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Flat manifolds



Crystallographic groups

Affine motions in Rn

A(n) := Rn ⋊ GLn(R)

Isometries of Rn

E(n) := Rn ⋊ O(n)

Crystallographic group
Discrete and co-compact subgroup of E(n).



Orbit spaces and Bieberbach groups

Z2-action ”gluing”

When orbit spaces are manifolds?
When crystallographic groups are torsion-free – Bieberbach groups.



Constructing Bieberbach groups

Structure of crystallographic groups (Bieberbach 1911)
Γ – crystallographic. Γ fits into a short exact sequence

0 −→ L −→ Γ −→ G −→ 1. (1)
G – finite group – holonomy group of Γ.
L – faithful G-lattice (L ∼= Zn).

When crystallographic is Bieberbach?
Let α ∈ H2(G, L) correspond to (1). Γ is Bieberbach iff α is special:

resGC α 6= 0
for all cyclic C < G of prime order.

What defines a Bieberbach group?
Faithful G-lattice L with special element α ∈ H2(G, L).



Problem



Types of real modules

G – finite group, V – RG-module
Decomposition into irreducible components:

V = V1 ⊕ . . .⊕ Vk

For every irreducible component Vi we have

EndRG(Vi) =


R : C⊗R Vi = U : 1
C : C⊗R Vi = U⊕ U : 0
H : C⊗R Vi = U⊕ U : −1

 = ν2(χU) ⇔ χU ∈


IrrR(G)
IrrC(G)
IrrH(G)

χU – character of irreducible CG-module U, U ≇ U
ν2(χ) =

∑
g∈G χ(g2) – Frobenius-Schur indicator

We get (unique) decomposition

V = VR ⊕ VC ⊕ VH



Problem

Recall
Bieberbach group Γ is defined by faithful G-lattice L and special element α ∈ H2(G, L).

Question
Let F ∈ {R,C,H}. Can we find a Bieberbach group Γ st. R⊗Z L = (R⊗Z L)F?

For complex and quaternionic case:
We would get kähler (G ⊂ U(n)) and hyperkähler (G ⊂ Sp(n)) structure in a non-trivial
way – not coming from inclusion Sp(n) ⊂ U(2n) ⊂ O(4n).

In real and complex case the answer is yes:

(1) 3-dimensional with G = C22 (Hantzsche-Wendt 1935);
(2) 8-dimensional with G = C23 and LG = 0 (Hiller-Sah 1986).



Restrictions on holonomy group

Γ – Bieberbach group of quaternionic type defined by G-lattice L and α ∈ H2(G, L):

1. |G| is even, otherwise g 7→ g2 is bijection and for χ ∈ Irr(G):
ν2(χ) =

∑
χ(g2) =

∑
χ(g) = 〈χ, 1〉 ∈ {0, 1}.

2. G is non-abelian, otherwise ν2(χ) ∈ {0, 1} for χ ∈ Irr(G).
3. Z(G) is elementary abelian 2-group, otherwise:

• z ∈ Z(G) – of order 4 or p (odd prime).
• χ ∈ Irr(G) – summand of χL st. z2 6∈ kerχ.
• Schur’s lemma: resZ(G) χ = χ(1)λ for some λ ∈ Irr(Z(G)).

Hence χ(z) ∈ C \ R and ν2(χ) = 0.
4. No cyclic Sylow subgroup of G has normal complement:
(Han-Sah 1986): implied by LG = 0.

5. 2-Sylow subgroup of G is not cyclic:
Cayley normal 2-complement theorem (1878).



Restrictions on holonomy group

Γ – Bieberbach group of quaternionic type defined by G-lattice L and α ∈ H2(G, L):
6. Let I(G) := |{g ∈ G : g2 = 1}|: I(G) ≤ |G|/2 and I(G) <

∑
χ∈Irr(G) χ(1):

1st (Wall 1970): otherwise Irr(G) = IrrR(G).
2nd (Frobenius-Schur formula):

I(G) =
∑

χ∈Irr(G)
ν2(χ)χ(1) =

∑
χ∈IrrR(G)

χ(1)−
∑

χ∈IrrH(G)
χ(1).

