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ABSTRACT. Using computational methods, we complete the deter-
mination of the 3-modular character table of the Chevalley group
F4(2) and its covering group.

1. INTRODUCTION AND RESULTS

Let G := Fy(2) denote the Chevalley group of type Fj over the field
with two elements, and let 2.G' denote its universal covering group.
As G has an exceptional Schur multiplier, the representation theory
of 2.(G is not covered by the general theory of finite reductive groups.
In [8], the second author has computed the p-modular character tables
of 2.G for all odd primes p dividing |G|, up to seven irreducible 3-
modular characters, four in the principal 3-block B; of (G, and three in
the block Bg of 2.G containing the ordinary character of degree 52 (see
[8, Remark 2.3]). Here, we compute the seven remaining characters.

Two new developments have made this progress possible. The first is
the advancement of condensation techniques, in particular the methods
of Noeske [15] for constructing generators of the condensation algebra.
The second is the now available ordinary character table of the inverse
image 2.P in 2.G of a maximal parabolic subgroup P of G of type Cs.

It turns out that we can reproduce the state of the art for the princi-
pal 3-block B; of G given in [8, Theorem 2.1|, and moreover determine
the 3-modular character table of Bg completely, by just inducing pro-
jective characters from 2.P. In fact, out of the 26 and 17 projective
indecomposable characters of By, respectively Bg, we obtain 14, re-
spectively 13, directly by induction. In contrast to [8], where several
maximal subgroups of GG were used, this allows to clearly document the
various steps of these elementary methods. We thus provide proofs for
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the results of [8, Theorems 2.1, 2.2|, which were omitted there. This
part of our computations was strongly supported by the GAP pack-
age moc [13|, which incorporates many of the algorithms underlying
the original MOC-system described in [9]. The former was used as a
tool to sift through a huge number of projective characters to iden-
tify the most suitable ones. Once these were found, the results were
checked with GAP [5], without resorting to moc.

To complete the determination of the decomposition matrix for the
principal 3-block of G, we use condensation. Let Up denote the unipo-
tent radical of P, i.e. the largest normal 2-subgroup of P. As our con-
densation subgroup we take V := Z(Up). Then V is normal in P, and
N¢ (V) = P. In order to generate the condensation algebra correspond-
ing to V', we need generators for P modulo V', as well as representatives
for the double cosets of P in G. The latter are easily obtained using the
theory of BN-pairs. We condense the Steinberg representation St of G
over the field with three elements. While St has degree 22* = 16777216,
the condensed Steinberg representation has degree 2'7 = 131072, which
makes it accessible to the Meataxe64 of Richard Parker [16, 17].

Let us briefly comment on the potential generic nature of our compu-
tations. Let ¢ be any prime power, and let G(q), P(q), Up(q) denote the
Chevalley group of type Fjy over the field with ¢ elements, a parabolic
subgroup of G(q) of type C3, and its unipotent radical, respectively.
The fact that V(q) := Z(Up(q)) is large, is peculiar to the case of ¢
even. Here, |V (q)| = ¢7, whereas |V (q)| = q if ¢ is odd. “Condensing”
with V(g) amounts to a generalization of Harish-Chandra induction
and restriction, using the trace idempotent of V(g) rather than that
of Up(q). Hence this method yields a finer partition of the irreducible
characters in case of even ¢. On the other hand, the fact that we obtain
a large number of projective indecomposable characters by inducing
projective characters from P(q), raises expectations for a general phe-
nomenen in this direction, not restricted to even ¢. It indicates that it
might be worthwhile to determine the generic character table of P(q),
or at least substantial parts of this, and to induce projective characters
from P(q) to G(q). In any case, our results might serve as a model for
more general calculations.

The degrees of the irreducible Brauer characters and the decomposi-
tion matrix of the principal block Bj are as given in Tables 13 and 15,
respectively. In the notation of [8, Theorem 2.1|, we have a = 1. The
degrees of the irreducible Brauer characters and the decomposition ma-
trix of block By are as given in Tables 14 and 16, respectively. In the
notation of |8, Theorem 2.2|, we have a =0 and b = 1.
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2. PROOF FOR THE PRINCIPAL BLOCK

Let G = Fy(2) as above. By P we denote the parabolic subgroup
of G of type O3, a maximal subgroup of G denoted by (21+% x 2°): S5(2)
in the Atlas [4, p. 170]. The ordinary and 3-modular character tables
of P are available in GAP’s library of character tables [2]. These tables
are contained in the corresponding tables for 2.P; comments on how
the latter were computed are given in the first paragraph of Section 3.
From the 3-modular character table of P one obtains the decomposition
matrix, and from this the projective indecomposable characters of P
by Brauer reciprocity. We denote by B; the principal 3-block of G and
by Irr(B;) the set of its ordinary irreducible characters.

