RWTHAACHEN UNIVERSITY

Hecke operators for codes.

Gabriele Nebe, RWTH Aachen University Vlora, April 30, 2008

This talk introduces Hecke operators for codes and therewith answers a question raised in 1977 by Michel Broué.

A lattice L in Euclidean N-space $E:=\left(\mathbb{R}^{N},(),\right)$ is the \mathbb{Z}-span of an \mathbb{R}-basis $B=\left(b_{1}, \ldots, b_{N}\right)$ of E

$$
L=\left\langle b_{1}, \ldots, b_{N}\right\rangle_{\mathbb{Z}}=\left\{\sum_{i=1}^{N} a_{i} b_{i} \mid a_{i} \in \mathbb{Z}\right\} .
$$

The dual lattice of L is

$$
L^{*}:=\{v \in E \mid(v, \ell) \in \mathbb{Z} \forall \ell \in L\} .
$$

L is called integral, if $L \subset L^{*}$ or equivalently $(\ell, m) \in \mathbb{Z}$ for all $\ell, m \in L$.
L is called even, if $(\ell, \ell) \in 2 \mathbb{Z}$ for all $\ell \in L$.
L is called unimodular, if $L=L^{*}$.
The theta series of a lattice L is

$$
\vartheta_{L}=\sum_{\ell \in L} q^{(\ell, \ell)}
$$

where $q=\exp (\pi i z)$.

The hexagonal lattice.

$$
\vartheta_{L}=1+6 q^{2}+6 q^{6}+6 q^{8}+12 q^{14}+6 q^{18}+6 q^{24}+12 q^{26}+6 q^{32}+\ldots
$$

Theorem. (Theta transformation formula)

$$
\vartheta_{L^{*}}(z)=\left(\frac{z}{i}\right)^{-k} \sqrt{\operatorname{det}(L)} \vartheta_{L}\left(-\frac{1}{z}\right) \quad(\text { where } 2 k=N=\operatorname{dim}(L))
$$

Hecke's theorem. If $L=L^{*}$ then $\vartheta_{L} \in \mathcal{M}_{k}(\Theta)$ where

$$
\Theta=\left\langle\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\right\rangle
$$

If $L=L^{*}$ and L is even, then $\vartheta_{L} \in \mathcal{M}_{k}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ where

$$
\mathrm{SL}_{2}(\mathbb{Z})=\left\langle\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)\right\rangle
$$

We have

$$
\mathcal{M}(\Theta):=\bigoplus_{k=0}^{\infty} \mathcal{M}_{k}(\Theta)=\mathbb{C}\left[\vartheta_{\mathbb{Z}^{2}}, \vartheta_{E_{8}}\right]
$$

and

$$
\mathcal{M}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)=\bigoplus_{k=0}^{\infty} \mathcal{M}_{4 k}(\Theta)=\mathbb{C}\left[\vartheta_{E_{8}}, \vartheta_{\Lambda_{24}}\right]
$$

Construction A.

Let p be a prime and $\left(b_{1}, \ldots, b_{N}\right)$ be a basis of E such that

$$
\left(b_{i}, b_{j}\right)= \begin{cases}0 & \text { if } i \neq j \\ 1 / p & \text { if } i=j\end{cases}
$$

Let $C \leq \mathbb{F}_{p}^{N}=\mathbb{Z}^{N} / p \mathbb{Z}^{N}$ be a code. Then the codelattice L_{C} is

$$
L_{C}:=\left\{\sum_{i=1}^{N} a_{i} b_{i} \mid\left(a_{1} \quad(\bmod p), \ldots, a_{N} \quad(\bmod p)\right) \in C\right\}
$$

Example. $L_{i_{2}}=\mathbb{Z}^{2}, L_{e_{8}}=E_{8}$ and $\mathcal{M}(\Theta)=\mathbb{C}\left[\vartheta_{L_{i_{2}}}, \vartheta_{L_{e_{8}}}\right], \mathcal{M}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)=\mathbb{C}\left[\vartheta_{L_{e_{8}}}, \vartheta_{L_{g_{24}}}\right]$

Remark. (a) $L_{C}^{*}=L_{C^{\perp}}$, so L_{C} is unimodular, if C is self-dual.
(b) L_{C} is even unimodular, if $p=2$ and C is a Type II code.
(c) $\vartheta_{L_{C}}=\operatorname{cwe}_{C}\left(\vartheta_{0}, \ldots, \vartheta_{p-1}\right)$ where $\vartheta_{a}=\vartheta_{(a+p \mathbb{Z}) b_{1}}=\sum_{n=-\infty}^{\infty} q^{(a+p n)^{2} / p}$.

