Automorphism groups of self-dual
codes

Von der Fakultat fiir Mathematik, Informatik und
Naturwissenschaften der RWTH Aachen University zur Erlangung
des akademischen Grades eines Doktors der Naturwissenschaften
genehmigte Dissertation

vorgelegt von

Diplom-Mathematikerin
Annika Giinther

aus Neuss

Berichter: Universitdtsprofessorin Dr. Gabriele Nebe
Universitdtsprofessor Dr. Wolfgang Willems

Tag der miindlichen Priifung: 28. August 2009

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online
verfligbar.






Contents

Introduction

The Type of a code

2.1 Formrings and their representations . . . . . ... ... ... ... ..

2.2 Examples of important Types . . . .. ... ..............
22.1 Linear self-dual codes over finite fields . . .. ... ... ..
222 Binary Typellcodes . .. .. ... .. .............
2.2.3 Generalized doubly-evencodes . . . . . ... ... ... ...
224 Codes with prescribed automorphisms . . . ... ... ...
2.2.5 Doubly-even codes with prescribed automorphisms . . . . .

2.3 The graph I'y of self-dual Type T'codes . . . . . .. ... ......
2.3.1 Equivalence of codes and automorphisms of I'y . . . . . ..
2.3.2 Block decomposition . . . ... ... ... oo

Permutations and the neighbor graph

3.1 Isometries as automorphismsof I' . . ... ... ... ........
3.1.1 Determinant and Dickson invariant . . . ... ........
3.1.2 Reflections and the neighbor graph . . . ... ... ... ..

3.2 Automorphisms of codes as isometries . . . . . ... ...

Witt groups

41 The Witt group of an algebra with involution . . . . ... ... ...
4.1.1 Self-dual codes in characteristic2 . . . . ... .. .. ... ..
41.2 Self-dual codes in odd characteristic . . . . ... ... .. ..

42 The Witt group of quadraticforms . ... ... ... .........

43 The Wittgroupofaformring . . ... ... ... ...........

Scalars in Clifford-Weil groups
51 The Clifford-Weil group C(T") . . . . . . . ... ... . ... ..
52 C(T) as a projective representation of U(R,P) . . . . ... ... ...
5.3 Scalar subgroups of quotient representations . . . .. ... ... ..
5.4 The order of [T] equals the order of S(C(T)) . . . . ... ... .. ..
5.5 The universal Clifford-Weil group . . . ... ... ... ... ....
56 Examples . . ... ... ... ... .. ...
5.6.1 Doubly-evenbinarycodes . . . .. ... ... .........

3



CONTENTS

5.6.2 Codes with prescribed automorphisms over fields of char-

acteristic2 . . . . . . ... 93

5.6.3 Doubly-even codes with prescribed automorphisms . . . . . 95

6 The number of self-dual codes 97
6.1 Moritatheoryforcodes. . . ... ... ... ... ... . . L. 98
6.2 Enumeration of self-dualcodes . . . . .. ... ... ... ...... 106
6.2.1 Determination of the Morita equivalent module F((V,¢)) . 106

6.2.2 Enumeration of self-dual codes over finite fields . . . . . . . 108

6.2.3 Enumeration of self-dual codesin (V,3) . . . . .. ... ... 109

6.24 Example: Binary extended cycliccodes . . .. ... .. ... 110

6.2.5 Example: Doubly-even binarycodes . . . . . ... ... ... 112

6.3 Themassformula . ... ... ... ... .. ... ... ........ 114
6.3.1 Weak isometries of V' and the mass formula . ... ... .. 115

6.3.2 Example: Permutationmodules . . . ... .... ... ... 115

7 Examples 119
7.1 As-invariantself-dualcodes . . . . . .. .. .. ... ... ... ... 120
711 TheWittgroupof FA; . ... ... ... ............ 120

7.1.2  Classification of all transitive monomial representations of A;125

7.2 G-invariant binary codes for some simple groups G . . . . ... .. 133
7.2.1 A G-invariant code generated by involutions . . . . . . . .. 134

7.2.2 Information from tablesofmarks . . . . . ... ... .. ... 135

723 The G-invariantcodes . . . . . . . . . . . . . ... .. .... 136



Chapter 1

Introduction

The interest in linear codes began with the papers "Notes on digital coding" by M.
J. E. Golay and "Error detecting and error correcting codes" by R. W. Hamming,
published in 1949 and 1950, respectively (cf. [10], [15]). In these works it is shown
how digital information, given as m-tuples with entries 0 and 1, can be expanded
to a tuple of length N = m + k, such that the highest possible number of errors
in the information can be corrected. The words of length N, obtained by adding
k parity checks to the original information, form a subspace of F}'. Here originates
the classical notion of a binary code, as a subspace of F)'. Algebraic coding theo-
rists began to investigate codes over other alphabets than F, as well, also because
a larger alphabet allows to correct a greater number of errors occurring in a row in
the digital information (burst errors). A linear code in the classical sense is hence
a subspace of F¥, for a finite field F.

Soon codes with additional algebraic structure received more interest both
from algebraists and from coding theorists, since additional structure often gives
rise to more efficient decoding algorithms. A well-known example is given by
the cyclic codes, which are invariant under a cyclic shift of the coordinates. That is,
the automorphism group of a cyclic code, i.e. the group formed by those coordinate
permutations which leave the code invariant, contains a subgroup ((1,...,N))
isomorphic to the cyclic group of order N. In her paper "Codes and ideals in
group algebras" ([24]), F. ]. MacWilliams treats cyclic codes as ideals in the group
algebra FCy = Flz]/(z"¥ — 1). A generalization of the cyclic codes are the group
ring codes, which are right ideals in a group algebra of some finite group and
have been investigated by several authors (cf. [27, 2, 19]), using methods of rep-
resentation theory of finite groups. Among these codes, the self-dual codes are
of particular interest, for instance since their weight distribution has an invariance
property given by the famous MacWilliams identity.

An interesting connection between the automorphisms of a self-dual linear
code and its weight distribution was discovered by N. J. A. Sloane and J. G.
Thompson. In their paper "Cyclic self-dual codes" ([40]) they prove that there
exists no binary cyclic self-dual code such that the Hamming weight of every word
is a multiple of 4. Codes whose weight distributions satisfy this divisibility con-
dition are called doubly-even, and self-dual doubly-even binary codes are also
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6 CHAPTER 1. INTRODUCTION

called Type II codes. The result of Sloane and Thompson has been generalized
by C. Martinez-Peréz and W. Willems in [27], stating that there exists a self-dual
doubly-even binary group ring code for a finite group G if and only if the order
of G is a multiple of 8 and the Sylow 2-subgroups of G are not cyclic.

From the point of view of representation theory, group ring codes are FG-
submodules of the regular permutation module for G. These are linear codes on
which G acts as automorphisms via its regular representation. The present thesis
investigates the existence of codes with prescribed automorphisms which arise
from arbitrary permutation representations, or more generally monomial repre-
sentations, of a finite group. The challenge is hence to decide, given a monomial
permutation group G, whether there exists a self-dual linear code whose auto-
morphism group contains G. This issue is viewed from different perspectives,
allowing different generalizations of the question and the results.

Chapter 3 deduces obvious necessary conditions on G for the existence of a
self-dual G-invariant code. In this chapter monomial permutations are naturally
embedded into the orthogonal group O(V') of a quadratic space V. Hence the
developed theory applies to self-dual codes in odd characteristic, and to gener-
alized Type II codes in characteristic 2. Here a self-dual code C corresponds to a
maximal totally isotropic subspace of V, and G lies in the automorphism group
of C if and only if, as a subgroup of O(V), it lies in the stabilizer S in O(V') of
the corresponding maximal totally isotropic subspace. Depending on the char-
acteristic of IF, the determinant or the Dickson invariant provides a well-defined
epimorphism D : O(V) — C; such that S is always contained in the kernel of D.
On the symmetric group Sy the map D restricts to the sign homomorphism. This
allows to conclude that the automorphism group of a self-dual code in odd char-
acteristic, or of a self-dual Type II code in characteristic 2, is always contained in
the alternating group (see Corollaries 3.2.4, 3.2.5).

In the other chapters of this thesis, a different approach is pursued, following
ideas in [33]. Here G-invariance is part of the definition of a code. A code in
this new sense is a submodule of FV for the group algebra FG, where G acts as
coordinate permutations. This opens up the possibility to apply representation
theoretic methods to find criteria for the existence of a self-dual G-invariant code
(see for instance [42]). Moreover, the theory of Witt groups can be applied in this
context. The Witt group of the group algebra FG' contains equivalence classes of
FG-modules V which are endowed with a non-degenerate G-invariant form, with
the orthogonal sum as composition (see Chapter 4). By definition FVV contains a
self-dual G-invariant code if and only if it is Witt equivalent with the zero module.
In some cases, for instance in characteristic 2, the theory of Witt groups is rich
enough to characterize the situation where a self-dual G-invariant code exists,
only by the composition factors of the FG-module F (cf. Corollary 4.1.28). Using
in addition the methods from Chapter 3, a characterization of the existence of a
self-dual G-invariant Type II code is proven (cf. Theorem 4.2.19, Theorem 3.2.7),
generalizing the result of Martinez-Peréz and Willems cited above.

A general concept where a code is by definition a module for some ring R



is developed in [33]. There a general notion of the Type of a code is introduced.
The Type allows to specify important properties of codes, taking as the alphabet
a left R-module V, on which there exist biadditive forms to define duality and,
where required, quadratic forms which specify additional properties of the code,
such as being doubly-even in the case of binary codes. The codes of a Type T
and length N form a family of codes, which are self-orthogonal with respect to
some non-degenerate biadditive form and isotropic with respect to the above-
mentioned quadratic forms. In Chapter 2 it is shown that the G-invariant linear
codes in V = FY have a Type with R = FG and V = F".

For every Type T of codes there exists a neighbor graph, whose vertices are
the self-dual Type 7" codes and where two vertices C, D are adjacent if and only if
CND is amaximal R-submodule of C' (cf. Section 2.3). The graph I'y is connected
whenever R and V are finite, and thus in particular the neighbor graph I';; for the
Type of G-invariant codes is always connected. This provides an algorithm to find
all self-dual G-invariant codes, by starting with one such code and successively
computing neighbors in the graph. Moerover, the normalizer 91 = Ng, (G) acts
on I';; as graph automorphisms. Hence there exists a system of representatives of
the M-orbits of vertices which forms a connected subgraph of I';. This allows to
compute only 91-orbit representatives, instead of computing the whole set of all
G-invariant self-dual codes. Similar results hold for every finite Type of codes.

If the characteristic of F does not divide the order of G then the total num-
ber M of G-invariant self-dual codes can easily be determined a priori, basically
from the composition factors of the FG-module V = F". The number of cyclic
self-dual codes whose length is coprime to the characteristic of I is already given
in [18]. In this situation V' is the regular module over the semisimple group al-
gebra FCy = Fz]/(z" — 1), and the number of self-dual codes is determined
via a factorization of z"V — 1, which plainly describes the composition factors of
V. In Chapter 6, formulae are given for the number of self-dual codes over a
general finite semisimple associative algebra A. These results are proven via a
Morita equivalence F between the categories of modules for A and for its center
Z(A), respectively, where all the modules carry a certain non-degenerate biad-
ditive form to define the orthogonal of a submodule. The Morita equivalence
F is orthogonality-preserving, which means that an A-module V' contains the same
number of self-dual codes as the Z(A)-module F (V). Since A is semisimple, Z(A)
is a ringdirect sum of fields. At this point the problem of determining M is set-
tled, since the number of self-dual codes over such a ring can be computed with
methods of linear algebra and is well-known (cf. [41], for instance). In the situa-
tion where A = FG is a semisimple group algebra, the orbit lengths under 9t and
the total number of self-dual G-invariant codes are related via an obvious mass
formula, which can be used to prove completeness in a classification of 91-orbit
representatives of self-dual G-invariant codes.

In the Type context the alphabet of a code is no longer understood as the set F,
but as the set V, and it is in this sense that Chapter 5 asks for the minimum length
t for which there exists a self-dual G-invariant code. This comprises the question
whether there exists a self-dual G-invariant code in FV, which in this sense has
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length 1. The number ¢ is thus the order of the equivalence class of (V, ) in the
Witt group of FG. It is shown that ¢ equals the order of the scalar subgroup of the
Clifford-Weil group C(T¢;), a complex matrix group associated with the Type T¢; of
G-invariant codes (cf. [33]). A computation of C(1¢) is possible as soon as the
action of the unit group of R on V' and the values of the biadditive and quadratic
forms associated with 7(; are known. Hence ¢ can be a priori be read off from this
information (see Section 5.6 for some examples).

In the accomplishment of this thesis I received a huge amount of support from
many people in my work environment, and I would like to take the opportunity
to thank them for their efforts. First of all, I wish to express my deep gratitude
to my advisor Professor Dr. Gabriele Nebe for her thoughtful guidance and or-
ganization, which made this thesis possible in the first place. For numerous and
fruitful discussions during a stay at the Otto-von-Guericke University Magde-
burg I would like to thank my co-advisor, Professor Dr. Wolfgang Willems. Dur-
ing the conference "New challenges in digital communication", held in Vlora in
May 2008, the idea for Chapter 6 grew out in a discussion with Professor Dr.
Cary Huffman, whom I hereby thank for this incentive. Moreover, I would like
to deeply thank my colleagues for the good office atmosphere and for helpful tips
and discussions, especially Dr. Markus Kirschmer, Dr. Matthias Kiinzer, Kristina
Schindelar, Elisabeth Nossek, Georg Deifufs and Moritz Schroer.

During the whole developing process of this thesis I was financially supported
by the RWTH Aachen University, and I wish to thank the university for this grant.



Chapter 2

The Type of a code

Classically, a linear code is a subspace of FY, where F is a finite field. Given a
non-degenerate bilinear or Hermitian form 3 : FY x FN — F, the dual of a code C
is

Ct={veF"|B(v,c)=0forallce C}.

If C = C* then C is called self-dual. Based on a result of Gleason and Pierce on
the divisibility of the Hamming weight

wt((c1,...,en)) ={i e {1,...,N} | ¢ # 0}

of the words of a self-dual code (cf. [39]), one classically distinguishes four Types
of linear codes, known as Type I, I, IIl and IV, respectively. For instance, the self-
dual Type II codes are those binary self-dual codes in which the weight of every
codeword is a multiple of 4, and the self-dual Type III codes are the self-dual
subspaces of F}’, whose weights are all automatically multiples of 3.

The most interesting of the classical codes over finite fields have some ad-
ditional structure apart from being vector spaces. For instance, the cyclic codes
of length N are the submodules of the FCy-module FV, where C is the cyclic
group of order N, which acts on FV by a cyclic permutation of the coordinates.
These codes also form a Type, in a more general sense. A unifying language to
describe the Type of a code is developed in the book "Self-dual codes and invari-
ant theory" ([33]). Here a Type of codes consists of modules over a ring R, for
which orthogonality is defined via biadditive forms, and additional properties
may be modeled via quadratic forms. The basic concepts are given in Section 2.1.

The unified setting in which the Type of a code is defined allows for instance a
uniform approach to prove Theorems like Gleason’s famous 1970 Theorem which
states that the weight enumerator of a binary Type II code lies in the polynomial
ring generated by the weight enumerators of the extended Hamming code of
length 8 and the Golay code of length 24. The approach to prove theorems like
Gleason’s is to compute the invariant ring of the Clifford-Weil group C(T") (cf. Sec-
tion 5.1), a finite complex matrix group associated with a Type T, such that the
weight enumerators of the self-dual Type 7" codes all lie in the invariant ring of
C(T'). Moreover, this general setting allows to define the Type of codes with pre-
scribed automorphisms, in Section 2.2.4 (cf. [14]).

9



10 CHAPTER 2. THE TYPE OF A CODE

In Section 2.3 a very efficient method is given to compute all self-dual codes of
a given Type T'. A notion of neighborhood of self-dual codes is introduced, follow-
ing ideas of Kneser in [21], which have been applied to ZG-lattices in [29]. The
concept of neighborhood is applied to self-dual codes of arbitrary Type 7" over a
tinite ground ring, such that the neighbors of a self-dual Type 7' code can easily be
computed. This leads to the notion of the neighbor graph, which has the self-dual
Type T codes as vertices, and where two vertices are adjacent if and only if they
are neighbors. It is shown that the neighbor graph is connected and hence given
a single self-dual Type T code, it is possible to find all self-dual Type 7" codes by
successively computing neighbors (cf. [14]). In Section 2.3.1 it is shown that this
method is also appropriate to compute only representatives for the equivalence
classes of self-dual codes of a given Type, where the equivalence classes are the
orbits of a certain finite group acting on the set of all self-dual Type 7" code, induc-
ing automorphisms of the neighbor graph. For the Type of classical linear codes
over F of length N, this group is the symmetric group on N points. Hence the
neighbor method can be used, for instance, to compute all self-dual codes in FY
up to permutation equivalence, without computing all self-dual codes in F" first.

2.1 Form rings and their representations

In the language of form rings and their representations, the alphabet over which
a code is defined is a left module V' over a ring R. Throughout this work, R is
assumed to be a finite ring with 1, and all R-modules V' are assumed to be finite
and unitary, i.e. 1-v = v forall v € V. A form ring (cf. Definition 2.1.4) is a
quadruple basically consisting of algebraic objects which allow homomorphisms
to the algebraic objects formed by the biadditive and quadratic forms on V' (cf.
Examples 2.1.5 and 2.1.5).

Definition 2.1.1. A twisted R-module is a pair (M, 1) consisting of a right (R ®y,
R)-module M together with a group automorphism 7 of M such that 7 = idy, and
T(m(r ®s)) = 7(m)(s @ r) forallm € M and r,s € R. A homomorphism p :
(M, 7) — (M',7") of twisted R-modules is an (R® R)-module homomorphism satisfying
p(r(m)) = 7'(p(m)).

Definition 2.1.2. An R-qmodule is an abelian group ® together withamap [ | : R —
End(®) such that

1] =ide, [rs]=T[r]ls], [r+s+t+[]+[s]+ [l =[r+sl+[r+t]+[s+1]

forall r,s,t € R. A homomorphism py : ® — @' of R-gmodules is a group homomor-
phism with pe(¢[r]) = pe(@)[r] forall ¢ € ® and r € R.

Definition 2.1.3. A quadratic pair over R is a tuple (M, 1), ®), where (M, ) is a
twisted R-module and ® is an R-qmodule, together with structure maps X : ® — M and
{}: M — ®with

{r(m)} = {m}, 7(A(@)) = AM¢), A({m})=m+7(m)
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and

¢lr +s] = olr] = ¢ls] = {Mo)(r@s)}-
Let ((M',7'), ®') be another R-gmodule with structure maps X' and { }'. A homomor-
phism of quadratic pairs is a pair (par, pe), where pyr = (M, 7) — (M',7') is a homo-
morphism of twisted modules and py : © — @' is a homomorphism of R-qgmodules such
that

pa({m}) = {pu(m)}' and  pu(A(9)) = X(pa(9)).
forallm € M and ¢ € ®.
Definition 2.1.4. The quadruple (R, M, ), ®) is called a form ring if (M, ), ®) is a

quadratic pair over R, and ¢ : R — M is an isomorphism of right R-modules such that
e =9 (r(¢(1))) € R*, where M is a right R-module via mr :=m(1®r).

Remark 2.1.5. Let V be a left R-module and A an abelian group. Let Bil(V, A) be the
set of all Z-bilinear mappings V x V. — A. Define an (R ® R)-module structure on
Bil(V, A) via
Br @ s)(v,w) = Brv, sw)
forr,s € Rand v,w € V, and let
i : Bil(V, A) — Bil(V, A), G+ ((v,w) — B(w,v)).

Then (Bil(V, A), mgu) is a twisted R-module. An A-valued quadratic map on V is a
map ¢ : V — A such that ¢(nv) = n?¢(v) for all integers n and all v € V, and

¢(u+ v+ w) + ¢(u) + d(v) + d(w) = ¢(u+v) + ¢(v +w) + du + w)
forall w,v,w €V, or equivalently, such that
Agil(9) := (v, w) = ¢(v +w) = ¢(v) — g(w)) € Bil(V; A).

By Quad(V, A) denote the set of all A-valued quadratic maps on V. Then Quad(V, A)
is an R-gmodule via ¢[r](v) = ¢(rv), for v € R and v € V, and the pair
((Bil(V, A), 8a), Quad(V, A)) is a quadratic pair with the maps \g; and

{ }s;:Bil(V,A) — Quad(V, 4), 5+ (v [(v,0)).

Definition 2.1.6. Let R = (R, M,v,®) be a form ring. Let V' be a left R-module
and let A be an abelian group. The tuple T = (V, par, po, 3 = pu((1))) is called a
representation of R if (par, pe) @ (M, 7),®) — ((Bil(V, A), m8u), Quad(V, A)) is a
homomorphism of quadratic pairs such that 3 is non-degenerate, i.e.

V — Homg(V,Q/Z), v— (w— [(v,w))
is an isomorphism. T is called finite if V' is finite and A = Q/Z.

Every form ring structure defines an antiautomorphism of the underlying
ring, as follows. For a proof that this is indeed an antiautomorphism we refer
to [33, Lemma 1.4.5].
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Remark 2.1.7. Every form ring structure R = (R, M, 1, ®) on R defines an antiauto-
morphism 7 of R, by r7 := ¢~ (¢(1)(r @ 1)). If (V, par, pa, 3) is a representation of R
then B(rv,w) = B(v,r’w) forallr € Rand v,w € V.

Example 2.1.8. (cf. [14]) Let J be an involution of R, i.e. a ring antiautomorphism
of order 1 or 2. That is, (rs)’ = r’s” and (r/)” = r forall r,s € R. Let V be a left
R-module and let 3 : V x V' — Q/Z be a biadditive non-degenerate form with

Bv,w) = B(w,ev) and [(rv,w) = B(v,r w)

forallv,w € V and r € R, where € is a unit which lies in the center of R, with ee! = 1.
To model the Type of submodules of V' which are self-orthogonal with respect to (3, we
define a form ring structure on R (see also [33]), following a construction by Bak in [1].
Let M = Randlet 7 : M — M, m — em”’. Let

Ai={m—71(m)|me M}.

Then the tuple
R(R, J,e) = (R,id, M = R,® = M/A)

is a form ring, where M is an R ® R-module via m(r @ s) := r’ms, ® is an R-gmodule

via (m + A)[r] := (r!mr) + A, and well-defined structure maps
{ } M- m—m+A N:®—> M m+A—m+7(m).

The associated involution of R is the involution J. A representation of R(R, J,€) can be
defined as follows. Let T =TV, 3) = (V. pu, pa, 3) with

prv(m)(v,w) = B(v,mw) and pe(m+ A)(v) = B(v, mv).

It is straightforward to show that T is a representation of R. Note that pe is well-defined
since (v, mv) = 0 whenever m = m’ — 7(m’) € A since

Blv, 7(m ) = Blv,em’”v) = Blem' v, ev) = B(v, m'e’ev) = B(v, m'v)
and hence 3(v,mv) = (v, m'v) — B(v, 7(m')v) = 0.

Example 2.1.9. Let J be an involution on R. Let V' be a left R-module and let ¢ : V —
Q/Z be a quadratic map such that 3 := \(q) is non-degenerate and satisfies (3(rv, w) =
B(v, r’w) forall v,w € V and r € R. We want to model the Type of all submodules of V
which are isotropic with respect to q. If 2 is a unit in R then the construction in Example
2.1.8 with e = 1 is appropriate, since ¢ = 1 {3} and hence any submodule C which is
self-orthogonal with respect to 3 satisfies

1 1 1
q(c) = §{ﬁ} = 55(07 c) = B(c, 50) =0
forall ¢ € C, and every submodule of V' which is isotropic with respect to q is self-
orthogonal with respect to X(q). If 2 is no unit in R then assume that 3(v,rv) = 0
whenever v + r/ = 0. Note that this condition is natural since whenever there exists a
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self-dual isotropic code in V, there exists a quotient of V' which satisfies this condition
and is appropriate to model the self-dual isotropic codes in V (cf. Remark 2.1.10). Define
a form ring

R=R(R,J)=(R,M=R,id,®=(1,{M}))
with structure maps T = J, A = idand {m} = m +7(m). Then T = T(V,q) =
(V. put, po, B) is a representation of R, with py(m)(v,w) = [(v, mw) and pe defined
on generators by

pa(1) =g, pa({m})= {pm(m)}.
To see that the map pg is well-defined, note that if m € ker({ }) then pp(m) = 0

according to our assumption, and if r’r = m + 7(m) € (1) N { M } then
{on(m)} () = 8o, mo) = 2 (B0, mo) + 3o, mo)) = 2 (50, (m -+ 7(m))o)
= 3B(0,r7r) = 2B, r0) = a(re) = lr](v)
forallv e V.

Remark 2.1.10. Let the R-module V with the quadratic map q : V — Q/Z and the form
ring R be as in Example 2.1.9. For r € Rwithr + r’ = 0, the map

ot V—=Q/Z, v— B(v,rv)

is additive and hence due to the non-degeneracy of 3, there exists an element v, € V
such that ¢, (v) = (v, v) forall v € V. If C is an isotropic code in V then B(v,,c) =
B(c,re) = 0 forall c € C and hence v, € C*. Hence the R-module

Y = (v, |r+7r/ =0)

generated by the v, satisfies Y C C* for every isotropic code C. In particular if C' is
self-dual then Y C C C Y and hence Y is isotropic. Hence if there exists a self-dual
isotropic code in 'V then the quadratic map

g Y)Y = Q/Z, ¥ +Y — q(y))

is well-defined, with polar form By : (y +Y,y" +Y) — By, y"), and the self-dual
isotropic subspaces of Y+ Y correspond to the self-dual isotropic subspaces of V. More-
over, if r +r7 = 0 then

By +Y,r(y +Y)) =8, ry +Y)) =8\, ry) = Bv,y) =0

for all y € Y*. Hence according to Example 2.1.9 the representation T(Y+/Y, By) is
well-defined and appropriate to model the Type of self-dual isotropic codes in V.

