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PRESENTATIONS

NOTATION

Throughout this lecture, let F be a field and 2 a
finite-dimensional F-algebra.

J(21): Jacobson radical of 2
i.e. the annihilator of the simple 2(-modules
i.e. the intersection of the maximal right ideals of 2/

mod-2l: category of finite-dimensional right 2(-modules

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY — LECTURE V



PRESENTATIONS

PRESENTATIONS FOR ALGEBRAS

F({Xy,...,Xn): free associative F-algebrain Xi,..., X,

For R C F(Xi,..., Xy) write
(X1,....Xn | R) == F(Xy,..., Xn)/1,

where / is the two-sided ideal generated by R.
Example: <X1,X2 | X.IZ,XZ?,)GXQ — X2X1> = F(Cg X Cg)

20 is finitely presented if A = (Xy,..., X, | R) for some finite R.
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PRESENTATIONS

GENERATORS AND RELATIONS FOR MATRIX ALGEBRAS

Suppose that F is finite, char(F) = p, and let 2 < F9*% be a
matrix algebra generated by A+, ..., A,

Carlson and Matthews have developed and implemented an
algorithm that computes
O afinite presentation for 2,
@ a matrix algebra isomorphic to the basic algebra of L,
@ the Cartan matrix and the dimension of L.

Applications: Homomorphisms from 2(, cohomology, see also
Lecture 4.
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PRESENTATIONS

THE CARLSON-MATTHEWS ALGORITHM: BACKGROUND

Let Sy,..., S, denote the simple 2(-modules (up to
isomorphism).

A/J(A) = Aq @ - - - @ A with homogeneous components 2;; the
2(; are full matrix algebras over finite extension fields K; of F.

In fact 2; is the image of the action homomorphism
©j - A — End,:(S,-).
i, i and K; are constructed with the MeatAxe.

There is a subalgebra 2’ of 20 with 2’ N J() = 0, so that
A=A - DU

This subalgebra is also constructed during the algorithm.
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PRESENTATIONS

THE CARLSON-MATTHEWS ALGORITHM: OUTLINE

Here is a very rough outline of the algorithm:

© Compute, with the MeatAxe, a sequence E; of pairwise
orthogonal idempotents of 2 such that

o i(Ej) = djly,.
@ For each /, compute, with the MeatAxe, a sequence e;; of
pairwise orthogonal primitive idempotents with E; = Zj ej.
© Construct elements 5; € ej1 A ej1, 77 in ERLE; such that
(Bi, i) = Aj; this gives generators for 2.
© Determine ideal generators for J(2).
© Determine the relations.

Put e =), ;1. Then e2le s the basic algebra of 2.
Determine matrix representation of eAe on F'*%.
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PRESENTATIONS

THE CARLSON-MATTHEWS ALGORITHM: STEP 1

@ Choose E € 2 at random.

@ Forjfrom2to rdo:
e Compute minimal polynomial p; of p;(E);
e Replace E by Eyu;(E). (This is still in 2L.)

© Now g;(E)=0forall2 <i<r.
© If p4(E) is not invertible, go back to Step 1.

© Compute the minimal polynomial u of ¢4 (E).
Note = v + awith 0 £ a € F and v has no constant term.
@ Replace E by —v(E)/a; now p1(E) = 1g,.
@ Now p;(E2 — E)=0forall j,i.e. E2 — E € J().
Q If E2 — E # 0, replace E by EP; then
(EP)? — EP = (E? — E)P.
© Repeat until E? = E; put £y := E. (J(2l) is nilpotent.)
@ Continue with (1g[ — E; )Ql(1g( — E1)
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PRESENTATIONS

PRESENTATIONS FOR MODULES

For a finite set Yi, ..., Yn put

m
FMa(Y1, ..., Ym) := free right 21-module & Y2L.
i=1

For R C FMy(Y1,..., Ym) write
<Y17""Ym | R> = FMQl(YM---aYm)/Wa

where W is the submodule generated by R.

An 2-module V is finitely presented if V = (Yy,..., Yy | R) for
some finite R.
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PRESENTATIONS

THE VECTORENUMERATOR

Let A = (Xi,..., X, | R) be finitely presented, and let
V=(Yy,...,Ym| R) be afinite presentation for the
2A-module V.