2.1. A first approximation to the decomposition matrix. Here,
we report on those results on the decomposition numbers, which can
be obtained by just using calculations with ordinary characters. The
relevant methods, in particular the concept of basic sets, is described,
e.g. in [12; Section 4.5] or in [9, Chapter 3|. A triangular shape of an
approximation to the decomposition matrix substantially reduces the
complexity of the arguments (see, e.g. [10, 6.3.21]). A projective inde-
composable character is called a PIM. We write Irr(G) = {x1,- .-, Xo5},
and Irr(P) = {41, ...,1¥914}. In each case, the numbering of the char-
acters agrees with that in the GAP-character tables, and, in case of G,
with that of the Atlas.

We begin with a set of 31 projective characters, ©4, ..., 031, whose
origins are given in Table 2, which has to be read as follows. First, ©,
is obtained from the 3-modular decomposition matrix of the Iwahori-
Hecke algebra H of type Fj, as computed by Geck and the fourth
author [7]. More details about the construction of this character are
given in [8]. Now let o denote a non-inner automorphism « of G. The
characters ©,,...,03 are either induced from projective characters
of P, Table 2 giving the decomposition of the latter in terms of Irr(P),
or a-conjugates of such induced characters.

By abuse of notation, we denote the restrictions to B; of the char-
acters O1, ..., O3 by the same symbols. By computing inner products
with Irr(By), we find that ©7 is twice a character, and thus ©, := 07/2
is projective (see [10, Corollary 6.3.8]). Table 1 gives the inner prod-
ucts of ©1,...,0g, O, Og,..., 09 with Irr(By). The action of o on
Irr(G) can be read off the Atlas [4, p. 169], so that it suffices to com-
pute these inner products for one of two a-conjugate characters. The
first row of Table 1 labels the projective characters, where a label i,
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respectively ', stands for the projective character ©;, respectively ©:.
The first column labels Irr(B;) by their degrees.

As this matrix of inner products is lower unitriangular with |Irr(B)|
columns, these projective characters form a basic set. By the general
remark stated in [10, 6.3.21], it follows that Oqg, . .., Og1, O19, O3, O1s5,
@14, @/7, @67 @4, @3 and @1 are PIMs.

The decomposition of the projective characters Oqr, ..., 03, of Ta-
ble 2 into this first basic set is displayed in Table 3, where we have
marked a PIM by a boldface label. These relations imply, in turn, that
@/16 = 616 - @26, @/12 = @12 - @22, @,11 = ( /12)117 é = @9 -2 @19,
Of = (05)%, O := Oy — O, and O}, := O17 — Oy9 are projective
characters. Finally, ©); := ©13 — Oy, is projective, as the PIM cor-
responding to the a-invariant irreducible Brauer character of degree
183600 must also be a-invariant. This yields our second basic set of
projective characters displayed in Table 8, where we use the same no-
tational convention as in Table 1. The triangular shape of the matrix
of inner products now implies that all but O, ©75 and 61y are PIMs.

If ©; or ©, is a PIM , we put ®; := 0;, respectively &, := ©}. Each of
O, 075 and O contains a unique PIM &4, $13 and Py, respectively,
which is not equal to any other PIM. The possibilities for ®54, ®13 and
®,y are described in Table 4.

The entries of Table 8 known to be decomposition numbers allow
to determine a basic set of Brauer characters {f,..., 3} for the
block Bj, such that j; is the irreducible Brauer character correspond-
ing to the PIM ®;, except for i € {26,25,22,21}. In the latter cases,
we put

Bor = Xa6 — PB5 — Pu,

Baa = Xar — B5 — Pua,

Bas = Xsa— B2 — Bs — Pio — B — Bz — P — Bis — B,

Bas = Xss — PB5 — Po — Bis — Brr — Bz — B,
where y denotes the restriction to the 3-regular conjugacy classes of
X € Irr(G). The degrees of (i, ..., B are given in Table 5, boldface
digits indicating irreducible Brauer characters.

To conclude this subsection we remark that Table 8 represents the

state of the art underlying [8, Theorem 2.1], where a has the same
meaning as in Table 4.