Parallels between lattices and codes.

code
self-dual code
doubly-even self-dual code weight enumerator invariant polynomial
MacWilliams identity
Gleason's theorem
Molien's theorem
Hamming code e_{8}
Golay code g_{24}
Runge's Φ-operator
Kneser-Hecke operators

Motivation.

Determine linear relations between $\mathrm{cwe}_{m}(C)$ for $C \in M_{N}(T)=\left\{C \leq V^{N} \mid C\right.$ of Type $\left.T\right\}$.
$M_{16}(\mathrm{II})=\left[e_{8} \perp e_{8}\right] \cup\left[d_{16}^{+}\right]$and these two codes have the same genus 1 and 2 weight enumerator, but $\mathrm{cwe}_{3}\left(e_{8} \perp e_{8}\right)$ and $\mathrm{cwe}_{3}\left(d_{16}^{+}\right)$ are linearly independent.
$h\left(M_{24}(\mathrm{II})\right)=9$ and only the genus 6 weight enumerators are linearly independent, there is one relation for the genus 5 weight enumerators.
$h\left(M_{32}(\right.$ II $\left.)\right)=85$ and here the genus 10 weight enumerators are linearly independent, whereas there is a unique relation for the genus 9 weight enumerators.

Three different approaches:

1) Determine all the codes and their weight enumerators.

If $\operatorname{dim}(C)=n=N / 2$ there are $\prod_{i=0}^{d-1}\left(2^{n}-2^{i}\right) /\left(2^{d}-2^{i}\right)$ subspaces of dimension d in C. $N=32, d=10$ yields more than 10^{18} subspaces.
2) Use Molien's theorem:
$\operatorname{Inv}_{N}\left(\mathcal{C}_{m}(\mathrm{II})\right)=\left\langle\operatorname{cwe}_{m}(C) \mid C \in M_{N}(\mathrm{II})\right\rangle$ and if $a_{N}:=\operatorname{dim}\left(\operatorname{Inv}_{N}\left(\mathcal{C}_{m}(\mathrm{II})\right)\right)$ then

$$
\sum_{N=0}^{\infty} a_{N} t^{N}=\frac{1}{\left|\mathcal{C}_{m}(\mathrm{II})\right|} \sum_{g \in \mathcal{C}_{m}(\mathrm{II})}(\operatorname{det}(1-t g))^{-1}
$$

Problem: $\mathcal{C}_{10}(\mathrm{II}) \leq \mathrm{GL}_{1024}(\mathbb{C})$ has order $>10^{69}$.
3) Use Hecke operators.

Fix a Type $T=\left(\mathbb{F}_{q}, \mathbb{F}_{q}, \beta, \Phi\right)$ of self-dual codes over a finite field with q elements.

$$
M_{N}(T)=\left\{C \leq \mathbb{F}_{q}^{N} \mid C \text { of Type } T\right\}=\left[C_{1}\right] \dot{\cup} \ldots \dot{\cup}\left[C_{h}\right]
$$

where [C] denotes the permutation equivalence class of the code C. Then $n:=\frac{N}{2}=\operatorname{dim}(C)$ for all $C \in M_{N}(T)$.
$C, D \in M_{N}(T)$ are called neighbours, if $\operatorname{dim}(C)-\operatorname{dim}(C \cap D)=1$, $C \sim D$.

$$
\begin{gathered}
\mathcal{V}=\mathbb{C}\left[C_{1}\right] \oplus \ldots \oplus \mathbb{C}\left[C_{h}\right] \cong \mathbb{C}^{h} \\
K_{N}(T) \in \operatorname{End}(\mathcal{V}), K_{N}(T):[C] \mapsto \sum_{D \in M_{N}(T), D \sim C}[D] .
\end{gathered}
$$

Kneser-Hecke operator.
(adjacency matrix of neighbouring graph)

Example. $M_{16}(\mathrm{II})=\left[e_{8} \perp e_{8}\right] \cup\left[d_{16}^{+}\right]$

$$
K_{16}(\mathrm{II})=\left(\begin{array}{ll}
78 & 49 \\
70 & 57
\end{array}\right)
$$

\mathcal{V} has a Hermitian positive definite inner product defined by

$$
\left\langle\left[C_{i}\right],\left[C_{j}\right]\right\rangle:=\left|\operatorname{Aut}\left(C_{i}\right)\right| \delta_{i j}
$$

