Voronoi's algorithm to compute perfect lattices

- $F \in \mathbb{R}_{\text {sym },>0}^{n \times n}$
- $\min (F):=\min \left\{x F x^{t r} \mid 0 \neq x \in \mathbb{Z}^{n}\right\}$ minimum
- $\operatorname{Min}(F):=\left\{x \in \mathbb{Z}^{n} \mid x F x^{t r}=\min (F)\right\}$.
- $\operatorname{Vor}(F):=\mathrm{conv}\left(x^{t r} x \mid x \in \operatorname{Min}(F)\right)$ Voronoi domain
- F perfect, if and only if $\operatorname{dim}(\operatorname{Vor}(F))=n(n+1) / 2$.
- $\mathcal{P}_{n}:=\left\{F \in \mathbb{R}_{\text {sym },>0}^{n \times n} \mid \min (F)=1, F\right.$ perfect $\}$.

Theorem (Voronoi)

$\mathcal{T}_{n}:=\left\{\operatorname{Vor}(F) \mid F \in \mathcal{P}_{n}\right\}$ is a locally finite, face to face tessellation of $\mathbb{R}_{s y m,>0}^{n \times n}$ on which $\mathrm{GL}_{n}(\mathbb{Z})$ acts with finitely many orbits.

- $\operatorname{Min}\left(g F g^{t r}\right)=\left\{x g^{-1} \mid x \in \operatorname{Min}(F)\right\}$ so
- $\operatorname{Vor}\left(g F g^{t r}\right)=g^{-t r} \operatorname{Vor}(F) g^{-1}$

Max Koecher: Pair of dual cones

Jürgen Opgenorth: "Dual cones and the Voronoi Algorithm" Experimental Mathematics 2001

- ν_{1}, ν_{2} real vector spaces of same dimension n
- $\sigma: \mathcal{V}_{1} \times \mathcal{V}_{2} \longrightarrow \mathbb{R}$ bilinear and non-degenerate.

Definition

$\nu_{1}^{>0} \subset \mathcal{V}_{1}$ and $\nu_{2}^{>0} \subset \mathcal{V}_{2}$ are dual cones if
(DC1) $\nu_{i}^{>0}$ is open in ν_{i} and non-empty for $\mathrm{i}=1,2$.
(DC2) For all $x \in \mathcal{V}_{1}^{>0}$ and $y \in \mathcal{V}_{2}^{>0}$ one has $\sigma(x, y)>0$.
(DC3) For every $x \in \mathcal{V}_{1}-\mathcal{V}_{1}^{>0}$ there is $0 \neq y \in \mathcal{V}_{2}^{>0}$ with $\sigma(x, y) \leq 0$ for every $y \in \mathcal{V}_{2}-\mathcal{V}_{2}^{>0}$ there is $0 \neq x \in \mathcal{V}_{1}^{>0}$ with $\sigma(x, y) \leq 0$.

$\mathcal{V}_{1}^{>0}$ and $\mathcal{V}_{2}^{>0}$ pair of dual cones

Let $D \subset \mathcal{V}_{2}^{\geq 0}-\{0\}$ be discrete in \mathcal{V}_{2} and $x \in \mathcal{V}_{1}^{>0}$.

- $\mu_{D}(x):=\min \{\sigma(x, d) \mid d \in D\}$ the D-minimum of x.
- $M_{D}(x):=\left\{d \in D \mid \mu_{D}(x)=\sigma(x, d)\right\}$ the set of D-minimal vectors of x.
- $M_{D}(x)$ is finite and $M_{D}(x)=M_{D}(\lambda x)$ for all $\lambda>0$.
- $V_{D}(x):=\left\{\sum_{d} a_{d} d \mid d \in M_{D}(x), a_{d} \in \mathbb{R}^{>0}\right\}$ the D-Voronoi domain of x.
- A vector $x \in \mathcal{V}_{1}^{>0}$ is called D-perfect, if $\operatorname{codim}\left(V_{D}(x)\right)=0$.

$$
P_{D}:=\left\{x \in \mathcal{V}_{1}^{>0} \mid \mu_{D}(x)=1, x \text { is D-perfect }\right\}
$$

Definition

D is called admissible if for every sequence $\left(x_{i}\right)_{i \in \mathbb{N}}$ that converges to a point $x \in \delta \mathcal{V}_{1}^{>0}$ the sequence $\left(\mu_{D}\left(x_{i}\right)\right)_{i \in \mathbb{N}}$ converges to 0 .