2.2. The Steinberg module. We continue to let G denote the group
Fy(2). As a finite Chevalley group, G has a split BN-pair of character-
istic 2. In this particular case, the group BN N is trivial, and thus the
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Weyl group W of G is equal to N, hence a subgroup of G. Moreover,
the Borel subgroup B of GG is equal to its unipotent subgroup U.

We denote the root system of W by @, and by ® the set of positive
roots of ® with respect to U. That is, U is the product of the root
subgroups Uj for € . For each such 3, we have |Ug| = 2 and we
denote by ug the nontrivial element in Ug.

We now describe the action of the fundamental reflections of W on
the Steinberg representation of G, following [19, Theorem 1]|. First, we
choose a field £, and consider the group ring kG. For any subset X € G
we put [X] := ) 2 € kG. The length of an element of w € W is
denoted by ¢(w). Now the Steinberg element of kG is defined by

e:=[U] Y (-1)"™w € kG.
weW

(Recall that, in our case, BN N = {1}, so that W is a subgroup of G.)
Then the elements {eu | u € U} are pairwise distinct and form a k-
basis of St := ekG (see [19, Theorem 1|). This right ideal of kG is
called the Steinberg module.

Next, let II denote the fundamental system of ® determined by &+,
and let a € II. We now describe the matrix, with respect to the basis
{eu | u € U}, of s,, acting by right multiplication on St.

Lemma 2.1. Leta € II. Fizu € U, and write u = u’u), withu!, € U,
where Ul = U NU, and i € {0,1}. We then have

cus,, = { €Ua8a1f/a8a — €Syl Sq, zf@ =1,
—e54U,,Sq if 1= 0.
(Notice that saul,s, € U, asul, € U>NU.)

Proof. Suppose first that ¢ = 0, i.e. that v = u,. Then eus, =
eSa(SalilSa) = —esaulsq by the definition of e. Now suppose that
i = 1. Then, by [19, (16)], there are @, i, € U, such that s,u,s, =
UaSalla- Now U, # 1, as otherwise s,u, = u,, contradicting the
uniqueness of the Bruhat decomposition. It follows that u, = u,.
By [19, (17)] we obtain

EUGSe = €Uy — €,
and thus

CUS, = CULUL S

CUnSa(SalinSa)
= euy (Sl Sa) — e(Sall,Sa)-

This proves our lemma. U
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2.3. Condensing the Steinberg module, I. Keep the notation of
the preceding subsection. We aim to condense the Steinberg module
with respect to a condensation subgroup contained in U. Thus let V' <
U and choose a set R(U/V) of representatives for the left cosets of V
in U. Assume that the characteristic of & is odd, and put ¢ := [V]/|V].
Recall that the Steinberg module St = ekG has k-basis

(1) {eu|u e U}.
Then the subspace St: < St has k-basis
(2) {eur | u e R(U/V)}.

Now let a € kG. We aim to compute the matrix of tar € tkGe, acting
from the right on St¢, from the action of a on St.

Lemma 2.2. Let a € kG. For u,vw € U let vy, € k such that

(3) eua = Z Vo €U

u' €U

Similarly, for u,u' € R(U/V), let ky. be such that
eut(tar) = Z Ko €U'L.

WERU/V)
Then |
Ruyuw = m Z Yuv,ulv! -
v’ eV
Proof. This is a straightforward calculation. U

2.4. Condensing the Steinberg module, II. To compute with the
unipotent subgroup U of G, we use the extensions of CHEVIE (see [6])
due to Jean Michel [14]. First, we number the set of simple roots of ¢+
as in the following Dynkin diagram:

(651 (%) a3 Oy
O——(CO——C0——O

Thus aq, as are the long simple roots, and a3, ay are the short ones.
We write s; := s,, for 1 <7 < 4. The standard parabolic subgroup P
of G corresponding to the simple roots as, as, ay is of type Cs. Let V
denote the center of the unipotent radical of P. Using CHEVIE, one
checks that V' is the product of the seven root subgroups corresponding
to the roots rg, r12, 115, 717, T19, T21, 724, Where the numbering of the
elements of ® is as in [14]. In particular, |[V| = 27.
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Now let k& := FF3 denote the field with three elements and let ¢ :=
[V]/|V]. We choose a set of algebra generators of tkGt according to
[15, Theorem 2.7]. As V < P, it suffices to take a set of elements
of G containing generators for P modulo V' and representatives for the
double cosets of P in GG. As generators for P modulo V' we take u; for
i € {1,2,3,4}, together with ss, s3, s4. The distinguished double coset
representatives for P (see [3, Sections 2.7, 2.8]) are easily computed
with CHEVIE. They are

b1 = 1,
bg = Sy,
bs := $152838251,
b4 = 515253525154535251535254535251
and
b5 1= 51595359545352S51.

