NAME		
$\operatorname{MATRIKELNUMMER}$ _		
STUDIENCANC		

Prof. Dr. Eva Zerz SS 2007

Lineare Algebra I – Klausur am 17.7.2007 **Gruppe B**

- Für jede Aufgabe ein neues Blatt verwenden
- Name, Matrikelnummer, Aufgabennummer auf jedes Blatt
- Nicht mit Rot schreiben
- Es gibt 6 Aufgaben und insgesamt 50 Punkte

Aufgabe	Punkte	
1	9	
2	6	
3	10	
4	7	
5	10	
6	8	

Viel Glück!

- 1. $(2+2+2+3 \ Pkt)$ Sei K ein Körper, $n \in \mathbb{N}$ und $K^{n \times n}$ der K-Vektorraum der $n \times n$ Matrizen mit Einträgen in K.
 - (a) Ist die Abbildung sp: $K^{n \times n} \to K$, $A \mapsto \operatorname{sp}(A)$, die jeder Matrix ihre Spur zuordnet, K-linear?
 - (b) Zeigen Sie, dass für alle $A, B \in K^{n \times n}$ gilt: sp(AB) = sp(BA).
 - (c) Sei $K = \mathbb{Q}$. Gibt es Matrizen $A, B \in K^{n \times n}$ so, dass $AB BA = I_n$ gilt? (Wenn ja, Beispiel angeben; wenn nein, begründen.)
 - (d) Sei $K = \mathbb{Z}_2 = \{0, 1\}$. Finden Sie alle Paare (A, B) mit $AB BA = I_2$, wobei A eine obere 2×2 Dreiecksmatrix und B eine untere 2×2 Dreiecksmatrix ist.
- 2. $(3+1+2 \ Pkt)$ Seien V, W endlich-dimensionale Vektorräume über K und $f: V \to W$ ein surjektiver Homomorphismus. Zeigen Sie, dass es (a) einen Homomorphismus $g: W \to V$ gibt mit $f \circ g = \mathrm{id}_W$ und dass dann gilt: (b) g ist injektiv und (c) $V = \mathrm{Bi}(g) \oplus \mathrm{Ke}(f)$.
- 3. (2+2+2+2+2+2 Pkt) Beweisen oder widerlegen Sie folgende Aussagen:
 - (a) Ist $A \in \mathbb{R}^{n \times n}$ so, dass $A^T A = I_n$, so folgt $\det(A) \in \{1, -1\}$.
 - (b) Ist $A \in K^{n \times n}$, K ein Körper, so sind die Elemente $A^0, A^1, A^2, \ldots, A^n$ des K-Vektorraumes $K^{n \times n}$ linear abhängig.
 - (c) Die Bilinearform $b: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, $(x, y) \mapsto x_1y_1 + 2x_1y_2 + 2x_2y_1 + 4x_2y_2$ ist ein Skalarprodukt auf \mathbb{R}^2 .
 - (d) Ist $A \in K^{3\times 3}$, K ein Körper, so gilt $(adj(A))_{31} = A_{21}A_{32} A_{22}A_{31}$.
 - (e) Die Permutation $\pi \in S_5$ mit $(\pi(1), \pi(2), \pi(3), \pi(4), \pi(5)) = (5, 4, 2, 3, 1)$ ist gerade.

Bei folgenden Aufgaben zählt nur das Ergebnis, nicht der Rechenweg (außer, wenn explizit nach einer Begründung gefragt wird). Tragen Sie Ihr Ergebnis unten ein.

Wichtig: Geben Sie trotzdem unbedingt die Blätter mit Ihren Berechnungen ab!

4. (4+1+1+1 Pkt) Berechnen Sie (a) die Determinante, (b) den Rang, (c) die Spur von

$$A = \begin{bmatrix} 1 & 2 & 4 & 8 \\ 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & -2 & 4 & -8 \end{bmatrix} \in \mathbb{R}^{4 \times 4}.$$

(d) Bestimmen Sie den Zeilenraum von A. Hilfestellung zum Überprüfen Ihres Ergebnisses zu (a): Die Determinante liegt zwischen -100 und 100 und ist durch 9 teilbar.

	Ī		
Antwort: Det:	Rang:	Spur:	Zeilenraum:

5. (2+2+2+2+2Pkt) Bestimmen Sie (a) die Eigenwerte, (b) den Rang, (c) die Eigenräume, (d) die Dimensionen der Eigenräume von

$$A = \begin{bmatrix} 2 & -4 & 7 \\ -5 & 5 & -5 \\ 3 & -5 & 8 \end{bmatrix} \in \mathbb{R}^{3 \times 3}.$$

(e) Ist A diagonalisierbar? (Begründung auf Rechenblatt, hier nur ja/nein)

Antwort: EW:	Rang:	Diag.bar:
V(A, .) =	V(A, .) =	V(A, .) =
$\dim V(A, .) =$	$\dim V(A, .) =$	$\dim V(A, .) =$

6. $(2+4+2 \ Pkt)$ Für welche Werte von $a \in \mathbb{R}$ ist die Matrix

$$A = \left[\begin{array}{cc} 2 & 1\\ 1 - a & 2 \end{array} \right] \in \mathbb{R}^{2 \times 2}$$

(a) invertierbar, (b) diagonalisierbar? (Begründung auf Rechenblatt) (c) Wie, wenn überhaupt, ändert sich Ihre Antwort zu (a) und (b), wenn Sie A als Element von $\mathbb{C}^{2\times 2}$ auffassen? (Bitte (c) auf Rechenblatt beantworten.)

Antwort: Inv.bar für alle a mit:		Diag.bar für alle a mit:	
---	--	----------------------------	--