Voronoi tessellation

Theorem

If $D \subset \mathcal{V}_{2}^{\geq 0}-\{0\}$ is discrete in \mathcal{V}_{2} and admissible then the D-Voronoi domains of the D-perfect vectors form an exact tessellation of $\mathcal{V}_{2}^{>0}$.

Definition

The graph Γ_{D} of D-perfect vectors has vertices P_{D} and edges

$$
E=\left\{(x, y) \in P_{D} \times P_{D} \mid x \text { and } y \text { are neighbours }\right\} .
$$

Here $x, y \in P_{D}$ are neighbours if $\operatorname{codim}\left(V_{D}(x) \cap V_{D}(y)\right)=1$.

Corollary

If $D \subseteq \mathcal{V}_{2}^{\geq 0}-\{0\}$ is discrete and admissible then Γ_{D} is a connected, locally finite graph.

Discontinuous Groups

- $\operatorname{Aut}\left(\mathcal{V}_{i}^{>0}\right):=\left\{g \in \mathrm{GL}\left(\mathcal{V}_{i}\right) \mid \mathcal{V}_{i}^{>0} g=\mathcal{V}_{i}^{>0}\right\}$.
- $\Omega \leq \operatorname{Aut}\left(\mathcal{V}_{1}^{>0}\right)$ properly discontinously on $\mathcal{V}_{1}^{>0}$.
- $\Omega^{a d}:=\left\{\omega^{a d} \mid \omega \in \Omega\right\} \leq \operatorname{Aut}\left(\mathcal{V}_{2}^{>0}\right.$
- $D \subseteq \mathcal{V}_{2}^{\geq 0}-\{0\}$ discrete, admissible and invariant under $\Omega^{\text {ad }}$
- For $x \in \mathcal{V}_{1}^{>0}$ and $\omega \in \Omega$ we have
- $\mu_{D}(x w)=\mu_{D}(x)$,
- $M_{D}(x w)=M_{D}(x)\left(\omega^{a d}\right)^{-1}$,
- $V_{D}(x w)=V_{D}(x)\left(\omega^{a d}\right)^{-1}$.
- In particular Ω acts on Γ_{D}.

Discontinuous Groups (continued)

Theorem

- Assume additionally that the residue graph Γ_{D} / Ω is finite.
- $x_{1}, \ldots, x_{t} \in P_{D}$ orbit representatives spanning a connected subtree T of Γ_{D}
- $\delta T:=\left\{y \in P_{D}-T \mid y\right.$ neighbour of some $\left.x_{i} \in T\right\}$.
- $\omega_{y} \in \Omega$ with $y \omega_{y} \in T$.
- $\Omega=\left\langle\omega_{y}, \operatorname{Stab}_{\Omega}(x) \mid x \in T, y \in \delta T\right\rangle$
- In particular the group Ω is finitely generated.

Applications

Jürgen Opgenorth, 2001

$G \leq \mathrm{GL}_{n}(\mathbb{Z})$ finite. Compute $\Omega:=N_{\mathrm{GL}_{n}(\mathbb{Z})}(G)$.

Michael Mertens, 2014

$L \leq\left(\mathbb{R}^{n+1}, \sum_{i=1}^{n} x_{i}^{2}-x_{n+1}^{2}\right)=: H^{n+1}$ a \mathbb{Z}-lattice in hyperbolic space (signature $(n, 1)$).
Compute $\Omega:=\operatorname{Aut}(L):=\left\{g \in O\left(H^{n+1}\right) \mid L g=L\right\}$.

Braun, Coulangeon, N., Schönnenbeck, 2015

A finite dimensional semisimple \mathbb{Q}-algebra, $\Lambda \leq A$ order, i.e. a finitely generated full \mathbb{Z}-lattice that is a subring of A. Compute $\Omega:=\Lambda^{*}:=\{g \in \Lambda \mid \exists h \in \Lambda, g h=h g=1\}$.