We compute the matrices for the actions of the above generators of
tkGr on Stv using Lemmas 2.1 and 2.2. The elements of U can be
written as products of root elements u,(t,) with a € ®* in some fixed
order and t,, € {0,1}. Viewing the ¢, as parameters, the multiplication
of elements in U can be described by polynomials in these t,. We
precompute for each simple root o the product u,(1)u for all u € U;
this can be encoded in a permutation on U. With this information,
for each simple root a we can efficiently evaluate each entry of the
matrix of the action of s, on the basis elements eu as described in
Lemma 2.1. For the action of a general w € W, we write w as a word
in the s, and trace the image of any eu through this word. The action of
unipotent elements on basis elements eu is given by the multiplication
in U. Since V is normal in P we have for a € U and v € V that ua
and (uv)a = ua(a~'va) are in the same coset of U/V. This reduces the
computation of the ,,, in Lemma 2.2 for such a significantly.

The condensed matrices for the s;, 1 <17 < 4, are sparse, but for the
elements b3, by, bs they have significantly more non-zero entries.

2.5. Results of the condensation. The elements of the basic set of
Brauer characters given in Table 5 can easily be computed from the
ordinary character table of (G. Restricting these basic set characters
to V and computing their inner products with the trivial character
of V', we obtain the degrees of the corresponding condensed modules.
These degrees are recorded in Table 6, where boldface digits indicate
degrees of condensed simple modules.

Using his Meataxe64 (see [16, 17]), Richard Parker chopped the
131072-dimensional module St: given by the matrices described at the
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end of the previous subsection, into smaller, not yet simple, pieces.
The composition series of St. was then completed with the C-Meat Axe
of Michael Ringe (see [18]). The outcome of these computations is
recorded in Table 7. We can now determine the parameters a,..., e
used in Table 4. Let ¢; denote the irreducible Brauer character corre-
sponding to the PIM ®;. The module with Brauer character v9 = B9
condenses to a module of dimension 840, which occurs with multiplic-
ity 4 in the condensed Steinberg module. Thus ©, is a PIM, and
hence a = 1 and b = 0. Similarly, the module with Brauer charac-
ter pog = (o9 condenses to a module of dimension 4620, which occurs
with multiplicity 2 in the Steinberg module. Thus 0%, is a PIM, and
hence e = 0. The module with Brauer character p,5 occurs with mul-
tiplicity 1 in the Steinberg module. The basic set character fo5 either
equals o5 or o5 + 13, according as ¢ = 1 or ¢ = 0, respectively. As
there is no condensed composition factor of the Steinberg module of
dimension 7155, we conclude that ¢ = 0. Finally, the module with
Brauer character ;3 condenses to a module of dimension 720. This
occurs with multiplicity 4 in the Steinberg module, and hence d = 4.
This completes the determination of the decomposition matrix for the
principal block B; of G as given in Table 15.

3. PROOF FOR BLOCK B

Since we use the same techniques as in Subsection 2.1, we keep the
notation introduced there. Our proof relies in a crucial way on the 3-
modular decomposition matrix of the maximal subgroup 2.P of 2.G =
2.Fy(2). Here, P denotes the parabolic subgroup of G = Fy(2) as in
Section 2. The ordinary character table of 2. P has been computed by
the first author with the help of MAGMA [1]. It is available in GAP’s
library of character tables [2]. The group 2.P is the inverse image in 2.G
of an involution centralizer in G. We used the permutation generators
of 2.F,(2) from Rob Wilson’s Atlas of Group Representations (see [20])
on 139776 points, and restricted the representation to the subgroup.
The 3-modular character table of 2. P is also available in [2]|. It has been
determined by the authors with the assistance of the GAP package moc
[13]. First, we computed the products of all 3-defect zero characters
of 2.P with all ordinary characters. Using the resulting projective
characters, moc was able to deduce the 3-decomposition matrices of all
but two blocks of 2.P. One of these was the principal block, the other
one a block with 23 ordinary and 10 irreducible Brauer characters.
The decomposition matrix of the principal block, which equals the
decomposition matrix of the principal block of the simple quotient Sg(2)
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of 2.P, we included from the literature [11]. In a second phase of
the computation we determined the products of the irreducible Brauer
characters of the principal block with the basic set of Brauer characters
of the block still incomplete. This yielded a new basic set of Brauer
characters for this block. In the third phase we computed the products
of all projective characters in the basic sets of the non-defect zero blocks
with the irreducible Brauer characters of the principal block. This
produced enough projective characters to complete the proof for the
missing block. We emphasize that although this computation can be
carried out with a few calls of moc, we checked the correctness of the
decompositon matrices of every single 3-block of 2. P with GAP, using
the log-facilities of moc.