In Section 4.3 the following properties and constructions associated with form
rings will be needed. For a proof of the following Lemma, the reader is referred
to [33, Lemma 1.4.5, Remark 1.4.6].
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Lemma 2.1.11. Let R = (R, M, 1, ®) be a form ring with associated unit € and antiau-
tomorphism J, and let (V, par, pa, 3) be a representation of R. Then

(i) e’e =1,

(ii) p(r)(s @t) = )(s'rt),
(iii) T((r)) = ¥(r’e),

(iv) e’r’’e =,

(v) B(rv,w) = v, r’w),
(i) B(v,w) = B(w,ev),

(vii) v/ v = v/ wifand only if ev = ew

e

forall r;s € R, v,w € V and symmetric idempotents e = u.v. € R (cf. Definition
5.1.1).

Definition 2.1.12. Let R; = (R;, M;,¢;, ®;) be form rings, for i = 1,2. A form ring
homomorphism is a triple (g, o, ag), where ag : Ry — Ry is a ving homomorphism
and (apr, ag) @ (My, 1) — (Ms, ®y) is a homomorphism of quadratic pairs such that

as(d)ar(r)] = as(9lr]), am(m)(ar(r) ® ar(s)) = au(m(r©s))

and
Ya(ar(r)) = an(¥i(r))

forall p € &, m € Myand r,s € Ry. A form ring automorphism is a form ring
homomorphism where the maps g, o, o are bijective.

Definition 2.1.13. Let T = (V. pur, pa, 5), T = (V. (pm)', (pa)’, B') be represen-
tations of the form ring R = (R,M,,P). A weak form isometry is a tuple
(g, apr, e, @), where (o, apr, ag) is a form ring automorphism of Rand o : V- — V'
is a bijective additive map such that

a(rv) = ap(r)a(v),  pur(am(m))(a(v), a(w)) = pu(m)(v,w)

and
(ps) (e (9))((v)) = pa(d)(v)

forallr € R, m € M, ¢ € ®and v,w € V. The map « is called a form isometry if
(id,1id, id, «v) is a weak form isometry.

Definition 2.1.14. Let R = (R, M,,®) be a form ring and let u € R*. Then the
map R — M, r — ,(r) = (ur) is an isomorphism of right R-modules. The tuple
Ry = (R, M,,, ®) is again a form ring, called the rescaling of R with .

Remark 2.1.15. The involution ” associated with the rescaled form ring R, is given by

rJe = wlr'u, and the associated unit is e, = v 'u’e.
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Proof. The proof is an easy calculation:

r’ =y (Wu (D @ 1)) = ¢ (W (u)(r @ 1) = o (") = ¢y (Yu(u™'r7w))

= u_lr‘]u,

and the unit ¢, is

In order to define the Type of a code we define the multiple of a representation,
via orthogonal sums.

Definition 2.1.16. Let T' = (V. pur, po, 5) and T = (V', (pum)', (pa)’, B') be represen-
tations of the form ring R = (R, M, 1, ®). Then the orthogonal sum

TLT =WV LV py L (pm)spe L (pa), 8 L3
is again a representation of R, where
pu L (par) (m) = (((v, '), (w,w')) = B(v,w) + B(v',w')) and
pa L (pe)'(¢) = ((v,0) = pa(0)(v) + (pe)'(¢)(V'))
For a positive integer N, the N-multiple of T is the representation TN =1, T

Definition 2.1.17. Given a representation T' = (V, pur, pe, 3) of some form ring, a sub-
module C of V¥ is called isotropic, or a Type T code if

par(m)(c.') = 0 and pg(¢)(c) =0

forallm e M, ¢ € ®and c,c € C. Note that the first condition is fulfilled if and only
if always ((c, ') = 0. The integer N is called the length of C.

2.2 Examples of important Types

This section gives some examples of how to model the properties of codes in the
language of form rings and their representations.

2.2.1 Linear self-dual codes over finite fields

These are codes in the classical sense, i.e. subspaces of FY, where F is a finite
field. The dual of a code is defined with respect to the standard scalar product on
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FV. The Type of these codes is given by the representation T." := (F, pas, ps, ) of
the form ring R7 := (F,F,id, {F } ), where ¢ is the size of F and

pm(m) (v, w) = %Tr(mvw) €Q/Z

forallm € M = F and v,w € V = F. Here Tr denotes the trace of F to its prime
tield IF, with p elements, and is understood as a map into Z in the definition
of py. This determines the map pg, since { } is surjective and po({m}) =
{ par(m) } . Hence a Type T'F code is just a subspace C' < FN with py(m)(c, /) =
Oforallc, ¢ € C,i.e. the F-gmodule ® does not encode any additional properties
of C. One easily verifies that indeed, the self-dual Type T.” codes are exactly the
self-dual linear codes in FV.

2.2.2 Binary Type II codes
A binary code C' < FY is said to be Type 11, or doubly-even, if the weight

wt((cr,y ... en)) = {ie{l,...,n} | ¢ # 0}

of every word of C'is a multiple of 4. By a well-known result of Gleason, self-dual
binary Type II codes exist if and only if N is a multiple of 8. These are Type 2F
codes (cf. Section 2.2.1) with the additional property of being doubly-even. This
property can be modeled via a bigger Fo-qmodule ®. Type II codes are given by
the representation 2f] = (Fa, pur, pe, 3) of the form ring

7Q’H = (F27F27id7 ¢ = Z/4Z)7

where py(1)(v,w) = 3ow € Q/Z and pe(1)(v) = Tv* € Q/Z forallm € M =T,
and v,w € V = F,. Alternatively, changing the underlying vector space, the
self-dual Type 2f codes can be described by a certain quadratic map ¢, hence
via representations of a form ring R = R(F,id) = (Fq,Fs,id,F,). This is done
explicitly in Section 2.2.3.

2.2.3 Generalized doubly-even codes

Let IF be a finite field of characterstic 2. There is a notion of generalized doubly-even
linear codes over F, introduced by Quebbemann (cf. [35]) as follows.

Definition 2.2.1. A linear code C' < FV is called generalized doubly-even, or Type

11, if
Z ZCiCj =0

C; =
ie{1,...,N} 1<j

forall (c,...,cn) € C.
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Note that if F = F, then Y, ¢; = wt(c) and 3_,_; cic; = (*9) (mod 2),
hence the above coincides with the classical notion of binary doubly-even codes
in the previous section. Moreover, there is an interesting connection between
doubly-even codes over Fy; and binary doubly-even codes: Let (¢;,...,t;) be a
Trace-orthogonal basis of the vector space [Fy; over Fy, i.e. Trace(t;t;) = d;;, where
Trace : F — 5 is the usual trace. The Gray map

f
g . sz — Fg, Zaztz — (O[l, c. ,O[f)
=1
is an isomorphism of vector spaces over F,, which associates to a code C' < IFQ; a
binary code

G(C) :={(G(c1),....Glen)) | (er,... o) € C} < FSY,

called the Gray image of C. It has been shown in [32] that a code C' < F¥ is
generalized doubly-even if and only if G(C') is doubly-even.

Remark 2.2.2. Assume that there exists a self-dual generalized doubly-even code in FN.
Then N is even since every self-dual code C' < FN satisfies 2 dim(C') = N. Moreover, C
contains the all-ones vector 1 = (1,...,1). Hence C/(1) is a subspace of V := (1)*/(1).
The space (1) is given by

{v e TN | wt(G(tv)) is even foralli € {1,..., f}},

since Trace(3 1, v;) = wt(G(v)) for all v = (v, ..., vy) € FN. Hence we can define a
map

2
ty,

!
q: V—F, v+(1)sz

i=1
where the coefficients Wt(gét"”)) are in 7/27 = F,. It has been shown in [30] that q is
a well-defined quadratic form whose associated bilinear form \(q) is the standard scalar
product (u+ (1), v+ (1)) — SN wu;.

Proposition 2.2.3. (see [30, Prop. 3.3].) A self-dual code C < F¥ is generalized doubly-
even if and only if C' /(1) is an isotropic subspace of V with respect to q, i.e. g(c) = 0 for
allc e C.

The self-dual generalized doubly-even codes are thus in correspondence with
the isotropic subspaces of V' with respect to the quadratic map ¢. Since the polar
form \(q) satisfies

N N

AMg)(v+1,r(v+1)) = erf = 7’(21@2 =0

i=1 i=1

forall r € F and v € (1)*, the self-dual generalized doubly-even codes in F" can
be modeled through the representation 7" = 7'(V, q) of the form ring

R = R(F,id) = (F, M =TF,id, ® = (1) = F)

given in Example 2.1.9.
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2.2.4 Codes with prescribed automorphisms

This section gives an appropriate representation to model self-dual linear codes
C' < F¥, where F is a finite field, with prescribed automorphisms. The automor-
phism group of C'is

Aut(C) = {m € Sy | m(C) = C},

where the symmetric group Sy acts on F by permuting the coordinates. For
a subgroup G < Sy, a code C' < FY has G < Aut(C) if and only if it is a G-
submodule of V = F¥, j.e. the G-invariant codes are modules over the group
algebra FG. The group algebra FG carries a natural F-linear involution J given
by g/ = g7, for g € G. Since G < Sy, the standard scalar product

N
BIFN XFNHF, ((Ul,...,UN),(wl,...,wN))sziwi

=1

is G-invariant, i.e. 3(v,w) = B(vg,wg) for all v,w € FY and ¢ € G, and hence
B(av,w) = B(v,a’w) for all @ € FG. According to Example 2.1.8 this defines a
form ring

R(FG, J, 1) = (FG, M =FG,id,® = M/A = M/{a —a’ | a € FG}).
with a representation Ty.3 = (V, pu, pa, ), where
par(m)(v, w) = B, mw) and po(m + A)(v) = Blv, mv),

cf. Example 2.1.8.

2.2.5 Doubly-even codes with prescribed automorphisms

Let F be a finite field of characteristic 2 and let G < Sy be a permutation group.
We want to model the Type of self-dual G-invariant codes in F with the addi-
tional property of being generalized doubly-even (cf. Section 2.2.3), provided that
such a code exists. These codes correspond to the self-dual isotropic submodules
of a certain quadratic space, as follows. Every self-dual code over [F contains the
all-ones vector 1. Moreover, for an involution ¢ € G let v* € FY be the vector with
vt = 1if 1(i) = i, and v} = 0 otherwise. If C is a G-invariant self-dual code in FV
then 0 = ((c,c) = B(c,v")? for every ¢ € C, and hence v* € C+ = C. Hence the
subspace
Y :=(1, v'| ¢ € G isaninvolution )

satisfies Y C C C Y+ (cf. [5]). In particular if C' is generalized doubly-even
then Y is isotropic with respect to the quadratic form given in Remark 2.2.2. This
yields

Corollary 2.2.4. If C' < F" is a self-dual generalized doubly-even code and = € Aut(C)
is an involution then sign(mw) = 1.
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It will be shown in Theorem 3.2.4 that even the automorphism group of a self-
dual generalized doubly-eben code is always contained in the alternating group.

The code Y is G-invariant since gv* = v99" " for all involutions ¢ and all ¢ € G.
Hence

Remark 2.2.5. Assume that there exists a generalized doubly-even code in TV . Then the
space Y |Y carries a well-defined quadratic form

!
t(G(¢t;
qg: v+Y — E WRIEY)) (92( U)) t?,
i=1

where (t1,...,ty) is a Trace-orthogonal Fo-basis of F, and G is the Gray map (see Section
2.2.3). The polar form \(q)(v + Y,w +Y) = [((v,w), and the doubly-even self-dual
G-invariant codes in TN are in correspondence with the G-invariant isotropic self-dual
subspaces of Y1/Y.

The Type of doubly-even self-dual codes in F¥ can now be modeled as a rep-
resentation of the form ring

R =R(FG,J)=(R=FG, M =R,id,® = (1,Im({ })))
introduced in Example 2.1.9. It follows already from Remark 2.1.10 that when-
ever there exists a self-dual doubly-even G-invariant code in FV then there ex-

ists a representation of R which models these codes. Here this representation is
T(Y*/Y,q), according to Example 2.1.9, since

Remark 2.2.6. Foreveryv € Y- andr =1’ € R,
A@)(v+Y,r(v+Y)) = Bv,rv) = 0.
Proof. The element r = r’ if and only if r lies in the kernel of { }, which is
generated as an R-qmodule by the elements g+¢ ', for g € G, and the involutions

of GG, and it suffices to proof the claim for these generators. For the first kind of
generators one calculates that

B, (g+g~)v) = Bv,gv) + Bv, g7 "v) = B(v, gv) + B(v, gv) = 0

For the second kind of generators, note that for all v € FV

v w szv” Z v; + Z ViUy(s) + V(i) Vi = Z V;

i=u(%) {i,0(2)}, i#£u(4)

Clearly the latter is zero whenever v € Y+, which shows the assertion. O
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2.3 The graph I'7 of self-dual Type 7' codes

Let T = (V, pum, ps, 3) be a representation of the form ring R and let
¢(T) :={C <V | Cisaself-dual Type T code}.

This section introduces a graph I'r with vertex set €(7") and describes a method to
find all neighbors in I'r of a code C' € &(T'). It is shown that the graph I'; is con-
nected and hence, starting with one self-dual Type 7" code, one can successively
compute neighbors to determine ¢(7") completely.

Definition 2.3.1. The length {(W) of a submodule W of V' is the length of a composition
series of W. It is well-defined by the Jordan-Hoélder Theorem.

Remark 2.3.2. Let C, D € &(T). Then I(C) = (D).

Proof. The map ~ : M — M* is an antiautomorphism of the submodule
lattice of V. Hence if

{(0}=My <M, <...<M,=C
is a composition series of C' then
C=MF<... <M} <M=V
is a composition series of V/C. In particular [(V) is even whenever &(7) is

nonempty, and [(C) = @ does not depend on C' € &(T'). O

Definition 2.3.3. The distance between two vertices C,D € &(T) is d(C,D) =
[(C/C N D). The codes C, D are called neighbors if d(C, D) = 1.

Remark 2.3.4. The map d is symmetric and satisfies the triangle inequality, i.e.
d(C,D)=d(D,C) and d(C,D)<d(C,E)+d(E,D)
forall C,D,E € &(T).
Proof. For the symmetry of d, note that
[(C)=d(C,D)+1(CND) and [(D)=d(D,C)+1(CND).

Since [(C) = (D) by Remark 2.3.2, this yields d(C, D) = d(D, C). For the triangle
inequality, note that

d(C,D) =1(C/CND)<I(C/CNDNE)=dD,E)+l(END/CNEND),

hence it suffices to show that (DN E/CNDNE) <d(C,E)=I1(FE/CNE). This
follows from the elementary observation that for any two submodules N < M <
V, a proper inclusion chain N N D < X < M N D yields a proper inclusion chain
N<X+N<M. O
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Definition 2.3.5. The neighbor graph I'r has vertex set €(T"), and two vertices C, D
are adjacent if and only if they are neighbors.

Theorem 2.3.6. The graph 'y is connected, and the distance of two vertices C, D equals
d(C, D).

Proof. Let C, D € &(T') be two vertices of ['r. Induction on k := d(C, D) shows
that the minimum number 6(C, D) of edges of a path in I'; connecting C' and D
equals d(C, D). Clearly k£ = 0 if and only if D = C. If k = 1 then C, D are adjacent
in I'y, by definition. Hence the claim follows for k = 0 and & = 1. Assume that
d(C, D) > 2. Then there exists a code C; € €(T') with

d(C,C;)=1 and d(Cy,D)=d(C,D)—1,

which is constructed as follows. Since d(C, D) > 2 there exists a submodule
CND < X < Dsuchthat S := X/(C N D) is simple. Let C; :== (C + X)* + X,
then

Cr=C+X)NX'=CNX"4+X=(C+X)"+X=(

since X < X*. It follows that C is Type T, since X and (C' + X)* are Type 7.
Since the map
C+X—-X/(CND), c+x—zxz+CND

is a well-defined group epimorphism with kernel C, the module (C' + X)/C = S
and hence C/(C+X)* is simple. The situation is illustrated by the diagram below.

C+X

S

(C+ X)*

cnNDbD

In particular d(C,Cy) = 1 since C N Cy = (C + X)*, and d(Cy, D) = d(C, D) — 1
since C; N D = X. Hence by induction

5(C, D) < 8(C,Cy) + 8(Cy, D) = d(C, Cy) + d(Ch, D) = d(C, D).

It remains to show that d(C, D) < 6(C, D). Let (C = Cy, C4,...,Cy = D) be the
vertices of a shortest path in I'y connecting C' and D. This yields a submodule
chain

C>CnC>...>2CNC1>2CND.
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The factors

are zero or simple, since C;/C;NC; is simple, as observed in the proof of Remark
2.3.4. Hence d(C, D) < §(C, D).
O

2.3.1 Equivalence of codes and automorphisms of I'y

This section defines a finite group WAut(7") which acts on the set €(7") of all self-
dual Type T' codes, such that the neighbor search given in the previous section
can be restricted to the computation of a subset of €(7") containing exactly the
orbit representatives of this action. In the case of the Type of linear codes C' < FV
with G < Aut(C), for a group G < Sy, we give a subgroup of WAut(7") which
preserves all the properties of codes which are of interest in coding theory, like
the weight distribution and the structure of the automorphism group.

Definition 2.3.7. The weak form isometries (cf. Definition 2.1.13) of T onto itself form
a group WAut(T'), called the weak automorphism group (cf. [33, Definition 1.11.2]).

Remark 2.3.8. For a code C' € &(T), let N'(C') be the set of all neighbors of C' in the
neighbor graph. The weak automorphism group WAut(T') acts on €(T'), by (©,C) =
a(C), for © = (ag, an, as, ) € WAU(T) and C € &(T), and a(N(C)) = N(a(C)).

Proof. To see that a(N(C)) = N (a(C)), let D € N(C). The quotient
a(C)/(a(C)Na(D)) = a(C/a(C N D) =a(C/CND)

is simple, since C//C N D is simple. Hence «(D) € N(a(C)), which shows the
inclusion a(N(C)) € N (a(C)). The other inclusion follows by changing to the
inverse of a. O

Corollary 2.3.9. The group WAut(T') acts on &(T) as graph automorphisms of I'r,
i.e. two vertices C, D are adjacent if and only if ©(C),O(D) are adjacent, for every
© € WAut(7).

Corollary 2.3.10. Let Y < WAut(7T) be a subgroup. Then there exists a connected
subgraph of I'r with vertices the orbit representatives of the action of Y on €(T'). This
subgraph is computed by the following algorithm.

1. L:={C}, L' ={C}
2. Compute the set N, := Upe N (I') of all neighbors of elements of L'.

3. Choose a subset L” C L UN7, such that all codes in L" lie in different orbits under
the action of Y.

4. If N;, N L" C L then return L.
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5. Goto2with L:= L", I :== Ny N L".

The theory of weak automorphisms and graph automorphisms is now applied
to linear codes over finite fields with prescribed automorphisms. The symmetric
group Sy acts naturally on the set of all self-dual linear codes in F, but not on
the set

CF,G):={C=C*+<F"¥ |G <Aut(C)}

of all G-invariant self-dual codes for a group G < Sy, since for C € €(F, G) and
7 € Sy the code 7(C) is not necessarily G-invariant.

Remark 2.3.11. The normalizer M := Ng, (G) acts on €(F,G) by n - C = n(C), for
ne€ Nand C € €F,G). Two codes C, D € &€(F,G) are called normalizer equivalent
if they are in the same orbit under this action.

Proof. For a code C < FY and n € M, the code n - C has Aut(n - C) =
nAut(C)n~! and hence G < Aut(n - C) whenever G < Aut(C). O

The action of 91 on ¢(F,G) is the action of some subgroup of the weak au-
tomorphism group WAut(7T'(F,G)), where T'(F, ) is the Type of self-dual G-
invariant codes in FV: Recall that the underlying form ring is

R(F,G) = (FG,FG,id, FG/A = FG/{a — a’ | a € FG})

(cf. Definition 2.2.4). For every element n € N, the triple (), o), a;,/A) is a form
ring automorphism, where the F-linear map «,, : FG — FG is defined by o, (G) =
ngn!, for g € G, and a,,/A(a + A) = ay(a) + A, fora € FG. Leta : FY — FN v —
nv, then ©,, = (a,), ay, /A, @) is a weak form isometry of 7'(F, G). Hence the
theory above applies to normalizer equivalence. In particular

Corollary 2.3.12. The algorithm in Corollary 2.3.10 computes the normalizer equiva-
lence classes of self-dual G-invariant codes in FN, with Y = {0, | n € MN}. In particu-
lar, for G = {1}, the algorithm computes the permutation equivalence classes of self-dual
codes in FV.

Since general the normalizer 91 = Ng, (G) is not so easily computed, one may
prefer to compute the orbits of a subgroup of 9t on €(F, G). If G is transitive then
the centralizer Cs, (G) C 91 may be appropriate since it is very easy to compute
in this case, as shown in the following theorem.

Theorem 2.3.13. The centralizer Cs, (G) acts as form isometries on BN, and if G is
transitive then Cs, (G) = Ng(H)/H, where H = Stabg(1).

Proof. The first part of the claim is clear. Assume that G is transitive, then one
may define an action of Ng(H) on the set {1,..., N} by

g(1) xn:=g(n(1)),

for g € Gandn € Ng(H). To see that this action is well-defined, i.e. that g((1)) =
g(n(1)) whenever g(1) = g(1), note that g~'g € H if and only if n~'g~'gn € H,
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since n € Ng(H). The group homomorphism A : Ng(H) — Cs, (G) induced
by this action has kernel H, and surjectivity can be seen as follows. Due to the
transitivity of G, there exists some element 1 € G with n(1) = 7(1), and since

hn(1) = hre(1) = wh(1) = =(1) = n(1)

forall h € H, the element n normalizes H,i.e. 7(1) = n(1) = 1x*n. Since the action
of 7 and 7 is determined by 7 (1) and (1), respectively, the claim follows. O

If G is transitive then the quotient 91/Cs, (G) is isomorphic to a subgroup of
the automorphism group Aut(G), which is described in the following theorem.

Theorem 2.3.14. Let G be a transitive permutation group of degree N and let H :=
Stabg(1). Let Auty(G) be the set of all automorphisms « of G such that H and o(H)
are conjugate in G. Then

MN/Cs, (G) = Auty (G).

Proof. The normalizer 9t acts as group automorphisms on G, via (¢g,7) = ¢" =
ngn~"'. This gives rise to a homomorphism

N — Aut(G), n— (g g"),

with kernel Cs, (G). The group H is mapped to Stabg(n(1)), which is conjugate
to H, due to the transitivity of G. Hence there is a well-defined group monomor-
phism

v N/Csy(G) = Auty(G), 1-Csy(G) = (9 — g").

To see that ¢ is surjective, let & € Auty(G) and assume without loss of generality
that «(H) = H. Then « induces a permutation 7 € Sy, given by 7(z(1)) =
a(z)(1), for z € G. This permutation satisfies

mgr ! (z(1)) = mga” (z)(1) = alga™ (2))(1) = a(g)(=(1))

for all g,x € G, and hence mgr~' = o, i.e. 7 is a preimage of o under ¢, and the

claim follows. O

Corollary 2.3.15. If G is a transitive permutation group then M = Ng(H)/H %
Auty (G), where H, Auty (G) are as above.

Proof. By Theorem 2.3.13, the quotient No(H)/H = (s, (G), and the normal
subgroup Cs, (G) of 91 has a complement isomorphic to Auty(G), which is seen
as follows. Consider Auty(G) as a subgroup of 91 by means of the embedding

v Autg(G) =N, a— (z(1) — a(x)(1)), z€G.

To see that ¢ is injective, note that every element a € ker(:) maps a(g) = h,g with
some element h, € H, for all g € G. The identity

h;txhgg = a(x)a(g) - Oé(ZL’g) = hachg
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implies that zh,z ' € H for all z,9 € G, ie. hy € Nyegz *Hx = {1}. Hence « is
the identity, which shows the injectivity of . In this sense, Auty(G) N Cs, (G) =
{1}, since if & € Auty(G)NCs, (G) then a(gz)(1) = g(a(x)(1)) forall g,z € G and
hence a(g) = g for all g € G. Now the claim follows with Theorem 2.3.14. O

Remark 2.3.16. Note that the proof of Theorem 2.3.14 provides an algorithm to compute
N whenever G is transitive, as follows.

1. Determine the subgroup A of Aut(G) containing all automorphisms which leave
H invariant.

2. For every element « of a generating subset G of A compute the well-defined permu-
tation 7, : g(1) — a(g)(1).

3. Compute t = (G, Cs, (G), 7o | @ € G).

In an implementation in Magma ([3]) this algorithm turns out to be fast if Aut(G) is not
too difficult to handle in the first step. In many interesting cases, for instance for G =
M, the inner automorphism group has index 2 in Aut(G) and hence either Auty (G) =
G or Auty(G) = Aut(G). Since the latter is easy to test and G can easily be determined
from a generating subset of Auty(G), the algorithm has a good performance in these
cases.

2.3.2 Block decomposition

Let R be a finite ring with unity. An idempotent is an element 0 # e € R with
e? = e. Two idempotents e, f are called orthogonal if ef = fe = 0. The idempotent
e is called primitive if for all orthogonal idempotents f, g € R withe = f+g¢, either
[ = eor g = e. A central primitive idempotent is a primitive idempotent of the
center of R. The following is well-known.

Lemma 2.3.17. (i) Let e, f be central primitive idempotents. Then either e = f or

ef = fe=0.

(ii) There exists a unique decomposition 1 = e; + ... + ey, into central primitive idem-
potents. This induces a decomposition

R:ele...xekR

into ringdirect summands, called the blocks of R, and every left R-module V is a
direct sum
V=eV...®eV.

Remark 2.3.18. Let R be a form ring over the ring R, with associated involution J,
and let e € R be a central idempotent with e/ = e. Then every finite representation
T = (V,pum, pao, B) of R decomposes as T = eI L (1 — e)T, where

el = (6V7 PM, Po, ﬁe)a
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with B.(ev, ew) = [(ev, ew), and (1 —e)T is defined similarly. If C' <V is a submodule
then C = eC L (1 —e)C, and (eC)P = (eC) P NeV = eCHP. In particular
every self-dual Type T code is the orthogonal sum of two self-dual codes of Type €T and
(1 —e)T, respectively.

Remark 2.3.19. Let R be a form ring over Rand let 1 = e,+. . .+ey, be the decomposition
into central primitive idempotents. For every finite representation T on the R-module V,
the group WAut(T') acts on the set {e;V |1 € {1,...,k}}, by

(©,6V) = ale;V) = ar(e)V,
for © = (ag, an, ap, @) € WAUL(C).

