Flat Manifolds with Holonomy Representation of Quaternionic Type

Rafał Lutowski
with Gerhard Hiss and Andrzej Szczepański
Virtual Nikolaus Conference 2020
Institute of Mathematics, University of Gdańsk

Flat manifolds

Crystallographic groups

Affine motions in \mathbb{R}^{n}

$$
A(n):=\mathbb{R}^{n} \rtimes G L_{n}(\mathbb{R})
$$

Isometries of \mathbb{R}^{n}

$$
\mathrm{E}(n):=\mathbb{R}^{n} \rtimes \mathrm{O}(n)
$$

Crystallographic group

Discrete and co-compact subgroup of $\mathrm{E}(\mathrm{n})$.

Orbit spaces and Bieberbach groups

When orbit spaces are manifolds?

When crystallographic groups are torsion-free - Bieberbach groups.

Constructing Bieberbach groups

Structure of crystallographic groups (Bieberbach 1911)
「 - crystallographic. 「 fits into a short exact sequence

$$
\begin{equation*}
0 \longrightarrow L \longrightarrow \Gamma \longrightarrow G \longrightarrow 1 . \tag{1}
\end{equation*}
$$

G - finite group - holonomy group of Γ.
L - faithful G-lattice ($L \cong \mathbb{Z}^{n}$).

When crystallographic is Bieberbach?

Let $\alpha \in H^{2}(G, L)$ correspond to (1). Γ is Bieberbach iff α is special:

$$
\operatorname{res}_{C}^{G} \alpha \neq 0
$$

for all cyclic $C<G$ of prime order.

What defines a Bieberbach group?

Faithful G-lattice L with special element $\alpha \in H^{2}(G, L)$.

Problem

Types of real modules

G - finite group, $V-\mathbb{R} G$-module
Decomposition into irreducible components:

$$
V=V_{1} \oplus \ldots \oplus V_{k}
$$

For every irreducible component v_{i} we have

$$
\operatorname{End}_{\mathbb{R} G}\left(V_{i}\right)=\left\{\begin{array}{lllll}
\mathbb{R} & : & \mathbb{C} \otimes_{\mathbb{R}} V_{i}=U & : & 1 \\
\mathbb{C} & : & \mathbb{C} \otimes_{\mathbb{R}} V_{i}=U \oplus \bar{U} & : & 0 \\
\mathbb{H} & : & \mathbb{C} \otimes_{\mathbb{R}} V_{i}=U \oplus U & : & -1
\end{array}\right\}=\nu_{2}(\chi u) \Leftrightarrow \chi U \in\left\{\begin{array}{l}
\operatorname{lrr}_{\mathbb{R}}(G) \\
\operatorname{lrr}_{\mathbb{C}}(G) \\
\operatorname{lrr}_{\mathbb{H}}(G)
\end{array}\right.
$$

χu - character of irreducible $\mathbb{C} G$-module $U, U \nsubseteq \bar{U}$
$\nu_{2}(\chi)=\sum_{g \in G} \chi\left(g^{2}\right)-$ Frobenius-Schur indicator
We get (unique) decomposition

$$
V=V_{\mathbb{R}} \oplus V_{\mathbb{C}} \oplus V_{\mathbb{H}}
$$

Problem

Recall

Bieberbach group Γ is defined by faithful G-lattice L and special element $\alpha \in H^{2}(G, L)$.

Question

Let $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}, \mathbb{H}\}$. Can we find a Bieberbach group Γ st. $\mathbb{R} \otimes_{\mathbb{Z}} L=\left(\mathbb{R} \otimes_{\mathbb{Z}} L\right)_{\mathbb{F}}$?

For complex and quaternionic case:

We would get kähler $(G \subset U(n))$ and hyperkähler $(G \subset S p(n))$ structure in a non-trivial way - not coming from inclusion $\mathrm{Sp}(n) \subset \mathrm{U}(2 n) \subset \mathrm{O}(4 n)$.

In real and complex case the answer is yes:
(1) 3-dimensional with $G=C_{2}^{2}$ (Hantzsche-Wendt 1935);
(2) 8-dimensional with $G=C_{3}^{2}$ and $L^{G}=0$ (Hiller-Sah 1986).