To determine the decomposition matrix of block Bg, it turns out that
it suffices to consider the 21 projective characters ©1, ..., ©s; described
in Table 10. All of these but ©,; are induced from projective charac-
ters of 2. P, and Table 10 gives the decomposition of the latter in terms
of the ordinary irreducible characters of 2.P. In this table we follow
the same convention as in Table 2, and we write {xos, ..., X170} and
{215, . .., 379} for those irreducible characters of 2.G respectively 2.P,
which are not characters of GG respectively P. The last projective char-
acter ©9; on Table 10 is the product of the irreducible characters x44
and ygs of 2.G. Notice that y44 is a 3-defect zero character.

The inner products of ©4, ..., 017 with the irreducible characters of
block Bg are given in Table 9. As ©O7 is twice an ordinary character,

L= 07/2, is a projective character as well (see [10, Corollary 6.3.8]).
The matrix of inner products, restricted to the rows marked with an
asterisk (and with ©7 replaced by ©%) is invertible over the integers. It
follows that the ordinary characters marked with an asterisk constitute
a basic set of Brauer characters, and that ©q,...,04,0%,0s,...,07
constitute a basic set of projective characters for block Bg (see [12,
Lemma 4.5.3]). This implies that ©17, ©15, ©13 and ©1; are PIMs,
as each of them has exactly one constituent in the basic set of ordi-
nary characters. The remaining four projective characters of Table 10
decompose into the basic set of projective characters according to the
matrix in Table 11.

As ©1; is a PIM, which cannot be contained in ©g, the relation aris-
ing from ©;g implies that O}, := ©1p — Oy, is a projective character.
Replacing Oy by ©),, we obtain a new basic set of projective char-
acters, which exhibits a triangular shape with respect to the ordering
@1, co ,@6, @/7, 687 @9, @11, ceey @15, @/10, @167 @17. This in turn im-

plies that all elements of this new basic set except possibly ©¢, ©14 and
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©1, are PIMs. The expansions of the projective characters Oig, ..., 9
into this new basic set are displayed in Table 12.

Using these relations, the decomposition matrix given in Table 16
is now easily completed. As O4 either is a PIM or it splits into two
PIMs one of which is ©;7, the relation arising from ©,, shows that
@14 - @/10 —2- @16 is projective. Slmllarly, @19 shows that @12 - @15 -

"o — ©16 — O17 is projective. Finally, ©y shows that O — ©47 is
projective. This gives the missing three PIMs, concluding our proof.
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1949220 . 1. ... . .3 . . . . . .1
2165800 . . . . . .
2165800 . . . . . .
2784600 1
2784600 . 1
2828800 11 . .
2828800 121 .1.114
1
1
2

—
—_
—_
—

— —
—_
— .
S
—_

= e e e

3411968
3898440
3898440 . 2. . . .
4331600 . . . . . 1
4331600 . . . . . 1. ..
4526080 . . . 1.1 . 2.
4526080 .11 . .1 . .2
5870592 . 211.. 133
6497400 . . . .11 . 3.
6497400 .1 . .11 . .3
7309575 . . . .. 2 .
7309575 . . . . . 2 .
11880960 1
11880960 . . . . 1.
14619150 . . . . 1 .

1

2

— =
=
—_ .

_ =
—
N = N = [\
—
—
e
=

= .