THEOREM (LABONTE, LINTON)

There is an algorithm, the VectorEnumerator, which terminates,
if and only if V is finite-dimensional.

In this case, the VectorEnumerator returns an F-basis B of V,
and representing matrices for X; w.r.t. B.

Taking V = (Y | 0), The VectorEnumerator computes the
(right) regular representation of 2.

The VectorEnumerator is a linear version of the Todd-Coxeter
algorithm for finitely presented groups.
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PRESENTATIONS

COXETER GROUPS

Let M := (mj)1<; j<, be a symmetric matrix with m;; € Z
satisfying m;; =2 and mj; > 1 for i # j.

The group

W := W(my) = <S17 ooy S| (S,‘Sj)mif = 1>

group ’

is called the Coxeter group of M, the elements s, ..., s, are the
Coxeter generators of W.

The relations (s;s;)™i = 1 (i # j) are called braid relations.
In view of s? = 1, they can be written as s;s;s;- - - = s;s;s; - - -
The finite real reflection groups are Coxeter groups.

E.g. Sn=(S1,.-.,8n1| 8%, (5i8141)%, (sis))? for |i — j| > 1).
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PRESENTATIONS

THE IWAHORI-HECKE ALGEBRA

Let W be a Coxeter group with Coxeter matrix (my).
For g € F, the algebra

HF’q(W) = <TS1" L) Tsr | T32/ = q1 + (q o 1)TS,'7 braid reI,S >F-a|g.

is the Iwahori-Hecke algebra of W over F with parameter q.
Braid rel's: T Ts Ts, -+ = Ts; T, Ts; - - - (mj; factors on each side)

If W is finite, then Hg 4(W) has finite dimension |W/|.

These lwahori-Hecke algebras play a crucial role in the
representation theory of finite groups of Lie type.

If F = Q(u) for an indeterminate u, then Hg , is called the
generic lwahori-Hecke algebra associated to W.
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PRESENTATIONS
COMPLEX REFLECTION GROUPS

A complex reflection group is a finite group W generated by
pseudo reflections in GL4(C).

A pseudo reflection is an element of GL4(C) of finite order with
fixed space of dimension d — 1.

Shephard and Todd classified the irreducible complex reflection
groups. Apart from a (3-parameter) infinite family there are 34
exceptional groups.

Many of them have a Coxeter like presentation, e.g.

3

Gos = (r,s,t| r* =8> =3 =1, rsr = srs, sts = tst, rt = tr).

One can thus associate a Hecke algebra to them, called
Cyclotomic Hecke Algebra (Ariki, Koike; Broué, Malle).
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PRESENTATIONS

THE VECTORENUMERATOR: AN APPLICATION

W finite complex reflection group, given by a Coxeter like
presentation on S (order + braid relations)

Letu:= (usj|s€ S,0<j<|s|—1)be a vector of
indeterminates, F := Q(u) rational function field.

5|1
Hru = (Ts,s € S| braid relations, H (Ts — us))
j=0

is the cyclotomic Hecke algebra associated to (W, S).
Conijecture (Broué, Malle, Rouquier): dimHg , = |W|.

Jurgen Mdller proved this for some exceptional cyclotomic
Hecke algebras using the VectorEnumerator over Q(u).

Ivan Marin and collaborators proved many more instances.
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HOMOMORPHISMS AND ENDOMORPHISMS

HOMOMORPHISMS

Let V, W € mod-2l.

Recall: An 2-homomorphism from V to W is a linear map
¢V — W, such that

(vip)a = (va)p (1
forallve V,ae
Homg(V, W): set of 2A-homomorphism from V to W

Application (Lux and Szdke): Let V and W be

indecomposable, and let ¢1,. .., ¢, be a basis of Homg(V, W).
Then: V and W are isomorphic, if and only if one of the ; is an
isomorphism.
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HOMOMORPHISMS AND ENDOMORPHISMS

COMPUTING HOMOMORPHISMS, I

Homgy(V, W) can be computed: Equation (1) leads to a system
of linear equations.

Let A = F(aq,...,q) as F-algebra, dm(V) = m, dim(W) = n,
and let the action of 2L on V be given by A¢,..., A; € F™ '™ and
on Wby By,...,B € F™",

Then
Homg(V, W)= {Uec F™" | AilU= UB;forall1 <i<I}. (2)

Taking the entries of U as unknowns, (2) is a system of Imn
equations in mn unknowns.