Let1 = ¢, +...4 ¢ be a decomposition into pairwise orthogonal central idem-
potents such that ¢ = ag(c;) = ¢; foralliand all © = (ag, ay, as, @) € WAut(T).
Then T =1!_, T;, where T; = (¢;V, pu, ps, O, ), and every code C € €(T) decom-
poses as

C’zchJ_...J_ctC’,

with summands ¢;C € &(T;). Every subgroup Y of WAut(7) acts on €(7;) as
weak automorphisms, and every element © € Y satisfies © - C' = D if and only if
© - (¢;C) = ¢ D for all i.

Corollary 2.3.20. The following modification of the algorithm in Corollary 2.3.10 gives
orbit representatives for the action of some subgroup Y of WAut(T") on &€(T'), performing
the neighbor search only on the direct summands c;V.

1. Leti:=1, F:={0}.

2. For C' € F, find a set Oc of orbit representatives of €(T;) under the action of
Staby(C).

3. Gotol.withi=i+1, F.={C® X |CeF, XecOc}

Chapter 7 treats the case where T is the Type of G-invariant codes in FV, for
some subgroup G < Sy. The underlying ring is the group algebra FG, and on
the set €(7) the normalizer Ng, (G) acts as weak automorphisms. The following
Lemma states that in this case, there exists some non-trivial decomposition 1 =
c1 + ...+ ¢ as above.

Lemma 2.3.21. Let I be a finite field, let G < Sy be a finite group, and let e € FG be
the central primitive idempotent belonging to the trivial G-module. Then ¢’ = e, and
nen~! = e forall n € Ng, (G).

Proof. The element e acts as the identity on the trivial G-module and all other
central primitive idempotents annihilate the trivial module. Hence e = |, ¢49
is the unique central primitive idempotent with 3~ _, ¢, = 1. The elements ¢’
and nen~!, for n € Ng,(G), are central primitive idempotents which also have
this property, hence are equal to e. O



Chapter 3

Permutations and the neighbor graph

This chapter treats codes in the classical sense, i.e. a code is a subspace of F”, for
a finite field IF. Orthogonality is defined through the standard scalar product

N

B: FN xFN S T, ((vl,...,vN),(wl,...,wN)HZviwi,

i=1
that is, the dual of a code C'is
Ct={veF"|B(v,c)=0 forallc € C},

which is again a code. In this chapter a self-dual code (i.e. C = C*) over a field of
odd characteristic, or a self-dual generalized doubly-even code (cf. Definition 2.2.1)
is viewed as a maximally isotropic subspace of some quadratic space (V, q),ie. V
is a vector space over F and ¢ : V — F is a map such that ¢(fv) = f?q(v) for all
feFandv e V,and

Mg):VxV =TF, (v,w)—qv+w)—ql)—qw)

is bilinear. Recall that a subspace U < V is called isotropic if ¢(U) = 0. The
automorphism group
Aut(C) :={m e Sy | n(C)=C}

is viewed as a subgroup of the orthogonal group
OV, q) = {y € Aut(V) [ g(v) = g(p(v)) forall v € V}.

To state this more precisely, assume first that F has odd characteristic. Then the
quadratic forms on V = F" are in correspondence with the symmetric bilinear
forms on V, and a code C' < V is self-dual if and only if 2dim(C) = N and C'is
isotropic with respect to the quadratic form ¢ := {5} : v — [((v,v). Moreover,
the orthogonal group

OV, 5) ={p € Aut(V) | B(v,w) = B(p(v), p(w)) for all v, w € V'}

27
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of the bilinear space (V, 3) equals the orthogonal group O(V, q), since A({5}) =
2. There exists a natural embedding

L: Sy — O(Va C])7 T = (bi = bﬂ(i))7

where (b, ..., by) is the standard orthonormal basis of V. In particular Aut(C)
is isomorphic to a subgroup of O(V, ¢). Hence for a subgroup G < Sy, the self-
dual G-invariant codes in (V, 3) are in correspondence with the ((G)-invariant
isotropic subspaces C' of (V, ¢) which have 2dim(C') = N.

If F has characteristic 2 then the correspondence between symmetric bilinear
and quadratic forms no longer exists, and the isotropic subspaces of (V, {5})
are in general not self-orthogonal with respect to 3. However, the generalized
doubly-even self-dual codes of length NV are in correspondence with the maxi-
mally isotropic subspaces of the quadratic space V := (1)*/(1), where 1 € FV
is the all-ones vector, and the weight (cf. Definition 2.2.1) is used to define the
appropriate quadratic form. Again, the symmetric group Sy embeds into the
orthogonal group of V and Aut(C) preserves the subspace C'/(1) < V.

This chapter discusses automorphism groups of self-dual codes against the
background described above: In either of the two cases, Sy acts as isometries on
a quadratic space V, i.e. induces graph automorphisms of the neighbor graph
I' of all self-dual isotropic subspaces of V' (cf. Chapter 2). A permutation group
leaves a self-dual code invariant if and only if its action on I' preserves a vertex.
From the investigation on the action of transpositions on I' one concludes that
the automorphism group of a self-dual code in odd characteristic, or a general-
ized doubly-even code, always lies in the alternating group. In characteristic 2,
Theorem 3.2.7 characterizes the situation in which there exists a self-dual gener-
alized doubly-even code. The results in this chapter are published in the paper
[12].

3.1 Isometries as automorphisms of I

Let (V, q) be a non-degenerate quadratic space over the finite field F, i.e. the po-
lar form A(¢) is non-degenerate. Let €(V, q) be the set of all maximally isotropic
subspaces of V. Two elements C, D € &(V, q) are called neighbors if

dim(C/C N D) =1

(cf. Definition 2.3.3). The neighbor graph I" = I'(V, ¢) has the elements of €(V,q)
as vertices, and two vertices C, D are adjacent if and only if they are neighbors.
It follows from Example 2.1.9 that the isotropic subspaces of V' form a Type of
codes and hence the results in Section 2.3 on the graphs of Type T codes apply to
I'. In particular, I' is connected and the distance between two vertices C, D in I'
equals dim(C/C' N D) = dim(D/C N D). The orthogonal group O(V) = O(V,q)
acts transitively on €(V, ¢) by Witt’s Theorem (cf. [22, Satz 3.4]). Since

dim(C/C N D) = dim(2(C) /9(C) N (D))
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for all vertices C, D € €(V,q) and all ¢ € O(V), the vertices C, D are adjacent
if and only if ¢(C), (D) are adjacent and hence the action of O(V') on &(V, )
induces graph automorphisms of I'. The following two sections show that I" is
bipartite and that O(V') acts on the set of the two partitions, yielding a group
epimorphism O(V) — Cs. To this aim Section 3.1.2 investigates the action of the
reflections in O(V') on the set €(V, ¢). Recall that the reflection at the hyperplane
orthogonal to an anisotropic vector v is the isometry

M) (v, w)
qlv)

To show that I' is bipartite, we need another group epimorphism ¢ : O(V) — Cs,
which is the determinant or the Dickson invariant, depending on the characteris-
tic of IF (cf. Section 3.1.1). We find that every reflection interchanges the partitions
of I (cf. Theorem 3.1.11). Since every reflection o € O(V) satisfies (o) = —1, this
allows to conclude that, whenever O(V') is generated by reflections, the stabilizer
in O(V') of a maximally isotropic subspace of V' is contained in the kernel of 4.

op: V=V w—w-—

3.1.1 Determinant and Dickson invariant

If F has odd characteristic then O(V) is generated by reflections (cf. [22, Satz 3.5]),
and the parity of reflections whose product is ¢ is given by the determinant, for
every isometry ¢.

Remark 3.1.1. Assume that F has odd characteristic and let o € O(V') be a reflection.
Then det(c) = —1. Hence ¢ € O(V') has det(y) = 1 if and only if it is a product of an
even number of reflections, and this parity is well-defined.

Proof. Let v € V be an anisotropic vector such that o is the reflection at the

hyperplane H orthogonal to v. Then o(v) = —v, and every element of H is fixed
by 0. Hence if B is a basis of H then (B, v) is a basis of V, with respect to which o
acts as diag(1,...,1,—1), and hence det(c) = —1 as claimed. O

If F has characteristic 2 then O(V) is generated by reflections, too, except when
V is the orthogonal sum of two hyperbolic planes (cf. [37]). But in characteristic
2 every isometry has determinant 1, i.e. we need a different group epimorphism
to describe the parity of reflections whose product is the isometry ¢. To this aim
Definition 3.1.2 introduces the Clifford algebra C'(V') and a certain subalgebra Z
of C'(V') on which the orthogonal group O(V) acts as automorphisms. It is shown
that the automorphism group of Z is cyclic of order 2 (cf. Corollary 3.1.6). Hence
the action of O(V') on Z induces a group homomorphism D : O(V) — (5, which
is called the Dickson invariant (cf. Definition 3.1.8).

Definition 3.1.2. (see [22, Def. 5.3]1) A Clifford algebra C'(V) = C(V,q) is an F-
algebra together with a homomorphism h = V. — C(V), such that h(v)* = q(v) in
C(V) forall v € V, and for every F-algebra B and every homomorphism g : V. — B
with g(v)? = q(v) for all v € V, there exists a uniquely determined homomorphism
a:C(V) — Buwith a(h(v)) = g(v) forallv e V.
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It is well-known that for every quadratic space (V,¢) there exists a Clifford
algebra C'(V, ¢), which is uniquely determined up to isomorphism (cf. [22]), and
that the associated map h is always injective. Note that in the Clifford algebra,

vw +wv = (v+w)® —v® —w® = q(v+w) —q(v) - g(w) = Mg) (v, w)
forall v,w e V.

Remark 3.1.3. (cf. [22, Satz 5.12]) If the dimension of V' is n then the dimension of the
Clifford algebra is 2". More precisely, if (eq, ..., e,) is a basis of V then

63:{€i1'~--'eik|i1<"'<ik€{1"“’n}}

is a basis of C'(V'), where the empty product equals 1 and is an element of the basis. As
vector spaces, C'(V) = Co(V') @& C1(V'), where

Ci(V)={(es ... €, € B|k=j mod 2)

has dimension 2"~'. Then C(V)Cy(V) C Cywi(V), where all indices are modulo 2.
Hence C(V) is a graded algebra mod 2. In particular Cy(V') is a subalgebra of C(V),
called the even subalgebra.

Theorem 3.1.4. (see [22, (5.9)]) Let (V,q) = (Vi,q1) L (Va,q2) be an orthogonal de-
composition. On the vector space C(V1, ¢1) ® C(V4, q2) define a multiplication by

(v1 ® w1) - (v @ wa) = (—1)Y (vV1vy @ wywy),

where i = 1ifwy, € C1(Va), and j = 1ifvy € C1(V4), and i = j = 0 otherwise. With
this multiplication C(V1, q1) @ C(Va, q2) = C(V, q), via (v1 ® vg) — v1 - .

From now on assume that F has characteristic 2. Then the non-degenerate
symmetric bilinear form [ := A(¢) is symplectic and hence dim (V') = 2m is even,
and there exists a basis (e, .. ., ea,,) of V such that

5(61‘, ej) =0, 5(€m+z‘, €m+j) =0 and 6(ei7€m+j) = 5ij (3.1)

fori,5 € {1,...,m}. If the quadratic space (V, ¢) has Witt defect 0 (cf. Remark
4.2.8) then V is the orthogonal sum of hyperbolic planes, and we may assume that
q(e;) = q(emyi) = 0 for all i. Otherwise, (V,q) 217" H L V; is the orthogonal
sum of hyperbolic planes H and an anisotropic space (V;,7), where V; = F .,
if F has ¢ elements, and 1 : = — 2% is the Norm form. In this case, we may
still assume that ¢(e;) = q(em+;) = 0 foralli € {1,...,m — 1}, and by suitable
scaling, that ¢(e,,) = 1 and B(e,, e2,) = 1. Note that then the polynomial z? +
x + q(eam) € Flz] is irreducible since if A were a root of this polynomial then the
vector v = e, + ez, would satisfy

q(U) - Q(/\em) + 5()\6771’ 62m) + Q(BQm) - )\2 + A + q<€2m) - 0;

which contradicts the anisotropy of V.
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Theorem 3.1.5. (see [4, p.3]) The center Z of Cy(V, q) is a 2-dimensional vector space
over F, generated by the elements 1 and z := Y. | €€, Where (€1, . .., eay,) is a basis
of Vasin (3.1).

Proof. We proceed by induction on m. If m = 1 then dim(Cy(V,q)) = 2, by
Remark 3.1.3. Hence it suffices to show that e;e; € Z, and to this aim it suffices
to show that e;e5 commutes with the element ese;, which is obvious.

Form > 1,letV = V; L V, be an orthogonal decomposition into subspaces
with symplectic bases (e, ..., €2,) and (fi, ..., fom), respectively. Clearly

Co(V1) - Co(Va) € Co(V),

and hence every element of Z centralizes the subalgebras C;(V;). By induction,
the center of Cy(V;) has a basis (1, z;), where z; + 2o = 2. Hence Z is contained in
the subalgebra generated by the elements 1, 21, 22, 21 - 22, by Theorem 3.1.4. Let

T =AM+ Xo2z1 + A320 + Mg21 - 20 € Z,

with \; € F fori € {1,...,4}. The element ¢, - f; € Cy(V, ¢), and an elementary
calculation shows that

zey- fr —er- fix = Ao+ As)er - fi + Mer - fi(l+ 21 + 22).

Hence if x € Z then A\ = A3 and A\, = 0. This yields = € (1, z). One easily verifies
that indeed, z € Z, which proves the assertion. O

Corollary 3.1.6. If (V, q) has Witt defect 0 then the F-algebra Z = F & F. Otherwise Z
is a quadratic field extension of F. In either of the two cases, Aut(Z) = C, is generated
by the automorphism z — z + 1.

Proof. Let z be as in Theorem 3.1.5. As one easily verifies,
Ptz= ZQ(@) q(em+i)-
i=1

Hence if V has Witt defect 0 then z has minimal polynomial z* + = and hence
Z 2 Flz]/(2* + 2) 2 Fz & F(z + 1), and every algebra automorphism of Z either
interchanges or fixes the primitive idempotents z,z + 1. If IV has Witt defect 2
then z has minimal polynomial 22 + x + ¢(es,,), which is irreducible as remarked
above. Hence in this case Z = Flz|/(2? + = + q(ean)) is a field, and every alge-
bra automorphism of Z either interchanges or fixes the roots z and z + 1 of the
polynomial 2% + z + g(ea,,) over Z. O

Corollary 3.1.7. Let ¢ € O(V). If h : V. — C(V) is the embedding associated with
C(V) then hoy : V — C(V) is another embedding and hence by the universal property
of the Clifford algebra there exists a unique algebra automorphism c, of C(V') with ¢, o
h = @oh, i.e. which extends ¢. The subalgebra Z is left invariant under c,, and c,, either
induces the identity on Z or the automorphism of order 2 given by c,(z) = z + 1, where
z is as in Theorem 3.1.5.
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Definition 3.1.8. The Dickson invariant is the group homomorphism D : O(V,q) —
Cy = {1, —1} with D(p) = 1 if and only if p induces the identity on Z.

Remark 3.1.9. If o is a reflection then D(0c) = —1. Hence if O(V') is generated by
reflections then an element p € O(V') lies in the kernel of D if and only if it is a product
of an even number of reflections, and this parity is well-defined since D is well-defined.

Proof. All reflections are conjugate in O(V'), since if 0,0, are reflections at
vectors v,w then by suitable scaling one may assume that ¢(v) = ¢(w), since
every element in F is a square. By Witt’s Theorem there exists an isometry A
with h(v) = w and hence o,, = op,(,) = ho,h™'. Hence it suffices to show the claim
for the reflection o = o, _.,, ., interchanging the basis vectors e, e,,1 and fixing
all other basis vectors. Now

m m
Co(2) = emprer + E CiCmyi = 1+ E €iCmti = 1+ 2
i— i—1

and hence D(0) = —1, which shows the assertion. O

The Dickson invariant may also defined in odd characteristic, via the action of
O(V') on the centralizer of Cy(V') in C(V'), which equals Z if V' has even dimen-
sion. The Dickson invariant is then equal to the determinant (cf. [22]).

3.1.2 Reflections and the neighbor graph

Let (V, ¢) be a non-degenerate quadratic space over the finite field I (of arbitrary
characteristic), of dimension 2m and Witt defect 0, whose orthogonal group is
generated by reflections.

Theorem 3.1.10. Let p € O(V') such that there exists a maximally isotropic subspace of
V which is left invariant under . Then  is a product of an even number of reflections.

Proof. Let U be a maximally isotropic subspace of V' which is left invariant
under the isometry ¢. Then U has a basis (eq, ..., e,) such that (e, ..., es,) is a
basis of V as in 3.1. Write ¢ = (4 B ) with matrices A, B,C € F™*™, i.e.

ple;) = ZAijei and  p(€n+j) = Z Bijei + Cijemyi

i=1 =1

for j € {1,...,m}. If F has odd characteristic then ¢ is a product of an even
number of reflections if and only if its determinant is 1. Since ¢ is an isometry,
the product AC"™ = I,,, and hence det(¢) = det(A)det(C) = 1 as claimed. Now
assume that [ has characteristic 2. By Remark 3.1.9, ¢ is a product of an even
number of reflections if and only if D(y) = 1. Since ¢ is an isometry,

ABY™ € Alt,,,(F) = {M € F"™™ | M = M*" and M;; = 0 fori € {1,...,m}}
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and AC"™ = I,,,. Let z be as in Theorem 3.1.5, then the automorphism ¢, of C'(V ¢)
induced by ¢ maps

m m m

c(2) = Cw(z Citmei) = Y _ ole)p(emsi) = Z > Ayei(d Bijer + Crjem)

i=1 =1 i=1 t=1

= Z AijBijeier + AijCyieiemyr = Z (ABtr)iteiet + (Aotr)itei€m+t
ijt=1 ijt=1
= Z (ABtr)iteiet + (ABtr)itetei + (Actr)ijeiem—i-j + Z(Actr)iteiem-‘rt
1<i<t<m it=1
= Z Cibmti = 2
i=1
and hence by definition D(y) = 1 (see also [7]). O

Theorem 3.1.11. Let o be a reflection, and let C' be a maximally isotropic subspace of V.
Then o(C) and C' are neighbors. Conversely, if D is a neighbor of C' then there exists a
reflection T with Ct = D.

Proof. To prove the first part of the theorem, let v € V be an anisotropic
vector such that o is the reflection at the hyperplane H orthogonal to v. Then
every vector in H is fixed by 0 and hence C N H C C' N o (C). Now

dim(C N H) = dim((C + (v))*) = dim(V) — dim(C + (v))
:2m—(m—|—1):m—1

and hence dim(C/C No(C)) < dim(C/C N H) = 1. According to the previous
theorem, C' is not invariant under ¢ and hence dim(C'/C N ¢(C)) = 1. Hence
o(C) and C are neighbors. Conversely, let D be a neighbor of C'. Then there exist
ve,vp € Vsuchthat C = (CND,ve) and D = (CND,vp). The vector v := ve+vp
is anisotropic since ¢(v) = (ve, vp) # 0. One easily verifies that the reflection at
the hyperplane orthogonal to v interchanges v¢, vp and fixes the space C' N D.
Hence D = o(C). O

Corollary 3.1.12. The neighbor graph T is bipartite, and an element p € O(V') inter-
changes the two partitions if and only if it is a product of an odd number of reflections.
Otherwise both partitions are left invariant under .

Remark 3.1.13. Note that the assumption that V' be of Witt defect 0 is necessary for
the theorems in this section. Let for instance V' be a quadratic space over the finite field
IF = I, of characteristic 2, of dimension 2m and Witt defect 2. In this case, V =V, L V;
is an orthogonal sum of a quadratic space V;y of dimension 2m — 2 and Witt defect 0,
and Vi = F 2 with the anisotropic quadratic form F. — F,, x — z97. Let o be the
isometry which interchanges two nonzero vectors v,w € V; and fixes V. Then o is the
reflection at the hyperplane orthogonal to v + w and hence D(o) = —1, by Remark 3.1.9.
On the other hand, every maximally isotropic subspace U of V' that is contained in V}, is
left invariant under o.
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3.2 Automorphisms of codes as isometries

This section shows how linear codes over a finite field can be viewed as subspaces
of a quadratic space and investigates which isometries are induced by the sym-
metric group Sy. To this aim, let (by,...,bx) be the distinguished orthonormal
basis of the standard scalar product 5 with respect to which one defines a code.
In odd characteristic, the map ¢ : 7 — (b; — br(;)) gives an embedding into the or-
thogonal group of the quadratic space FV, with the quadratic map {3} induced
by the standard scalar product.

We will now investigate the situation when IF has characteristic 2. Classically,
a binary code C' < FY is said to be doubly-even if the weight

wt(c) =[{t € {1,...,N} | ¢; # 0}

is a multiple of 4 for every codeword ¢ = (¢4, ..., cn) € C. Definition 2.2.1 extends
the notion of doubly-even codes to arbitrary finite fields of characteristic 2 (cf.
[35]).

Assume that N > 4. The symmetric group Sy actson FY via 7 - (vy, ..., vy) =
(Vr(1), - - - » Ur(y)- Since this action preserves the weight and fixes the vector 1, this
gives rise to an embedding

i: Sy —=0WV,q), m— v+ 1) —m-v+ (1))

In what follows, an element 7 € Sy may be identified with its image i(7), and we
may write 7U instead of i(7)U, where U < V is a subspace. Obviously a code C
is preserved by a permutation group G if and only if the space C'//(1) is preserved
by G. Hence

Remark 3.2.1. The self-dual doubly-even G-invariant codes C' < F™ correspond to the
maximally isotropic G-invariant subspaces of (V. q).

To investigate the image i(7) of an element m € Sy, observe that

Remark 3.2.2. If v lies in the Fo-span of the F-basis (b; +by+ (1) | i € {1,..., N —2})
of V then q(v) = %(”) mod 2.

Proof. It suffices to show the claim for a basis vector b; + by + (1). Since

M-

Trace(t; - 1) = Trace(t}) = Trace(t; Y tx)

k=1

for all / and hence Z£:1 tr = 1, due to the nondegeneracy of the Trace form, one
calculates that

i i
wt(tr(b; + b
q(bi + by + (1)) = (1l 5 N»ti: Yy i
k=1 k=1

!
O o) =1,

k=1

as claimed. 0
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Lemma 3.2.3. Assume that N > 4 is even. The composition D o I = sign. More
precisely, if T,; € Sy is a transposition then i(7;;) is a reflection.

Proof. Since all transpositions are conjugate in Sy, and since the conjugate of
a reflection is again a reflection, one may assume thati = 1 and j = 2. Now

(Ul,...,’UN,Q) = (bl +bN + <1>7---7bN72 +bN + <1>)

is a basis of V, such that i(12) interchanges vy, v, and leaves all other basis vectors
fixed. Hence 7(7y2) fixes the hyperplane orthogonal to the vector v; + v,, which is
anisotropic, according to Remark 3.2.2. Hence i(712) is the reflection o, 4,,. O

Corollary 3.2.4. Let m € Sy. If sign(n) = —1 then i(r) interchanges the two partitions
of the neighbor graph of all self-dual isotropic subspaces of (V,q). In particular the au-
tomorphism group of a self-dual generalized doubly-even code is always contained in the
alternating group.

In odd characteristic, the isometry ¢(7;;) interchanges the basis vectors b; and
b; and fixes all other basis vectors. Hence ¢(7;;) = Op,—b; 1S the reflection at the
hyperplane orthogonal to b; — b;. An application of Corollary 3.1.12 yields

Corollary 3.2.5. (see [41, Ch. 11]) Let F be a finite field of odd characteristic and let
7 € Sn. If sign(m) = —1 then 7 interchanges the two partitions of the neighbor graph of
all self-dual codes in FN. If sign(w) = 1 then both partitions are left invariant under .
In particular the automorphism group of a self-dual code is contained in the alternating
group Ay.

Remark 3.2.6. Assume that F has odd characteristic. The monomial group M y is the
wreath product {1, —1}1Sy of Sn with the subgroup of F* generated by —1. There exists
a natural embedding

MN — O(Fn), (()\1, cey )\n) X 7T) — (bl — )\Zbﬂ(z))

form e Syand Ay, ..., \, € {1, —1}. The monomial automorphism group of a code
C <FNis
MAut(C) :=={p € Mn | ¢(C) = C}.

If C is self-dual then it follows immediately from Theorem 3.1.10 and Remark 3.1.1 that
det(p) = 1 for every o € MAut(C).

In characteristic 2 we can prove the following theorem which characterizes the
situation in which there exists a doubly-even self-dual G-invariant code. Apart
from the theory developed in this chapter, the proof uses the theory of Witt
groups (cf. Chapter 4.1) and a well-known result on the lengths of doubly-even
self-dual codes.

Theorem 3.2.7. Let G < Sy. There exists a self-dual generalized doubly-even code
C = C+ < F* with G < Auwt(C) if and only if the following three conditions are
fulfilled:
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(a) 8| N,or [F :TFy|isevenand 4 | N,

(b) every self-dual composition factor of the FG-module TN occurs with even multiplic-
ity,
(c) G < AN-

Proof. Condition (a) is equivalent with the existence of a self-dual doubly-
even code in ¥, as shown in [32] and also in Theorem 5.6.1. Condition (b) is
equivalent with the existence of a self-dual G-invariant code, by Corollary 4.1.28.
Hence if there exists a self-dual G-invariant code then conditions (a) and (b) are
tulfilled, and by Corollary 3.2.5 condition (c) is fulfilled as well.