14619150 . . . .
16777216 11 . .
17326400 . . . . . 1

no [}
© O J OO Tk W WN FENRFENNDNDNDFEFENNNDN
—

—
W N NN NN e e e e e
=

—
N = NN NDNDNDNDNDN-
=

[\
=N
=N R R NN -
— N e

—

=== e
e el el e

1 1 11
11 1 1 1

TABLE 1. A first basic set of projective characters for B,
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© Origin e Origin
LIH 17 | thas + 50
2 | 72 + g2 18 | ©f
3| e + a2 19 | Y19 + o2
4|05 20 | 120
5 | P73 + Yo + os 21| O3
6 | or 22 | Yiss
7| g+ Y1+ Yis + Y 23 | ©34
8|6y 24 | g
9| Va1 + 50 25 | 61
10 Pgg + Yo + Yo7 + hog + 26 | Y57
Y100 97 Y14 + oo + Pog + o +
11 | g3 + b6 + o7 a9 + P30
12 | g5 + g + 100 28 | Yy + P51
13 V36 + V37 + Yag + a9 + 99 Y3+ s + P11 + 12 +
2968 + 70 Y14 + oy + P + Y30
14 | O 30 Yo + U5 + Y9 + P12 +
15 | Va5 + Y51 Y13 + o1 + Pag + Y30
16 | 117 31 | a3 + Yus
TABLE 2. The projective characters used in the proof
for block B; (notation explained in Subection 2.1)
©]1 1234567 8910111213141516 1718 19 20 21 22 23 24 25 26
27 . r .1 . . . . . —1
28 - 1 .1 . -1
20 ...1.. ..1 =2
30 .1 . .1 -1
31 1 1-1

TABLE 3. Relations for projective characters in B;

d Definition

Possibilities

10 @10 — (1 — a)q)zg — (1 — a)<I>21 — bq)gﬁ a S 1, b S 2a

13 @,13 — C(I)25 — dq)26
20 ("‘)20 - 6(1)26

c<1,d<6
e<1

TABLE 4. The remaining possibilities for B,
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1 833 1105 1105 1326 21658
20722 22372 22372 63700 77077 77077
183600 215747 215747 182274 270725 496146
496146 1061242 1221077 1221077 1248428 1248428
1734799 8907407

TABLE 5. The degrees of basic set characters of B

1 7 27 151 120 0

914 98 1214 840 21 2625

720 49 1785 4366 2765 4130

11694 4620 4395 17415 9466 16410
7155 61275

TABLE 6. The condensed degrees of the basic set char-
acters of B

Degree Mult. Degree Mult.
1 1 840 4

Degree Mult.

4620 2

7 1 1214 1
6435 1

21 1 1785 1
9466 1

49 1 2625 1
16410 1

98 1 2765 1
16575 1
120 2 3555 1 19930 1

720 4 4366 1

TABLE 7. The composition factors of the condensed
Steinberg module
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1234567 8 9 1011’ 12/ 13’ 14 15 16 17/ 18 19 20 21 22 23 24 25 26

11
833 . 1 .. ..
1106 . . 1. ..
11056 . . .1 ..
1326 . . . . 1.
21658 . . . . .1 .
22932 . . 11. .1 .
23206 .1 . ... . 1.
23206 .1 . ... . .1
44200 1 . 1. . .1 1 .
44200 1 . .1 . .1 . 1 .
63700 . . . . .. . . . 1 .
99450 1 . . . . . . 1 . . 1 .
99450 1 . . . .. . .1 . . 1
162435 . . .. .1 . . . 1 1 .
162435 . . . ..1 . . . 1 . 1 .
183600 . . . ... . . . . . . 1
183600 . . . . .. . . . . . . 1 .
216580 . 1 . . .. . . . . . . . 1 .
216580 . 1 . . . . . . . . . . . . 1 .
249900 11 . .1.1 11 . . . . . . 1 .
270725 . . . ... o . . ... ... o1
34807 . . . .2. .1 .1 1 . . . .1
34807 . . . .2. . .11 . 1 . . . 1 .
519792 1. ....1 11 . . . 1 . . . 1 .
541450 . .11 . .11 . . . . . . . . . 1 .
541450 . .11 . .1 .1 . . . . . . . . .1
541450 . . . .1 . . . . 1 1 . 1 1 .
541450 . . . . 1. . . . 1 . 1 1 . 1 . .
584766 21 . ...222 . . . . . . 1 1 .
812175 .1 . ... . 1 . . 1 . . 1 . . . 1.
81217 .1 . ... .. .1 . . 1 . . 1 . . . 1.
1082900 . . . . .1 . . . . . . . . . . . . .1 .
1299480 . . . .1 . . . . 1 1 . . . . . . . . . 1 .
1299480 . . .. 1. . . .1 . 1 . . . . . . . . . 1.
1949220 . . . ... .1 . . . . . . . 1 . 1 . . . . 1.
1949220 . . . ... . .1 . . . . . .1 . .1 . . . .1
2165800
2165800
2784600
2784600
2828800
2828800
3411968
3898440
3898440
4331600
4331600 . . . . .
4526080 . . . 1.
4526080 . . 1 . . R
5870592 . 111. .1 11
6497400 . . . .1
6497400 . . . . 1
7309575
7309575
11880960
11880960
14619150
14619150 . .
16777216 1 1 .
17326400 . . . . .1

= e
—
—_ .