Normalizers of finite unimodular groups

- $G \leq \mathrm{GL}_{n}(\mathbb{Z})$ finite.
- $\mathcal{F}(G):=\left\{F \in \mathbb{R}_{s y m}^{n \times n} \mid g F g^{t r}=F\right.$ for all $\left.g \in G\right\}$ space of invariant forms.
- $\mathcal{B}(G):=\left\{g \in \mathrm{GL}_{n}(\mathbb{Z}) \mid g F g^{t r}=F\right.$ for all $\left.F \in \mathcal{F}(G)\right\}$ Bravais group.
- $\mathcal{F}(G)$ always contains a positive definite form $\sum_{g \in G} g g^{t r}$.
- $\mathcal{B}(G)$ is finite.
- $N_{\mathrm{GL}_{n}(\mathbb{Z})}(G) \leq N_{\mathrm{GL}_{n}(Z)}(\mathcal{B}(G))=: \Omega$ acts on $\mathcal{F}(G)$.
- Compute Ω and then the finite index subgroup $N_{\mathrm{GL}_{n}(\mathbb{Z})}(G)$.
- $\mathcal{V}_{1}:=\mathcal{F}(G)$ and $\mathcal{V}_{2}:=\mathcal{F}\left(G^{t r}\right)$.
- $\sigma: \mathcal{V}_{1} \times \mathcal{V}_{2} \rightarrow \mathbb{R}_{>0}, \sigma(A, B):=\operatorname{trace}(A B)$.
- $\pi: \mathbb{R}_{s y m}^{n \times n} \rightarrow \mathcal{V}_{2}, F \mapsto \frac{1}{|G|} g^{t r} F g$
- $A \in \mathcal{F}(G), B \in \mathbb{R}_{\text {sym }}^{n \times n} \Rightarrow \sigma(A, \pi(B))=\operatorname{trace}(A B)$
- $D:=\left\{q_{x}:=\pi\left(x^{t r} x\right) \mid x \in \mathbb{Z}^{1 \times n}\right\}$
- $F \in \mathcal{F}(G) \cap \mathbb{R}_{\text {sym, }}^{n \times n}$ then $\mu_{D}(F)=\min (F)$.

Easy example

- $G=\langle\operatorname{diag}(1,-1)\rangle$
- $\mathcal{F}(G)=\langle\operatorname{diag}(1,1), \operatorname{diag}(0,1)\rangle$
- $\mathcal{B}(G)=\langle\operatorname{diag}(1,-1), \operatorname{diag}(-1,-1)\rangle$
- $F=I_{2}$ is G-perfect.
- $V_{D}(F)=\mathcal{F}_{>0}\left(G^{t r}\right)$.
- $N_{\mathrm{GL}_{2}(\mathbb{Z})}(G) \leq \Omega=N_{\mathrm{GL}_{2}(\mathbb{Z})}(\mathcal{B}(G))=\operatorname{Aut}(F) \cong D_{8}$.

Orders in semi-simple rational algebras.

The positive cone

- K some rational division algebra, $A=K^{n \times n}$
- $A_{\mathbb{R}}:=A \otimes_{\mathbb{Q}} \mathbb{R}$ semi-simple real algebra
- $A_{\mathbb{R}} \cong$ direct sum of matrix rings over of \mathbb{H}, \mathbb{R} or \mathbb{C}.
- $A_{\mathbb{R}}$ carries a "canonical" involution \dagger depending on the choice of the isomorphism that we use to define symmetric elements:
- $\mathcal{V}_{1}=\mathcal{V}_{2}=\mathcal{V}:=\operatorname{Sym}\left(A_{\mathbb{R}}\right):=\left\{F \in A_{\mathbb{R}} \mid F^{\dagger}=F\right\}$
- $\sigma\left(F_{1}, F_{2}\right):=\operatorname{trace}\left(F_{1} F_{2}\right)$ defines a Euclidean inner product on ν.
- In general the involution ${ }^{\dagger}$ will not fix the set A.

Orders: Endomorphism rings of lattices.

The simple A-module.