This was the first approach taken be G. Schneider in 1990. It is
restricted to small values of I, m, n.
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HOMOMORPHISMS AND ENDOMORPHISMS

COMPUTING HOMOMORPHISMS, II

C. Leedham-Green and J. Cannon develop an algorithm that
performs better, implemented in MAGMA by M. Smith.

Lux and Szb6ke reduce the number of unknowns by using a
(short) presentation of V.

Suppose V = (Yy,..., Y, | R) with R finite, i.e. V is given by a
finite presentation.

Then

Homy(V, W) = {4 € Homy(FMy(Y1,..., Y:), W) | R C Ker(y)}.

GERHARD HISS COMPUTATIONAL REPRESENTATION THEORY — LECTURE V



HOMOMORPHISMS AND ENDOMORPHISMS

COMPUTING HOMOMORPHISMS, III

Simplest case: V = (Y | R) is cyclic.

Let wy,..., w, be a basis of W.

Let ¢» € Homy(Y2(, W) be defined by Yy = 3", yjw; with
unknown coefficients u;.

Let s = Ya € R for some a € 2. Suppose that

n
wja = Z Ajy Wk,
k=1

i.e. A= (ak) € F™"is the matrix of the action of a on W.
Then sy = 0, yields the n equations

n
d yax=0 forallk=1,...,n.
j=1
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HOMOMORPHISMS AND ENDOMORPHISMS

DIRECT DECOMPOSITIONS

Let V € mod-2. Put € := Endy(V) := Homgy(V, V) (this is an
F-algebra, the endomorphism ring of V).

Suppose
with non-zero 2A-submodules V.

Let 7; € & denote the projection to V;.
Then 2 = m;, i.e., m; is an idempotent in €.

The left ideal &r; may be identified with Homgy(V, V;).

PROPOSITION (FITTING CORRESPONDENCE)

QO EC=CmrBEMD--- P Enmy.
@ V; =V, as-modules, if and only if €r; = &r; as left ideals.
© Vi, is indecomposable if and only if =; is primitive.
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HOMOMORPHISMS AND ENDOMORPHISMS

LUX AND SZOKE’S ALGORITHM: BACKGROUND

K. Lux and M. Szdke: algorithm to find the indecomposable
components V; of V € mod-2L.

Put € := Endy(V), write ™: &€ — ¢/J(¢&) =: € (natural map).
Suppose € = S; @ --- @ S, is the decomposition of € into
simple left ideals.
Let £/ € & be non-nilpotent with ¢z, = S;,1 < i< n.
Then for suitable powers ¢; of ¢ the following are satisfied:
(] @8_,' =S,
@ ¢¢;is aleft PIM of ¢,
Q@ CE=C1 - D C&ep.

Thus V=V, ®--- @ V, with the indecomposables V; = Ve,.
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HOMOMORPHISMS AND ENDOMORPHISMS

LUX AND SZOKE’S ALGORITHM: OUTLINE

Here is an outline of the Lux-Sz6ke’s algorithm:

© Compute € in its left regular representation.

@ Determine the composition factors of €.

© Compute a basis for J(&).

@ Compute Cy,...,Cn C € such that C; is a basis for S;.
© Choose ¢} € C; non-nilpotent.

@ Find ¢; by powering up ¢’.

Remarks: 1—4 can be achieved with the MeatAxe.
Ci necessarily contains a non-nilpotent element.

ej = /™ if Ker(e/™) = Ker(/?™).

i
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HOMOMORPHISMS AND ENDOMORPHISMS

RELATED ToOPICS

More advanced topics, which | did not present in this series of
lectures include:

© Wedderburn decomposition of group algebras

@ Integral representations and lattices (representations of
groups over the integers or rings of algebraic integers,
lattices, ...)

© Cohomology (low degree cohomology of groups,
cohomology rings, module varieties, .. .)

© Representations of algebras given by quivers with relations
© Representations of Lie algebras

O Invariant theory

Qo ...
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HOMOMORPHISMS AND ENDOMORPHISMS
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AOMORPHISM

Thank you for your attention!
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