= =
el e e e
. .o —_
NN = == =
—_
—_
==
==
=
== e e
L
=

DN = =
—
00O 00 IO O WWNNNRFFHFFNNDDNDRFEFDNDDNDDNDN
—_
—

—
DN NN DNDNDNDNDNN -

—

=

=

=
WNDNDNRFRFNNRF R R

—

==
= e

1111

TABLE 8. A second basic set of projective characters for By
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1234567891011 12 13 14 15 16 17

52 1 .
2380 1.
2380 R
12376 11 .1
12376 1 .11.
22100 N
* 43316 . |
46800 11121 ..
* 424320 12 .11 . 2.
* 424320 1 .211. .1

EE

*

433160 100 o1 2.
433160 .. 1. o1 1.

* 565760 111000 01 .

* 1082900 P e

* 1082900 11.1212 .. . . 1
1082900 1 .1121.1. . . 1
1146600 e T
1299480 T A
1299480 e T |

* 1591200 11 114 1

* 1591200 1 1 11 .2 . 1

* 1949220 1 2 . 1 1

* 1949220 r. . ....1r. 1 . 1 . 1 . .

* 2165800 e s o2 002 02 01
2772224 .1 12 .11 1 1
2772224 R | .1 .11 1 1 o1
2784600 2212214 .1 1 1
2784600 212221.21 T .1 . .
4798080 1 . 412 . 4 . 2 1 1
4798080 1. . 41 1.1 . 4 . 3 1
4950400 o1 1 .12 2 1 1 2 1
4950400 1. .1 ..1 2 2 1 . 3 . 1 .
6497400 11111 2 .1 . 3 1 2 1 1 1

* 6497400 11111 t1r11 . 3 . 4 . 1 1
6930560 11 .224 .11 1 3 1 2 1 1
6930560 1.1 .22 212 1 3 . 4 1 .
8663200 .1 01 .11 1 4 1 4 1 2 1
8663200 .1 1. .12 1 4 . 6 . 21
9052160 .2 .11 6 . 5 1 2 1
9547200 .o .. .. .1 .6 . 5 1 2 2
12475008 .11 112 .23 3 4 1 5 1 2 1
12475008 .11 11.12 4 3 4 1 6 . 21
13861120 11. 312.13 2 7 1 7 1 3 1
13861120 1.1 31 113 2 7 . 8 1 3 1
16307200 .10 000 .33 2 7 1 8 1 3 2
16777216 2221422133 2 8 1 8 1 3 1

TABLE 9. A first approximation to the decomposition
matrix of Block Bg
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) Origin ) Origin
1 | 917 + a6 + a5 + Yase 12 | 34
2 | Y290 + V229 + V253 + Yosg 13 | 231 + Yoz
3 | Ya16 + V225 + Vas3 + Vos7 14 | 1340
4 | ags + a9 + 253 15 | 1964
5 | Yars + Y304 16 | 10262 + 1292
6 | a1 + V230 + Y52 + Yasg 17 | 1a6s5
7 | Yaze + Vase + V259 18 | 77 + 1306
8 | Y226 + Y230 + o502 19 | a5 + a5 + Va5 + Pasg
9 | Youa + a5z + Vas7 + osg 2 218 + 222 + Vo33 + Yosg +
10 | 1263 + 1292 Pas0 + V267 + Yago + Y307
11 | 1934 + as7 + asg 21 | X44 * Xos8
TABLE 10. The projective characters used in the proof
for block Bg (notation explained in Section 3)
©/1 2 3 45 6 77 8 9 10 11 12 13 14 15 16 17
18 o1 1 -1 . . 1 . =2 .
19 1 . -1 1 1 . -1 -1 -1
20 T . .1 -1 1 . .2 —4 .
21 4 1 1 -1 -1
TABLE 11. Relations for projective characters in Bg, [
©/1 2 3 45 6 7 8 9 11 12 13 14 15 10 16 17
18 o1 . . 1 . 1 -2 .
19 1 . 1 . .. -1 -1 -1 -1
20 1 A | . 2 . —1 —4 .
21 4 1 1 . 1 -1 -1

TABLE 12.