- Let $V=K^{1 \times n}$ denote the simple right A-module, $V_{\mathbb{R}}=V \otimes_{\mathbb{Q}} \mathbb{R}$.
- For $x \in V$ we have $x^{\dagger} x \in \mathcal{V}$.
- $F \in \mathcal{V}$ is called positive if

$$
F[x]:=\sigma\left(F, x^{\dagger} x\right)>0 \text { for all } 0 \neq x \in V_{\mathbb{R}} .
$$

- $\mathcal{V}^{>0}:=\{F \in \mathcal{V} \mid F$ is positive $\}$.

The discrete admissible set

- \mathcal{O} order in K, L some \mathcal{O}-lattice in the simple A-module V
- $\Lambda:=\operatorname{End}_{\mathcal{O}}(L)$ is an order in A with unit group

$$
\Lambda^{*}:=\operatorname{GL}(L)=\{a \in A \mid a L=L\} .
$$

Minimal vectors.

L-minimal vectors

Let $F \in \mathcal{V}^{>0}$.

- $\mu(F):=\mu_{L}(F)=\min \{F[\ell] \mid 0 \neq \ell \in L\}$ the L-minimum of F
- $\mathcal{M}_{L}(F):=\left\{\ell \in L \mid F[\ell]=\mu_{L}(F)\right\}$ L-minimal vectors
- $\operatorname{Vor}_{L}(F):=\left\{\sum_{x \in \mathcal{M}_{L}(F)} a_{x} x^{\dagger} x \mid a_{x} \geq 0\right\} \subset \mathcal{V} \geq 0$ Voronoi domain
- F is called L-perfect $\Leftrightarrow \operatorname{dim}\left(\operatorname{Vor}_{L}(F)\right)=\operatorname{dim}(\mathcal{V})$.

Theorem

$$
\mathcal{T}:=\left\{\operatorname{Vor}_{L}(F) \mid F \in \mathcal{V}^{>0}, \text { L-perfect }\right\}
$$

forms a locally finite face to face tessellation of $\mathcal{v} \geq 0$. Λ^{*} acts on \mathcal{T} with finitely many orbits.

Generators for Λ^{*}

- Compute $\mathcal{R}:=\left\{F_{1}, \ldots, F_{s}\right\}$ set of representatives of Λ^{*}-orbits on the L-perfect forms, such that their Voronoi-graph is connected.
- For all neighbors F of one of these $F_{i}\left(\right.$ so $\operatorname{Vor}(F) \cap \operatorname{Vor}\left(F_{i}\right)$ has codimension 1) compute some $g_{F} \in \Lambda^{*}$ such that $g_{F} \cdot F \in \mathcal{R}$.
- Then $\Lambda^{*}=\left\langle\operatorname{Aut}\left(F_{i}\right), g_{F}\right| F_{i} \in \mathcal{R}, F$ neighbor of some $\left.F_{j} \in \mathcal{R}\right\rangle$.

so here $\Lambda^{*}=\left\langle\operatorname{Aut}\left(F_{1}\right), \operatorname{Aut}\left(F_{2}\right), \operatorname{Aut}\left(F_{3}\right), a, b, c, d, e, f\right\rangle$.

Example $Q_{2,3}$.

- Take the rational quaternion algebra ramified at 2 and 3,

$$
Q_{2,3}=\left\langle i, j \mid i^{2}=2, j^{2}=3, i j=-j i\right\rangle=\left\langle\operatorname{diag}(\sqrt{2},-\sqrt{2}),\left(\begin{array}{ll}
0 & 1 \\
3 & 0
\end{array}\right)\right\rangle
$$

Maximal order $\Lambda=\left\langle 1, i, \frac{1}{2}(1+i+i j), \frac{1}{2}(j+i j)\right\rangle$

- $V=A=Q_{2,3}, A_{\mathbb{R}}=\mathbb{R}^{2 \times 2}, L=\Lambda$
- Embed A into $A_{\mathbb{R}}$ using the maximal subfield $\mathbb{Q}[\sqrt{2}]$.
- Get three perfect forms:
- $F_{1}=\left(\begin{array}{cc}1 & 2-\sqrt{2} \\ 2-\sqrt{2} & 1\end{array}\right), F_{2}=\left(\begin{array}{cc}6-3 \sqrt{2} & 2 \\ 2 & 2+\sqrt{2}\end{array}\right)$
- $F_{3}=\operatorname{diag}(-3 \sqrt{2}+9,3 \sqrt{2}+5)$

The tesselation for $\mathscr{Q}_{2,3} \hookrightarrow \mathbb{Q}[\sqrt{2}]^{2 \times 2}$.

