Aufgabenblatt 1 zur

Vordiplom-Klausur Lineare Algebra I (6. 10. 1993)

Professor Dr. J. Neubüser, Lehrstuhl D für Mathematik, RWTH Aachen

Aufgabe 1.

Geben Sie für die folgenden Begriffe jeweils eine vollständige Definition an.

a) lineare Unabhängigkeit einer nicht leeren, nicht notwendigerweise endlichen Menge von Vektoren

2 Punkte

b) Eigenvektor

1 Punkt

c) Bilinearform, Skalarprodukt, Radikal

3 Punkte

Zur Erinnerung: Vergessen Sie nicht, alle Bezeichnungen, die Sie einführen, zu erklären.

Aufgabe 2.

Welche der folgenden Relationen auf \mathbb{Z} sind reflexiv, welche symmetrisch und welche transitiv? (jeweils Beweis oder Gegenbeispiel!)

a) $x \sim y \iff x \text{ teilt } y - 7$

3 Punkte

b) $x \sim y \iff xy \leq 0$

3 Punkte

Aufgabe 3.

Es sei $V = \{a + bx + cx^2 \mid a, b, c \in \mathbb{Q}\}$ der Vektorraum aller Polynome $p \in \mathbb{Q}[x]$ mit Grad $p \leq 2$. Welche der folgenden Teilmengen von V sind Teilräume? (jeweils Beweis oder Gegenbeispiel!)

a) $M_1 = \{ p \in V \mid (x - 1) \text{ teilt } p \}$

3 Punkte

b) $M_2 = \{ p \in V \mid x \text{ teilt } (p-1) \}$

2 Punkte

Aufgabe 4.

Es sei R ein kommutativer Ring mit Einselement, und es sei a ein Nullteiler von R. Zeigen Sie, daß a in R kein (multiplikatives) Inverses besitzt.

3 Punkte

Aufgabe 5.

 T_1 und T_2 seien zwei Teilräume eines K-Vektorraums V, und es sei $T_1 \cap T_2 \neq T_1$ und $T_1 \cap T_2 \neq T_2$. Zeigen Sie, daß $T_1 \cup T_2$ kein Teilraum von V ist. 3 Punkte

Aufgabe 6.

Es sei $V = \langle B_1, \ldots, B_6 \rangle$ ein 6-dimensionaler K-Vektorraum, und es seien T_1 ein 3-dimensionaler und T_2 ein 5-dimensionaler Teilraum von V. Der Durchschnitt $T_1 \cap T_2$ habe die Dimension d.

a) Welche Werte kann d annehmen? (Antwort mit Begründung)

2 Punkte

b) Geben Sie für jeden dieser Werte ein Beispiel für zwei entsprechende Teilräume T_1 und T_2 an.

2 Punkte

Aufgabe 7.

Es sei V ein K-Vektorraum, T ein Teilraum von V, der nicht nur aus dem Nullvektor besteht, und $X_1, \ldots, X_n \in V$, so daß $(T + X_1, \ldots, T + X_n)$ eine Basis des Restklassenraums V/T ist. Beweisen oder widerlegen Sie die folgenden Aussagen.

a) (X_1, \ldots, X_n) ist ein Erzeugendensystem von V.

2 Punkte

b) (X_1, \ldots, X_n) ist linear unabhängig in V.

2 Punkte

Aufgabenblatt 2 zur

Vordiplom-Klausur Lineare Algebra I (6. 10. 1993)

Professor Dr. J. Neubüser, Lehrstuhl D für Mathematik, RWTH Aachen

Aufgabe 8.

Es sei Φ ein nicht ausgeartetes Skalarprodukt auf einem K-Vektorraum V.

- a) Zeigen Sie: Gilt für zwei Vektoren $Y_1,Y_2\in V$, daß $\Phi(X,Y_1)=\Phi(X,Y_2)$ für alle $X\in V$, so folgt $Y_1=Y_2$.
- b) Zeigen Sie mit Hilfe von a): Ist Φ wie oben und φ eine Abbildung von V in V, so daß $\Phi(X,Y)=\Phi(X,\varphi(Y))$ für alle $X,Y\in V$, so ist φ linear. 3 Punkte

Zur Erinnerung: Vergessen Sie nicht, alle auftretenden Quantoren hinzuschreiben.

Aufgabe 9. Es sei $V = \mathbb{R}^4$ und $T = \langle \begin{pmatrix} 2 \\ 0 \\ 4 \\ -2 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \\ 2 \end{pmatrix} \rangle \leq V$. Bestimmen Sie den Annihilator An $T \leq V^*$. 5 Punkte

Aufgabe 10.

Es sei V der von der Menge $B = \{\sin^2 x, \sin x \cos x, \cos^2 x\} \subset \text{Abb}(\mathbb{R}, \mathbb{R})$ erzeugte 3-dimensionale Vektorraum. Dann ist B eine Basis von V. Ferner sei die (bekanntlich lineare) Abbildung $\varphi: V \to V$, $f(x) \mapsto f'(x) + f''(x)$ gegeben, wobei f' und f'' die gewöhnliche erste und zweite Ableitung von f nach x bezeichnen.

a) Berechnen Sie die Abbildungsmatrix ${}_{B}\varphi_{B}$.

5 Punkte

b) Berechnen Sie Kern φ (und vergessen Sie dabei nicht, daß V aus Funktionen und nicht aus Zahlenspalten besteht).

3 Punkte

Aufgabe 11. Invertieren Sie die Matrix
$$M = \begin{pmatrix} 1 & -2 & -6 \\ -1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \in \mathbb{Q}^{3\times 3}$$
. 5 Punkte

Aufgabe 12.

Es sei $V=\mathbb{Q}^3$ und B die Standardbasis von V, und es sei M die in Aufgabe 11 gegebene Matrix. Eine lineare Abbildung φ von V nach V sei durch ${}_B\varphi_B=M$ gegeben.

a) Berechnen Sie die Eigenwerte von φ und ihre Vielfachheiten.

3 Punkte

b) Berechnen Sie zu jedem Eigenwert von φ den zugehörigen Eigenvektorraum.

2 Punkte

Aufgabe 13.

Es sei
$$V = \mathbb{R}^3$$
 und $\mathcal{B} = (B_1, B_2, B_3)$ eine Basis von V . Ein Skalarprodukt Φ auf V sei gegeben durch $\mathcal{B}\Phi\mathcal{B} = \begin{pmatrix} 1 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 4 \end{pmatrix}$. Bestimmen Sie eine normierte Orthogonalbasis von V .