Theorem. (N. 2006)
The Kneser-Hecke operator K is a self-adjoint linear operator.

$$
\langle v, K w\rangle=\langle K v, w\rangle \text { for all } v, w \in \mathcal{V}
$$

Example. $\frac{7}{10}=\frac{\left|\operatorname{Aut}\left(e_{8} \perp e_{8}\right)\right|}{\left|\operatorname{Aut}\left(d_{16}^{+}\right)\right|}$hence $\operatorname{diag}(7,10) K_{16}(\mathrm{II})^{\operatorname{Tr}}=K_{16}(\mathrm{II}) \operatorname{diag}(7,10)$.

$$
\mathrm{cwe}_{m}: \mathcal{V} \rightarrow \mathbb{C}[X], \sum_{i=1}^{h} a_{i}\left[C_{i}\right] \mapsto \sum_{i=1}^{h} a_{i} \mathrm{cwe}_{m}\left(C_{i}\right)
$$

is a linear mapping with kernel

$$
\mathcal{V}_{m}:=\operatorname{ker}\left(\mathrm{cwe}_{m}\right)
$$

Then

$$
\mathcal{V}=: \mathcal{V}_{-1} \geq \mathcal{V}_{0} \geq \mathcal{V}_{1} \geq \ldots \geq \mathcal{V}_{n}=\{0\}
$$

is a filtration of \mathcal{V} yielding the orthogonal decomposition

$$
\begin{gathered}
\mathcal{V}=\bigoplus_{m=0}^{n} \mathcal{Y}_{m} \text { where } \mathcal{Y}_{m}=\mathcal{V}_{m-1} \cap \mathcal{V}_{m}^{\perp} \\
\mathcal{V}_{0}=\left\{\sum_{i=1}^{h} a_{i}\left[C_{i}\right] \mid \sum a_{i}=0\right\}
\end{gathered}
$$

and

$$
\mathcal{V}_{0}^{\perp}=\mathcal{Y}_{0}=\left\langle\sum_{i=1}^{h} \frac{1}{\left|\operatorname{Aut}\left(C_{i}\right)\right|}\left[C_{i}\right]\right\rangle
$$

Theorem. (N. 2006)
The space $\mathcal{Y}_{m}=\mathcal{Y}_{m}(N)$ is the $K_{N}(T)$-eigenspace to the eigenvalue $\nu_{N}^{(m)}(T)$ with $\nu_{N}^{(m)}(T)>\nu_{N}^{(m+1)}(T)$ for all m.

Type	$\nu_{N}^{(m)}(T)$
q_{I}^{E}	$\left(q^{n-m}-q-q^{m}+1\right) /(q-1)$
q_{II}^{E}	$\left(q^{n-m-1}-q^{m}\right) /(q-1)$
q^{E}	$\left(q^{n-m}-q^{m}\right) /(q-1)$
q_{1}^{E}	$\left(q^{n-m-1}-q^{m}\right) /(q-1)$
q^{H}	$\left(q^{n-m+1 / 2}-q^{m}-q^{1 / 2}+1\right) /(q-1)$
q_{1}^{H}	$\left(q^{n-m-1 / 2}-q^{m}-q^{1 / 2}+1\right) /(q-1)$

Corollary. The neighbouring graph is connected. Proof. The maximal eigenvalue ν_{0} of the adjacency matrix is simple with eigenspace \mathcal{Y}_{0}.

Example: $M_{16}(\mathrm{II})=\left[e_{8} \perp e_{8}\right] \cup\left[d_{16}^{+}\right]$
$\left(2^{8-m-1}-2^{m}: m=0,1,2,3\right)=(127,62,28,8)$

$$
K_{16}(\mathrm{II})=\left(\begin{array}{ll}
78 & 49 \\
70 & 57
\end{array}\right)
$$

has eigenvalues 127 and 8 with eigenvectors $(7,10)$ and $(1,-1)$. Hence

$$
\begin{gathered}
\mathcal{Y}_{0}=\left\langle 7\left[e_{8} \perp e_{8}\right]+10\left[d_{16}^{+}\right]\right\rangle \\
\mathcal{Y}_{1}=\mathcal{Y}_{2}=0 \\
\mathcal{Y}_{3}=\left\langle\left[e_{8} \perp e_{8}\right]-\left[d_{16}^{+}\right]\right\rangle
\end{gathered}
$$