Conversely, assume that the conditions (a),(b) and (c) are satisfied. Then there
exists a self-dual G-invariant code C. Assume that C is not doubly-even. The
map

do: C—F, crqglct (1))

is additive since C is self-dual, a G-module homomorphism since G' < O(V, ),
and surjective since C'/(1) is not isotropic. Hence ker(¢|¢) =: Cj is a G-module,
with dim(C/Cy) = 1 and hence Cjy /Cj is a G-module of dimension 2. Moreover,
the quadratic map

Cy/Co—TF, c+Ch— q(c+ (1))

is well-defined and of Witt defect 0 since V is of Witt defect 0 by condition (a)
(cf. Remark 4.2.8). The two maximally isotropic subspaces of C-/Cj correspond
to the vertices D and F of the neighbor graph of all self-dual isotropic codes in
(V, ¢) which intersect C in its subcode Cj. In particular the D and F are adjacent
in the neighbor graph, and hence both left invariant under i(G), since G < Ay
(cf. Corollary 3.2.5). Thus the full preimages of D and E under the epimorphism
FY — V, v v + (1) are doubly-even G-invariant self-dual codes. O



Chapter 4
Witt groups

This chapter treats linear codes, i.e. subspaces of FV, where F is a finite field, as
modules for a group algebra. Orthogonality is defined via the standard scalar
product 31 : F¥ x FY, or alternatively, if F = F,: has r? elements, by means of
the Hermitian scalar product

O FN xFN S F, ((vr,...,08), (wy, ..., wy)) sziw;ﬂ

The dual of a linear code C < F¥ is
ct =t = v eFY | B9, ¢) =0forallc € C},

for e € {1,r}. The code C is called self-orthogonal if C' C C*, and self-dual if
C = C*. The orthogonal group is

O = O(FN, 39 := {4 € Aut(FY) | B9(%(v), (w)) = 9 (v, w) for all v, w € FV}.

Clearly O acts on the set of all self-dual codes in FV. The action of the monomial
subgroup My of O is of particular interest since it preserves the weight distribu-

tion of a code (cf. Section 5.1). The group /\/lgf,) is the wreath product U Sy, where
U = {u € F* | u‘u = 1}. In matrices,

M = {X € GL(F, N) | X(X)" = Iy},

where the powers in X ¢ are taken componentwise. We view ME\E,) as a subgroup
of O, via the natural embedding

ME\GI) — 07 (()\17 o '7)\N) X 7T) = (fl = )\ifﬂ-(i))’

where (f1, ..., fn) is the standard basis of FV. This chapter investigates the mono-
mial automorphism group

MAut(C) := Stab,_(C) = {¢ e MY | ¢(C)=C}

M

37
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of a self-dual code C' < F¥, by an inverse approach: Given a subgroup G <
/\/lgf,), we investigate whether there exists a G-invariant self-dual code C' < FV,
To this aim, we view FY as a G-module, where G acts as a subgroup of Mgf,).

The connection between codes and modules is given by the following trivial but
important remark.

Remark 4.0.8. Let C' < F¥ be a code and let G < /\/lgf,) be a subgroup. Then C' is
G-invariant if and only if C'is a G-submodule of V.

The group algebra A = IE‘ME\E,) carries an involution J given by

Yo fuMe Y M
)

MemtY Mem

That M) consists of isometries means that 3 (v, wa) = 3 (va’, w) for all v, w €
FY¥ and a € A, i.e. the module (FV,3() is equivariant (cf. Definition 4.1.1). In
Section 4.1 we view equivariant A-modules as elements of the Witt group, for a
general finite algebra A with involution. The structure of this group allows in
many cases, for instance if F has characteristic 2, to decide from the composition
factors of the G-module FV whether there exists a self-dual G-invariant code (cf.
Theorem 4.1.27).

4.1 The Witt group of an algebra with involution

Let A be a finite algebra with unity over the finite field F. Let J be an involution
of A, i.e. a bijective additive mapping with (ab)’ = b’a’ and (a’)” = a for all
a,b € A. Assume that F/ = IF, where F is naturally embedded into A via f +— f-1.
The restriction of J to F is either the identity or has order 2. In the latter case
F = F,» has 7 elements and f’/ = 7, for f € F. If J is the identity on F then it is
said to be of the first kind, otherwise of the second kind (see for instance [37, Ch.8,
Remark 7.2]).

Definition 4.1.1. Let ¢ € F*. An e-equivariant form on V (with respect to J) is a
biadditive mapping 3 : V x V' — F such that

Blva, w) = Blv,wa’), Blo,w) = p(w,v)’ and Blv,wA) = Blv, w)A
forallv,w eV, a € Aand X € F. The form (3 is called non-degenerate if
ag:V — Homp(V,F), v— (w— B(w,v))

is an isomorphism. If (3 is non-degenerate then (V, 3) is called c-equivariant.

Note that the existence of an e-equivariant module (V, 3) implies that ee’ = 1
since

Bv,w) = ef(w,v)’ =e(eB(v,w)’)’ = e’ B(v,w)
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for all v,w € V. We will sometimes omit the ¢ in the context of equivariant
formes, if it is given by the context or if we do not refer to a specific value of . By
M(A, J,e) we denote the set of all e-equivariant A-modules.

Definition 4.1.2. Let (V. 5) € MM(A, J,e). The orthogonal of a submodule C' < V' is
Ct={veV|pB,c)=0foralceC},

which is again a submodule of V. If C' C C* then C is called self-orthogonal, and
if C = C* then C'is called a self-dual code. If C is self-orthogonal and there exists
no self-orthogonal submodule of V' which properly contains C' then C' is called maxi-
mally self-orthogonal. If the zero module is maximally self-orthogonal then V' is called
anisotropic, and if there exists a self-dual code in V then V is called metabolic.

The equivariant A-modules form a semigroup with the orthogonal sum as mul-
tiplication, i.e.
V.8 L (V.5 =(VeV, gLg),

where (6 L F')(v+ v, w+ ') = B(v,w) + f'(v',w') for v,w,v’;w" € V. Define a
relation on M (A, J, ) by letting (V, 5) ~ (V', ) if and only if (V,3) L (V',—03')
is metabolic. In this section it is shown that ~ is an equivalence relation (cf. Cor.
4.1.6, [37]), hence modulo this relation (A4, J, ¢) is a group.

Definition 4.1.3. The Witt group W(A, J,¢) is formed by the ~-equivalence classes
[(V, B)] of equivariant A-modules, with multiplication

(V. 3)] L[(V", 8] = [(V.B8) L (V', 8],

which is well-defined, due to the Cancellation Lemma 4.1.5. The class [(V,3)] is also
called the Witt Type of (V, 3).

The following two Lemmata aim to show that ~ is an equivalence relation.

Lemma 4.1.4. Let (V,3) € M(A, J,e) be metabolic and let M be a self-orthogonal sub-
module of V. Then there exists a self-dual code in V' which contains M.

Proof. Let C be a self-dual code in of V. Then C' N M+ + M has the desired
properties since

(CAM*+ M =(C+MNM*=CnM*+ M,
where the last equality holds due to the inclusion M C M*. 0

Lemma 4.1.5. [Cancellation Lemmal] Let (V, 3), (V', 3") € M(A, J, &) such that (V', ')
is metabolic. Then (V, [3) is metabolic if and only if (V, ) L (V', 3') is metabolic.

Proof. Clearly if (V, ) is metabolic then so is (V, 3) L (V’, 3). Conversely, if
(V,3) L (V',3) is metabolic then so is

T:=(V,8)L(V',B)L{V, -3)
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since (V’, —(') is metabolic as well. Let M = {(0,v',v") | v/ € V'} < T, then
M < M+*. Hence there exists a self-dual code C in T which contains M, according
to Remark 4.1.4. Since C' < M+, the elements of C' must be of the form (v, v, v’)
forsome v € Vand v' € V'. Let 7 : T — V denote the projection onto the first
component, then 7(C) = 7(C)* < V and hence (V, ) is metabolic. O

Corollary 4.1.6. The relation ~ is an equivalence relation.

Proof. Clearly the relation is symmetric and reflexive. For the transitivity, let
(V”,ﬁ//) ~ (V, B) ~ (V/,ﬂ/).

Then (V",5") L (V,=5) L (V,B8) L (V',—/') is metabolic. Since the summand
(V,—pB) L (V,pB) is metabolic as well, so is the module (V”,3") L (V',—f'), by
Lemma 4.1.5, and hence (V”, ") ~ (V' 3). O

Remark 4.1.7. Let (V,3),(V',3") € M(A, J,e). An isometry is an A-module isomor-
phism ¢ : V' — V' such that f(v,w) = ' (p(v), p(w)) for all v,w € V. If there exists
an isometry V. — V' then V, V' are called isometric, and (V, 3) ~ (V', ).

In what follows a standard representative of a class in W(A4, J, ) will be con-
structed, which is always semisimple.

Lemma 4.1.8. Let (V,3) € M(A, J,e) and let M be a self-orthogonal submodule of V.
The form

By M*+/M x M*~/M —TF, (m' +M,m" + M) B(m',m")

is again equivariant and non-degenerate, i.e. (M*/M,By) € M(A, J, ). Moreover,
(MM, Bar) ~ (V, ), ie. [(V,B)] = [(M*+/M,By))] € W(A, J,e). If M is maxi-
mally self-orthogonal then the module (M~ /M, By;) is anisotropic.

Proof. The code
{(m' +M,m') | m' € M*} < (M*/M, Bu) L (V, =)

is self-dual, i.e. (M*/M,By) ~ (V,5). Moreover, if M is maximally self-
orthogonal then (M=*/M, 3) is anisotropic, since any proper self-orthogonal
submodule of M+ /M would lift to a self-orthogonal submodule of V properly
containing M, which contradicts our assumption. 0

Theorem 4.1.9. For every module (V, 3) € M(A, J, ) there exists an anisotropic repre-
sentative of [(V, 3)], which is unique up to isometry.

Proof. The existence of an anisotropic representative follows from Lemma
4.1.8. For uniqueness, let (V;,¢;) ~ (V,3), i = 1,2, be anisotropic equivariant A-
modules. By the transitivity of ~, the sum M := (V},¢4) L (Va, —») is metabolic.
Let N be a self-dual code in M. The projections 7; : N — V; are injective since



4.1. THE WITT GROUP OF AN ALGEBRA WITH INVOLUTION 41

ker(7) is an isotropic submodule of the anisotropic module V3, and vice versa.
Hence

T (N)| - [mo(N)| = [N = [Vi] - V5]
and hence |m;(N)| = |Vi], i.e. the 7; are isomorphisms. This yields an A-module
isomorphism « := m o ;' 1 Vi — V5, which satisfies N = {(vy, a(v1)) | v; € Vi}.
Hence

U1(v1,vh) = ha(e(or, avy))) = (1 L (=2)) (01, a(v1)), (v), a(vy))) = 0

for all vy, v] € V3, i.e. avis an isometry, which proves the assertion. O

Corollary 4.1.10. Let (V,3) € M(A, J,¢) and let M be a maximally self-orthogonal
submodule of V. Let By : M+ /M x M*/M — F be as in Remark 4.3.3. Then the
quotient (M~ /M, Byr) is independent from the choice of M, up to isometry.

The following Theorem is very useful in the determination of the isomor-
phism type of W(A, J, ¢).

Theorem 4.1.11. Every anisotropic module (V, 3) € M (A, J, €) is an orthogonal sum of
simple equivariant A-modules.

Proof. For every submodule M of V the submodule M~ is a complement,
since M N M+ = {0} and |M||M*| = |V|. This argument shows that V is the
orthogonal sum of its simple summands. In particular, the restriction of 5 to a
simple summand S induces a non-degenerate equivariant form on S. 0

Let &. be the set of all simple A-modules carrying a non-degenerate e-
equivariant form. Then &. is finite since A is finite, and by Theorem 4.1.11

W(A, J,e) = xsea.([(S, Bs)] | Bs non-degenerate and s-equivariant ).

To determine the structure of W(A, J, ¢), the equivariant forms on S € &, will be
investigated in Remark 4.1.13.

Definition 4.1.12. Let (V,3) € (A, J,e). Then [ induces an involution adg on
End4 (V) via B(v, wa) = B(va¥s,w) for « € Enda (V) and v,w € V.

Note that in general the endomorphism adsz depends on the chosen form f.
More precisely, 3 induces an A-module isomorphism

ag: V=V v (w— B(v,w)),

where V* = Homg(V, F) is an A-module via (p,a)(v) := ¢(va’) for p € V* a € A
and v € V. If ¢ is another non-degenerate equivariant form then «,, = a3 o ¥ for
some ¥ € End4(V'), and hence

Y(v,w) = ay(v)(w) = ag(vd)(w) = B(vd, w)

for all v,w € W. In particular if V' is simple then Ends (V) is a field and hence
ady = adg. Hence if V' is simple then the involution ady := adg does not depend
on 3, and o is called the adjoint of a.
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Remark 4.1.13. Let S € &. and let § := {a € End4(S) | a® = o} be the subfield of
End4(S) containing the self-adjoint endomorphisms of S. Then the unit group §* acts
transitively on the set of all non-degenerate e-equivariant forms on S, by

B9 (s,8) — B(s9,5)
for a non-degenerate equivariant form 3 and 9 € §*.

Proof. Let 3,9 be two non-degenerate equivariant forms on S. As remarked
above, there exists an automorphism ) of S such that (s, s") = - (s, ). Since
both 5 and 1 are e-equivariant we have

5(3197 8/> = ¢(S’ S,) =& (¢(8/’ S))J =¢ (ﬁ(slﬂ’ S))J = ﬁ(S, 3,19) = ﬁ(Sﬁadsa 8/)

for all s, s’ € S and hence ¥ = 9245 € §*, and the claim follows. O

Corollary 4.1.14. Let S € &, and let § be as in Remark 4.1.13. Define a group homo-
morphism

0: Ends(S) = §, ar— s
where End 4 (S)* and §* are the unit groups of the fields End 4(S) and §, respectively.

Then S carries exactly [§* : Im(0)] pairwise non-isometric non-degenerate equivariant
forms.

Proof. Let 3 be a non-degenerate equivariant form on S. According to Remark
4.1.13, every other such form on S is of the form /- ¢ for some ¥ € §*. Now (5, 3)
and (S, 3 - ) are isometric if and only if there exists some v € End 4(5) with

B-9(s,s') = B(s, s'0) = B(s7,5"y) = B(s, s77*")

forall s,s' € S, ie. if and only if ¥ = 6(y) € Im(f). Hence the stabilizer in §* of
an isometry class of equivariant forms is Im(#) and the claim follows. O

Definition 4.1.15. For S € &,, the involution adg on End 4(S) is either the identity or
a field automorphism 7 of order 2. Let G4, GT be the respective subsets of &.. Clearly
S € &7 if J is non-trivial on F, since f7 = fIs, with respect to the natural embedding
F — El’ldA(S)

Corollary 4.1.16. (i) Let S € &, If F has characteristic 2 then S carries exactly one
non-degenerate c-equivariant form, up to isometry. If F has odd characteristic then
S carries exactly two non-degenerate e-equivariant forms, up to isometry.

(ii) Let S € &, then S carries only one non-degenerate s-equivariant form, up to

isometry.

Proof. Let S € G, and let 6 : End4(S) — End4(S), a — aa?s as in Corollary
4.1.14 and § as in Remark 4.1.13.
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ad (i): Assume that S € 619, ie. § = End4(S) and §(a) = o?, for a € End4(9).
If F has characteristic 2 then 6 is a Galois automorphism of End(S5).
Hence according to Corollary 4.1.14, the module S carries exactly one
non-degenerate equivariant form. If F has odd characteristic then

Im() = (Enda(5)*)? < Enda(S)*
is a subgroup of index 2, hence the claim follows with Corollary 4.1.14.

ad (ii): For § € &, the map adg is the Galois automorphism of order 2 of
Ends(S) = F,2, ie. a®s = o7, for a € Endy(S). Hence the subfield
§ of End4(S) containing the self-adjoint endomorphisms has r elements
and the map 6 : F*, — F,, a — aa®s = o' is surjective, as one easily
verifies. Hence the claim follows with Corollary 4.1.14.

4

Theorem 4.1.17. The groups W(A, J,¢) = ®secs.W(Ls, adg, 1) are isomorphic, where
Lg := End4(95) is viewed as an algebra over itself.

Proof. Every element (V,3) € W(A4, J,¢) has an anisotropic representative,
which is an orthogonal sum of simple equivariant A-modules (cf. Theorems
4.1.9,4.1.11), and the orthogonal summands are unique up to isometry. On every
S € &, fix a non-degenerate c-equivariant form g. Then the isometry classes of
simple e-equivariant modules are represented by

((S,Bs ) | S €6, acF/Im(0)),

where §, 0 are as in Corollary 4.1.14. Define a homomorphism
W(A7 J7 5) - @SGGSW(LS7 ad57 1)7 [(57 ﬁS : O'/)] = [(LS7 (Oé))],

where (o) : Lg x Ls — Lg, (¢,¢') — ap?dsy’. This map is obviously injective,
and surjective by Remark 4.1.13, which proves the assertion. O

The following Proposition investigates the Witt groups on the right hand side
of the above isomorphism.

Proposition 4.1.18. Let L be a finite field with involution J and consider L as an algebra
overitself. Let §:=={l € L |1/ =1},and 0 : L — L, o — aa’. On the module V := L
consider the equivariant form (1) : (o, /) — la’d/, for | € F*. In the Witt group
W(L, J, 1), the element [(V, (1))] has order 2 if —1 € Im(#), and order 4 otherwise.

Proof. Clearly the order n of (V,(l)) is even, since every self-dual code C in
17, (V, (1)) satisfies n = 2dim(C'). Assume without loss of generality that [ = 1.
If -1 = aa’ € Im(f) then ((1,q)) is a self-dual code of 12, (V, (1)) and hence
[(V,(1))] has order 2. On the other hand, a self-dual code in L?_; (V, (1)), pro-
vided that it exists, is generated by an element (1, ), where aa’ = —1 due to
self-orthogonality. Hence if —1 is not in the image of ¢ then the order of [(V,(1))]
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is at least 4. Moreover, the involution J must be the identity. Hence since the
polynomial 2? + y* 4+ 1 has at least one nonzero root (o, ') over L, the code
((1,0,c,0/), (0,1, —c/,a)) of L%, (V, (1)) is self-dual, which shows the assertion.
0]

Corollary 4.1.19. Let S € &, and let 3 be a non-degenerate equivariant form on S. If
IF has characteristic 2 or if S € & then [(S, 3)] € W(A, J,¢) has order 2. If F has odd
characteristic and S € &' then [(S, 3)] has order 2 if and only if | End 4(S)| =4 1, and
order 4 otherwise.

Proof. Let 0 : End4(S)* — Enda(S)*, a — aa® be as in Corollary 4.1.14.
By Theorem 4.1.17 and Proposition 4.1.18, the element [(.S, 5)] has order 2 if —1 €
Im(#), and order 4 otherwise. Clearly if [F has characteristic 2 then —1 = 1 € Im(6).
If S € &, i.e. if adg is not the identity then End 4(.9) is the field with ¢* elements,
and o™ = af, for @ € Enda(S). Hence in this case the subfield of index 2 of
End(S) lies in Im(#), and in particular —1 € Im(¢). Thus in this case [(.S, )] has
order 2 as well. If S € &Y, i.e. if ad; is the identity then [(S, 3)] has order 2 if and
only if —1 is a square in End4(S). The latter is equivalent with | End4(S)| =4 1,
and hence the claim follows. O

Putting the results on the number of forms (cf. Lemma 4.1.16) and the orders
of the simple equivariant modules (cf. Proposition 4.1.19) together, one obtains
the following result on the structure of the Witt group W(A4, J,¢).

Corollary 4.1.20. Let &, be a system of representatives for the isomorphism classes of
simple equivariant A-modules, and let (S.)', (&,)™ be the subsets of S, containing the
simple modules S where ads = id, or ads # id, respectively (cf. Definition 4.1.15).

(i) Assume that J is of the first kind. If IF has characteristic 2 then
W(A, J,e) = Xgee.Cs .
If F has odd characteristic then let dg := | Enda(S)|, for S € &.. Then
WI(A, J,€) = Xgee.)id, dg=41(C2 X C2) Xge(e.)d, dg=s—1 C1 Xse(s.)r C2 -

(ii) If J is of the second kind then W(A, J,¢) = X gee.Ca.

Definition 4.1.21. The dual of an A-module V is V* = Homg(V,F), which is a right
A-module via fa(v) := f(va’), for f € V*, a € Aand v € V. The module V is called
self-dual if and only if V = V*.

Note that this thesis uses two different notions of duality. A self-dual code
(cf. Definition 4.1.2) is defined with respect to an equivariant form, i.e. using
a distinguished basis, whereas the notion of a self-dual module is independent
from the choice of a basis. Note that every equivariant A-module (V, ¢) is a self-
dual module since

ay: V=V v (V= o, v))
is an isomorphism of right A-modules. Conversely, for the simple A-modules the
following holds.
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Remark 4.1.22. Let S be a simple A-module and let ¢ € F* withec’ = 1. If S is self-dual
then S carries a non-degenerate c-equivariant form or a non-degenerate (—e)-equivariant
form. In particular if F has characteristic 2 then S is self-dual if and only if S carries a
non-degenerate c-equivariant form.

Proof. Let o : S — Homp(S, F) be an isomorphism, then the biadditive form
B:SxS—=TF, (s8)—a(s)(s)

is non-degenerate and satisfies 3(sa,s’) = B(s,s'a’) and (s, s'\) = B(s,s')\ for
alls,s’" € S, a € Aand all A € F. Define another form

B:SxS—TF, (s,8)— B(s,5)—eB(s,s).
Then (' is (—¢)-equivariant, since
—ef(8',5)” = —e(B(s',s) —ef(s,5))) = —eB(s',s)” + B(s,5) = F'(s,5)

forall s, s’ € S. The radical rad(3’) is a submodule of S and hence either rad(5’) =
{0} orrad(/’) = S, since S is simple. In the first case, /' is non-degenerate and in
the second case, 3 is e-equivariant. O

To understand Corollary 4.1.24, note that the involution ads on End 4(S) does
not depend on ¢, for a simple self-dual module S.

Remark 4.1.23. Every self-dual simple A-module S defines an automorphism adg of
End4(S), such that 3(s,a(s)) = B(a*(s),s') forall s,s' € S, all e € F withec’ =1
and all e-equivariant forms 3.

Corollary 4.1.24. Let ¢ € F* with e’ = 1 and let S be a simple self-dual A-module.

(i) If F has characteristic 2 or if adg is not the identity then S carries both a non-
degenerate s-equivariant and —e-equivariant form.

(ii) Assume that F has odd characteristic and that S carries both a non-degenerate e-
equivariant and a —e-equivariant form. Then adg has order 2.

Proof. The claim of (i) is clear in characteristic 2. Assume that adg is not
the identity, then there exists some element « € Ends(S) with a5 = —a. One
easily verifies that for every e-equivariant form (3, the form (s, s') — (s, as’) is
—e-equivariant.

Assume that S carries both a non-degenerate 1-equivariant form 5 and a —1-
equivariant form (v,w) — B(v,a(w)), for & € End4(S). Then « satisfies a*ls =
—a, hence adg is an automorphism of order 2. O

Remark 4.1.25. Every self-dual simple A-module occurs in the equivariant A-module
(V. B) with the same parity as in the anisotropic representative of (V, 3).
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Proof. Let C' be a maximally self-orthogonal submodule of V' and let
C=M,>Myy>...>M >M,={0}
be a composition series. Then
Cr=MF<M:-,<..<MIf<My=V

is a composition series of V/C*, since taking orthogonals yields an antiautomor-
phism of the submodule lattice of V. The composition factors satisty

]\4ZL—1/‘]\41L = (Mi/Mi—l)*7
since, due to the non-degeneracy and equivariance of 3, the map
M-y — (M /Mi0)*, v (m+ Mioy = B(v,m))

is an A-module epimorphism, with kernel M;-. Hence every self-dual simple A-
module occurs in C' with the same multiplicity as in V/C*. Since the anisotropic
representative of V is isomorphic to C*/C, the claim follows. O

Corollary 4.1.26. If (V,3) € M(A, J,¢) is metabolic then every simple self-dual A-
module occurs in V with even multiplicity.

From Remark 4.1.25 together with Corollary 4.1.20 one obtains, in certain
cases, the following characterization of metabolic equivariant modules.

Corollary 4.1.27. Assume that J is of the second kind or that F has characteristic 2.
Then (V,B) € M(A, J,e) is metabolic if and only if every simple self-dual A-module
occurs in 'V with even multiplicity.

41.1 Self-dual codes in characteristic 2

Let F be a finite field of characteristic 2. In this section a code is a linear subspace
of FV, and its dual code C* is defined through the standard scalar product 5 on
FN. The code C is called self-orthogonal if C C C*, and self-dual if C = C*. The
automorphism group of C'is

Aut(C) ={m € Sy | Cr = C},

where Sy is the symmetric group on N points, which acts naturally on V' = FV
by coordinate permutations. This action induces an FG-module structure on V,
for every permutation group G < Sy, and a code C has G < Aut(C), i.e. C'is G-
invariant, if and only if it is an FG-submodule of V. The group algebra FG carries
a natural F-linear involution J given by ¢/ = ¢7!, for g € G. The G-invariance
of (3, i.e. that 5(vg,wg) = (v, w) for all v,w € V and g € G, thus means that /3
is equivariant with respect to ./, and hence (V, 3) is an equivariant FG-module in
the sense of Definition 4.1.1.

In this section we investigate the existence of a G-invariant self-dual code in
FV, for a given permutation group G, using the results developed for general
equivariant modules. A first application is the following.
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Corollary 4.1.28. There exists a self-dual G-invariant code C' < FY if and only if every
simple self-dual G-module occurs with even multiplicity in a composition series of the
G-module FY.

Example 4.1.29. (i) The dihedral group Dy with 2N elements acts on the N vertices
of a regular polygon. Identifying the vertices with the coordinates defines an FD -
module structure on V.= FN. If N is even then Dy acts faithfully on the set L of
lines in the polygon intersecting two vertices and the origin. Identification with the
coordinates yields a G-invariant self-dual repetition code C' < FN. This code is also
a self-dual module, since L is an orthonormal basis of a G-invariant non-degenerate
bilinear form on C. In particular every composition factor occurs in V with even
multiplicity.

(ii) Let Ay be the alternating group on N points, where N > 4 is even. Then the code
Co < FY generated by the all-ones vector (1,...,1) is isomorphic to the trivial
Apn-module, and

Cy = {v € FY | wt(v) is even}

has codimension 1 in FY. The Ax-module Cy/Cy is simple (cf. [20]) and hence
must be self-dual, since Cy and Cy-/Cy are the only composition factors of FY. In
particular Cy is maximally self-orthogonal with Ay < Aut(C).