Restrictions on holonomy group

Γ - Bieberbach group of quaternionic type defined by G-lattice L and $\alpha \in H^{2}(G, L)$:

1. $|G|$ is even, otherwise $g \mapsto g^{2}$ is bijection and for $\chi \in \operatorname{Irr}(G)$:

$$
\nu_{2}(\chi)=\sum \chi\left(g^{2}\right)=\sum \chi(g)=\langle\chi, 1\rangle \in\{0,1\} .
$$

2. G is non-abelian, otherwise $\nu_{2}(\chi) \in\{0,1\}$ for $\chi \in \operatorname{Irr}(G)$.
3. $Z(G)$ is elementary abelian 2-group, otherwise:

- $z \in Z(G)$ - of order 4 or p (odd prime).
- $\chi \in \operatorname{lrr}(G)$ - summand of χ_{L} st. $z^{2} \notin \operatorname{ker} \chi$.
- Schur's lemma: $\operatorname{res}_{Z(G)} \chi=\chi(1) \lambda$ for some $\lambda \in \operatorname{Irr}(Z(G))$.

Hence $\chi(z) \in \mathbb{C} \backslash \mathbb{R}$ and $\nu_{2}(\chi)=0$.
4. No cyclic Sylow subgroup of G has normal complement:
(Han-Sah 1986): implied by $L^{G}=0$.
5. 2-Sylow subgroup of G is not cyclic:

Cayley normal 2-complement theorem (1878).

Restrictions on holonomy group

Γ - Bieberbach group of quaternionic type defined by G-lattice L and $\alpha \in H^{2}(G, L)$:
6. Let $I(G):=\left|\left\{g \in G: g^{2}=1\right\}\right|: I(G) \leq|G| / 2$ and $I(G)<\sum_{\chi \in \operatorname{lrr}(G)} \chi(1)$:

1st (Wall 1970): otherwise $\operatorname{Irr}(G)=\operatorname{Irr}_{\mathbb{R}}(G)$.
2nd (Frobenius-Schur formula):

$$
\mathrm{I}(G)=\sum_{\chi \in \operatorname{lrr}(G)} \nu_{2}(\chi) \chi(1)=\sum_{\chi \in \operatorname{lr} r_{\mathbb{R}}(G)} \chi(1)-\sum_{\chi \in \operatorname{lr} r_{\mathbb{H}}(G)} \chi(1) .
$$

7. $\left|\left|\operatorname{rr}_{\mathbb{H}}(G)\right|>1\right.$:
(L. 2018): $\mathbb{C} \otimes_{\mathbb{Z}} L$ contains at least two non-isomorphic components.
8. $\forall_{z \in Z(G) \backslash\{1\}} \exists_{\chi, \psi \in \operatorname{lr} r_{H}(G)} \chi(z)=\chi(1)$ and $\psi(z)=-\psi(1)$:

Otherwise L not faithful or α not special.

Example

gap> G := SmallGroup(64,245);

$G=\langle a, b, c, d\rangle$ fits into central extension

$$
1 \longrightarrow C_{2}^{2} \longrightarrow G \longrightarrow C_{2}^{4} \longrightarrow 1 .
$$

$a^{2}=c^{2}, b^{2}=d^{2}$ generate $Z(G)$ and

$$
\left[\begin{array}{lll}
{[a, b]=a^{2}} & {[a, c]=a^{2} b^{2}} & {[a, d]=b^{2}} \\
& {[b, c]=a^{2}} & {[b, d]=a^{2} b^{2}} \\
& {[c, d]=1}
\end{array}\right.
$$

Characters conjugate

$$
\chi_{i}=\chi_{1} f_{i} \text { for some } f_{i} \in \operatorname{Aut}(G)
$$

3 characters with FS-indicator -1 :

	1	a^{2}	b^{2}	$a^{2} b^{2}$	$G \backslash Z(G)$
χ_{1}	4	4	-4	-4	0
χ_{2}	4	-4	4	-4	0
χ_{3}	4	-4	-4	4	0

$$
Z_{i}:=\operatorname{ker} \chi_{i}
$$

$$
f_{i}\left(Z_{i}\right)=Z_{1}
$$

Idea for module with special element

For G-lattice L and $f \in \operatorname{Aut}(G)$ we have

1. G-lattice $\left(L^{f}, \cdot f\right): L^{f}=L, g \cdot f l=f(g) l$
2. Commutative diagram for $H<G$, where $\left(f_{\mid H}\right)^{*}$ - isomorphism:

$$
\begin{aligned}
& H^{2}(G, L) \xrightarrow{f^{*}} H^{2}\left(G, L^{f}\right) \\
& \downarrow^{\text {res }_{H}} \downarrow^{\text {resf(H) }} \\
& H^{2}\left(H, \operatorname{res}_{H} L\right) \xrightarrow{\left(f_{H}\right)^{*}} H^{2}\left(f(H), \operatorname{res}_{f(H)} L^{f}\right)
\end{aligned}
$$