Relations for projective characters in Bg, 11
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1 833 1105 1105 1326 21658

20722 22372 22372 63700 77077 77077

183600 215747 215747 182274 270725 496146

496146 1061242 1157377 1157377 1248428 1248428
1551199 6194188

TABLE 13. The degrees of the irreducible Brauer char-
acters of By

52 2380 2380 9944 22100 43316
387464 387464 551056 1039584 595544 748424
748424 1561704 1561704 1526056 3211896

TABLE 14. The degrees of the irreducible Brauer char-
acters of Bg
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1234567891011 12 13 14 1516 17 18 19 20 21 22 23 24 25 26

833

1105
1105
1326
21658
22932
23205
23205
44200
44200
63700
99450
99450
162435
162435
183600
183600
216580
216580
249900
270725
348075
348075
519792
541450
541450
541450
541450
584766
812175
812175
1082900
1299480
1299480
1949220
1949220
2165800
2165800
2784600
2784600
2828800
2828800
3411968
3898440
3898440
4331600
4331600
4526080
4526080
5870592
6497400
6497400
7309575
7309575
11880960
11880960
14619150
14619150
16777216
17326400

1. ... ...
B
R
B
.1
..... 1
11. .1
... .. 1
... ... 1
1.1...11
1..1.1
......... 1
... ... 1. 1
... .. .. 1. 1
..... 1 .11
..... 1 .1 1 .
......... 1
......... 1 .
r....... 1 .
... .. 1
11 1.111 1 .
......... . 1
2 1 11 1
2 11 1 1
... .. 111 . 1 1
.11..11. 1
1100101 . 1
1 11 . 11
1....1 11 1
21 222 . 11
... .. 1 1 . 1 1
... .. 1 1 1 1
..... 1. . 1
1 .11 1
1 1 .1 . 1
....... 1 1 1 1
........ 1. .o 1 . 1 .
......... 1 2 1 . 1 1
......... 1 . 2 .1 1
... .. 1 11 . 2 11 1
... .. 11 .12 11 1 .
11.12111 .11 . 111 . . . 1
11.1.1121 11 . 111 1
TR 2 11 . 1 .
... .. 1 2 11 11 .1 1
... ... 1. . 2 11 11 .
..... 1. 11 . 11 . 11 .
..... 1. 1 .11 1 . 1 1 .
1.1. 11 11 . 1 11 .1
.1 1 11 1 . 11 1 .
111..111 . . 21111111 . 1
11.1.2 1 . 21 111 11 .1
11..12 . 1 2 1 11 11 11
..... 2. .21 . 3 2 . 2 .11
..... 2. .2 1 3 2 . 2 1 .
100012 2 11 11 .1
.10 0102 . 2 . 11 1 .11
.1 .21 . 3 2 . 2 2 .1
... .10 0002 0013 0 2 2 2
117..21.114 1141111 2111
..... 1. .2 4 1 1 1 31 11

— e

—

[

= e

TABLE 15. The decomposition matrix of B
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12345678910 11 12 13 14 15 16 17

52 1.
2380 1.
2380 .. 1.
12376 11 .1
12376 1 .11.
22100 B
43316 B |
46800 11121 ..
424320 12 .11 . 1.
424320 1 .211. .1
433160 .10 . .11 .
433160 B T A
565760 B e
1082900 L
1082900 11.1211 .. . 1
1082900 1 .1121.1. . 1
1146600 e L
1299480 e T
1299480 e T |
1591200
1591200
1949220
1949220 . o Lo .
2165800 e |
2772224 .1
2772224 |
2784600
2784600
4798080
4798080 .o
4950400 |
4950400
6497400
6497400
6930560
6930560 .
8663200 |
8663200 1
9052160 o Lo . .
9547200 . |
12475008 .11
12475008 1
13861120 11
13861120 1.
16307200 1
16777216 2 2

=
e .
—
—
no
[

== NN
B
[N}
RN N
e e
-
e
NN ==
-
==

==
=
—_
N = o= NN
s NN
no
e N ..
el el el el e e
== e
=
—
= e

H
—
—

—

N = e
W W= =
= e
NN NN WW
=
=
= e
=R e
N = NN ==
e el el el e

14211 2 1 1

= .
W W = NN

TABLE 16. The decomposition matrix of Bg
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