Semesterklausur zur Algebra I (1.2.00)

Professor Dr. U. Schoenwaelder, Lehrstuhl D für Mathematik, RWTH Aachen

Bitte bearbeiten Sie auf jeder Seite nur eine Aufgabe, und schreiben Sie auf jedes Blatt Ihren Namen. Die Bearbeitungszeit beträgt 120 Minuten. Von den 9 gegebenen Aufgaben für insgesamt 65 Punkte können Sie eine beliebige Auswahl in beliebiger Reihenfolge bearbeiten. Zum Bestehen der Klausur sind mindestens 25 Punkte notwendig. Beachten Sie, dass ausführliche Begründungen einen wesentlichen Teil der Lösung einer Aufgabe bilden, und achten Sie bei Beweisen auf die Vollständigkeit Ihrer Argumentation.

Viel Erfolg!

Aufgabe 1.

Gegeben sei die Matrix $A = \begin{bmatrix} 18 & 0 & 0 \\ 0 & 36 & -24 \end{bmatrix} \in \mathbb{Z}^{2\times 3}$.

- (a) Berechnen Sie Matrizen $S \in GL(2,\mathbb{Z})$ und $T \in GL(3,\mathbb{Z})$, so dass $\tilde{A} = SAT$ in Smith-Normalform ist.
- (b) Geben Sie \tilde{A} sowie die invarianten Faktoren und die Elementarteiler von A an. 7 Punkte

Aufgabe 2.

Es sei $R = \mathbb{Q}[X]$ der Ring aller Polynome über \mathbb{Q} . Welche der folgenden Teilmengen von R sind Teilringe, welche sind Ideale? Bestimmen Sie gegebenenfalls den Restklassenring (Angabe eines isomorphen Ringes).

$$T_1 = \{ f \in R \mid f(0) \in 2\mathbb{Z} \},\$$

$$T_2 = \{ f \in R \mid f(0) = 2 \},\$$

$$T_3 = \{ f \in R \mid f(2) = 0 \}.$$

(Jeweils mit Begründung, aber keine langen Beweise.)

6 Punkte

Aufgabe 3.

In $\mathbb{Q}[X]$ seien die Polynome $f = X^3 - X^2 - 1$ und $g = X^2 - 2X + 1$ sowie das Ideal $f\mathbb{Q}[X]$ gegeben.

- (a) Berechnen Sie im Restklassenring $R = \mathbb{Q}[X] / f\mathbb{Q}[X]$ ein zu $g + f\mathbb{Q}[X]$ inverses Element.
- (b) Ist R ein Körper? (Antwort mit Begründung.)

6 Punkte

Aufgabe 4.

Ist
$$\mathbb{Q}(\sqrt{21}, \sqrt{31}) = \mathbb{Q}(\sqrt{21} + \sqrt{31})$$
? (Beweis.)

7 Punkte

Aufgabe 5.

Welche der folgenden Polynome sind irreduzibel in $\mathbb{Q}[X]$? (Auf die Begründung kommt es an.)

$$f_1 = 3X^5 + 2X^3 - 4X^2 + 2,$$

$$f_2 = X^3 - 4X + 1,$$

$$f_3 = \frac{1}{3}X^3 - \frac{7}{5}X^2 + \frac{8}{5}X - \frac{9}{5}.$$

8 Punkte

Aufgabe 6.

Geben Sie je ein Beispiel für abelsche Gruppen G_1 und G_2 an, so dass jede dieser Gruppen die (innere) direkte Summe zweier zyklischer Untergruppen von Primzahlpotenzordnung $\neq 1$ ist und dass

- (a) die direkten Summanden von G_1 durch G_1 und die obige Bedingung eindeutig bestimmt sind,
- (b) die direkten Summanden von G_2 durch G_2 und die obige Bedingung nicht eindeutig bestimmt sind.

 6 Punkte

Aufgabe 7.

Es sei $G = \langle a \rangle$ eine zyklische Gruppe der Ordnung 1234 und $b = a^{123} \in G$. Berechnen Sie eine Zahl $n \in \mathbb{N}$, für die $b^n = a$ gilt (daraus folgt dann insbesondere, dass auch b die Gruppe G erzeugt).

4 Punkte

Aufgabe 8.

Es sei $P = \{0, 1, -1\}$ ein Körper mit 3 Elementen.

- (a) Finden Sie ein irreduzibles Polynom $f \in P[X]$ vom Grad 3. (Zeigen Sie, dass f irreduzibel ist.)
- (b) Geben Sie ein konkretes Beispiel eines Körpers L an, der P (bis auf Isomorphie) enthält und in dem f eine Nullstelle hat.
- (c) Es sei nun allgemein $K = P(\alpha)$ eine Körpererweiterung von P mit einem Element α , dessen Miminalpolynom (über P) gleich f ist, Ihrem Polynom aus (a). Geben Sie |K| und den Körpergrad [K:P] an und bestimmen Sie alle Teilkörper von K.
- (d) Berechnen Sie die Ordnung von α als Element der multiplikativen Gruppe von K.
- (e) Für wie viele Elemente a aus K gilt P(a) = K?
- (f) Es sei $g \in P[X]$ das Körperpolynom von K. Bestimmen Sie die Grade aller irreduziblen Faktoren von g, ohne die Faktoren selber zu berechnen.

Geben Sie für Ihre Antworten jeweils eine kurze Begründung.

15 Punkte

Aufgabe 9.

Es sei L der Zerfällungskörper des Polynoms $f = X^3 - 5 \in \mathbb{Q}[X]$ in \mathbb{C} .

- (a) Bestimmen Sie den Grad der Körpererweiterung $L:\mathbb{Q}$.
- (b) Welche Ordnung hat die Galois-Gruppe $Gal(L:\mathbb{Q})$?
- (c) Geben Sie eine zu $Gal(L:\mathbb{Q})$ isomorphe Permutationsgruppe auf einer endlichen Teilmenge von L an (alle Elemente). 6 Punkte