N	ame: Matrikelnummer:		
chtig unkt	euzteil. Kreuzen Sie bei jeder Frage der Aufgaben 1 bis 5 entweder "Ja" oder "Nege Kreuz gibt einen Pluspunkt, jedes falsche Kreuz einen Minuspunkt. Jede Aufgabee, Minuspunkte wirken also nicht über Aufgaben hinweg. Wenn Sie bei einer Frage ich kein Kreuz.	gibt imi	mer mindestens
1	Es sei K ein Körper und V ein endlich erzeugter K -Vektorraum. Sind die folgender	1 Aussag	gen richtig?
	Wenn $\mathcal{B} = (b_1, b_2, b_3)$ ein Erzeugendensystem von V und (c_1, c_2, c_3) eine linear unabhängige Folge von Vektoren in V ist, dann ist \mathcal{B} eine Basis von V .	□ Ja	□ Nein
	Wenn $\mathcal{B} = (b_1, b_2, b_3)$ eine Folge von Vektoren in V und (c_1, c_2) ein Erzeugendensystem von V ist, dann ist \mathcal{B} linear abhängig.	□ Ja	□ Nein
	Wenn $\mathcal{B}=(b_1,b_2,b_3,b_4)$ ein Erzeugendensystem von V ist, dann gilt $V=\langle b_1,b_2\rangle\oplus\langle b_3,b_4\rangle.$	□ Ja	□ Nein
	Wenn $\mathcal{B} = (b_1, b_2, b_3)$ eine Basis von V ist, dann gilt $V = \langle b_1, b_2 \rangle \oplus \langle b_1, b_3 \rangle$.	□Ja	□ Nein
	Wenn $\mathcal{B} = (b_1, b_2, b_3)$ eine Folge von Vektoren in V und $(b_1, b_2 - b_1, b_1 - b_2 + b_3)$ eine Basis von V ist, dann ist auch \mathcal{B} eine Basis von V .	□ Ja	□ Nein
2	Es sei $K := \underline{7}$ der Körper mit 7 Elementen und $K[X]$ die Polynomalgebra über K .		
	K[X] ist als K -Vektorraum endlich erzeugt.	□ Ja	□ Nein
	Zu jedem Polynom $p \in K[X]$ gibt es ein Element $u \in K$ mit $p(u) = 1$.	□ Ja	□ Nein
	Der Grad des Produktes zweier Polynome ungleich 0 aus $K[X]$ ist gleich der Summe der Grade der beiden Polynome.	□ Ja	□ Nein
	Das Polynom $X+4$ ist in $K[X]$ ein größter gemeinsamer Teiler der Polynome X^2+5X+4 und X^2+3X+2 . (Beachten Sie $K=\underline{7}$.)	□ Ja	□ Nein
	$\mathcal{B}\mathrm{id}^{\mathcal{C}} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \text{ und } \mathcal{B}\mathrm{id}^{\mathcal{D}} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \text{ auseinander hervor gehen.}$ $\mathrm{Gibt\ es\ einen\ Vektor\ } x \in V \mathrm{\ mit\ } \mathcal{B}x = \begin{bmatrix} 4 \\ 10 \end{bmatrix}, \mathcal{C}x = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \mathcal{D}x = \begin{bmatrix} 3 \\ 2 \end{bmatrix}?$ $\mathrm{Gibt\ es\ eine\ lineare\ Abbildung\ } \mathcal{G}: V \to V \mathrm{\ mit\ } \mathcal{B}\mathcal{G}^{\mathcal{B}} = \begin{bmatrix} 2 & -2 \\ -2 & 4 \end{bmatrix} \mathrm{\ und\ } \mathcal{C}\mathcal{G}^{\mathcal{C}} = \begin{bmatrix} 14 & 20 \\ -8 & -12 \end{bmatrix}?$	□ Ja	□ Nein
4		and die	Abbildung
	Ist α eine quadratische Form?	□ Ja	□ Nein
	Ist α eine affine Vektorabbildung?	□ Ja	□ Nein
	Es sei Γ die Bilinearform auf $\mathbb{R}^{3\times 1}$, deren Gram-Matrix bezüglich der Standardbasis \mathcal{S} gerade A ist. Ist $(\mathbb{R}^{3\times 1},\Gamma)$ ein euklidischer Vektorraum?	□ Ja	□ Nein
5	Es sei V ein n -dimensionaler \mathbb{R} -Vektorraum und φ ein invertierbarer Endomorphism folgenden Aussagen richtig?	nus von	V. Sind die
	Wenn $x \in V$ ein Eigenvektor von φ ist, dann ist x auch ein Eigenvektor von φ^2 .	□ Ja	□ Nein
	Wenn es eine Basis \mathcal{B} von V gibt, so dass $_{\mathcal{B}}\varphi^{\mathcal{B}}$ eine symmetrische Matrix ist, dann besitzt V eine Basis aus Eigenvektoren von φ .	□ Ja	□ Nein
	Wenn $G \in \mathbb{R}^{n \times n}$ eine symmetrische Matrix ist, dann existiert eine orthogonale Matrix $T \in \mathbb{R}^{n \times n}$, für die $T^{tr}GT$ eine Diagonalmatrix ist.	□ Ja	□ Nein

Ergebnisteil. Tragen Sie bei den Aufgaben 6 bis 9 jeweils nur die Ergebnisse in die dafür vorgesehenen Kästchen ein. Sie brauchen die Ergebnisse **nicht** zu begründen, für Begründungen und Ansätze gibt es aber auch **keine** Punkte. Für jede richtige Antwort bekommen Sie die angegebene Punktzahl. Für falsche Antworten gibt es **Null** Punkte.

