
Voronoi’s algorithm to compute perfect lattices

I F ∈ Rn×n
sym,>0

I min(F ) := min{xFxtr | 0 6= x ∈ Zn} minimum
I Min(F ) := {x ∈ Zn | xFxtr = min(F )}.
I Vor(F ) := conv (xtrx | x ∈ Min(F )) Voronoi domain
I F perfect, if and only if dim(Vor(F )) = n(n+ 1)/2.
I Pn := {F ∈ Rn×n

sym,>0 | min(F ) = 1, F perfect }.

Theorem (Voronoi)

Tn := {Vor(F ) | F ∈ Pn} is a locally finite, face to face tessellation of
Rn×n

sym,>0 on which GLn(Z) acts with finitely many orbits.

I Min(gFgtr) = {xg−1 | x ∈ Min(F )} so
I Vor(gFgtr) = g−tr Vor(F )g−1



Max Koecher: Pair of dual cones

Jürgen Opgenorth: “Dual cones and the Voronoi Algorithm”
Experimental Mathematics 2001

I V1,V2 real vector spaces of same dimension n
I σ : V1 × V2 −→ R bilinear and non-degenerate.

Definition
V>0
1 ⊂ V1 and V>0

2 ⊂ V2 are dual cones if
(DC1) V>0

i is open in Vi and non-empty for i=1,2.
(DC2) For all x ∈ V>0

1 and y ∈ V>0
2 one has σ(x, y) > 0.

(DC3) For every x ∈ V1 − V>0
1 there is 0 6= y ∈ V>0

2 with σ(x, y) ≤ 0
for every y ∈ V2 − V>0

2 there is 0 6= x ∈ V>0
1 with σ(x, y) ≤ 0.



V>0
1 and V>0

2 pair of dual cones

Let D ⊂ V
≥0
2 − {0} be discrete in V2 and x ∈ V>0

1 .
I µD(x) := min{σ(x, d) | d ∈ D} the D-minimum of x.
I MD(x) := {d ∈ D | µD(x) = σ(x, d)}

the set of D-minimal vectors of x.
I MD(x) is finite and MD(x) = MD(λx) for all λ > 0.
I VD(x) := {

∑
d add | d ∈MD(x), ad ∈ R>0}

the D-Voronoi domain of x.
I A vector x ∈ V>0

1 is called D-perfect, if codim(VD(x)) = 0.

PD := {x ∈ V>0
1 | µD(x) = 1, x is D-perfect }

Definition
D is called admissible if for every sequence (xi)i∈N that converges to
a point x ∈ δV>0

1 the sequence (µD(xi))i∈N converges to 0.



Voronoi tessellation

Theorem
If D ⊂ V

≥0
2 − {0} is discrete in V2 and admissible then the D-Voronoi

domains of the D-perfect vectors form an exact tessellation of V>0
2 .

Definition
The graph ΓD of D-perfect vectors has vertices PD and edges

E = {(x, y) ∈ PD × PD | x and y are neighbours }.

Here x, y ∈ PD are neighbours if codim(VD(x) ∩ VD(y)) = 1.

Corollary

If D ⊆ V
≥0
2 − {0} is discrete and admissible then ΓD is a connected,

locally finite graph.



Discontinuous Groups

I Aut(V>0
i ) := {g ∈ GL(Vi) | V>0

i g = V>0
i }.

I Ω ≤ Aut(V>0
1 ) properly discontinously on V>0

1 .
I Ωad := {ωad | ω ∈ Ω} ≤ Aut(V>0

2

I D ⊆ V≥0
2 − {0} discrete, admissible and invariant

under Ωad

I For x ∈ V>0
1 and ω ∈ Ω we have

I µD(xw) = µD(x),
I MD(xw) = MD(x)(ωad)−1,
I VD(xw) = VD(x)(ωad)−1.
I In particular Ω acts on ΓD.



Discontinuous Groups (continued)

Theorem

I Assume additionally that the residue graph ΓD/Ω is
finite.

I x1, . . . , xt ∈ PD orbit representatives spanning a
connected subtree T of ΓD

I δT := {y ∈ PD − T | y neighbour of some xi ∈ T}.
I ωy ∈ Ω with yωy ∈ T .
I Ω = 〈ωy, StabΩ(x) | x ∈ T, y ∈ δT 〉
I In particular the group Ω is finitely generated.



Applications

Jürgen Opgenorth, 2001

G ≤ GLn(Z) finite. Compute Ω := NGLn(Z)(G).

Michael Mertens, 2014
L ≤ (Rn+1,

∑n
i=1 x

2
i − x2n+1) =: Hn+1 a Z-lattice in hyperbolic space

(signature (n, 1)).
Compute Ω := Aut(L) := {g ∈ O(Hn+1) | Lg = L}.

Braun, Coulangeon, N., Schönnenbeck, 2015

A finite dimensional semisimple Q-algebra, Λ ≤ A order, i.e. a finitely
generated full Z-lattice that is a subring of A. Compute
Ω := Λ∗ := {g ∈ Λ | ∃h ∈ Λ, gh = hg = 1}.



