Klausur, 25.07.2011

Lineare Algebra I für Informatiker, SS 2011, Dr. T. Hanke

1,	Name: Matrikeinummer:	viatrikeinummer:				
Bearbeiten Sie die folgenden Rechenaufgaben und schreiben Sie die Ergebnisse in den dafür vorgesehenen Platz. Sie brauchen Ihre Ergebnisse nicht zu begründen, für Begründungen und Ansätze gibt es keine Punkte. Für die richtige Antwort bekommen Sie die angegebene Punktzahl. Für eine falsche Antwort gibt es Null Punkte.						
1	Sei $n \geq 2$ und V ein n -dimensionaler \mathbb{R} -Vektorraum mit Basis $\{b_1, \ldots, b_n\}$ und sei die lineare Abbildung $\varphi: V \to V$ definiert durch $b_1 \mapsto 0$, $b_i \mapsto b_{i-1}$ für $i=2,\ldots,n-1$, und $b_n \mapsto b_{n-1}+b_n$.					
	(a) Bestimmen Sie das charakteristische Polynom χ_{φ} von φ . (3 Polynom)	unkte)				
	$\chi_{arphi} =$					
	(b) Bestimmen Sie die Eigenwerte von φ mit ihren algebraischen Vielfachheiten. (2 Pr	unkte)				
	(c) Geben Sie Basen für die Eigenräume von φ an. (2 Proposition 1997)	unkte)				
	(d) Für welche n ist φ diagonalisierbar?	Punkt)				
2	Es sei $\mathbb{F}_2 = \{0,1\}$ der Körper mit 2 Elementen. Bestimmen Sie die Menge aller $x \in \mathbb{F}_2^5$ mit $Ax = b$, wobei $A \in \mathbb{F}_2^{4 \times 5}$ und $b \in \mathbb{F}_2^4$ die folgenden sind: (4 Punkte)					
	$A := \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}, b := \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$ Ergebnis:					

_	0 11 11	A 1 1 '1 1	1.0	1 1
3	Sei die lineare	Abbildung φ	definiert	durch:

$$\varphi: \mathbb{R}^{1\times 3} \to \mathbb{R}^{2\times 2}, \quad x \mapsto \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot x \cdot \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

(a) Geben Sie die Abbildungsmatrix von φ bezüglich der Standardbasis \mathcal{E} von $\mathbb{R}^{1\times 3}$ und der geordneten Basis $\mathcal{B}=(E_{11},E_{12},E_{21},E_{22})$ von $\mathbb{R}^{2\times 2}$ an: (3 Punkte)

$$^{\mathcal{B}}\mathbf{M}^{\mathcal{E}}(\varphi) =$$

(b) Was ist der Rang von φ ?

(c) Geben Sie eine Basis \mathcal{C} von $\operatorname{Kern}(\varphi)$ an.

(2 Punkte)

$$C =$$

(d) Geben Sie eine Basis \mathcal{D} von $\operatorname{Bild}(\varphi)$ an.

(2 Punkte)

$$\mathcal{D} =$$

Wir betrachten
$$\mathbb{R}^3$$
 mit dem Standardskalarprodukt. Sei $v_1=\begin{pmatrix}1\\-1\\0\end{pmatrix}, v_2=\begin{pmatrix}2\\0\\-1\end{pmatrix}$ und $E=\langle v_1,v_2\rangle.$

(a) Bestimmen Sie einen Vektor v_2' , der v_1 zu einer Orthogonalbasis von E ergänzt.

$$v_2' =$$
 (2 Punkte)

4 (Fortsetzung)

5

(b) Berechnen Sie die orthogonale Projektion u' von $u = \begin{pmatrix} 2 \\ -2 \\ 3 \end{pmatrix}$ auf E

$$u' =$$
 (2 Punkte)

(c) Berechnen Sie den Cosinus des Winkels α zwischen dem Vektor u aus Teil (b) und E.

$$\cos(\alpha) = \boxed{ (1 Punkt)}$$

- Für $t \in \mathbb{R}$ sei $B_t = \begin{pmatrix} 3 & t \\ -1 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$.
 - (a) Bestimmen Sie das charakteristische Polynom von B_t . (1 Punkt)
 - (b) Bestimmen Sie die Determinante von B_t . (1 Punkt)
 - (c) Für welche Werte von t ist B_t invertierbar? (1 Punkt)
 - (d) Für welche $t \in \mathbb{Z}$ ist B_t invertierbar in $\mathbb{Z}^{2 \times 2}$? (1 Punkt)
 - (e) Für welche $t \in \mathbb{R}$ besitzt B_t einen Eigenvektor? (1 Punkt)
 - (f) Für welche $t \in \mathbb{R}$ ist B_t diagonalisierbar? (1 Punkt)
 - (g) Für welche $t \in \mathbb{C}$ ist B_t diagonalisierbar, wenn wir B_t als Matrix in $\mathbb{C}^{2 \times 2}$ auffassen?

- (h) Für welche $t \in \mathbb{R}$ ist B_t triangulierbar? (1 Punkt)
- (i) Geben Sie eine Matrix $T \in \mathbb{R}^{2 \times 2}$ an, für die $T^{-1}B_{-8}T$ eine Diagonalmatrix ist.

$$T =$$
 (2 Punkte)

Beantworten Sie die folgenden Aufgaben schriftlich. Beweisen Sie alle Ihre Behauptungen. Schreiben Sie auf **jedes Blatt** Ihren Namen und Ihre Matrikelnummer.

Fangen Sie jede Aufgabe auf einer neuen Seite an.

- 6 Sei V ein endlich-dimensionaler euklidischer Vektorraum und \mathcal{B} eine Orthonormalbasis von V. Sei $\varphi \in \operatorname{End}(V)$. Dann heißt φ selbstadjungiert, wenn für alle $v, w \in V$ gilt $\langle \varphi(v), w \rangle = \langle v, \varphi(w) \rangle$. Zeigen Sie:
 - (a) φ ist genau dann selbstadjungiert, wenn $M^B(\varphi)$ symmetrisch ist. (3 Punkte)
 - (b) Sei φ selbstadjungiert. Dann ist für jeden φ -invarianten Unterraum $U \leq V$ auch U^{\perp} ein φ -invarianter Unterraum. (2 Punkte)
- 7 Sei K ein Körper, V ein K-Vektorraum und $\varphi \in \operatorname{End}(V)$. Sei M eine Menge von Eigenvektoren von φ zu paarweise verschiedenen Eigenwerten. Zeigen Sie, dass M linear unabhängig ist. (5 Punkte)
- 8 Sei $A \in \mathbb{R}^{3\times 3}$ mit charakteristischem Polynom $\chi_A(X) = X^3 3X^2 + 2X$. Was ist der Rang vom A? Beweisen Sie Ihre Aussage. (4 Punkte)