$M_{24}(\mathrm{II})=\left[e_{8}^{3}\right] \cup\left[e_{8} d_{16}\right] \cup\left[e_{7}^{2} d_{10}\right] \cup\left[d_{8}^{3}\right] \cup\left[d_{24}\right] \cup\left[d_{12}^{2}\right] \cup\left[d_{6}^{4}\right] \cup\left[d_{4}^{6}\right] \cup\left[g_{24}\right]$
$K_{24}(\mathrm{II})=$

$$
\left(\begin{array}{rrrrrrrrr}
213 & 147 & 344 & 343 & 0 & 0 & 0 & 0 & 0 \\
70 & 192 & 896 & 490 & 7 & 392 & 0 & 0 & 0 \\
10 & 14 & 504 & 490 & 0 & 49 & 980 & 0 & 0 \\
1 & 3 & 192 & 447 & 0 & 36 & 1152 & 216 & 0 \\
0 & 990 & 0 & 0 & 133 & 924 & 0 & 0 & 0 \\
0 & 60 & 480 & 900 & 1 & 206 & 400 & 0 & 0 \\
0 & 0 & 72 & 216 & 0 & 3 & 1108 & 648 & 0 \\
0 & 0 & 0 & 45 & 0 & 0 & 720 & 1218 & 64 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1771 & 276
\end{array}\right)
$$

m	0	1	2	3	4	5	6
ν_{m}	2047	1022	508	248	112	32	-32
$\operatorname{dim}\left(\mathcal{Y}_{m}\right)$	1	1	1	2	2	1	1

$\left\langle 99\left[e_{8}^{3}\right]-297\left[e_{8} d_{16}\right]-3465\left[d_{8}^{3}\right]+7\left[d_{24}\right]+924\left[d_{12}^{2}\right]\right.$
$\left.+4928\left[d_{6}^{4}\right]-2772\left[d_{4}^{6}\right]+576\left[g_{24}\right]\right\rangle=\operatorname{ker}\left(\mathrm{cwe}_{5}\right)=\mathcal{V}_{5}$

The Dimension of $\mathcal{Y}_{m}(N)$ for doubly-even binary self-dual codes.

N, m	0	1	2	3	4	5	6	7	8	9	≥ 10
8	1										
16	1	0	0	1							
24	1	1	1	2	2	1	1				
32	1	1	2	5	10	15	21	18	8	3	1

The Molien series of \mathcal{C}_{m} (II) is

$$
1+t^{8}+a(m) t^{16}+b(m) t^{24}+c(m) t^{32}+\ldots
$$

where

m	1	2	3	4	5	6	7	8	9	≥ 10
a	1	1	2	2	2	2	2	2	2	2
b	2	3	5	7	8	9	9	9	9	9
c	2	4	9	19	34	55	73	81	84	85

$\operatorname{dim}\left(\mathcal{Y}_{m}(N)\right)$ for binary self-dual codes.

N, m	0	1	2	3	4	5	6	7	8	9	10	11
2	1											
4	1											
6	1											
8	1	1										
10	1	1										
12	1	1	1									
14	1	1	1	1								
16	1	2	1	2	1							
18	1	2	2	2	2							
20	1	2	3	4	4	2						
22	1	2	3	6	7	4	2					
24	1	3	5	9	15	13	7	2				
26	1	3	6	12	23	29	20	8	1			
28	1	3	7	18	40	67	75	39	10	1		
30	1	3	8	23	65	142	228	189	61	10	1	
32	1	4	10	33	111	341	825	1176	651	127	15	1

The Molien series of $\mathcal{C}_{m}(\mathrm{I})$ is

$$
1+t^{2}+t^{4}+t^{6}+2 t^{8}+2 t^{10}+\sum_{N=12}^{\infty} a_{N}(m) t^{N}
$$

where

$$
a_{N}(m):=\operatorname{dim}\left\langle\operatorname{cwe}_{m}(C): C=C^{\perp} \leq \mathbb{F}_{2}^{N}\right\rangle
$$

is given in the following table:

m, N	12	14	16	18	20	22	24	26	28	30
2	3	3	4	5	6	6	9	10	11	12
3	3	4	6	7	10	12	18	22	29	35
4	3	4	7	9	14	19	33	45	69	100
5	3	4	7	9	16	23	46	74	136	242
6	3	4	7	9	16	25	53	94	211	470
7	3	4	7	9	16	25	55	102	250	659
8	3	4	7	9	16	25	55	103	260	720
9	3	4	7	9	16	25	55	103	261	730
10	3	4	7	9	16	25	55	103	261	731
≥ 11	3	4	7	9	16	25	55	103	261	731