(iii) Let C'y be the cyclic group on N points, where N is even. There exists a self-dual
code C < FY with Cx < Aut(C), which is seen as follows. As a Cn-module,
FYN >~ FCy = Flz]/(2™ — 1). Hence the submodules correspond to the divisors of
o™ — 1, and the composition factors correspond to the quotients -~ in a maximally
. L. . Pi+1
refined divisor chain

polpe | o e=2" -1

Since N is even, xN — 1 is a square and hence every quotient occurs with even
multiplicity. Hence every simple module occurs in TN with even multiplicity, and
the claim follows with Corollary 4.1.27.

Since the condition in Corollary 4.1.28 is not so easy to test, we give in Theo-
rem 4.1.30 a sufficient group theoretic condition on a permutation group G to be
contained in the automorphism group of a self-dual code C' < F". To this aim
write

{1,...,N}=B,U...UB,

as a disjoint union of G-orbits and let H; := Stabg(n;) be the stabilizer in G of
some elementn; € B; (1 =1,...,5s).

Theorem 4.1.30. If forall i = 1,. .., s the index of H; in its normalizer N (H;) is even
then there is a G-invariant self-dual code C < FV.

Proof. Let (fi,..., fn) be the standard basis of FV such that 7 € Sy maps f;
to fjr forall j =1,...,N. For 1 <i < sletn; € Ng(H;) — H; such that n? € H,.
Define
C = ((fn. + Jnm)g:9€ G 1<i<s).
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Then C is a G-invariant code in FY and C' =15_, C;, where

Ci = <(fm + fnim‘)g ‘g€ G>v

since the C; have disjoint support. It suffices to show that each C; is a self-dual
code in F5:. To see this let N; := (H;,n;) and choose S; C G such that

G :Usesi Nis :Usesi (H;s U H;n;s).

Then B; = n;S; U nn;Si and (fo,s + fams © S € Si) is a basis of C; consisting of
|Si| = | B;|/2 pairwise orthogonal vectors of weight 2. O

Remark 4.1.31. The converse of Theorem 4.1.30 does not hold: Consider G := G L3(F5).
Then the subgroup H := N¢(S), for some S € Syl;(G), has index 8 and satisfies
Coreg(H) = Ngegg 'Hg = {1}. Hence H yields a transitive permutation repre-
sentation A : G — Sg with G = A(G) and H = Staba(g)(1). Observe that H is
self-normalizing, i.e. [Ng(H) : H| = 1. But C¥(A(G)) contains a self-dual code, namely
some permutation of the Hamming code of length 8 with generator matrix

0 00

_ = O
O =

1
1
0
1

o O O =
o O = O

0 01
1 01
011

4.1.2 Self-dual codes in odd characteristic

Let IF be a finite field of odd characteristic. As in the previous section, we consider
V = FY as a module over the group algebra FG, with F-linear involution J given
by g — ¢!, for g € G, where G is a permutation group on N points. Again,
orthogonality is defined via the standard scalar product, and we investigate the
existence of a self-dual G-invariant code via the composition factors of V. Since in
odd characteristic, the image of (V, 3) in the Witt group W(FG, J) can in general
not be determined only by the composition factors of V' (cf. Theorem 4.1.20), this
section provides only necessary group theoretic conditions on G to be contained
in the automorphism group of a self-dual code, using Corollary 4.1.26.

Corollary 4.1.32. Let G < Sy be a permutation group such that char(F) { |G|. If the
number of orbits of G is odd then there exists no G-invariant self-dual code in FV.

Proof. The condition that char(F) t |G| means that V' is semisimple, by
Maschke’s Theorem. Hence the multiplicity of the trivial module in V' equals
the dimension of the fixed space

F(V)y=={veV]|vg=wforall g € G}.

Since a vector lies in F(V') precisely when its coefficients are constant on the or-
bits of G, the dimension of F(V') equals the number of orbits of G, which was
assumed to be odd. Hence the trivial module occurs in V' with odd multiplicity,
and hence by Corollary 4.1.26 there exists no self-dual G-invariant codein V. [
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Corollary 4.1.33. Let G < Sy be a transitive permutation group. If the stabilizer order
| Stabg ({1})| of a point is odd then there exists no self-dual G-invariant code C' < FV.

Proof. Let S be a Sylow-2-subgroup of G, then S acts on FV with orbits of
length |S|, since S N Stabg({¢}) is trivial for every ¢, as the intersection of a 2-
group and a group of odd order. Hence there are

_ N |Gl
18I IStabe({1H)] - ]S

orbits, where ¢ is odd since S is a Sylow-2-subgroup. Hence by Corollary 4.1.33
there exists no S-invariant self-dual code in F", and hence in particular there
exists no G-invariant self-dual code in F”. O

In the following Theorem we consider the case where the stabilizer in G of
a point is trivial, ie. V = FHCl =~ gk F(G is a k-multiple of the regular FG-
module, where & is the number of orbits of G. For k = 1, the G-invariant codes
in V are right ideals in FG. These codes are called group ring codes and have been
considered by several authors (cf. [27, 2, 19]). The following Theorem gives, for
an arbitrary group G, the minimum number % such that V' contains a self-dual G-
invariant code. Note that this number is the order of [(FG, )] in the Witt group
W(FG, J,1) and hence is also the greatest common divisor of all numbers & for
which V' contains a self-dual G-invariant code.

Theorem 4.1.34. Let the G-module V = FHC = @k FG be as above. If |F| =4 1 then
V' contains a self-dual G-invariant code if and only if k is even. If |F| =4 —1 then V
contains a self-dual G-invariant code if and only if k is a multiple of 4.

Proof. Let S be a Sylow-2-subgroup of GG, and consider V' as a module over
FS. Since S acts on V with orbits of length | S|, there are ¢t = k[G : S] orbits, and
as an FS-module, V = 1!_| FS. Assume that there exists a self-dual G-invariant
code in V. This code is also S-invariant and hence the F.S-module V' is metabolic.
The trivial module occurs with multiplicity 1 in the semisimple module S, and
is an orthogonal summand of F'S, generated by the all-ones vector in FS = FI*.
Hence ¢ is a multiple of the order of (F, '), where v is a non-degenerate symmetric
bilinear form on F. By Proposition 4.1.18, the order of (I, ) equals 2 if —1 is a
square in IF, i.e. if |F| =4 1, and 4 otherwise. Since [G : S] is odd, this implies that
k is even if |F| =4 1, and that & is a multiple of 4 if |[F| =, —1. Conversely, the
exponent of the Witt group W(FG, J) is 2 if |F| =, 1, 4 if |F| =4 —1, which shows
the assertion. O

As a corollary we obtain a part of a result by Willems in [27] on group ring
codes.

Theorem 4.1.35 (Willems). Let IF be a finite field and G a finite group.

(i) If F has characteristic 2 then FG contains a self-dual group code if and only if the
order of G is even.
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(ii) If F has odd characteristic then no self-dual group code is contained in FG.

Proof. If F has characteristic 2 and the order of G is even then FG contains a
self-dual code, according to Theorem 4.1.30. Conversely, if FG' = F/! contains a
self-dual code C' then |G| = 2dim(C) must be even. If F has odd characteristic
then an application of Corollary 4.1.33, or of Theorem 4.1.34 shows that there
exists no self-dual group code in FG. O

4.2 The Witt group of quadratic forms

Let IF be a finite field of characteristic 2, and let G be a finite group. Let V be a
right module for the group algebra FG.

Definition 4.2.1. A quadratic form on V isamap q : V — F such that q(v\) =
q(v)N\? forall v € V and \ € F, and the polar form

M) VXV =F, (vw)—q+w)—q@) —qw)
is bilinear. The form q is called non-degenerate if its polar form is non-degenerate, i.e. if
ag: Vi Homg(V.F), 0= (w = Alq)(v,w))

is an isomorphism. The form q is called G-invariant if q(v) = q(vg) forallv € V
and g € G. If q is G-invariant and non-degenerate then (V, q) is called a quadratic
G-module. A G-isometry between the quadratic G-modules (V. q) and (V',q’) is an
FG-module isomorphism o : V' — V' such that q(v) = ¢'(a(v)) forallv € V.

Remark 4.2.2. The polarization 3 of a quadratic form is symmetric and satisfies
B(v,v) = 0 forall v € V. Bilinear forms over a field of characteristic 2 with these prop-
erties are called symplectic. The dimension of a vector space carrying a non-degenerate
symplectic form is always even. In particular every quadratic G-module has even dimen-
sion.

Remark 4.2.3. A quadratic form q is non-degenerate if and only if the radical
rad(q) :=rad(A(¢)) ={v e V| XMq)(v,w) =0 forallw e V}

is zero. Moreover, if q is G-invariant then so is \(q), i.e. (V,\(q)) € M(FG, J, 1) is J-
equivariant in the sense of Definition 4.1.1, where J is the F-linear involution on FG with
g’ = g7, for g € G. Hence if q is G-invariant and non-degenerate then the map o, is an
isomorphism of FG-modules, where Homp(V, F) is a G-module via fg(v) = f(vg™!), for
f € Homgp(V,F), g € Gand v € V. In particular every quadratic G-module is self-dual
in the sense of Definition 4.1.21.

Remark 4.2.4. In [38], methods of group cohomology are applied to investigate whether
a G-invariant symplectic form is the polarization of a G-invariant quadratic form. In
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this context the additive groups of quadratic and symplectic forms on V', respectively, are
denoted by S?(V*) and A*(V*). These spaces are G-modules, via

qlgl(v) = q(gv) and (lg](v,w) = B(gv, gw)

for ¢ € S*(V*), B € A*(V*), vyw € Vand g € G. The G-invariant forms
(S2(V*)E, (A2(V*))C are the G-fixed points in these modules. Every symplectic form
on V is the polarization of a quadratic form, i.e. the map X\ : S*(V*) — A*(V*) is sur-
jective. (Note that yet, a G-invariant symplectic form is not necessarily the polarization
of a G-invariant quadratic form.) The kernel of \ is Homg(V, F®), where F? is the set
F with scalar multiplication o - f := o*f, fora € F, f € F.

In odd characteristic there is a one-to-one correspondence between G-
invariant quadratic forms and G-invariant symmetric forms, since A(3 {3}) = 3
and {3\(¢)} = ¢ for every symmetric bilinear form / and every quadratic form
¢, and the maps A and { } preserve G-invariance. Hence in odd characteristic,
the theory of Witt groups of quadratic G-invariant forms developed below is a
theory of Witt groups of equivariant forms (cf. Section 4.1).

Definition 4.2.5. A submodule C' < V' is called isotropic if ¢(c¢) = 0 for all ¢ € C, and
maximally isotropic if there exists no isotropic submodule of V' which properly contains
C. If the zero module {0} < V' is maximally isotropic then V is called anisotropic. If V/
contains an isotropic submodule C with 2 dim(C') = dim(V') then V is called metabolic.

A theory of the Witt group of non-degenerate quadratic G-modules can be
developed analogously to the theory of the Witt group of equivariant G-modules
in Section 4.1. The orthogonal sum of two quadratic G-modules is

V.g) L(V',d)=(VaV,q¢lq),

where (¢ L ¢')((v,v")) = q(v) + ¢'(v"). This defines a semigroup structure on the
set of all quadratic G-modules. Define a relation ~ by letting (V,¢q) ~ (V',¢) if
and only if (V,q) L (V’,¢’) is metabolic. It can be shown with the methods in
Section 4.1 that ~ is an equivalence relation, and that modulo this relation, the
quadratic G-modules form a group with the orthogonal sum as composition.

Definition 4.2.6. The quadratic Witt group W,(FF, G) consists of the ~-equivalence
classes [(V, q)] of quadratic G-modules (V, q), with multiplication

(Vg LIV, )] =1(V.g) L (V' d)].
The class [(V, q)] is also called the Witt Type of (V, q).

Since always (V, q) ~ (V, ¢), the abelian group W,(FG) has exponent 2, hence
is isomorphic to a direct product of cyclic groups of order 2. To give generators
for the Witt group, we first investigate which results on the anisotropic represen-
tatives of the equivalence classes of equivariant modules (cf. Section 4.1) carry
over. The following is straightforward.
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Remark 4.2.7. Every element of W,(FG) has an anisotropic representative, which is
unique up to G-isometry.

For the convenience of the reader we give a construction of the anisotropic
representative, which is analogous to the one in Lemma 4.1.8.

Remark 4.2.8. Let (V, q) be a quadratic G-module and let C <V be an isotropic sub-
module. Then
CccCt={weV|Xq(v,c)=0forallceC},

that is, C is self-orthogonal with respect to the polar form \(q). The module C*/C carries
again a non-degenerate G-invariant quadratic form

70(q) C’L/C’—>IF, v+ C — q(v).

The quadratic G-modules (V,q) and (C*/C,71c(q)) are of the same Witt type, and
(C+/C,1c(q)) is anisotropic if and only if C' is maximally isotropic. In particular the
dimension of a maximally isotropic submodule C of V is independent from the choice of
C and called the Witt index of V. Similarly, dim(C~+/C') does not depend on C and is
called the Witt defect of V.

Remark 4.2.9. Unlike in the case of equivariant forms, an anisotropic quadratic G-
module is not necessarily semisimple. Assume for instance that G has a subgroup of
index 2, i.e. there exists a group epimorphism G — Cy. The space U = F? is then a right
G-module, where G acts as ((9}§)) = Co with respect to a basis (by,bs) of U, and the
quadratic form f on U with f(by) = f(bs) = 0and f(by + be) = 1 is non-degenerate and
G-invariant. The only G-invariant proper subspace of U is generated by the anisotropic
vector by + by, and hence (U, f) is anisotropic, but not semisimple.

Let e € FG be the central primitive idempotent belonging to the trivial FG-
module. Every quadratic G-module (V,¢) decomposes as V = Ve L V(1 —e),
which yields a decomposition

W,(FG) = W)(FG) & W, (FG)

into the subgroups W, (FG), generated by the quadratic G-modules on which
e acts as the identity, and W, (FG), generated by the quadratic G-modules an-
nihilated by e. The structure of an anisotropic quadratic G-module essentially
depends on this decomposition.

Remark 4.2.10. (see [38, Prop. 2.4]) If e acts as zero on V then every G-invariant
symplectic form on V is the polarization of a G-invariant quadratic form, which is unique
up to G-isometry. This yields an isomorphism

W, (FG) = Wi((1 = e)FG, J.1), [(V.q)] = (V. A(q))

into the subgroup of W((1 — e)FG, J, 1) formed by the symplectic J-equivariant forms,
where J is the F-linear involution mapping g — g~'. In particular if (V, q) is anisotropic
then it is semisimple, i.e. isomorphic to a direct sum of simple quadratic G-modules.
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Proof. The proof is based on ideas in [38], using homological algebra, as fol-
lows. The short exact sequence

0 — Homp(V,F®) — S2(V*) & A2(V*) — 0
gives rise to an exact sequence
0 — (Homg(V,F®))% — (5*(V)% % (A(V*)? — H'(G, Homg (V. F?))

of cohomology groups. If V carries a G-invariant symplectic form then V' =
Homg(V,F) 2 Homg(V, F?), and hence since e acts as zero on V, the group

HY(G, Homg(V,F®)) = Ext!(F, Homg(V, F?)) = Ext!(F, V)

is trivial, and so is (Homp(V,F®))¢ = Homgg(V, F®) = Homgpq(V,F). Hence the
above is in fact an exact sequence

0 — (S2(V*)E S (A2(V))¢ -0

and hence ) is an isomorphism. Moreover, if the quadratic G-module (V, q) is
anisotropic then so is (V, A(¢)), since if C' were a self-orthogonal submodule of
V then ¢ would be linear on C, i.e. ¢ € Hompe(C,F) = {0}, contradicting the
anisotropy of gq. O

Remark 4.2.11. Let (V, q) be an anisotropic quadratic G-module and let C' be a maxi-
mally self-orthogonal submodule of V, with respect to \(q). Then either C' = {0}, i.e. the
equivariant module (V, X(q)) is anisotropic and hence semisimple (cf. Theorem 4.1.11),
or C'is isomorphic to the trivial module.

Proof. The map C' — F®) ¢ — ¢(c) is linear since C is self-orthogonal with
respect to A(¢), a G-module homomorphism since ¢ is G-invariant, and bijective
whenever C is not the zero module, due to the anisotropy of V. Since F® is
isomorphic to the trivial FG-module, the claim follows. O

Proposition 4.2.12. Let (V, q) be an anisotropic quadratic G-module. The trivial module
1 occurs in V with multiplicity 0 or 2. In the first case, V' is semisimple and in the second
case, V' is semisimple if and only if 1 is a direct summand of V.

Proof. Let C' be a maximally self-orthogonal submodule of V. If C' = {0} then
the claim follows with Remark 4.2.11. Otherwise C' = 1, again by Remark 4.2.11.
In this case V/C+ = 1, and C*/C is anisotropic with respect to \(g), hence in
particular does not contain 1. Hence in this case 1 occurs in V' with multiplicity
2. Assume that C = 1 is a direct summand in V. Then C* is a direct summand as
well, due to the non-degeneracy of \(¢), and hence there is a decomposition

VeCoeV/C2CoCt/CaV/CH

which proves the assertion. O
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Definition 4.2.13. A quadratic G-module (V, q) is called indecomposable if and only
if there is no proper orthogonal decomposition of (V, q) into quadratic G-modules.

Remark 4.2.14. Let S be a simple G-module. If S carries a non-degenerate G-invariant
quadratic form q then q is unique, up to G-isometry.

Proof. Let ¢ be another non-degenerate G-invariant quadratic form on S. By
Corollary 4.1.16, the polar forms A(¢), A\(¢) are isometric, i.e. there exists some
a € Endpg(S) with A(¢) = A(¢)[a]. Hence ¢ — ¢[a] € ker()) is linear on S, and
hence either ¢ — Gla] = 0 or the map S — F, s +— ¢(s) — g[a](s) is a G-module
epimorphism. The latter does not hold since S is simple and of even dimension.
Hence ¢ = G[a], i.e. ¢ and ¢ are isometric. O

Lemma 4.2.15. Let (V, q) be an anisotropic quadratic G-module. Then there exists an
orthogonal decomposition of V into indecomposable quadratic G-modules, which are all
indecomposable as FG-modules and of which either all or all except for one are simple.
This decomposition is unique up to G-isometry and permutation of the summands.

Proof. If the trivial module does not occur in V' then the claim follows with
Proposition 4.2.12. Otherwise there exists an isotropic submodule C of V, which
is isomorphic to the trivial module. If D is another submodule of V' with these
properties then the anisotropy of V enforces that C N D+ = {0} = DN C*, and
hence V = (C@® D) L (C @ D)* is an orthogonal decomposition of V. The sum-
mand C' @ D is indecomposable as a quadratic G-module, but not simple as a
G-module, and the summand (C & D)+ does not contain the trivial module, by
Proposition 4.2.12, hence is as in the previous case. It remains to consider the
case when (' is the unique nonzero self-orthogonal submodule of V. Every other
simple submodule S of V has S N S+ = {0}, hence is an orthogonal summand
of V. Hence V is the orthogonal sum of some simple quadratic G-modules and
a quadratic G-module with a unique minimal submodule, which in particular
is indecomposable, but not semisimple. For the uniqueness, note that this de-
composition is unique up to permutation and FG-module isomorphism, due to
the Krull-Schmidt Theorem, and the uniqueness up to G-isometry follows from
Remark 4.2.14 together with Witt’s Theorem on the extension of isometries. [

Remark 4.2.16. Let (V, q) be an anisotropic indecomposable quadratic G-module. Then
one of the following holds:

(i) V is simple,

(ii) The group G acts trivially on V, and (V, q) has Witt Type [(F?, N)], where N is the
Norm form, i.e. if F =F,then ¢ : F* 2 F 2 — F, x +— 2%,

(iii) 'V contains a unique minimal submodule C', which is isomorphic to the trivial mod-
ule, and the quotient C*/C is a direct sum of simple G-modules with a non-trivial
first cohomology group, which carry a non-degenerate G-invariant symplectic form,
but no non-degenerate G-invariant quadratic form.



4.2. THE WITT GROUP OF QUADRATIC FORMS 55

Proof. Except for the description of the situation (iii), everything has been
done in Lemma 4.2.15. Assume that V' has a unique minimal submodule C, which
is isomorphic to the trivial module. The quotient C*/C' is then anisotropic with
respect to A\(¢) and hence semisimple. Moreover, the extension

C—Cc+t—ct/e

does not split since C' is the unique minimal submodule of V. Hence all the sum-
mands S of C*/C have a non-trivial first cohomology group. Now let U := S+C,
and consider the commutative diagram

{ge (U7 C <rad(g)} = {8 MU C <rad(B)}
geli L
S2(S*)6 N A2(8%)C,
where 7¢ is as in Remark 4.2.8, and ¢¢(3)(v + C,w + C) = (v, w) for all v,w € U.
Assume that S carries a non-degenerate G-invariant quadratic form f, then by
Corollary 4.1.16 we may assume that A(f) = tc(A(¢)). Since the vertical arrows in
the above diagram are bijections, this implies that A(7¢(f)) = A(¢’). Hence 7¢(f)—
¢ is linear on U, and C lies in the kernel of this homomorphism. But 7« (f)(C) =
{0}, whereas C' is anisotropic with respect to ¢/, a contradiction. Hence there
exists no non-degenerate G-invariant quadratic form on S. O

Example 4.2.17. If the group G is trivial then W,(F) = W, (F, G) is the classical Witt
group of quadratic forms over IF. This group is cyclic of order 2, since every anisotropic
quadratic G-module has Witt Type [(F?, N)] (cf. Remark 4.2.16), and this element has
order 2.

Remark 4.2.18. (cf. Remark 4.1.25) Every simple self-dual G-module occurs in the
quadratic G-module (V,q) with the same parity as in the anisotropic representative of

(V. q).

If the quadratic form ¢ is G-invariant then G is naturally embedded into the
orthogonal group O(V, ¢). In this context one may consider the Dickson invariant
of an element of GG (cf. Definition 3.1.8), which yields the following generalization
of Theorem 3.2.7.

Theorem 4.2.19. A quadratic G-module (V, q) is metabolic if and only if the following
three conditions are fulfilled:

(a) As a quadratic vector space, (V,q) has Witt defect 0,
(b) every simple self-dual G-module occurs in V with even multiplicity,

(c) G lies in the kernel of the Dickson invariant.
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Proof. Assume that (V, ¢) is metabolic. Then clearly condition (a) is fulfilled,
and it follows from the fact that (V,A(¢)) is metabolic together with Theorem
4.1.27 that condition (b) is also fulfilled. Moreover, there exists a G-invariant
isotropic subspace C' of V, i.e. dim(C/C N Cg¢) = 0 and hence condition (c) is
satisfied as well, by Corollary 3.1.12.

Conversely, assume that all three conditions are satisfied, and let (V',q’) be
the anisotropic representative of (V, ¢) in the Witt group W,(FG). If (V',¢) is the
orthogonal sum of simple equivariant A-modules then every summand occurs
with multiplicity 2, by condition (b) and Remark 4.2.18. Due to Remark 4.2.14,
in this case (V’,¢) is zero, i.e. (V,q) is metabolic. Otherwise by Lemma 4.2.15,
V' =V} L Vjis the orthogonal sum of an indecomposable quadratic G-module
V{ which is not semisimple and a quadratic G-module V;, which is itself the or-
thogonal sum of simple quadratic G-modules. By Remark 4.2.16, every simple
module which occurs in V| does not occur in V, and vice versa. Hence due to
condition (b), Vj is zero and either (V',¢’) is zero or it is isometric to the space
(U, f) given in Remark 4.2.9. In the latter case there exists a G-invariant isotropic
subspace C of V with (C*/C,c(q)) = (U, f). Again by Remark 4.2.9 there exists
a nonzero vector u € C* — C such that the vector space E := (C, ¢) is isotropic
of codimension 2, but dim(F/FE N Eg) = 1 for some g € G and hence D(g) = —1,
contradicting condition (c). Hence (V, ¢) is metabolic. O

4.3 The Witt group of a form ring

Let R = (R, M,vy,®) be a form ring with associated involution J. Recall that
throughout this thesis, the ring R is assumed to be finite. A finite representa-
tion of R is given by a finite R-module V, which carries biadditive as well as
quadratic forms (cf. Definition 2.1.6). A subspace of V is called isotropic if it is
both self-orthogonal with respect to the biadditive forms and isotropic with re-
spect to the quadratic forms (cf. Definition 2.1.17). This notion of isotropy gives
rise to the notion of the Witt group of a form ring (cf. Definition 4.3.2), for which
a theory is developed analogously to the theory for the Witt group of equivariant
or quadratic forms (see also [33, Ch. 4]).

The biadditive and quadratic forms in a representation are mapped to each
other by the structure maps

At Quad(V,Q/Z) — Bil(V,Q/Z), ¢+ ((v,0) — q(v +w) — g(v) — q(w)),
{}: B(V,Q/Z) — Quad(V,Q/Z), & — (v (v, 0)).

If the map { } is surjective then isotropy is equivalent with self-orthogonality
with respect to the biadditive forms. Conversely, if the map A is surjective then
isotropy is defined only through the quadratic forms. It will be shown in Lemma
4.3.6 that if R is a form ring over a finite field and A is injective then one of the
above structure maps is surjective, and the Witt group of R is isomorphic to a
Witt group of equivariant or quadratic forms, which have been investigated in
the preceding two sections.
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For general finite rings, it is shown that YW(R) is finite. This shows in partic-
ular that if 7" is a finite representation of R then there exists some minimal finite
length N such that there exists a self-dual Type 7" code of length IV, and every
length for which there exists a self-dual Type 7" code is a multiple of N. More-
over, the finiteness of W(R) provides a proof of finiteness for the Clifford-Weil
group C(7') in the next chapter.

Definition 4.3.1. The orthogonal sum (cf. Definition 2.1.16) defines a semigroup struc-
ture on the set T (R) of all finite representations of R. An element T’ = (V, par, pa, 5) €
T (R) is called metabolic if there exists a self-dual Type T code in V. Define a relation
on T(R) by letting T ~ T" if and only if T' 1. —T" is metabolic.

With the same methods as in the case of equivariant forms, one verifies that ~
is an equivalence relation and hence modulo this relation, the set 7 (R ) is a group.

Definition 4.3.2. The Witt group W(R) contains the ~-equivalence classes [T of finite
representations T' € T (R), with multiplication

T L[T]=[T LT
The equivalence class [T is also called the Witt Type of 7.

In analogy with Lemma 4.1.8 we construct a representative of [1], which is
always anisotropic, i.e. contains no nonzero isotropic code.