$\Lambda^{*} /\langle \pm 1\rangle=\left\langle a, b, t \mid a^{3}, b^{2}, a t b t\right\rangle$

$$
\Lambda^{*}=\left\langle a, b, t \mid a^{3}=b^{2}=a t b t=-1\right\rangle, A \cong \Omega_{2,3}
$$

$$
\begin{gathered}
a=\frac{1}{2}\left(\begin{array}{cc}
1 & \sqrt{2}+1 \\
3-3 \sqrt{2} & 1
\end{array}\right) \\
b=\left(\begin{array}{cc}
\sqrt{2} & \sqrt{2}+1 \\
3-3 \sqrt{2} & -\sqrt{2}
\end{array}\right) \\
t=\frac{1}{2}\left(\begin{array}{cc}
2 \sqrt{2}+1 & \sqrt{2}+1 \\
3-3 \sqrt{2} & 1-2 \sqrt{2}
\end{array}\right)
\end{gathered}
$$

Note that $t=b-a+1$ has minimal polynomial $x^{2}+x-1$ and

$$
\langle a, b\rangle /\langle \pm 1\rangle \cong C_{3} * C_{2} \cong \operatorname{PSL}_{2}(\mathbb{Z})
$$

The tesselation for $\Omega_{2,3} \hookrightarrow \mathbb{Q}[\sqrt{3}]^{2 \times 2}$.

A rational division algebra of degree 3

- $\vartheta=\zeta_{9}+\zeta_{9}^{-1},\langle\sigma\rangle=\operatorname{Gal}(\mathbb{Q}(\vartheta) / \mathbb{Q})$,
- \mathcal{A} the \mathbb{Q}-algebra generated by
- $Z:=\left(\begin{array}{ccc}\vartheta & & \\ & \sigma(\vartheta) & \\ & & \sigma^{2}(\vartheta)\end{array}\right)$ and $\Pi:=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 0 & 0\end{array}\right)$.
- \mathcal{A} division algebra, Hasse-invariants $\frac{1}{3}$ at 2 and $\frac{2}{3}$ at 3 .
- Λ some maximal order in \mathcal{A}
- $\Gamma:=\Lambda^{\times}$has 431 orbits of perfect forms and presentation

$$
\begin{aligned}
& \quad \begin{array}{l}
\Gamma \cong\langle a, b| \quad \\
\quad b^{2} a^{2}\left(b^{-1} a^{-1}\right)^{2}, b^{-2}\left(a^{-1} b^{-1}\right)^{2} a b^{-2} a^{2} b^{-3}, \\
\\
a b^{2} a^{-1} b^{3} a^{-2} b a b^{3}, a^{2} b a b^{-2} a b^{-1}\left(a^{-2} b\right)^{2}, \\
a^{-1} b^{2} a^{-1} b^{-1} a^{-5} b^{-2} a^{-3},
\end{array} \\
& \left.\quad b^{-2} a^{-2} b^{-1} a^{-1} b^{-1} a^{-2} b^{-1} a^{-1} b^{-2}\left(a^{-1} b^{-1}\right)^{3}\right\rangle \\
& -a=\frac{1}{3}\left(\left(1-3 Z-Z^{2}\right)+\left(2+Z^{2}\right) \Pi+\left(1-Z^{2}\right) \Pi^{2}\right), \\
& b=\frac{1}{3}\left(\left(-3-2 Z+Z^{2}\right)+(1-2 Z) \Pi+\left(1-Z^{2}\right) \Pi^{2}\right) .
\end{aligned}
$$

Quaternion algebras over CM fields

K CM-field and $\mathcal{A}=2 \otimes K$ where Q is a definite quaternion algebra over the rationals.