A group theoretic interpretation of the Kneser-Hecke operator.
In modular forms theory, Hecke operators are double cosets of the modular group. So I tried to find a similar interpretation for the Kneser-Hecke operator.
Let $T=(R, V, \beta, \Phi)$ be a Type. Then the invariant ring
$\operatorname{Inv}\left(\mathcal{C}_{m}(T)\right)=\left\langle\right.$ cwe $\left._{m}(C)\right| C$ of Type $\left.T\right\rangle$
The finite Siegel Φ-operator

$$
\Phi_{m}: \operatorname{Inv}\left(\mathcal{C}_{m}(T)\right) \rightarrow \operatorname{Inv}\left(\mathcal{C}_{m-1}(T)\right), \mathrm{cwe}_{m}(C) \mapsto \mathrm{cwe}_{m-1}(C)
$$

defines a surjective graded \mathbb{C}-algebra homomorphism between invariant rings of complex matrix groups of different degree. Φ is given by the variable substitution:

$$
x_{\left(v_{1}, \ldots, v_{m}\right)} \mapsto \begin{cases}x_{\left(v_{1}, \ldots, v_{m-1}\right)} & \text { if } v_{m}=0 \\ 0 & \text { else }\end{cases}
$$

Explanation:

$\mathrm{cwe}_{m-1}(C)$ is obtained from $\mathrm{cwe}_{m}(C)$ by counting only those matrices

$$
\begin{array}{cccccc}
c_{1}^{(1)} & c_{2}^{(1)} & \ldots & c_{j}^{(1)} & \ldots & c_{N}^{(1)} \\
c_{1}^{(2)} & c_{2}^{(2)} & \ldots & c_{j}^{(2)} & \ldots & c_{N}^{(2)} \\
\vdots & \vdots & \ldots & \vdots & \ldots & \vdots \\
c_{1}^{(m)} & c_{2}^{(m)} & \ldots & c_{j}^{(m)} & \ldots & c_{N}^{(m)} \\
& & & \uparrow \\
& & & & v \in V^{m} \\
& &
\end{array}
$$

in which the last row is zero.
This is expressed by the variable substitution

$$
x_{\left(v_{1}, \ldots, v_{m}\right)} \mapsto \begin{cases}x_{\left(v_{1}, \ldots, v_{m-1}\right)} & \text { if } v_{m}=0 \\ 0 & \text { else }\end{cases}
$$

$$
(p, q)_{m}:=p\left(\frac{\partial}{\partial x}\right)(\bar{q}) \text { for } p, q \in \mathbb{C}\left[x_{v}: v \in V^{m}\right]_{N}
$$

defines a positive definite Hermitian form on the homogeneous component $\mathbb{C}\left[x_{v}: v \in V^{m}\right]_{N}$.

The monomials of degree N form an orthogonal basis and

$$
\left(\prod_{v \in V^{m}} x_{v}^{n_{v}}, \prod_{v \in V^{m}} x_{v}^{n_{v}}\right)_{m}=\prod_{v \in V^{m}}\left(n_{v}!\right)
$$

Then $\Phi_{m}: \operatorname{ker}\left(\Phi_{m}\right)^{\perp} \rightarrow \operatorname{Inv}\left(\mathcal{C}_{m-1}(T)\right)$ is an isomorphism with inverse
$\varphi_{m}: \operatorname{Inv}\left(\mathcal{C}_{m-1}(T)\right) \rightarrow \operatorname{Inv}\left(\mathcal{C}_{m}(T)\right), x_{\left(v_{1}, \ldots, v_{m-1}\right)} \mapsto R\left(x_{\left(v_{1}, \ldots, v_{m-1}, 0\right)}\right)$
where $R(p)=\frac{1}{\left|\mathcal{C}_{m}(T)\right|} \sum_{g \in \mathcal{C}_{m}(T)} p(g x)$ is the Reynolds operator (the orthogonal projection onto the invariant ring).
Note that R is not a ring homomorphism.