Remark 4.3.3. Every Type T code C in V induces a well-defined quotient representa-
tion

T/C:=(C/C,pu/C,ps/C,B/C),

with structure maps
pu/C 2 M — Bil(CH/C.Q/Z), m— ((v+ Cow+ C) = py(m) (v, w)),
pa/C = @ — Quad(C+/C,Q/Z), ¢ (v+C  pa(e)(v)),
B/C = (pu/C)((1)).

Then [T] = [T'/C] in the Witt group W(R), and T /C'is anisotropic if and only if C'is
maximally Type T, i.e. there exists no Type T’ code which properly contains C.

Proof. That 7'/C is well-defined follows immediately from the isotropy of the
code C'. Since
{(d+0C,d)|dectycct/CcaV
is a self-dual Type (7'/C L —T') code, the elements [T//C] = [T]. Moreover, the
nonzero Type T'/C codes correspond to the Type T codes which properly contain
C, hence T'/C is anisotropic if and only if C' is maximally Type 7. O

In analogy with Theorem 4.1.9, one may show that

Theorem 4.3.4. Every element of W(R) has an anisotropic representative, which is
unique, up to form isometry.



58 CHAPTER 4. WITT GROUPS

In the rest of this section the following theorem is proven, which claims that
up to equivalence, the form ring R has only finitely many representations.

Theorem 4.3.5. W(R) is a finite group.

Theorem 4.3.5 will first be proven for form rings over finite fields, which yields
the claim of the theorem for form rings over matrix rings over fields (cf. Theorem
4.3.17), and finally for general finite rings.

Lemma 4.3.6. If R is a form ring over a finite field ' such that the associated map \
is injective then W(R) is a finite group. More precisely, W(R) is isomorphic to a Witt
group of equivariant forms in the sense of Section 4.1, or isomorphic to a Witt group of
quadratic forms in the sense of Example 4.2.17.

Proof. Let R = (F,M = F,¢, ®). If & = {0} then the map { } is surjective,
and for a representation 7' = (V, pas, pa, 3), isotropy of subspaces is equivalent
with self-orthogonality with respect to 5. Moreover, in this case

Blv, fo) = {pu () } (v) = pa({(f) })(v) =0

forall f € F and all v € V and hence in this case R has no nonzero anisotropic
representations, i.e. W(R) is trivial. If F has odd characteristic then, too, { } is
surjective, which is seen as follows. The associated involution J is a field auto-
morphism of order 1 or 2 of I, since f/° = ¢/ f”*c = f for all f € F (cf. Lemma
2111).If J: F=F,» — F, f+— f"has order 2 then the map

0: F—{yeF|y =y}, v—2'n
is surjective, and ¢ = o1, for some « € F. Since rescaling of R (cf. Definition
2.1.14) leaves the set 7 (R) invariant, we may assume that ¢ = 1, after rescaling
with a~!. Likewise, if J is the identity then ¢ satisfies ¢ = 1 and hence ¢ €
{1, —1}. The assumption that ¢ = —1 yields the contradiction

M¢) = T(A(@)) = T (¥ (M9))) = ¥(=¥ 7 (M(9)) = —A(9).

Hence we may assume that ¢ = 1 if F has odd characteristic. Now assume that .J
has order 2. Since A({A(¢’) }) = A(2¢') and A is injective, { A\(¢') } = 2¢’ for all
¢ € ®. Hence if f € Fwith 0(f) = ff = 27! then

{MDY ={27M)} = ¢

which shows the surjectivity of { } in this case. If J is the identity then 7(¢)(f)) =
T((f7) = 7(¥(f)) for all f € F, ie. 7 is the identity on M. This implies
AM{m})=m+ 7(m) =2mforallm € M, ie. here { } is surjective, too. Hence
in either of the two cases, ps is determined by p,;, which itself is determined by
(. Hence T is uniquely determined by (V, (3), and isotropy of subspaces of V is
equivalent with self-orthogonality with respect to 5. The form [ takes values in
%Z /Z = F,, where p is the characteristic of I, and 3 is F,-linear since it is biaddi-
tive. Since the prime field F), is fixed by the automorphism J, the pair (V, 5) may
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be viewed as an equivariant F-module, where F is viewed as an F,-algebra. This
yields a group isomorphism

W(R) - W(F7 ‘]7 1)7 [(V, pM7p(I>76>] = [(‘/7 6)]

into the finite Witt group of equivariant forms over IF, which is known to be finite
(cf. Corollary 4.1.20). Hence the assumption follows in the case where I has odd
characteristic. Now assume that F has characteristic 2, and that ® # {0}. Then T
is uniquely determined by p4(¢), for any nonzero element ¢ € ®, which is seen
as follows. Since

B, w) = par(A(@)) (v, (7 (A()) " w) = Apa(¢)) (v, (¥ (M(9)) " w)

for all v,w € V, the map py, is determined by ps(¢). Assume that J has order 2,
then, as in odd characteristic, we may assume that ¢ = 1 after rescaling. More-
over, the map 6 from above is surjective to the subfield of index 2 of F, and hence

Im(A) € {m e M | 7(m) =m} ={¢(f) [ f €F, "= f} = (Im(0)),
ie. || = |Im(\)| < |Im(#)|. On the other hand,

AL = T (M) f =0T (M9) (4.1)
for every f € F,ie. |Im(0)| < |¢[F]|, and hence there is a chain
[ Im(0)] < [¢[F]| < |®] < [Im(6)],
in which equality holds. In particular ¢[F|] = ®. Moreover,

AL Y) = () + 7 () = ©(f + J7) = ¢(Traceg/e, (f))
and hence |Im({ } )| > | Im(Tracegr, )| = r. On the other hand,

[Im(({ DI < |®] = [Im(0)] = r

and hence |Im({})| = r = |®|, i.e. {} is surjective. Hence again W(R) is
isomorphic to a Witt group of equivariant forms, of the Fs-algebra F, and hence
W(R) is cyclic of order 2.

It remains to consider the case where [ has characteristic 2 and J is the iden-
tity. Equation (4.1) shows that |®| = |¢[F]| = |F| = |M|, i.e. in this case ) is bijec-
tive and, again, ¢[F|] = ®. Hence 7" is uniquely determined by the pair (V, ps(¢)),
and isotropy of subspaces is equivalent with isotropy with respect to ps(¢). More-
over, €2 = 1 and hence ¢ = 1, and hence 7 is the identity on M, as seen in the case
where F has odd characteristic. This implies A\({m}) =m+7(m)=m+m =0
for all m € M and hence { M } = {0}, due to the injectivity of \. This yields

pu (V) (v, 0) = Lpa(V(f)) } (v) = pe({ () })(v) =0

forall v € V and f € F. Hence po(¢) takes values in $Z/Z = F,, since

2p0(9)(v) = pa(0)(v) + pa(0)(v) = pa(d)(v +v) = Alpa(9))(v,v) = 0
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for all v € V. Hence (V, ps(¢)) is a quadratic vector space over F,. This yields a
group monomorphism

W(R) = Wy(F2), [(V,pu, pe. 3)] = [(V, pa(0))]

into the Witt group of quadratic forms over F,. Note that this map is well-
defined since the quadratic spaces (V, ¢) and (V, ¢’ = ¢[f]) are isometric when-
ever ¢/ € ® is nonzero. Now the quadratic vector space (F,2, N) over F,, with
N(f) = Traceg, r,(z"*!) for all f € F,2, induces a nonzero anisotropic represen-
tation (V, pur, pa, A(q)) of R, where p,, is determined by A(¢) and pg is given by
the condition ps(A 1 (¢¥(1))) = ¢. Since W, (F,) is cyclic of order 2, this implies the
surjectivity of the above monomorphism. Hence if I has characteristic 2 and J is
the identity then WW(R) is isomorphic to the Witt group of quadratic forms over
Fs. U

In order to generalize Lemma 4.3.6 to arbitrary form rings over finite fields,
we change to a quotient form ring R /Z,, to which Lemma 4.3.6 applies. Lemma
4.3.12 states that W(R /Z,) has finite index in W(R).

Definition 4.3.7. A form ideal in R is a pair T = (I,I"), where I is an ideal in R and
I" is a submodule of ® with {(I)} + ®[I] CT' C ¢ and \(I') C ¢(I).

Remark 4.3.8. Let I be an ideal in R with I7 = I. Then Iy := (I, \"'(y(1))) is a form
ideal in R. In particular T, := (0, ker()\)) is a form ideal. On the other hand, if (1,T") is
a form ideal then I’ = I.

Proof. Assume that /7 = I. The only non-trivial step in showing that Z; is a
form ideal is to show that {¢(I)} C A~'(y([1)), as follows. Let i € I, then

T(W() = (1A @) = 1)) (i@ 1) = () (i ® 1) = (i) € ¥(I),
and hence A\({¢(i) }) = ¢(i)+7(¥(i)) € ¢¥(I) since i’ € I. Conversely, let (I,T') be
a form ideal and let i € I. Then by definition A\({¢(i) }) = (i) + 7(¢ (7)) € ().
Hence 7(v(i)) = 7(¢(1) (i @ 1)) = 7(¥(1))(1 @ i) € ¥(I) and hence
P r() (L @) =T (1(y(1)))i! =i’ € L.

Since ¢ € R is a unit, the latter implies that i/ € I. Hence I’ = I, since J is
bijective. O

Example 4.3.9. Let rad R be the Jacobson radical of R, i.e. the intersection of all maxi-
mal right ideals in R. The tuple rad(R) := (rad R, \"*(¢)(rad R))) is a form ideal, called
the radical of R.

Proof. The involution J induces a bijection between the set M of all maximal
right ideals and the set z M of all maximal left ideals in R, and hence

(rad R)” = (NrepmpD)” = Nremp !’ = Npepml’ = rad R.
Hence (rad R)’ = rad R, and the claim follows with Remark 4.3.8. O
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Definition 4.3.10. The quotient form ring of R by the form ideal T = (I,I") is
R/I = (R/Ia M/w(j)a wl’a (I)/F)a
where 7 : R/I — M/y(I), v+ I — (r) + (1), and structure maps

{ Yo M/p(I) = &/T, m+o(I) — {m} +T,
A : ®fT — MJ(I), ¢+T — A@) +w(1).

The associated antiautomorphism Jz of R/ is given by (r + 1)’ = r/ + I.

Example 4.3.11. (i) Let the form ideal T, be as in Remark 4.3.8. In the quotient form
ring R/I,, the map Az, is injective since Az, (¢ + ker(A\)) = A(¢) for all ¢ € O.
The representations of R /Iy correspond to the representations of R with ker(\) C
ker(pg).

(ii) The annihilator Anng (7') = (Anng(V),ker(ps)) of a representation T' is a form
ideal in R. If T C Anng(T) is a form ideal then T is also a representation of the
quotient form ring R/Z, sometimes denoted by T to indicate the change of form
rings. If Anng (T') = (0,0) then T is called faithful. Clearly Tanny (1) is always a
faithful representation of R/ Anng r.

Lemma 4.3.12. The Witt group W(R) has a subgroup isomorphic to W(R /1)), which
is of finite index.

Proof. Let T be a finite representation of R and let ¢’ € ker(\). Then
AMpao(9)) = pu(A(P)) = 0, i.e. po(¢’) is additive on V. Hence due to the non-
degeneracy of (3, there exists some ar(¢’') € V with

pa(d)(v) = Blar(¢),v)

for every v € V. One easily verifies that ar(¢'[r]) = er’ar(¢’) for every r € R
and hence ar(ker(\)) is an R-submodule of V. Define an abelian group homo-
morphism ¢ : W(R) — Homy(®, Quad(ker(\), Q/Z)) by

C(IT)() = ¢" = pa(d)(ar(¢)).

To show that ¢ is well-defined, i.e. that ps(¢)(ar(¢’)) does not depend on the
chosen representative 7', let 7" = (V’, p;, p, #') be another representative of [17].
If C'is a self-dual Type T' L. —7" codein V' L V' then

(8 L =) ((ar(d), ar(9). (c.c)) = Blar(¢'), ¢) = B'(ar(¢), )
= pa(¢')(c) = p(¢)() = (po L —pp)(¢)(c, ') =0

for all (¢, ¢) € C, and hence (ar(¢'), ar(¢')) € C. Hence due to the isotropy of C,

pa(0)(ar(d) = pa(d)(ar(¢) = (pe L —ps)(¢)(ar(¢), ar(¢)) = 0.
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Moreover, ¢ respects orthogonal sums since always a7/ (¢') = (ar(¢'), ar (¢')),
and hence is a well-defined homomorphism. In what follows it is shown that
ker(¢) = W(R/Z,), which proves the assertion since the codomain of ( is finite.
The kernel of ¢ consists of those representations with pg(¢)(ar(¢’)) = 0 for all
¢ € ®and ¢ € ker()), i.e. where ar(ker())) is isotropic with respect to the
quadratic forms. Now if ar(ker())) is isotropic then it is also Type 7', since

Blar(e), ar(¢”)) = pe(¢)(ar(¢”)) =0

for all ¢/, ¢" € ker(\). In particular, the anisotropic representative 7" of [T'] has
ar(ker(N)) = {0}, i.e. Z, € Anng(7). This yields an isomorphism

ker(<) - W(R/:Z)\)? [T] = [T£>\L
which proves the Lemma. O

From Lemma 4.3.6 and Lemma 4.3.12 it follows that W(R) is finite whenever
R is a form ring over some finite field. In what follows we prove the finiteness of
W(R) in the case where the ground ring is a matrix ring over a finite field. These
form rings arise form form rings over finite fields as matrix form rings, as follows.

Definition 4.3.13. For a positive integer n the matrix form ring of R is
Matn(R) — (}%nxn7 ]\4n><n7 ¢n><n’ (I)(n))’

where "™ is defined componentwise and the R ® R-module structure on M is given by
W(r)(s @ t) = w(r!™ st), for v, s,t € R, where (r’™);; = (r;;)” for r € R™", and J™
is the involution associated with Mat,,(R). The set

o1 mij
(I)(n): ’ ¢17"'7¢n€q)’ mi:jeM
On

is an R™*"-gmodule, by imitating matrix multiplication as follows. Writing ¢ € ®™ as
above, we have

Yookl + Y. {mw(r @ry)}, 1=
=1 1<k<i<n
olrli; =9,

DoMO) (i @)+ > mug(ry ® i) + (M) (ks @ 15), 1 F 5

k=1 1<k<i<n
The map 7 : M™™ — M™" is given by 7(m);; = 7(my;), the map A : &) — pprxn
is given by

o3} mij )\(¢1) my;
On, 7 (M) A(@n)
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and { }") maps

mig ... Miy {mu} mij + 7(myi)

mp1 .. Mpn {mnn}

Theorem 4.3.14. Every form ring R over the matrix ring F"*" over the finite field I is
isomorphic to some matrix form ring Mat,,(Ro), where Ry is a form ring over F.

Proof. Write R = (R, M,v,®) and let J be the antiautomorphism of F"*"
associated with R. After rescaling, we may assume that B’ = (B”)" for all
B € F"*", where J, is an automorphism of F which is applied componentwise
(cf. Remark 6.1.3). In particular the idempotent e = diag(1,0,...,0) € R satisfies
e’o = e. Hence one easily verifies that

Ro == (R07 w(RO)v ¢|Rov (I)[RU])

is again a form ring, where R, = e[F"*"e = [F. In what follows it is shown that R =
Mat,(Ry). To this aim, let ¢; ; € F"*" be the element with its only nonzero entry,
which is 1, in its ith row and jth column, and let P, ; € F"*" be the permutation
matrix such that left multiplication with P, ; interchanges the ith and jth row. The
map

ag: R— Ry, ag(r),; = Pieiirej ;P j,

is well-defined since always e, 1 P, ;e;; = Py ;e;; and e; j P, je11 = e; ;P;1 and hence

always P ;e;;re; i P j € eg 1" "e; ; = Ry. Similarly, one verifies that the maps
Qg - M — (¢(R0))nxn, on(m)i,j =m (ei,ipl,z’ X ej,jpl,j)

and o

¢[€z‘,iP1,i] t=]

M) ewiPri®@ej b)) i<
are well-defined. It can be shown by elementary calculations that the triple

(g, g, ap) is a form ring isomorphism. For reader’s convenience we give the
inverse maps

ag i ® — (P[R))™, ae(e)i; = {

n
O[JT; : Rgxn — R, (Ti,j)'?;j:1 = Z 7"z'7j(P1,i ® Pl,j)

i,j=1
and az': (®[Rg))™ — & with
1 mio2 ... Minp
ag'( ¢ o )= &P+ Y {mij(Pi® Py},
e Mp—1n i=1 i<j
On

respectively, which shows that a;; and o are indeed bijective (for oy this is ob-
vious). U
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Definition 4.3.15. For a finite representation T = (V, par, pe, 3) of R we define a rep-
resentation

T(n) = (V(n)va"X"apq)(")’ﬁ(n))

of Mat,,(R), which is called the nth power of T. Here V") consists of the matrices with
the elements of V' as rows, which is a left R™*™ by usual matrix multiplication, and

v vy n
B L s D =D B
Uy, v, i=1
and
¢1 my; U1
pcb(n)( )( qu) ¢z (% +ZpM mz] Uw”y)
¢n Up, 1<j

Theorem 4.3.16. Every representation of Mat,(R) is isomorphic to a representation
T™, where T is a representation of R.

Proof. Write R = (R, M,¢,®) and let T,, := (V,,, (parnxn)n, (P )n, Bn) be a
representation of Mat,,(R). Let e; be the primitive idempotent of R"*" with its
only nonzero entry, which is 1, in its ith row and column. Then V,, = ®}_,¢;V,, as
abelian groups. As R-modules via the natural embedding R — Z(R"*"), the e;V/
are all isomorphic, by

erVn — eVy, epv— My e v,
where M, is the permutation matrix satisfying M;, ;e;My; = e;, and hence
e
0:V,— (el\/n)("), v Maezv

M, 1env

is an isomorphism of R"*"-modules. Observe that in general, M, e, is not
invertible, for e, y,r € {1,...,n}.
Define a representation 7" := (e1V, pa, pa, 5) of R by

B:elVp x eV, — QJZ, (erv,ev’) — B,(e1v, erv’)
and py : ® — Quad(e1V,,,Q/Z), ¢ — (e1v = (pgm)n(diag(¢,0,...,0))(e1v)).

Then ¢ is a form isometry, since

ﬁ(”)(gp(v), SO(U/)) = Zﬁ(Mi,leiU; Mi,leﬂ/) = Zﬁ(elMi,lv, €1Mi,1vl)

= § Bn(e1M; v, e1M; 10") E Bn(ev, e;v’

=1

= [u(v,v")
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for all v,v' € V. Moreover, if (m)®9 is the matrix with its only nonzero entry
m € M in the ith row and jth column then

1 mj j
pfbn)(< > ZP@ ¢7, Zlel +Z,0M mz])(Mi,leiU M; 1e] )

1<j

= ZP@ ¢i)(e1M;1v) +Zﬁ (e1M;1v, e1 Mj1m; jv)

1<J
- Z p@(") dla’g(gbla PR ))(ele 1U + Zﬂn 61M 1Y, 61]\4 1My 5V )
1<J
— (pq)(n))n(diag(gbl, e , —|— Z pMnxn m”)(‘ ))(@iv, 61'1))
1<J
= (Po )n(diag(dr, - 6))(v) + Y (paen Jnl(mif)“)(ew)
1<J
1 m; ;
= (P )n(| -, )(v)
bn
for all v € V. Hence T;, = T, which proves the assertion. O

Theorem 4.3.17. The map W(R) — W(Mat,(R)), [T] ~— [T™)] is a well-defined
group isomorphism. Hence YW(Mat, (R)) is finite whenever W(R ) is finite. In particular
if R is a form ring over a matrix ring F"*", for a finite field IF, then YW(R) is finite.

Proof. Let V' be the R-module associated with 7. If C'is a Type T' code in
V then the submodule O™ < V() consisting of the matrices with the elements
of C as rows is a Type T™ code, which is self-dual if and only if C is self-dual.
Hence the above maps metabolic representations to metabolic representations.
Since orthogonal sums are mapped to orthogonal sums, the above map is well-
defined. The surjectivity follows from Theorem 4.3.16. Similarly, every self-dual
code Type T™ code C,, in (e;V;,)™ is of the form C'™, for some self-dual Type T
code C'in e, V,,, which implies the injectivity. O

Definition 4.3.18. Let R; = (R;, M;, ;, ®;), for i = 1,2 be form rings with associated
involution J;. Then the direct sum
Ri1® Ry == (1 X Ry, My & My, h, &1 © Py)

is again a form ring, where Y((r1,72)) = (Y1(r1),Y2(rs)) for r1,79 € R. The associated
involution is given by (ry,ry) v+ (r{*,r3?). Clearly the Witt group W(Ri @ Ry) =
W(R1) @ W(R,).

Now we can prove Theorem 4.3.5 for arbitrary finite form rings.

Proof of Theorem 4.3.5. It suffices to show that WW(R/Z,) is finite, according
to Lemma 4.3.12, i.e. we may assume that ) is injective. If rad R is nontrivial
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then there exists some minimal integer ¢ with (rad R)" = {0}, since R is finite and
hence rad R is nilpotent. Let I := (rad R)/2], then I/ = I according to Example
439, and hence 1’1 = I? = {0}. Let T = (V, pur, pa, 3) be a representation of R,
then

Biv, jw) = B(5”iv, w) = 0

forallv,w € Vand all ¢, j € I,i.e. IV is a self-orthogonal code. Moreover,

Mli]) = M) (i @) = P~ (M) (i @ i) = (i’ (A())i) = 0

forall ¢ € ® and ¢ € I and hence ®[I] = {0}, since) is injective. Hence always

pa(0)(iv) = pa(9[i])(v) =0,

and hence the code IV is Type T. In particular if T is anisotropic then I C
Anng(V'). Moreover, in this case

pe({¥(@) })(v) = {par((2) } (v) = pas(p(i)) (v, v) = B(v,iv) = B(v,0) = 0

foralli € I and v € V, and hence {¢(I)} C ker(ps). Hence the form ideal
IZ=(I,{v(I)}) € Anng(T) for every anisotropic representation 7', which yields
a group isomorphism

W(R) = W(R/T), [T]— [T7],

where 7" is the anisotropic representative of [T']. Iterating these arguments, we
may assume that rad R = {0}, i.e. that R is semisimple. Let 1 = e; + ...+ ¢; be an
orthogonal decomposition into central idempotents with e; = ¢/, such that every
orthogonal decomposition ¢; = f + g with f/ = f and ¢/ = g is trivial, i.e. f =0
or g =0. Then R & @¥_,¢;R, where

eiR = (e; R, M(1®e;),Y(e;R), Ples]),

and hence W(R) = & W(e;R). Now either e; is central primitive or it is the
sum of two orthogonal central idempotents e = f + g with f/ = g. In the latter
case W(e;R) is trivial, since if 7; is a representation of e; R on the e; R-module then
[V is a self-dual Type T; code. Hence we may assume that R is simple. Then R
is isomorphic to a matrix form ring (cf. Theorem 4.3.14), hence we may assume
that R is a finite field, by Theorem 4.3.17. In this case, the claim of the Theorem
has already been proven in the beginning of this section (cf. Theorem 4.3.17). [



Chapter 5

Scalars in Clifford-Weil groups

For a code C of length N over the alphabet V, the weight enumerator cwe(C') is a
homogeneous complex polynomial of degree N with variables indexed by V,

cwe(C) == Z Hxvi € Clx, |v e VP].

veV N i=1

The weight enumerator contains some information on the code C' which is of
interest in coding theoretic applications. For instance the minimum weight

OglclencHz e{l,...,N} : ¢ #0},
which, if the alphabet V' is a group, is a measure for the error-correcting properties
of C, can be read off from cwe(C'). Conversely, certain properties of the code give
rise to invariance properties of its weight enumerator. For instance, it follows
from the famous MacWilliams identity that the weight enumerator of every self-
dual binary code (Type 2F) is invariant under the variable substitution

1 1
(20, x1) — (E(% + 1), E(IO — 1)) -

The weight enumerators of doubly-even binary self-dual codes (Type 2f;) are also
invariant under the variable substitution z; — Ix;, where I is a complex prim-
itive fourth root of unity, since the weight of every codeword is a multiple of 4.
More generally, to every Type T of codes in the sense of [33] (cf. Chapter 2.2)
one associates a complex matrix group C(7") which acts on C[z, | v € V] by lin-
ear variable substitutions, such that the weight enumerators of self-dual Type T
codes are left invariant. This group is called the Clifford-Weil group for the Type
T (cf. Definition 5.1). Scalar elements in this group, i.e. elements ¢ which map
x, — (z,, forall v € V and some ¢ € C*, map every homogeneous polynomial p
of degree N to ¢"p. Hence due to the invariance properties of weight enumera-
tors all the (" must be trivial if there exists a self-dual Type T code of length N,
ie. if [TN] = [T]" is zero in the Witt group of the underlying form ring. In this
chapter it is shown that the connection between W(R) and the scalar subgroup of

67
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C(T) is even stronger for finite form rings R (recall that finiteness of R is assumed
throughout this thesis). Theorem 5.1.7 states that the order of the scalar subgroup
equals the order of [T] € W(R), i.e. the minimum length for which there exists
a self-dual Type 1" code can a priori be read off from C(7"). The result is already
contained in [33, Cor. 5.5.4]. However, the proof given here covers some gaps in
the proof given in [33] and parts of it have been published in [13].

5.1 The Clifford-Weil group C(7)

Let T = (V,pum, pso, ) be a finite representation of the finite form ring R =
(R, M., ®). In this section we introduce the Clifford-Weil group C(T'), a com-
plex matrix group such that the weight enumerators of self-dual Type 7" codes
are invariant under the variable substitutions given by C(7"). In order to define
C(T') we need the notion of symmetric idempotents below.

Definition 5.1.1. A nonzero element e € R is called an idempotent if e* = e. An
idempotent e is called symmetric with respect to the involution J of R if eR = ¢’ R as
right R-modules.

Remark 5.1.2. (i) Ife € Ris an idempotent then so is e’, and there is a decomposition
R=eR®(1-e)R=e¢'RD (1 —-e))R

of R as a right R-module. Since R is finite, the Krull-Schmidt Theorem applies,
i.e. a decomposition of R into indecomposable right R-modules is unique, up to
isomorphism and permutation of the summands. Hence e is symmetric if and only
if the idempotent 1 — e is symmetric.