Corollary

If we find a G-lattice L and $\alpha \in H^{2}(G, L)$ st. res $_{Z_{1}} \alpha \neq 0$ then

$$
\operatorname{res}_{z_{i}} f_{i}^{*}(\alpha)=\left(f_{\mid Z_{1}}\right)^{*} \operatorname{res}_{Z_{1}} \alpha \neq 0
$$

and $\alpha+f_{2}^{*}(\alpha)+f_{3}^{*}(\alpha) \in H^{2}\left(G, L \oplus L^{f_{2}} \oplus L^{f_{3}}\right)$ is special.

The lattice: first attempt

Some GAP code

```
gap> rep := IrreducibleRepresentations(G)[...]; # chi_1
gap> FieldOfMatrixGroup( Image(rep) );
GaussianRationals
```

```
# expected
```


expected

(Schur index)

```
# (Schur index)
```


Remarks

1. Smallest lattice dimension to work with: 8 .
2. Easy computation: $H^{2}(G, L)$. But:

For every L with $\chi_{L}=2 \chi_{1}$ we've tried we got $\operatorname{res}_{C_{1}} \alpha=0$ for all $\alpha \in H^{2}(G, L)$.
3. Hard computation: determine all lattices with character $2 \chi_{1}$.

It would take too long to wait for...

The lattice: successful attempt

$L^{\prime}:=\operatorname{ind}_{C_{1}}^{G} \mathbb{Z}$. By Shapiro's lemma $H^{2}\left(G, L^{\prime}\right)=H^{2}\left(C_{1}, \mathbb{Z}\right)=\mathbb{Z} / 2$ and

$$
\operatorname{res}_{G_{1}} \alpha^{\prime} \neq 0 \text { for } 0 \neq \alpha^{\prime} \in H^{2}\left(G, L^{\prime}\right)
$$

Quaternionic components

$$
\left\langle\chi_{L^{\prime}}, \chi_{i}\right\rangle= \begin{cases}4, & i=1 \\ 0, & i \neq 1\end{cases}
$$

Basis for L

$$
B=\frac{2 \chi_{1}(1)}{|G|} \sum_{g \in G} \overline{2 \chi}_{2}(g) \rho_{L^{\prime}}(g)
$$

We get "quaternionic" Bieberbach group:

$\chi_{L}=4 \chi_{1}$ and for $0 \neq \alpha \in H^{2}(G, L)=\mathbb{Z} / 2$

$$
\operatorname{res}_{c_{1}} \alpha \neq 0
$$

Notes on holonomy groups

Lemma

Let G be a finite group and p a prime number. Then $O_{p^{\prime}}(G)$ is contained in the kernel of every $\chi \in \operatorname{lrr}(G)$ in the principal p-block.

Lemma (Hiss, Szczepański 1991)

Let G be a finite group and L be a G-lattice. If $H^{2}(G, L)$ contains a special element then for every prime divisor p of $|G|$ there exists a constituent of $\mathbb{C} \otimes_{\mathbb{Z}} L$ which lies in the principal p-block of G.

Notes on holonomy groups

Theorem

Let Γ be quaternionic Bieberbach group with holonomy group G. Then G is not:
(i) $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right), \mathrm{PSL}_{2}\left(\mathbb{F}_{q}\right)$, where q is a power of a prime; (char. table +1 st lemma)
(ii) $A_{n}, 2 . A_{n}, S_{n}, 2 . S_{n}, n \geq 5$;
(iii) a perfect central extension of a sporadic simple group.
(Clifford theorem)
(Atlas+both lemmas)

Theorem (Willems 1977)

If a finite group G is non-abelian and all its non-linear characters have Frobenius-Schur indicator equal to -1 then G is a 2-group.
Thank you!