This yields an orthogonal decomposition of the space of degree N invariants of $\mathcal{C}_{m}(T)$

$$
\begin{gathered}
\operatorname{Inv}_{N}\left(\mathcal{C}_{m}(T)\right)=\operatorname{ker}\left(\Phi_{m}\right) \perp \varphi_{m}^{-1}\left(\operatorname{Inv}_{N}\left(\mathcal{C}_{m-1}(T)\right)\right)= \\
\operatorname{ker}\left(\Phi_{m}\right) \perp \varphi_{m}^{-1}\left(\operatorname{ker}\left(\Phi_{m-1}\right) \perp \varphi_{m-1}^{-1}\left(\operatorname{Inv}_{N}\left(\mathcal{C}_{m-2}\right)(T)\right)\right)= \\
Y_{m} \perp Y_{m-1} \perp \ldots \perp Y_{0}
\end{gathered}
$$

such that for all $0 \leq k \leq m$ the mapping

$$
\mathrm{cwe}_{m}: \mathcal{Y}_{k} \rightarrow Y_{k}
$$

is an isomorphism of vector spaces.

The Kneser-Hecke operator $K_{N}(T)$ acts on $\operatorname{Inv}_{N}\left(\mathcal{C}_{m}(T)\right)$ as $\delta_{m}\left(K_{N}(T)\right)$ having $Y_{m} \perp Y_{m-1} \perp \ldots \perp Y_{0}$ as the eigenspace decomposition.

$$
\mathcal{C}_{m}(T)=\underbrace{S .(\operatorname{ker}(\lambda) \times \operatorname{ker}(\lambda))}_{\mathcal{E}_{m}(T)} \cdot \mathcal{G}_{m}(T)
$$

Choose a suitable subgroup \mathcal{U}_{1} of $\mathcal{E}_{m}(T)$ that corresponds to a 1-dimensional subspace of $(\operatorname{ker}(\lambda) \times \operatorname{ker}(\lambda))$ and let

$$
p_{1}:=\frac{1}{q} \sum_{u \in \mathcal{U}_{1}} u \in \mathbb{C}^{q^{m} \times q^{m}}
$$

be the orthogonal projection onto the fixed space of \mathcal{U}_{1} and let

$$
H_{m}(T):=\mathcal{C}_{m}(T) p_{1} \mathcal{C}_{m}(T)=\bigcup_{U \in X} p_{U} \mathcal{C}_{m}(T)
$$

then this double coset acts on $\operatorname{Inv}_{N}\left(\mathcal{C}_{m}(T)\right)$ via

$$
\Delta_{N}\left(H_{m}(T)\right): f \mapsto \frac{1}{|X|} \sum_{U \in X} f\left(x p_{U}\right)
$$

Theorem. (N. 2006)
$(q-1) \delta_{m}\left(K_{N}(T)\right)=q^{n-m-e}\left((q-1) \Delta_{N}\left(H_{m}(T)\right)+\mathrm{id}\right)-\left(q^{m}+a\right) \mathrm{id}$ where $n=N / 2$ and e, a are as follows:

T	q^{E}	q_{I}^{E}	q_{1}^{E}	$q_{\text {II }}^{E}$	q_{1}^{H}	q^{H}
a	0	$q-1$	0	0	$\sqrt{q}-1$	$\sqrt{q}-1$
e	0	0	1	1	$1 / 2$	$-1 / 2$

- formal notion of Type $T=(R, V, \beta, \Phi)$.
- self-dual code C of Type T.
- automorphisms and equivalences of codes of a given Type
- mass formula, classifications with Kneser's neighbouring method.
- the associated Clifford-Weil group $\mathcal{C}_{m}(T)$, a finite complex matrix group of degree $|V|^{m}$ such that

$$
\left.\operatorname{Inv}_{N}\left(\mathcal{C}_{m}(T)\right)=\left\langle\operatorname{cwe}_{m}(C)\right| C=C^{\perp} \leq V^{N} \text { of Type } T\right\rangle
$$

- In particular the scalar subgroup $\mathcal{C}_{m}(T) \cap \mathbb{C}^{*}$ id is cyclic of order $\min \left\{N \mid\right.$ there is a code $C \leq V^{N}$ of Type $\left.T\right\}$.
- $\mathcal{C}_{m}(T)$ has a nice group theoretic structure.
- $\Phi_{m}: \operatorname{Inv}\left(\mathcal{C}_{m}(T)\right) \rightarrow \operatorname{Inv}\left(\mathcal{C}_{m-1}(T)\right)$
- if R is a field then:
- As in modular forms theory, the invariant ring of $\mathcal{C}_{m}(T)$ can be investigated using Hecke operators.
- The Hecke algebra is generated by the incidence matrix of the Kneser neighbouring graph.
- Obtain linear relations between weight enumerators.