(ii) Let e € R be a symmetric idempotent. For an isomorphism « : eR — e’ R, define
elements u, == a~'(e’) € eRe’ and v, == a(e) € e’ Re with

ueve = a el v, = a7t (elv) = a7 (v) = a"tale)) = e,
voue = afe)u, = aleu,) = alu,) = ala(e!)) = e’.

There is an abelian group decomposition V = eV @ (1 —e)V, and on the summands
there are non-degenerate Z-bilinear forms

Be: €V xeV —Q/Z, (v,w)— B(v,vew)
and (31_., which is defined similarly. This induces another non-degenerate form
Be L Pre: VXV — Q/Za (Ua ’LU) = Be(eva G’LU) + 6176((1 - 6)’07 (1 - 6)’LU),

with respect to which V decomposes orthogonally as V = eV L (1—e)V. Moreover,
every self-dual code C = C-P in V decomposes into abelian groups C = eC' & (1 —
e)C, where

eC = (eC)HP = {v € eV | Bo(v,¢) =0 forall c € eC},
and likewise, (1 — e)C = ((1 — e)C) 1P,
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Proof. To prove (ii), note that due to the identity f.(ev,ew) = B(v,v.w) =
B(vlv,w), for all v,w € V, shows that an element ev € rad(f.) if and only if
v/v € rad(f8) = {0}, ie. 0 = u/v/v = ev. Hence f. is non-degenerate. If C
is self-dual with respect to 3 then by definition n element ev lies in (eC)*% if
and only if 8.(v,c) = B(v,v.c) = 0 for all ¢ € eC. Now eC — €/C, ec — v.c
defines a bijection (with inverse e’c — u.c), hence the latter is equivalent with
B(v,e’c) = Blev,c) = B(v,c) = 0forall c € C,ie. v € eC*+ = eC, which proves
the assertion. O

Definition 5.1.3. Let C[b, | v € V| be the complex vector space with basis indexed by
the elements of V. The Clifford-Weil group C(T") is the subgroup of Aut(C[b, | v € V)
generated by the elements

My by = by, dy by — exp(2mipe (@) (v))by,

New, v, by |eV] 2 Y weey EXP2TISB(W, VeV) )biyt(1—e)s
forr e R*, ¢ € ® and symmetric idempotents e = u.v. € R.

The calculations with Clifford-Weil groups, for instance in Example 5.1.8, are
simplified by the following Lemma.

Lemma 5.1.4. Due to the obvious identities
Aoy = dody, dop) = my  dgmy, hey, v, = e,

which hold for all ¢,¢' € ®, r € R* and symmetric idempotents e = u.v. € R with
e’ = e, the Clifford-Weil group

C<T) = <mT7 d¢7 he,ue,ve € = Ue = Ve Zfe‘] = €>,

where r and ¢ run through generating subsets of R* and ®, respectively.

The action of C(T") on C[b, | v € V] naturally induces an action on the polyno-
mial ring C[z, | v € V], by variable substitutions according to as the basis vectors
of C[b, | v € V] are mapped. The following is Theorem 5.5.1 in [33].

Theorem 5.1.5. If C' is a self-dual Type T code then cwe(C') is left invariant under all
variable substitutions defined by C(T').

Remark 5.1.6. The scalar subgroup of C(7') is
S(C(T)) :=={pc €C(T) | pc(by) =C-by, forallve V} =C(T)NC*-id.

The weight enumerator of a self-dual Type T' code C of length t is homogeneous of degree
t and left invariant under every element ¢, € S(C(T)), i.e.

ewe(C) = gc(ewe(C)) = ¢' - ewe(O).

Hence (' = 1 whenever there exists a self-dual Type T code of length t, i.e. whenever
[T"] = [T)' = 0. Hence the order of [T is always a multiple of the order of the scalar
element @, i.e. S(C(T)) is isomorphic to a subgroup of C* with finite exponent, hence is
finite.
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Hence the order of the scalar subgroup S(C(7")) is a multiple of the order of the
element [T'] € W(R). In this section the following stronger result will be proven.

Theorem 5.1.7. If R is a finite form ring then the order of the element [T| € W(R)
equals the order of the scalar subgroup S(C(T')).

Example 5.1.8. We compute the Clifford-Weil groups for some of the representations
given in Section 2.2, and verify Theorem 5.1.7 in these cases.

(i)

(ii)

Self-dual binary codes (Type 2F). Clearly there exists a self-dual Type 2F code
of length N if and only if N is even, i.e. the element [2F] has order 2 in the Witt
group of the underlying form ring. The Clifford-Weil group C(2F) is generated by
the elements

1 0 1 1 1
d2=d1:(0 _1)andh::h1,1,1zﬁ<1 _1>’

where the columns give the images of the variables x, x4, i.e. the variable substitu-
tion defined by h is

x ! (o + 1), T ! (xg — 1)

— — —_ — —
0 \/§ 0 1) 1 \/§ 0 1)

the MacWilliams transformation for binary codes (see [25, Ch.5 §5]). Since d* =
h* = (dh)® = I, the group C(2¥) = Dg is isomorphic to the dihedral group
of order 16. The scalar subgroup of C(2F) is generated by (dh)* = —id, hence
the claim of Theorem 5.1.7 holds in this case. The invariant ring of C(2F) is a
polynomial ring Clcwe(iz), cwe(es)| with variables the weight enumerators of the
Type 2F codes iy = {((1,1)), and the extended Hamming code eg of length 8, with
generator matrix

100001T11
010010171
00101101
00011110

In particular the weight enumerator of every self-dual Type 2¥ code is a polynomial
in cwe(iz) and cwe(eg), which is a well-known result by Gleason (cf.[9]).

Self-dual binary Type II codes (Type 2f). These codes are Type 2F, with the
additional property of being doubly-even (cf. Section 2.2.2), which is modeled by an
additional quadratic form pe (1) : Fs — Q/Z, v — tv* This yields an additional
variable substitution

d = diag(1,i) € C(28),

hence C(2E) = (C(2F),d'). One computes that C(2E) has order 192, and that its
invariant ring is a polynomial ring Clcwe(es), cwe(gaa)], where eg is as above and
g4 15 the extended Golay code of length 24. Hence there exists a self-dual Type 11
code of length N if and only if N is a multiple of 8, i.e. [2F] has order 8 in the
Witt group of the underlying form ring. Again, Theorem 5.1.7 holds true, since
S(C(2F)) is generated by the element (d'h)? of order 8.
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(iii) Self-dual binary codes with a fixed-point free automorphism of order 2 (cf.
[14]). Let N be even and let Sy be the symmetric group on N points. The natural
action of the element

oi=(1,2)(3,4)...(N—1,N) € Sy

on FY induces a (o)-module structure on FY. By Remark 4.0.8, a code C < FY
is o-invariant if and only if C' is a Fy(o)-submodule of F5. Hence the Type of
o-invariant binary codes is given by the representation T = T(V, 3) of the form
ring
R(FsCa, J = id, 1) = (F3Cs, F2Ca,id, ® = FoCh)

(see Section 2.2.4), where the generating element of Cy acts on'V = F3 with matrix
(98), and (3 is the standard scalar product on V. To give generators of the Clifford-
Weil group C(T), note that the unit group (FoCsy)* is generated by a and ® is
generated by 1 and a. Moreover, 1 = 17 is the only symmetric idempotent of FyCs.
Hence according to Lemma 5.1.4, with respect to the basis (bo,0), b0.1), b(1,0), b(1,1))
of C[b, | v € V|, generators of C(T') are given by

1000
| 0010
dy = diag(l, =1, =1, 1),  ma=| | 5 o |

000 1
1 1 1 1
1 -1 1 -1
1
hl—g 1 1 —1 -1
1 -1 -1 1

(note that d, = id). One computes that C(T") has order 16 and is isomorphic to
the direct product Cy x Ds, where Dy is the dihedral group of order 8. The scalar
subgroup of C(T) is trivial, and {((1,1)) is a self-dual Type T'(V, 3) code of length 1,
hence again, the claim of Theorem 5.1.7 holds true.

The proof of Theorem 5.1.7, in Section 5.4, requires some preparation in the
subsequent sections. The proof will first be given for form rings over finite fields,
and then successively for general finite rings. To perform this generalization,
we use the fact that the order of S(C(T")) remains unchanged if one passes to a
quotient representation 7'/C. Note that this is plausible, since [1'/C] = [T] (cf.
Remark 4.3.3). To prove that always S(C(T")) = S(C(T'/C)), we view the Clifford-
Weil group as a projective representation of a universal hyperbolic counitary group
U(R, ®) in Section 5.2. The group U(R, P) only depends on the underlying form
ring and is finite. Along the way, we define a universal Clifford-Weil group

C(R) = Hom(W(R),C*). U(R, D),

which is finite since U (R, ®) and W(R) are finite. Since C(T) is always a quotient
of C(R) (cf. Definition 5.5.3), it is finite as well.
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5.2 C(T) as a projective representation of U/(R, D)

Let R = (R, M, 1, @) be a finite form ring and let 7" be a finite representation of
R, over the R-module V. The content of this subsection is basically [33, Theorem
5.3.2], which states that the Clifford-Weil group C(T’) is a projective representation
of the universal hyperbolic counitary group (R, ®) (cf. Remark 5.2.5). This pro-
vides a proof of finiteness for C(T"), since U(R, ®) is finite and the scalar subgroup
of C(T') is finite as well, by Remark 5.1.6. Here we give some of the calculations
for the proof of [33, Theorem 5.3.2] which were omitted in [33]. The results have
been published in [13].

Both C(T") and the hyperbolic counitary group U(R, ®) act on the Heisenberg
group & = E(V @ V) (cf. Definition 5.2.1, [17]), with the same image in Aut(£). By
Ur(R,®) < Aut(£) we denote the image of the action of U/(R, ®). The image of
the action of C(T") isomorphic to C(T")/S(C(T")). This yields a group epimorphism
U(R,®) — C(T)/S(C(T)) in Corollary 5.2.11.

In Definition 5.2.1 we will define Heisenberg groups £(V) for a general R-
module W (cf. [17]), which leads to a definition of counitary groups U(R, ®, W)
for a general R-module W and an R-qsubmodule & < Quad(WW,Q/Z) (cf. Defi-
nition 5.2.3). As a special case, the hyperbolic counitary group Ur (R, ®) will be
introduced in Definition 5.2.4.

Definition 5.2.1. Let W be a left R-module and let 3 € Bily (W, Q/Z). Then the associ-
ated Heisenberg group is

EW) =&(W,5) =W xQ/Z,
with multiplication
(w, )(w', ) = (w+w', g+ ¢ + Bw, w)).

Consider the central subgroup S := {(0,¢q) | ¢ € Q/Z} of E(W). Clearly Z is
isomorphic to Q/Z. If 3 is non-degenerate and R is a field whose characteristic
is not 2, then S is characteristic since it equals the commutator subgroup £(W),
and S = Z(E(W)), see [17]. This does not hold over general rings R. However,
the group

Fixauew) (S) = {0 € Aut(E(W)) | §(s) = sforall s € S}
still has an interesting structure.

Lemma 5.2.2. The semidirect product Aut(W) x Quad(W, Q/Z) with multiplication
(@,0) - (o, ¢') = (aa’, d[a] + ¢)
acts on E(W) by

(o, 9)(w,q)) = thas((w,q)) := (a(w), p(w) + q).
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The map 4 is a group automorphism if and only if

Bla(w), a(w’)) = flw,w’) = ¢p(w + w') = ¢p(w) = p(w') = A(@)(w,w’)  (5.1)
forall w,w" € W, and

{vas | (@, 0) € Aut(W) x Quad(W, Q/Z)} N Aut(E(W)) = Fixauyew) ().

Proof. Every element ¢, , € Aut(£(W)) satisfies Equation (5.1), since for ele-
ments (v, q), (v',q) € E(W) we have

Yao((v, )V, ) = (al(v + 1), ¢+ ¢ + B(v, ') + d(v + ')

and this equals

Yas((V,0))as((V,¢) = (v +0'), ¢ + ¢+ ¢(v) + ¢(') + Bla(v), a(v'))).

Comparing the second components of the right hand sides of the above equations
yields that always

Bv, ') + ¢(v + ) = ¢(v) + ¢(v') + B(a(v), a(v')),

which is equivalent to equation (5.1). The same argument shows that every pair
(o, @) with the property (5.1) induces an endomorphism of £(1V). One easily ver-
ifies that this endomorphism has an inverse mapping o1 _4|o-1], hence is indeed
an automorphism of £(IV). Hence the pair (¢, ¢) acts as a group automorphism
on £(W) if and only if it satisfies Equation (5.1).

Clearly every automorphism v, , fixes the group S, so it remains to show
that every 6 € Aut(£(1W)) which fixes the group S is of the form v, 4, for some
a € Aut(W) and some ¢. To this aim, note that

0((v,9)) = 0((v,0) - (0, q)) = 8((v,0)) - (0, 9)

for all (v,q) € £(W), and write 8((v,0)) := (ag(v), po(v)). As one easily verifies,
ag € Aut(W) and ¢p € Quad(W,Q/Z), and

0((v,9)) = (as(v), #4(v)) - (0,9) = (as(v), Po(v) + q),
hence 0 = v, 4,- O

Definition 5.2.3. Let W be an R-module, 3 € Bily(W,Q/Z) and let ® be a submodule
of Quad(W, Q/Z). The semidirect product R* x ® acts on E(W) by

(r; o) ((w, 0) = Yrs((w,q)) = (rw, p(w) + q).
The associated counitary group is
UR, 2, W) :={tho | (r;9) € R x @} N Aut(E(W)) < Fixaupewy)(S).
More explicitly, U(R, ®, W) consists of the elements 1), , with
Blrw,rw’) = Blw, w') = A(¢) (w, w')
forall w,w" € W (cf. Lemma 5.2.2).
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In order to define the hyperbolic counitary group, we now return to the con-
text of form rings and their representation — note that some of the structures in
form rings already appear in Definition 5.2.3.

In what follows, let R = (R, M, v, ®) be a form ring and let T' = (V, p,, pa, 5)
be a finite representation of R. Then the direct sum V2 =V & V is a module over
the matrix ring R**? in the natural way, i.e.

(&%) () = (-t bucot dw)

In writing the elements of V/? as rows and not as columns, we follow the conven-
tion that codewords are usually written as rows— remember that a code, in the
language of form rings and representations, is an R-submodule of V', for some
natural number ¢. The module V? carries a Z-bilinear form

VIV = QU2 (o 0 w) = R, () ) ) = o),
where 5% : V2 x V2?2 — Q/Z, ((v,w), (V' ,w')) — B(v,v") + B(w,w’) (cf. Definition
2.1.16). This setting defines a Heisenberg group

E=EV)=V?xQ/Z (5.2)
with inner multiplication
(v, w), @)((v, '), ¢) = (v + 0w+ w'), g + ¢ + B(w', ),

according to Definition 5.2.1. In what follows, we will always write £ for the
group in (5.2). To associate a counitary group, let

(I)Q::{(gbl Z) ’¢17¢2€(I)7m6M}7

Wthh is an R-qmodule via
(bg C d /2 ’

¢y = dila] + dafc] + {m(a®@c)},
m’ = \(¢1)(a ®b) + m(a @ d) + A(¢2)(c ® d) + 7(m)(c @ b),
&y = P1[b] + Pold] + {m(b®d)}.

The map pg, : P2 — Quad(V? Q/Z) defined by

where

(72 ) 00) = pa(00)(0) + pa(62) ) + paalm)(o, ),

is a homomorphism of R?*?-qmodules. This setting now defines the hyperbolic
counitary group as follows.
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Definition 5.2.4. For a finite representation T of R, the hyperbolic counitary group
is

Ur(R, ) := U(R?, pa, (92),V7) = {trg | (r,0) € (R*?) % pa, (2) INAUt(E(V?)).

A more explicit description of the elements of Uy (R, @) is given in the follow-
ing Remark.

Remark 5.2.5. Let R = (R, M, ¢, ®) be a form ring and let

o = (&0 ) om0 D) € 0 (o)

The element 1, 4 lies in the hyperbolic counitary group Ur (R, ®) of a representation T of

R if and only if
’a ¢’b _ wil()‘(qbl)) ?ﬁ*l(m) (T)
dla—1 d’b )\ &7 (r(m)) ¢ (Mé2)) )
This condition does not depend on the representation T. The subgroup U(R, D) <

(R**%)* x @y formed by the elements which satisfy condition (1) is therefore called the
universal hyperbolic counitary group.

Proof. By definition 1, , lies in Uy (R, ®) = U(R**?, &5, V?) if and only if

(w1 0) @)= (@ (] ) o)
= @) (0. ). ()

for all (v,w) and (v/,w’) € V2. Some elementary transformations of the left and
the right hand side of this equation yield the equivalent condition

par((c” @) (V' 0)+par ((e70)) (v, w)+par (1h(d”a — 1)) (W', v)+par (Y (7)) (W', w)
=pu(A(@1)(V',0) +pur(m)(v',w) - (7(m))(w', v) +ou (M(¢2)) (w', w).

By suitable choices of v,v',w,w" and m one verifies that the latter holds if and
only if the four conditions given by the matrix equation (1) are fulfilled. O

The universal hyperbolic counitary group U (R, ®) acts as group automor-
phisms on £(V?) whenever T is a representation on the R-module V, and the
hyperbolic counitary group Ur(R, ) < Aut(E(V?)) is the image of this action.

The following Theorem gives generators for (R, ®), under the condition that
the ring R be semiperfect, i.e. R/ rad R is semisimple and idempotents of R/ rad R
lift to idempotents of R, where rad R is the Jacobson radical of R, i.e. the inter-
section of all maximal right ideals in R. This condition is satisfied in all the cases
which are of interest in this work since all Artinian rings, and particularly all fi-
nite rings, are semiperfect. For a proof of Theorem 5.2.6 we refer to [33, Theorem
5.2.9].
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Theorem 5.2.6. Let r € R*, ¢ € ¢ and let e = u.v. be a symmetric idempotent. Then

the elements
oy = (g7 @) (0 0))

o 1— e‘] Ve 0 ¢(—€€)
He,ue,ve T (< _e_lue‘] 1—e ) ’ < 0 ))

generate the universal hyperbolic counitary group U(R, ).

and

Note that Theorem 5.2.6 provides generators for Uy (R, ) for every finite rep-
resentation 7" of R, since Uy (R, ®) is an epimorphic image of U(R, ®).

The following Theorem 5.2.7 and Lemma 5.2.8 aim to establish a connection
between C(T') and Uy (R, ®) < Aut(€), which we will use to define a projective
representation p : Uy (R, ) — C(T) in Corollary 5.2.11.

Theorem 5.2.7. & acts linearly and faithfully on C[b, | v € V] by

((Z7$)7 Q> ’ bv = exp(Q?Ti(q + ﬁ(U, Z)))bv—i-x

forall ((z,z),q) € € and v € V, yielding an irreducible representation A : & —
GLjy|(C), i.e. the centralizer Cey v (A(E)) consists only of scalar matrices.

Proof. It is a straightforward calculation to show that the above induces an ac-
tion of £ and that this action is faithful. To see that Cqrv|)(A(E)) = C*, consider
the subgroup D := {((z,0),0) | z € V} < &. Letd := ((#,0),0) € D, then

A(d) = diag(exp(2mif(v, z)) | v € V).

Since [ is non-degenerate, there exists some element of D whose first and second
diagonal entry are unequal. Hence the matrix obtained by taking only the first
two rows and columns of any centralizing element must be a diagonal matrix.
An iteration of this argument shows that A(D) is centralized only by diagonal
matrices.

Let ' := {((0,2),0) | = € V} < &, then A(T) is a transitive subgroup
of the group of permutation matrices of rank |V|. Hence A(T') is central-
ized only by those diagonal matrices which are scalar, which now implies that
Carqv(A(€)) = C. O

Lemma 5.2.8. The group C(T) acts on A(E) by conjugation, yielding a group homo-
morphism ¢ : C(T') — Aut(A(E)). The kernel ker(c) = S(C(T')) consists of the scalar
matrices in C(T), by Theorem 5.2.7.

The following two Lemmata show that the generators m,d; € C(T") act on
A(&) the same way as d((r, ¢)), and he y, ». acts as He .y, -
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Lemma 5.2.9. Forr € R*, ¢ € ® and (z,z,q) € E(V) we have

A(d((r, 9))(z,2,9)) = (medy) A((2, 2, q)) (m,dy) ™"

Proof. For the left hand side we calculate

d((r,0)(z,2,9) = ((r') "2 + (r!) T (A(@))z, 72, ¢ + pa(9) (2)),
hence A(d((r, ¢))(z, =, q)) maps the basis element b, (v € V) to

exp(27i(q + pa(9)(x) + B(v, (') 2 + (1) T A(9))2))) Do ra-
On the other hand

(mydy) A((2, 2, q)) (mydy) ™ (bo)
=m,dy exp(2mi(q — pe(¢ )(T 'v) +6(T‘1v 2))(br-1v+42)
=exp(2mi(q — pa()(r~'v) + B(r~ v 2)+p¢(¢)(r 0+ 7)) (bosra)
=exp(2mi(q + B(r~"v,2) + par(M9) (110, 2))) (busra ),

which is the same as the above since 3(r~'v,z) = (v, (r/)~'z) by definition of
the involution J and

pu(ND)(r v, @) = B~ v, T (A(@))2) = Blo, () 7T (A(@))x).
O

Lemma 5.2.10. For a symmetric idempotent e = u.v. € Rand (z,x,q) € E(V') we have

A<He,ue,ve(zaxvq)) = he,us,veA((Zax7q))h .

e,Ue,Ve

Proof. The group £(V) is generated by (z,0,0), (0, z,0),(0,0,q) where z €
e’VU(l—e!)V,z€eVU(l—¢e)V,qe Q/Zand itis enough to check the lemma
for these 5 types of generators. For (0,0, ¢) this is clear. Similarly, if z € (1 — e/)V
and z € (1 — e)V, then both sides yield A((z,z,¢q)) as one easily checks. For
zeelV,zeeV,qeQ/Z

Heoo(2,2,q) = (o, —€ ul 2, q + B(z, —ex)).
To calculate the right hand side, we note that according to the decomposition
V=eVa(l-eV
the space C[V] = CleV] ® C[(1 — e)V] is a tensor product and
hewewe = (Peewe)clev) @ ideja—eyvy -

Moreover the permutation matrix A((0, z,0)) : b, — b,y, for z € eV is a tensor
product p, ® id and similarly the diagonal matrix A((z,0,0)) for z € ¢’V is a
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tensor product d. ® id. It is therefore enough to calculate the action on elements
of CleV]. Forz = e’z € e/V,z =ex € eV and v = ev € eV we get

Pe g v © A((e‘]z, 0,0)) o h_ by

:he,ue,ve<|€v|71/2 Z exp( 27”(6(_671%167)71”) +ﬁ(waer)))bw)
weeV
=leV|™* Z Z exp(2mi(B(—e vl ev, w) + Blw, e’ 2) + B(w', vew))) by
w'eeV weeV

Now S(—e *v/ev, w) + flw, e’ z) + B(w', vew) = ﬁ(—e‘lv;]ev +elz+ e wlew w).
Hence the sum over all w is non-zero, only if —v/ev+ 2+ v/ew’ = 0 which implies
that w' = v — e 'u’ 2. Hence he ,, .. o A((e’z,0, O)) ohgy v.by = by_c—1,7.. A similar
calculation yields 4

he e v © A((0, ex,0)) o h 1 by

:he,ue,vs(‘evrlﬂ Z eXp<27”(6(_€_1veJ€U7w)))bw+ez)
weeV

=N, (V]2 Z exp(27mi(B(—e v ev, w — ex))b,)
weeV

:h‘e,ue,ve ° he’}t ,Ve (exp(2ﬂi(ﬁ(e’1v;’ev, ex)))bv)
= exp(2mi(B(v, vex)))by.

OJ

The preceding two Lemmata show that the action of C(T") on A(£) induces an
embedding ¢ : C(T")/S(C(T)) — Aut(€) with

tm, - S(C(T))) = Yaqrgy and  tlheuew. - SC(T))) = VHe
and hence Im(¢) = Uy (R, ®). This induces a group epimorphism
v U(R.®) T Ur(R, @) = C(T)/S(C(T).
where 7 : (7, ¢) — 1, , is the obvious epimorphism. Hence
Corollary 5.2.11. The map U(R, ®) — C(T') defined on generators by
d((r,0)) = mydy, Heune = e,
is a projective representation.

Corollary 5.2.12. The Clifford-Weil group C(T') is finite, since C(T)/S(C(T)) is the
epimorphic image of the finite group U(R, ®), and S(C(T')) is finite by Remark 5.1.6.
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5.3 Scalar subgroups of quotient representations

In this section we prove the following Theorem needed in the proof of Theorem
5.1.7, filling a gap in [33]. Theorem 5.3.1 and its proof have also been published
in [13].

Theorem 5.3.1. Let C be an isotropic Type T code. Then S(C(T)) = S(C(T'/C)).

To prove the above theorem, we need the following well-known results on the
lifting of idempotents and units. These results hold over any Artinian ring, hence
in particular over finite rings.

Lemma 5.3.2. Let R be an Artinian ring and let I C R be an ideal. Then idempotents
and units modulo I lift to idempotents and units of R, i.e.

(i) for every e € Rwith (e + 1)> = e + I € R/I there exists some i € I such that
e +1i € R isan idempotent and

(ii) for every x € Rwith v + I € (R/I)* there exists some i € I such that x +i € R*.

Lemma 5.3.3. Let R be an Artinian ring and let I C R be an ideal. Let e € I +rad R
such that e + rad R € R/ rad R is an idempotent. Then e lifts to an idempotent in I, i.e.
there exists some x € rad R such that (e + z)? =e+x € I.

Proof. Let 7y € rad R such that ¢ := e + zy € I, then €2 — ¢y € rad R. Define
a sequence (e;);en, recursively by e; := e (2e;_; — 1)™! € I. In what follows we
show that for a sufficiently large index i the e; are idempotents.
To see that the e; are well-defined, i.e. that always 2e; — 1 € R*, note that
always
(2¢; —1)> =1+4(ef —¢;) €1 +1ad R C R*

since €7 — ¢; € rad R, which can be shown by induction on i as follows. For i = 0
the assertion is clear, hence ¢; is well-defined. Now let i > 1 and assume that
¢; —e; € rad R for all j < i, then e, is well-defined and

el —e = e 1(2e,0—1)2—¢€l (2e,,—1)7"
€1 — €i_1(2ei1 — 1)) (26,0 — 1)

(
(6?_1 — 61‘_1(262'_1 — 1>_2.