7. | IrrH(G)| > 1:
(L. 2018): C⊗Z L contains at least two non-isomorphic components.

8. ∀z∈Z(G)\{1}∃χ,ψ∈IrrH(G) χ(z) = χ(1) and ψ(z) = −ψ(1):
Otherwise L not faithful or α not special.

Only one group of order ≤ 64 satisfies the above conditions.



Example



gap> G := SmallGroup(64,245);

G = 〈a,b, c,d〉 fits into central extension

1 −→ C22 −→ G −→ C42 −→ 1.

a2 = c2,b2 = d2 generate Z(G) and

[a,b] = a2 [a, c] = a2b2 [a,d] = b2

[b, c] = a2 [b,d] = a2b2

[c,d] = 1

3 characters with FS-indicator −1:

1 a2 b2 a2b2 G \ Z(G)
χ1 4 4 −4 −4 0
χ2 4 −4 4 −4 0
χ3 4 −4 −4 4 0

Characters conjugate

χi = χ1fi for some fi ∈ Aut(G)

Zi := kerχi

fi(Zi) = Z1



Idea for module with special element

For G-lattice L and f ∈ Aut(G) we have

1. G-lattice (Lf, ·f): Lf = L,g ·f l = f(g)l
2. Commutative diagram for H < G, where (f|H)∗ – isomorphism:

H2(G, L) H2(G, Lf)

H2(H, resH L) H2(f(H), resf(H) Lf)

f∗

resH resf(H)

(f|H)∗

Corollary
If we find a G-lattice L and α ∈ H2(G, L) st. resZ1 α 6= 0 then

resZi f
∗
i (α) = (f|Z1)

∗ resZ1 α 6= 0
and α+ f∗2(α) + f∗3(α) ∈ H2(G, L⊕ Lf2 ⊕ Lf3) is special.



The lattice: first attempt

Some GAP code

gap> rep := IrreducibleRepresentations(G)[...]; # chi_1
gap> FieldOfMatrixGroup( Image(rep) );
GaussianRationals # expected

# (Schur index)

Remarks
1. Smallest lattice dimension to work with: 8.
2. Easy computation: H2(G, L). But:
For every L with χL = 2χ1 we’ve tried we got resC1 α = 0 for all α ∈ H2(G, L).

3. Hard computation: determine all lattices with character 2χ1.
It would take too long to wait for...



The lattice: successful attempt

L′ := indGC1 Z. By Shapiro’s lemma H
2(G, L′) = H2(C1,Z) = Z/2 and

resC1 α
′ 6= 0 for 0 6= α′ ∈ H2(G, L′)

Quaternionic components

〈χL′ , χi〉 =

{
4, i = 1
0, i 6= 1

Basis for L

B =
2χ1(1)
|G|

∑
g∈G

2χ1(g)ρL′(g)

We get ”quaternionic” Bieberbach group:
χL = 4χ1 and for 0 6= α ∈ H2(G, L) = Z/2

resC1 α 6= 0.



Notes on holonomy groups

Lemma
Let G be a finite group and p a prime number. Then Op′(G) is contained in the kernel of
every χ ∈ Irr(G) in the principal p-block.

Lemma (Hiss, Szczepański 1991)
Let G be a finite group and L be a G-lattice. If H2(G, L) contains a special element then
for every prime divisor p of |G| there exists a constituent of C⊗Z L which lies in the
principal p-block of G.



Notes on holonomy groups

Theorem
Let Γ be quaternionic Bieberbach group with holonomy group G. Then G is not:

(i) SL2(Fq),PSL2(Fq), where q is a power of a prime; (char. table + 1st lemma)
(ii) An, 2.An, Sn, 2.Sn,n ≥ 5; (Clifford theorem)
(iii) a perfect central extension of a sporadic simple group. (Atlas+both lemmas)

Theorem (Willems 1977)
If a finite group G is non-abelian and all its non-linear characters have
Frobenius-Schur indicator equal to −1 then G is a 2-group.



Thank you!
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