Normalizers of finite unimodular groups

I G ≤ GLn(Z) finite.
I F(G) := {F ∈ Rn×n

sym | gFgtr = F for all g ∈ G}
space of invariant forms.

I B(G) := {g ∈ GLn(Z) | gFgtr = F for all F ∈ F(G)}
Bravais group.

I F(G) always contains a positive definite form
∑

g∈G gg
tr.

I B(G) is finite.
I NGLn(Z)(G) ≤ NGLn(Z)(B(G)) =: Ω acts on F(G).
I Compute Ω and then the finite index subgroup NGLn(Z)(G).
I V1 := F(G) and V2 := F(Gtr).
I σ : V1 × V2 → R>0, σ(A,B) := trace(AB).
I π : Rn×n

sym → V2, F 7→ 1
|G|g

trFg

I A ∈ F(G), B ∈ Rn×n
sym ⇒ σ(A, π(B)) = trace(AB)

I D := {qx := π(xtrx) | x ∈ Z1×n}
I F ∈ F(G) ∩ Rn×n

sym,>0 then µD(F ) = min(F ).



Easy example

I G = 〈diag(1,−1)〉
I F(G) = 〈diag(1, 1), diag(0, 1)〉
I B(G) = 〈diag(1,−1), diag(−1,−1)〉
I F = I2 is G-perfect.
I VD(F ) = F>0(Gtr).
I NGL2(Z)(G) ≤ Ω = NGL2(Z)(B(G)) = Aut(F ) ∼= D8.



Orders in semi-simple rational algebras.

The positive cone

I K some rational division algebra, A = Kn×n

I AR := A⊗Q R semi-simple real algebra
I AR ∼= direct sum of matrix rings over of H, R or C.
I AR carries a “canonical” involution †

depending on the choice of the isomorphism
that we use to define symmetric elements:

I V1 = V2 = V := Sym(AR) :=
{
F ∈ AR | F † = F

}
I σ(F1, F2) := trace(F1F2) defines a Euclidean inner product on V.
I In general the involution † will not fix the set A.



Orders: Endomorphism rings of lattices.

The simple A-module.

I Let V = K1×n denote the simple right A-module, VR = V ⊗Q R.
I For x ∈ V we have x†x ∈ V.
I F ∈ V is called positive if

F [x] := σ(F, x†x) > 0 for all 0 6= x ∈ VR.

I V>0 := {F ∈ V | F is positive }.

The discrete admissible set

I O order in K, L some O-lattice in the simple A-module V
I Λ := EndO(L) is an order in A with unit group

Λ∗ := GL(L) = {a ∈ A | aL = L}.



Minimal vectors.

L-minimal vectors
Let F ∈ V>0.

I µ(F ) := µL(F ) = min{F [`] | 0 6= ` ∈ L} the L-minimum of F
I ML(F ) := {` ∈ L | F [`] = µL(F )} L-minimal vectors
I VorL(F ) := {

∑
x∈ML(F ) axx

†x | ax ≥ 0} ⊂ V≥0 Voronoi domain
I F is called L-perfect⇔ dim(VorL(F )) = dim(V).

Theorem

T := {VorL(F ) | F ∈ V>0, L-perfect }

forms a locally finite face to face tessellation of V≥0.
Λ∗ acts on T with finitely many orbits.



Generators for Λ∗

I Compute R := {F1, . . . , Fs} set of representatives of Λ∗-orbits on
the L-perfect forms, such that their Voronoi-graph is connected.

I For all neighbors F of one of these Fi (so Vor(F ) ∩Vor(Fi) has
codimension 1) compute some gF ∈ Λ∗ such that gF · F ∈ R.

I Then Λ∗ = 〈Aut(Fi), gF | Fi ∈ R, F neighbor of some Fj ∈ R〉.
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so here Λ∗ = 〈Aut(F1),Aut(F2),Aut(F3), a, b, c, d, e, f〉.



Example Q2,3.

I Take the rational quaternion algebra ramified at 2 and 3,

Q2,3 = 〈i, j | i2 = 2, j2 = 3, ij = −ji〉 = 〈diag(
√

2,−
√

2),

(
0 1
3 0

)
〉

Maximal order Λ = 〈1, i, 12 (1 + i+ ij), 12 (j + ij)〉
I V = A = Q2,3, AR = R2×2, L = Λ

I Embed A into AR using the maximal subfield Q[
√

2].
I Get three perfect forms:

I F1 =

(
1 2−

√
2

2−
√

2 1

)
, F2 =

(
6− 3

√
2 2

2 2 +
√

2

)
I F3 = diag(−3

√
2 + 9, 3

√
2 + 5)



The tesselation for Q2,3 ↪→ Q[
√

2]2×2.



