification and mass formulae.

Annika Gunther will show in her talk a method to classify all
self-dual codes of a given Type. This method is based on an
algorithm originally formulated by Martin Kneser to enumerate
unimodular lattices (up to equivalence).

Also for Type T codes C < v N one is mainly interested in equiv-
alence classes

[C] :={D < V" of Type T | D = n(C) for some = € Auty(T)}.



Number of equivalence classes of codes of Type T

N 1 II 11 IV
2 1(1) | = — 1(1)
4| 1(1) | - 1(1) | 1(1)
6 | 1(1) | - — 2(1)
8 | 2(1) | 1(1) | 1(1) | 3(1)
10| 2 — — 5(2)
12| 3 - 3(1) | 10

14| 4 - — | 21(1)
16| 7 | 2(2) | 7(1) |55(4)
18| 9 — — 244
20| 16 — | 24(6)

22| 25 - —

24| 55 | 9(1) |338(2)

26| 103 — -

28| 261 —  1(6931)

30| 731 - -

32| 3295 |85(5)

3424147 | — -

In brackets the number of extremal codes.



T he mass formula.

Let Mn(T) :={C < VN | C of Type T}, my(T) := |My(T)| and
an(T) == | Auty(T)).

Then My (T) =U§-L21 [C;] is the disjoint union of equivalence
classes.

& 1 _ mn(T)

mass formula: = :
jgl | Aut(C;)] an(T)

Proof. Auty(T) acts on Mpy(T) and the equivalence classes are
precisely the Auty(T)-orbits. So

| Auty (7))
|AUt(Cj)|
is the index of the stabilizer and

1G]] =

h h
| Aut i (T7)]
My (T)| = E [C:]| = g )




Type my (7T') an(T)
I Y2720 + 1) NI
I | 2[/27%(41) | NI
m | 22 @i+ 1) | 2NN
IV | [V/27 (2241 4 1) | 3NN