$$
\dagger: \mathcal{Q} \otimes K \rightarrow \mathcal{Q} \otimes K ; a \otimes k \mapsto \bar{a} \otimes \bar{k}
$$

is a positive involution on \mathcal{A}.

$$
K=\mathbb{Q} \sqrt{-7}]
$$

- $\mathcal{A}=\left(\frac{-1,-1}{\mathbb{Q}[\sqrt{-7]}}\right)=\langle 1, i, j, k\rangle, \Lambda$ maximal order
- only one orbit of perfect forms
- $\Lambda^{\times}=\left\langle a, b \mid b^{3}=-1,\left(b^{-1} a^{-1} b a\right)^{2}=-1,\left(b^{2} a^{-2}\right)^{3}=-1\right\rangle$
- $a:=\frac{1}{4}((1+\sqrt{-7})-(1+\sqrt{-7}) i+(1+\sqrt{-7}) j+(3-\sqrt{-7}) k)$,
- $b:=\frac{1}{2}(1+i-3 j+\sqrt{-7} k)$

Quaternion algebras over imaginary quadratic fields

$$
\mathcal{A}=\left(\frac{-1,-1}{k}\right), \quad k=\mathbb{Q}(\sqrt{-d})
$$

d	Number of perfect forms	Runtime Voronoï	Runtime Presentation	Number of generators
7	1	$1.24 s$	$0.42 s$	2
31	8	$6.16 s$	$0.50 s$	3
55	21	$14.69 s$	$1.01 s$	5
79	40	$28.74 s$	$1.78 s$	5
95	69	$53.78 s$	$2.57 s$	7
103	53	$38.39 s$	$2.52 s$	6
111	83	$66.16 s$	$3.02 s$	6
255	302	$323.93 s$	$17.54 s$	16

Quaternion algebras over $\mathbb{Q}(\sqrt{-7})$

$$
\mathcal{A}=\left(\frac{a, b}{\mathbb{Q}(\sqrt{-7})}\right)
$$

a,b	perfect forms	Runtime Voronoï	Runtime Presentation	Number of generators
$-1,-1$	1	$1.24 s$	$0.42 s$	2
$-1,-11$	20	$21.61 s$	$4.13 s$	6
$-11,-14$	58	$51.46 s$	$5.11 s$	10
$-1,-23$	184	$179.23 s$	$89.34 s$	16

Easy solution of constructive recognition

Isomorphic unit groups

Question

Given two maximal orders Λ and Γ in \mathcal{A}. Does it hold that Λ^{*} is isomorphic to Γ^{*} if and only if Λ and Γ are conjugate in \mathcal{A} ?

Maximal finite subgroups

$\Lambda^{*} \cong \Gamma^{*} \Rightarrow$ they have the same number of conjugacy classes of maximal finite subgroups G of given isomorphism type.
These G arise as stabilisers of well rounded faces of the Voronoi tessellation hence may be obtained by the Voronoi algorithm.

Integral Homology

Many people have used the Λ^{*} action on the subcomplex of well rounded faces of the Voronoi tessellation to compute $H_{n}\left(\Lambda^{*}, \mathbb{Z}\right)$, which is again an invariant of the isomorphism class of Λ^{*}.

Conclusion

- Algorithm works quite well for indefinite quaternion algebras over the rationals
- Obtain presentation and algorithm to solve the word problem
- For $Q_{19,37}$ our algorithm computes the presentation within 5 minutes (288 perfect forms, 88 generators) whereas the MAGMA implementation "FuchsianGroup" does not return a result after four hours
- Reasonably fast for quaternion algebras with imaginary quadratic center or matrix rings of degree 2 over imaginary quadratic fields
- For the rational division algebra of degree 3 ramified at 2 and 3 compute presentation of $\Lambda^{*}, 431$ perfect forms, 2 generators in about 10 minutes.
- Quaternion algebra with center $\mathbb{Q}\left[\zeta_{5}\right]:>40.000$ perfect forms.
- Database available under http://www.math.rwth-aachen. de/~Oliver. Braun/unitgroups/
- Which questions can one answer for unit groups of orders?