6	Gegeben ist die Matrix $P:= \begin{bmatrix} -1 & 0 & 1 \\ 3 & 1 & 1 \end{bmatrix} \in \mathbb{Q}^{3\times 3}.$
	Gegeben ist die Matrix $P:=\begin{bmatrix} -1 & 0 & 1 \\ 3 & 1 & 1 \\ -3 & 0 & 2 \end{bmatrix} \in \mathbb{Q}^{3\times 3}.$ Berechnen Sie die zu P inverse Matrix $P^{-1}=\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$
7	Der Endomorphismus φ des \mathbb{Q} -Vektorraums V habe bezüglich einer Basis \mathcal{B} die Matrix
	$_{\mathcal{B}}\varphi^{\mathcal{B}}=\left[\begin{array}{cc} 3 & 1 \\ 1 & 3 \end{array}\right]$. Die Eigenwerte dieser Matrix sind 2 und 4. Bestimmen Sie eine Eigenvektorbasis \mathcal{C}
	$_{\mathcal{B}}\varphi^{\mathcal{B}}=\begin{bmatrix}3&1\\1&3\end{bmatrix}$. Die Eigenwerte dieser Matrix sind 2 und 4. Bestimmen Sie eine Eigenvektorbasis \mathcal{C} von φ , geben Sie aber nur die Basiswechselmatrix $_{\mathcal{B}}\mathrm{id}^{\mathcal{C}}=\begin{bmatrix}-&&\\&&&\end{bmatrix}$ an. (4 Punkte)
8	Es sei V ein 2-dimensionaler Vektorraum über dem Körper $\underline{11} = \{0,1,2,\ldots,10\}$ mit 11 Elementen und
	$(\mathcal{P}, V, *)$ ein affiner Raum über V . Wir wählen einen festen Punkt $U \in \mathcal{P}$ und eine feste Gerade g durch U .
	(a) Wie viele Punkte liegen auf g? (1 Punkt)
	(b) Wie viele Geraden sind parallel zu g ? (2 Punkte)
	(c) Wie viele Geraden gehen durch U ? (2 Punkte)
9	In einem \mathbb{R} -Vektorraum mit Basis \mathcal{B} sei der Endomorphismus φ gegeben durch seine Matrix
	$\mathcal{B}\varphi^{\mathcal{B}} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix} \cdot \text{Welchen Grad hat das Minimal polynom von } \varphi? \qquad \boxed{\qquad (2 \text{ Punkte})}$
	$\mathcal{B}\varphi^{\mathcal{B}} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \text{Welchen Grad hat das Minimal polynom von } \varphi? \qquad \qquad (2 \textit{Punkte})$ $\text{Welche Dimensionen haben die Haupträume von } \varphi? \qquad \qquad (2 \textit{Punkte})$

<u>Schriftlicher Teil.</u> Beantworten Sie die Aufgaben 10 bis 13 schriftlich. Beweisen Sie alle Ihre Behauptungen. Schreiben Sie auf **jedes Blatt** Ihren Namen und Ihre Matrikelnummer. Fangen Sie jede Aufgabe auf einer neuen Seite an.

10	Formulieren Sie eine Definition für den Begriff "Bild einer linearen Abbildung". [Geben Sie dabei alle Voraussetzungen an und schreiben Sie in vollständigen Sätzen. Vergessen Sie nicht "für alle" bzw. "es gibt".] (4 Punkte)
11	Gegeben seien K -Vektorräume V und W mit einer linearen Abbildung $\varphi:V\to W$ und Vektoren $x,y\in V$. Beweisen oder widerlegen Sie die Aussage "Ist $(\varphi(x),\varphi(y))$ eine linear unabhängige Folge, so ist auch die Folge (x,y) linear unabhängig." [Stellen Sie den logischen Aufbau Ihrer Argumentation unmissverständlich dar.] $(4\ Punkte)$
12	Für jede $n \times n$ -Matrix $M \in K^{n \times n}$ über einem Körper K bezeichnen wir mit φ_M die lineare Abbildung $\varphi_M = (x \mapsto Mx) \colon K^{n \times 1} \to K^{n \times 1}$. Wir betrachten Matrizen $A, B \in K^{n \times n}$. Der Spaltenraum $K^{n \times 1}$ besitze eine Basis, die gleichzeitig Eigenvektorbasis bezüglich φ_A und bezüglich φ_B ist. Zeigen Sie, dass $AB = BA$ ist. (4 Punkte)
13	Das Minimalpolynom $m(X)$ eines Endomorphismus φ eines K -Vektorraums V habe die Form $m(X) = u(X) \cdot v(X)$ mit teilerfremden Polynomen $u(X), v(X) \in K[X]$. Berechnen Sie für den Fall $K = \underline{2}$ und $u(X) = X^2 + 1$ und $v(X) = X^2 + X + 1$ Polynome $s(X)$ und $t(X)$, für die sich jeder Vektor $x \in V$ in der Form $x = (u(\varphi) \circ s(\varphi))(x) + (v(\varphi) \circ t(\varphi))(x)$ schreiben lässt. (4 Punkte)