Λ∗/〈±1〉 = 〈a, b, t | a3, b2, atbt〉
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Λ∗ = 〈a, b, t | a3 = b2 = atbt = −1〉, A ∼= Q2,3

a =
1

2

(
1

√
2 + 1

3− 3
√

2 1

)

b =

( √
2

√
2 + 1

3− 3
√

2 −
√

2

)

t =
1

2

(
2
√

2 + 1
√

2 + 1

3− 3
√

2 1− 2
√

2

)
Note that t = b− a+ 1 has minimal polynomial x2 + x− 1 and

〈a, b〉/〈±1〉 ∼= C3 ∗ C2
∼= PSL2(Z)



The tesselation for Q2,3 ↪→ Q[
√

3]2×2.



A rational division algebra of degree 3

I ϑ = ζ9 + ζ−19 , 〈σ〉 = Gal(Q(ϑ)/Q),
I A the Q-algebra generated by

I Z :=

 ϑ
σ(ϑ)

σ2(ϑ)

 and Π :=

 0 1 0
0 0 1
2 0 0

.

I A division algebra, Hasse-invariants 1
3 at 2 and 2

3 at 3.
I Λ some maximal order in A

I Γ := Λ× has 431 orbits of perfect forms and presentation

I

Γ ∼= 〈a, b | b2a2(b−1a−1)2, b−2(a−1b−1)2ab−2a2b−3,
ab2a−1b3a−2bab3, a2bab−2ab−1(a−2b)2,
a−1b2a−1b−1a−5b−2a−3,
b−2a−2b−1a−1b−1a−2b−1a−1b−2(a−1b−1)3〉

I a = 1
3 ((1− 3Z − Z2) + (2 + Z2)Π + (1− Z2)Π2),

b = 1
3 ((−3− 2Z + Z2) + (1− 2Z)Π + (1− Z2)Π2).



Quaternion algebras over CM fields

K CM-field and A = Q⊗K where Q is a definite quaternion algebra
over the rationals.

† : Q⊗K → Q⊗K; a⊗ k 7→ a⊗ k

is a positive involution on A.

K = Q
√
−7]

I A =
(
−1,−1
Q[
√
−7]

)
= 〈1, i, j, k〉, Λ maximal order

I only one orbit of perfect forms
I Λ× = 〈a, b | b3 = −1, (b−1a−1ba)2 = −1, (b2a−2)3 = −1〉
I a := 1

4 ((1 +
√
−7)− (1 +

√
−7)i+ (1 +

√
−7)j + (3−

√
−7)k),

I b := 1
2 (1 + i− 3j +

√
−7k)



Quaternion algebras over imaginary quadratic fields

A =

(
−1,−1

k

)
, k = Q(

√
−d)

d Number of Runtime Runtime Number of
perfect forms Voronoı̈ Presentation generators

7 1 1.24s 0.42s 2
31 8 6.16s 0.50s 3
55 21 14.69s 1.01s 5
79 40 28.74s 1.78s 5
95 69 53.78s 2.57s 7
103 53 38.39s 2.52s 6
111 83 66.16s 3.02s 6
255 302 323.93s 17.54s 16



Quaternion algebras over Q(
√
−7)

A =

(
a, b

Q(
√
−7)

)
a,b perfect Runtime Runtime Number of

forms Voronoı̈ Presentation generators
−1,−1 1 1.24s 0.42s 2
−1,−11 20 21.61s 4.13s 6
−11,−14 58 51.46s 5.11s 10
−1,−23 184 179.23s 89.34s 16



Easy solution of constructive recognition
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Isomorphic unit groups

Question
Given two maximal orders Λ and Γ in A. Does it hold that Λ∗ is
isomorphic to Γ∗ if and only if Λ and Γ are conjugate in A?

Maximal finite subgroups

Λ∗ ∼= Γ∗ ⇒ they have the same number of conjugacy classes of
maximal finite subgroups G of given isomorphism type.
These G arise as stabilisers of well rounded faces of the Voronoi
tessellation hence may be obtained by the Voronoi algorithm.

Integral Homology

Many people have used the Λ∗ action on the subcomplex of well
rounded faces of the Voronoi tessellation to compute Hn(Λ∗,Z),
which is again an invariant of the isomorphism class of Λ∗.



Conclusion

I Algorithm works quite well for indefinite quaternion algebras over
the rationals

I Obtain presentation and algorithm to solve the word problem
I For Q19,37 our algorithm computes the presentation within 5

minutes (288 perfect forms, 88 generators) whereas the MAGMA
implementation “FuchsianGroup” does not return a result after
four hours

I Reasonably fast for quaternion algebras with imaginary quadratic
center or matrix rings of degree 2 over imaginary quadratic fields

I For the rational division algebra of degree 3 ramified at 2 and 3
compute presentation of Λ∗, 431 perfect forms, 2 generators in
about 10 minutes.

I Quaternion algebra with center Q[ζ5]: > 40.000 perfect forms.
I Database available under http://www.math.rwth-aachen.
de/˜Oliver.Braun/unitgroups/

I Which questions can one answer for unit groups of orders?

http://www.math.rwth-aachen.de/~Oliver.Braun/unitgroups/
http://www.math.rwth-aachen.de/~Oliver.Braun/unitgroups/

