Test 2 im WS99/00

Es sei K ein Körper und $U,\,V$ und W K-Vektorräume.

T1) Ist $\varphi : \mathbb{R} \to \mathbb{R}$ \mathbb{R} -linear, so gilt für alle $a, b \in \mathbb{R}$: $\varphi(0) = 0$ $\varphi(1) = 1$ $\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b)$ $\varphi(a \cdot b) = a \cdot \varphi(b)$ $\varphi(a + b) = \varphi(a) + \varphi(b)$ Bild $\varphi = \mathbb{R}$	 ☑ Ja ☑ Ja ☑ Ja ☒ Ja ☒ Ja ☒ Ja 	□ Nein⋈ Nein⋈ Nein□ Nein□ Nein⋈ Nein
T2) Ist $\varphi: V \to W$ linear, so ist: Kern $\varphi = \{\varphi(v) v = \underline{0}\}$ Kern $\varphi = \{v \in V \varphi(v) = \underline{0}\}$ φ surjektiv $\iff \varphi$ injektiv φ injektiv $\iff \text{Kern } \varphi = \{\underline{0}\}$	□ Ja ⊠ Ja □ Ja ⊠ Ja	⊠ Nein□ Nein⊠ Nein□ Nein
T3) Sind $\varphi: U \to V$ und $\psi: V \to W$ lineare Abbildungen, so gilt: $\operatorname{Kern}(\psi \circ \varphi) \subseteq \operatorname{Kern} \varphi$ $\operatorname{Kern}(\psi \circ \varphi) \subseteq \operatorname{Kern} \psi$ $\operatorname{Kern}(\psi \circ \varphi) \supseteq \operatorname{Kern} \varphi$ $\operatorname{Bild}(\psi \circ \varphi) \subseteq \operatorname{Bild} \psi$ $\operatorname{Bild}(\psi \circ \varphi) \subseteq \operatorname{Bild} \varphi$ $\operatorname{Bild}(\psi \circ \varphi) \supseteq \operatorname{Bild} \psi$	 □ Ja □ Ja ⋈ Ja ⋈ Ja □ Ja □ Ja 	⋈ Nein⋈ Nein⋈ Nein⋈ Nein⋈ Nein⋈ Nein
T4) Welche der folgenden Abbildungen sind linear? (\mathbb{R} , \mathbb{R}^2 und \mathbb{R}^3 als \mathbb{R} -Vektorräume) $\varphi: \mathbb{R} \to \mathbb{R}, x \mapsto 2x+1$ $\varphi: \mathbb{R}^2 \to \mathbb{R}^3, (x_1, x_2) \mapsto (x_1, x_2 - x_1, x_1)$ $\varphi: \mathbb{R} \to \mathbb{R}^2, x \mapsto (x, 2x)$ $\varphi: \mathbb{F}_2 \to \mathbb{F}_2, x \mapsto x^2$ $\varphi: \mathbb{R}^2 \to \mathbb{R}, (x_1, x_2) \mapsto x_1 x_2$	 □ Ja ⋈ Ja ⋈ Ja ⋈ Ja □ Ja 	⋈ Nein⋈ Nein⋈ Nein⋈ Nein⋈ Nein
T5) Welche der folgenden Aussagen sind richtig? Jede \mathbb{R} -lineare Abbildung $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$ ist surjektiv. Es gibt eine injektive, \mathbb{R} -lineare Abbildung $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$. Es gibt eine surjektive, \mathbb{R} -lineare Abbildung $\varphi: \mathbb{R}^3 \to \mathbb{R}^2$. Jede \mathbb{R} -lineare Abbildung $\varphi: \mathbb{R}^2 \to \mathbb{R}^3$ ist injektiv. Es gibt eine surjektive, \mathbb{R} -lineare Abbildung $\varphi: \mathbb{R}^2 \to \mathbb{R}^3$. Es gibt eine injektive, \mathbb{R} -lineare Abbildung $\varphi: \mathbb{R}^2 \to \mathbb{R}^3$.	 □ Ja □ Ja ⋈ Ja □ Ja □ Ja ⋈ Ja 	⋈ Nein⋈ Nein⋈ Nein⋈ Nein⋈ Nein⋈ Nein
T6) Es sei $\varphi: V \to W$ linear und \mathcal{B} Basis von V . Welche der folgenden Aussagen sind V . Ist φ injektiv, so ist $\varphi(\mathcal{B})$ eine Basis von V . Ist φ surjektiv, so ist $\varphi(\mathcal{B})$ Erzeugendensystem von W . Ist $V \cong W$, so ist φ ein Isomorphismus. Ist φ ein Isomorphismus, so ist $\{\varphi(v_1), \ldots, \varphi(v_n)\}$ für jedes n -Tupel $(v_1, \ldots, v_n) \in V^n$ eine Basis von W .	richtig? ☐ Ja ☐ Ja ☐ Ja ☐ Ja ☐ Ja	⋈ Nein⋈ Nein⋈ Nein⋈ Nein
T7) Welche Aussagen sind richtig? Ein lineares Gleichungssystem		
$a_{11}x_1 + \cdots + a_{1n}x_n = b_1$ $\vdots \qquad \ddots \qquad \vdots \qquad \vdots$ $a_{m1}x_1 + \cdots + a_{mn}x_n = b_m$		
ist lösbar, wenn $n \geq m$. ist eindeutig lösbar, wenn Rg $[a_{ij}] = 0$ ist. ist für $m > n$ nie eindeutig lösbar. hat einen Lösungsraum der Dimension Rg $[a_{ij}]$. hat einen Lösungsraum der Dimension $n-m$, falls $b_1 = \cdots = b_m = 0$ ist. ist eindeutig lösbar, wenn das zugehörige homogene System nur die triviale Lösung hat.	 □ Ja □ Ja □ Ja □ Ja □ Ja □ Ja 	⋈ Nein⋈ Nein⋈ Nein⋈ Nein⋈ Nein⋈ Nein

Auswertung: Richtige Antwort 1 Punkt, keine Antwort 0 Punkte, falsche Antwort −1 Punkt.