Now by the assumption of our induction, €? ; — e;_; € rad R and hence the same
holds for e;. Moreover, this argument shows that e? — ¢; € (rad R)Qi, which is zero
for some finite index since R is Artinian. Hence there exists some index &k such
that e, is an idempotent. Now z :=¢;, — e = Zfzo(ei —e,_1) € rad R since always

(61' — 61',1)(261',1 — 1) = €;—1 — 612_1 € rad R,

and the proof is complete. 0
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Lemma 5.3.4. Let ¢ € R be an idempotent. If e + rad R € R/rad R is a symmetric
idempotent of the form ring R/ rad R then e is symmetric, too. More precisely, if

e+ rad R = u.v, + rad Rand ¢’ +rad R = vou. + rad R

for elements u, € eRe’, v, € e’ Re then there exists an element u, € eRe’ such that
e = U, and e’ = v, u,.

Proof. We have u.v. € (eRe)* since u.v. — e € e(rad R)e = rad(eRe), and
similarly v.u, € (e/Re’)*. The latter implies that there exists some z € R with
veuer = e’. Let 4, = u.z, then v.u, = e’. It remains to prove that d.v. = e.
Multiplying both sides with v, yields an equivalent equation v.u.v. = v,, since v,
has a left inverse in (eRe)*, since u.v. € (eRe)*. Now the latter equation is true
since v u,v, = e’v, = e/, and the claim follows. O
Lemma 5.3.5. Let r = (: ?) € (R¥?)* and let X = (‘151 ;”2) € ®, such that ¥, x €
Ur(R,®). If 6% = § then e := 1 — § is a symmetric idempotent. More precisely, we have
e = u.v, and e’ = vou, with u, = —ey’e’, v, = e’ Be.

Proof. This is an elementary calculation:

uve = —(1—=208)e 'y (1—=67)B(1—-0)

= —(1—-0)? l]ﬁ (1—68)+ (1 =68y’ @(1 —6)
=a’ed—e =BJes
= (1—-6)ete(1—9)
= 1-9
= e
and

votte = —(1—8")B(1—=68)e 'y (1 —67)

= (1= 6) B (1= %) + (1= 67)B e/ (1 — 67)
=ad’—1 =67
= —(1-8) (1)
= 1-¢’/
e’.

OJ

The following Lemma gives a homomorphism r : C(T)) — C(T'/C') which
restricts to a group isomorphism 7 : S(C(T")) — S(C(T'/C)). Injectivity of 7 is
straightforward; the rest of this section after Lemma 5.3.6 is devoted to the harder
part of showing the surjectivity of 7.

Lemma 5.3.6. The group C(T) acts on a submodule of C[V] isomorphic to C[C*/C].
This yields a representation

r: C(T) — GL(C[C*/C))
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with r(C(T")) < C(T/C). For the scalar subgroups we get r(S(C(T"))) < S(C(T'/C))
and ker(r) N S(C(p)) = {1}, i.e. r restricts to a group monomorphism v : S(C(T)) —
S(C(T/C)).

For the proof of Lemma 5.3.6 we need

Remark 5.3.7. Consider the natural group epimorphism
0: UT(R> (D) - Z’{T/C(R7 (I))> wr,p% () wﬂp(q)/C)g((b)'

Let (r,¢) € (R¥?)* x ®o. Then ¢, € ker(0) if and only if

coc () (7))

where (I,1") = Anng (T/C).

wo-(( ) 1)

then for (¢, + C,d, + C, q) € E((C+/C)?) we have

0(¢T,p<ﬁ2(¢))(cll + Cv 0/2 + C’ Q)
=(ac) + Bcy + C,ycy +0¢, + Coq + po(61)(c)) + pa(2)(cy) + par(m)(cy, c3)).

Proof. Write

By suitable choices of ¢}, ¢; one verifies that ¢, ,, (s) € ker(f) if and only if o, 6 €
1+1, B,y €1, ¢1,0, € T, and pus(¥(i)) (¢}, cy) = 0 for all ¢}, ¢, € C+. The latter is
equivalent with ¢ € I, since

pu((0))(e1, ) = pur( ()1 @ 0))(e1, ¢3) = par (P (1)) (¢ icy) = B(cy, ic),
which proves the assertion. O

Proof of Lemma 5.3.6. Let Rep denote a set of coset representatives of C+/C,
and define a subspace

U={>_ > aby|a,€C}<CV].

vERep ceC

This subspace is isomorphic to C[C*/C] via

FiCICHCl=U, Y abuc— Y Y by

vERep vERep ceC

Hence we can define a group homomorphism
r:C(T) — Aut(U), o+ fowo f!

which maps (s - id¢y)) = s - idgjeL ). Hence the restriction 7 of r to the scalar
subgroup of C(T') is injective. Let ¢ and ¢/C' be the projective representations of
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Ur(R, ) associated with the representations 7" and 7'/C, respectively (cf. Corol-
lary 5.2.11). We will show that

fop(Heuen.) o = /C (0(Heu, v.)) (5.3)

and

fowld((r,9))) o [~ =¢/C((0(d((r, 9)))).- (5.4)

Equations (5.3) and (5.4) imply that Im(r) < C(7'/C) = Im(p/C), which shows the
lemma. To prove Equation (5.3), let v + C' € C*+/C and let T denote a set of coset
representatives of eC*/eC = eC*/C. Then

(fil o SO(He,ue,'Ue) © f) (varC) = (fil eue ve Z varc

ceC

:f—l(z |eV|_% Z exp(27miB(w, ve(v + €)))but(1—e)(vtc))

ceC weeV

Crtevi: Y exp(@riB(w, v.v) Z > exp(2miB(w, Vec) burk(1—e) (o))

weeV 'e(1—e)C ceeC

Z > expmiB(w, vev))bus(1-e)(uie)

weeCL '€(1—e)C

|60| Z Z Z exp(2mif(w, vev))b wA-c+(1— e)(v+0))

|6V’7 weT /e(1—e)C ceeC

=f! |€C| Zexp 27 (w, vev) wa+1 ev+c
|€V| weT ceC
eCH/C17E N exp(2mifB/C(w, ve(v + C)))but1-owro)
weeCL/C
:W/O(Q(He,ue,ve))(bv—l-c“)»

where (x) holds due to the fact that

leC], w € eCt
0  otherwise

Z exp(2mif(w, vec)) =

ceeC

as seen in the proof of Theorem 5.1.5. To prove Equation (5.4) we note that
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pa(¢)(c) = 0 forall c € C and for all ¢ €  and obtain

(f_l O @(d((ra ¢))) © f) (bU+C) = (f_l O Sp(d((ra ¢)))) (Z bU+C)

ceC

= (p(d((r,0))) Y exp(2mips(d) (v + ¢))bure)

ceC

:f_l (Z eXp(27ripq> (¢) (U))brv+TC)

ceC
(Y exp(2mipe (6)(0))byuse)
ceC
= exp(2mips /C(¢) (v + C))brwrc))
=p/C(0(d((r,9))))(bu+c)-

O

Remark 5.3.8. Let . : C(T')/S(C(T)) — Ur(R, ®) beas in Section 5.2. Since S(C(T")) is
a central subgroup of C(T), this gives rise to a group epimorphism v : C(T') — Ur(R, ®)
with kernel S(C(T')). Correspondingly, let v/C : C(T/C) — Ur;c(R, ), then we have
a commuting diagram
C(T) %  Ur(R,®)
rl 1o
v/C
C(T/C) — Urjc(R,P).
Let r, 7 be as in Lemma 5.3.6, f as in Remark 5.3.7 let v and v/C be as in Remark
5.3.8. Then we have a commuting diagram

1 1
l )
1 —  ker(r) s ker() — Y — 1
! l !
1 — ST — (T L Up(R,®) — 1
Lr L 16 (5.5)
1 — SEr/c)) — eT/c) " Ure(R @) — 1
! l !
Y 1 1
!
1

where Y = S(C(T/C))/7(S(C(T))) and V' = ker(0)/v(ker(r)).
Remark 5.3.9. The rows and columns of diagram (5.5) are exact.

Proof. The columns of diagram (5.5) are exact by their definition. To see that
the first row is exact, note that vy, is injective since ker(v) N ker(r) = S(C(T)) N
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ker(r) = {1} (cf. Lemma 5.3.6). The other rows are exact by definition of v and
v/C. O

The claim of Theorem 5.3.1 is that 7 is surjective, i.e. that ) is trivial. Since all
the rows and columns in diagram (5.5) are exact we have

_Asem)l _ _fe@/o)|  |[Ur(R, )| _ ker(d)

N =56em)) ~ reme) €@ Tker(r)]

= [V'].

Hence Theorem 5.3.1 holds if and only if )" is trivial, i.e. if V|xer(r) @ ker(r) —
ker(¢) is an isomorphism, which will be proven in the rest of this section.

Lemma 5.3.10. If d((r,¢)) € ker(0), for some r € R* and ¢ € ® then d((r,¢)) €
Im(V|ker(r)>-

Proof. That d((r, ¢)) € ker() means that left multiplication with r must yield
the identity on C*/C, and that pe/C (C+/C) = {0}. Hence the elements m,, d, €
C(T) lie in the kernel of r. Since d((r, ¢)) = v(m,d,) by Lemma 5.2.9 and definition
of v, the claim follows. U

Lemma5.3.11. Letr = () € (R¥?)*andlet ¢ = (' ') € &y such that ¢, (4) €

@2

ker(0). If § is a unit then there exists x € ker(r) with v(z) = ¥y 4 (4)-

Proof. Since ker(r) is a normal subgroup of C(T') it suffices to show that
Vr.pa, (#) 18 contained in the normal subgroup of Ur(R, ®) generated by the ele-
ments of

{d((r,0)) [ r € R", ¢ € B} Nker(0),
by Lemma 5.3.10. We show that there exists some ¢3 € I' such that

Uropay () = A6, ¢2)) Hia1d((1, ¢3)) Hp 5.

We have d((5, ¢»)) — (( (5J(>)_1 ; ) | ( 0 52 )) and hence

d((8,62)" = ((%J O )(0 —@?6—1]))'

We therefore find d((, #2)) ™' ¥r pg, () = Vs pa, (¢1), Where

(P 1) (0 )

for some m € M. Since the upper right entry in the first matrix of this element of
Ur(R, ®) is 0 we obtain /i = 0 and similarly §’«a — 673671y = 1 and we get

(o ()
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Furthermore,

() () (2 5)-(50))

Then we have (d((d, ¢2)) ™ ¥rpg, (3) " = Vi pg, (o), Where

cn=(( 7))

with some m' € M and

03 = {(=ed ')} — oy + 1 €T,

since —ed 'y € I and ¢y, 9o € T, according to Remark 5.3.7. Again m’ = 0 since
the lower left entry in the first matrix is 0. Hence

Hy11d((8, 62)) ™ Prpo, (o) Hirr = d((1, ¢3)) € ker(0)

as claimed. ]

Lemma 5.3.12 concludes the proof of Theorem 5.3.1.
Lemma 5.3.12. The map v|we(r is surjective, that is, Im(v|ier(ry) = ker(6).

Proof. Let ¢, (4) € ker(0). We show that there exist a symmetric idempotent
e = u.ve € I and a pair

/ o ¢ W 2% 2\
) = / / ) / (R o
o =((5 %) (" §)) ey xa
with &' € R* such that ¢, ., (¢) € Ur(R, @) and

wrap@g (¢) = ws»pq)z (¢,) Heyufzyve .

Since ¢ € I = Anng(C*/C) the set e(C+/C) = {0} and hence h.,,, ., € ker(r).
Hence H. ., v, = V(hejuew.) € Im(V|ker(r)). By Lemma 5.3.11 the element Vs.pa, () €
Im(v[ker(r)), 50 the same holds for ¥, ,,_(4)-

Now let us construct e. The ring R/rad R is a direct sum of matrix rings over
skew fields. Thus there exist u;, us € R* such that u;du, is an idempotent modulo
rad R. After conjugating with u, we obtain an idempotent @ + rad R € R/rad R
with @ € R*. Since @6 + (I + rad R) € R/(I + rad R) is an idempotent as well
and § € 1 + [ is a unit modulo I + rad R, it follows that @ € 1 + (I + rad R). We
can even assume that @ € 1 + /. If a = 1+ i+ r withi € I and r € rad R then
(14+4)0 = (@ — ) is an idempotent mod rad R. Additionally, from @ € R* we
get 144 € R*, so we can assume @ = 1 + i. Write

o= ((3 (2 1))
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then

d((10, 0)) Uy p, (6) = (( (@) e (f’]ﬂ);ﬁ ) , ( 1 q’j? )) € ker(0)

uy

since d((1,0)) € ker(#) by Remark 5.3.7. Hence we can assume that 6 + rad R €
R/rad R is an idempotent.

Now consider the quotient form ring R/rad R (cf. Example 4.3.9) and a rep-
resentation over some (R/rad R)-module W. The element

a+radR [+radR é1 + A (Y(rad R)) p+ Y(rad R)
vy+radR d+radR )’ b2+ A1 (¢(rad R))

lies in the associated counitary group U(R/rad R, ®/\ (¢ (rad R)), W) by Re-
mark 5.2.5, and hence e := (1 — §) + rad R € R/rad R is a symmetric idempotent
with e = u.v. for elements

u. = —ee 'v7e’ +rad R and v, = e’fe’ +rad R,

by Lemma 5.3.5. By Lemma 5.3.3 there exists some z € I Nrad R such that e :=
e+ =1-0+ax € Iisasymmetric idempotent. We calculate the projection on
the first component

4y _[a p 07—l —vle N _ (o O
W(wr,p%(aﬁ)He,ue,ve) - ( v o4 ) ( u? b—x ) v 4

€

with &' = —yv/e + § — dx. It remains to show that &' € R*. Lemma 5.3.4 gives
v, = (1 —67)B(1 —§) mod rad R. Also dx € rad(R), so it remains to show that

0 = —y(1—6")37e(1 —0) + 6 € R".

We observe that 6’0 = —y(1 — 67)37¢ (1 — 6)§ +62 = § and
=0

(1—=8) = —(1—0)y(1—6)87e(1—06) =
—(1=0)yB7e(1 = 6) +(1- 5)75?%(1 —-d) = —(1- §)vB7e+ (1 — 6)7@ =
=0, since v6J =de/ =574
—(1-90) lﬁjﬁ +(1=86y'p = 1-0.
=delale—1 =0

Particularly, (1 — 9)(2 — ) =1 — 6. Now we see that ¢ is a unit since

7(2—0)=60+(1—-0)2-0)=0—6046=1—-6+0=1.
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5.4 The order of [T] equals the order of S(C(T))

In this section Theorem 5.1.7 is proven, which states that the order of an element
[T] € W(R) equals the order of the scalar subgroup S(C(7")) of the Clifford-Weil
group C(T'), for every finite representation 7" of the finite form ring R.

The following two lemmata cite constructions of scalar elements in C(T’) given
in [33], which are needed in the proof of Theorem 5.1.7. For a proof of the follow-
ing lemma, the reader is referred to [33, Theorem 5.4.7].

Lemma 5.4.1. Let e € R be an idempotent. An element ¢ € @ is called nonsingular
with respect to e if left multiplication by 1~ (\(¢)) € e’ Re yields an isomorphism of the
right R-modules eR and e’ R. If ¢ is non-singular with respect to e then the Gauss sum

Yeo(T) = [eV[72 Y exp(2mipa(¢)(v))

veeV
gives rise to a scalar element ~. ,(T') - id € C(T)

Another construction of scalars makes use of the kernel of the map A associ-
ated with R (for a proof see [33, Lemma 5.4.3]).

Lemma 5.4.2. Let T' = (V, par, pa, 3). For all elements ¢/ € ker(\) the map pe(¢') is
additive since

pa(¢) (v + w) = pa(¢)(v) = pa(¢)(w) = Alpa(d)) (v, w) = prr(A($))(v, w) =0

forall v,w € V. Hence one can define an abelian group homomorphism ar : ker(\) — V
by the condition B(v, ar(¢')) = pe(¢')(v) forall v € V. Then for ¢ € ®, the scalar

lo.g (T') 1= exp(2mipe (@) (ar(¢')))
gives rise to a scalar element 1, »(T') - id € C(T').

We begin with a proof of Theorem 5.1.7 for form rings over finite fields, where
the associated map A is injective.

Theorem 5.4.3. If R is a form ring over a finite field IF such that the associated map X
is injective then the order of every element [T'| € W(R) equals the order of the scalar
subgroup S(C(T)).

Proof. Since the order of [T is always a multiple of the order of S(C(T)),
by Remark 5.1.6, it suffices to find a scalar element in C(7") which has the same
order as [T]. If & = {0} then W(R) is trivial, as seen in the proof of Lemma
4.3.6, hence nothing has to be shown in this case. Assume that & # {0}. If F
has odd characteristic then W(R) = W(F, J, 1) is isomorphic to the Witt group of
equivariant forms over IF, where [ is viewed as an algebra over its prime field F,,
again by the proof of Lemma 4.3.6. Hence if J is not the identity on F = ;> then
W(R) is cyclic of order 2 (cf. Corollary 4.1.20), and generated by some element

[T = (F, pa, pa, B)], where G(z,y) = %Traceyr/[gp(x’"y). Since \({¥(1)}) = 2¢(1)
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is nonzero and A\ is injective, the element {(1)}) = 2¢(1) € ® is nonzero and
hence nonsingular with respect to the idempotent 1. Hence the Gauss sum

1 27Ti r
T Lo} (T) = B8 37 exp(= = Traces, e, (7))

JEF 2

271
=r 1+ Z exp(— Tracer, /&, ("))
fe(F,2)* P
2

= 1 (r 1) Y exp(% Tracer, /v, (f)))
feF*

=r'f(1—(r+1)=-1

induces a scalar of order 2 in C(7"), which shows the assertion in odd character-
istic, for non-trivial J. If F = F, has odd characteristic and J is the identity then
by Corollary 4.1.20 and Lemma 4.3.6, the Witt group W(R) is cyclic of order 4 if
r =4 —1, and isomorphic to a direct product C5 x C; of two cyclic groups of order
2if r =4 1. Assume first that »r =4 —1, then W(R) is generated by some element
[T = (F, pu, pa, )], where 3(z,y) = | Tracesr,(vy) for all z,y € F. Let ¢ € Fy2
such that ("' = 1 and ¢ + (" = 0, then 2? + y*> = (x + Cy)" ! for all 2,y € F and
hence

_ 2mi
(717{1“1)} (T))* =r~"1 Z eXp(? Tracer, v, (2* + y*))

z,y€l,

B 271 ,
=7 1 Z exp(7 TraceFr/IFp«x + Cy) +1))
$,y€Fr

B 271 r
=t Z eXP(? Traces, /s, (z"1))
z€F, 2

=1
gives rise to a scalar of order 4 in C(7'). Now assume that r =4 1. Then
W(R) = {0}, [T, [.], [T L T},

where T is as above and 7T, is given by 3,(z,y) = Trg, /¢, (v2y), for some element
v € F* — (F*)2. In this case all nonzero elements of W(R) have order 2. Let ¢; :=
{¢¥(1)} and ¢, := {¢(v)}, then elementary calculations show that v, 4, (7)) =
—71,6, (1) and v1 ¢, (1)) = —71,4,(1,), hence both cases C(71) and C(7,) contain a
non-trivial scalar, which must have order 2 by Remark 5.1.6. Moreover, the same
calculations show that

—1 =76, v1.6, (1) = M,6,(T L T,),

and hence C(7} L T,) contains a scalar element of order 2 as well. If F = F, has
characteristic 2 then W(R) is cyclic of order 2, and generated by some element
[(F,2, par, po, A(N))], where the quadratic form

N :F,2—TFy fr— TI“aCe[FT/]F2 (fT+1)
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(cf. Example 4.2.17). Let T be a representation of R with ps(¢) = N, for some
element ¢ € ®. Due to the injectivity of ), every nonzero element in ® is non-
singular with respect to the idempotent 1 and hence again the Gauss sum

1 2mi .
16(1) = [l 72 3 exp(= = Traces, (7)) = —1
J€F 2

induces a scalar element of order 2 in C(7"), which shows the assertion. O

To generalize Theorem 5.4.3 to arbitrary form rings over finite fields, we need
the following Remark.

Remark 5.4.4. Let T C Anng (1) be a form ideal, and let T’ be the faithful representation
of R/T induced by T (cf. Example 4.3.11). Then the element [I7] € W(R/I) has the
same order as [T'|. Moreover, since R is finite, idempotents and units lift modulo ideals of
R (cf. Lemma 5.3.2), and hence

C(T) — C(Tz), my — myyq, dy— dgsr, hewewe = hesTurToer
is a group isomorphism.

Theorem 5.4.5. If R is a form ring over a finite field I then the order of an element
[T] € W(R) equals the order of the scalar subgroup S(C(T')).

Proof. It suffices to show that the order N of S(C(7")) is a multiple of the order
of [T] (cf. Remark 5.1.6). As one easily verifies,

C(T) ={@ilx |z € C(T)}

consists of Kronecker products of elements of C(7"). Since S(C(T")) is isomorphic
to a finite subgroup of C*, it is generated by an element ¢, and hence by the
above S(C(T")) is generated by (", hence is trivial. Hence it suffices to show that
[T] = 0 whenever S(C(T)) is trivial. Since passing to a quotient representation
leaves both the order of S(C(7")) and the order of [7] unchanged, we may assume
that 7 is anisotropic. By Remark 5.4.4 we may also assume that 7" is faithful. If
S(C(T)) is trivial then [y »(T) = 1 for all ¢ € ® and all ¢’ € ker(\) (cf. Lemma
5.4.2). Hence always ps(¢)(ar(¢')) = 0, and in particular

Blar(d), ar(¢”) = pe(¢)(ar(¢”)) =0

for all ¢/, ¢" € ker(\). Hence ar(ker())) is a Type 1" code and hence ar(ker())) =
{0}, due to the anisotropy of 7. This implies that ker(\) C ker(ps), and hence
ker(A\) = {0}, due to the faithfulness of 7. Hence \ is injective, and the claim
follows with Theorem 5.4.3. O

In the next step of the proof of Theorem 5.1.7, we generalize the claim to form
rings over matrix rings over finite fields.
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Theorem 5.4.6. Let the representation T™ of Mat,,(R) be the nth power of T (cf. Defi-
nition 4.3.15). Then the element [T™] € W(Mat,,(R)) has the same order as the element
[T] € W(R). Moreover, if R is a form ring over a finite field then S(C(T)) = S(C(T™)).

Proof. That the order of [T] equals the order of [T]™ follows from Theorem
4.3.17. On generators of C(T) define a group monomorphism ¢ : C(T') — C(T™)
by

My > Mdiag(rl,...1), Qo 7 ddiag(6,0,.,0)s  Peuewe 7 Mgy (0 ()

forr € R*, ¢ € ® and a symmetric idempotent ¢ = u.v, € R, where ™ =
diag(e, 0,...,0) and u., v. are defined similarly. Then ¢(z) = = ® id,,, hence scalars
are mapped to scalars of the same order, and hence S(C(T')) is isomorphic to a
subgroup of S(C(T™)). By Remark 5.1.6, the order of [T™)] is a multiple of the
order of S(C(T™)), and hence if R is a form ring over a finite field then

ST < K{T™N] = KT = SC(T))],

by Theorem 5.4.5, hence S(C(T™)) and S(C(T)) have the same order, and the
claim follows. O

Since every form ring whose ground ring is a matrix ring over a finite field F
is isomorphic to some matrix form ring Mat,,(R) over I (cf. Theorem 4.3.14), one
obtains Theorem 5.1.7 for form rings over matrix rings.

Corollary 5.4.7. If R is a form ring over a matrix ring over a finite field then the order
of an element [T'] € W(R) equals the order of the scalar subgroup S(C(T)).

Now we are able to prove Theorem 5.1.7 for form rings over arbitrary finite
rings.

Proof of Theorem 5.1.7. As already shown in the proof of Theorem 5.4.5, it
suffices to show that [T] = 0 whenever S(C(7)) is trivial. Hence assume that
S(C(T)) is trivial. Again by the proof of Theorem 5.4.5, we may assume that 7" is
anisotropic and faithful, which implies that ) is injective. Since R is finite, rad R
is nilpotent, i.e. there exists some minimal positive integer ¢ with (rad R)" = {0}.
Let I := (rad R)/2! as in the proof of Theorem 4.3.5, then the form ideal

Z:= (I, {¢(I)}) € Anng(T),

as seen in the proof of Theorem 4.3.5, and hence Z = (0, 0) since 7" is faithful. This
implies that ¢ = 1, i.e. rad R must be trivial. Hence the ring R is semisimple. Let
1 =e; + ... + e, be an orthogonal decomposition into central idempotents of R
such that always e/ = ¢;, and that in every orthogonal decomposition e; = f + g
into central idempotents f = f/ and g = g, either f = 0 or g = 0. This induces
an orthogonal decomposition

T=eTL...1LeT,
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where [T'] = 0 if and only if always [e;7'] = 0 (cf. Remark 2.3.18). Moreover, there
is an embedding

0 - C(ezT) — C(T), Me,p F7 Mert1—e;5 d¢[e] — d(j)[e]? hL,uL,vL — hL,uL,vba

with o(z) = 2 ®id, for z € C(e,;T). In particular all the scalar subgroups S(C(e;T))
are trivial since S(C(T')) is trivial. Now an idempotent e; in this decomposition is
either central primitive, or there exists an orthogonal decompositione; = f + ¢
into central primitive idempotents f,g with f/ = g. Clearly in the latter case
le;T] = 0, as seen in the proof of Theorem 4.3.5. If ¢; is central primitive then we
may consider e, T as a representation of R/ Anng(,r), which is a form ring over
a matrix ring over a finite field. Since changing to this quotient form ring does
not change the order of the scalar subgroup or the order of [¢;T], the claim now
follows from Corollary 5.4.7. O

5.5 The universal Clifford-Weil group

In this section a universal Clifford-Weil group C(R) is introduced (cf. [33, Remark
5.4.8]), which, if R is faithful (cf. Definition 5.5.1) is a central extension of U(R, )
with the Witt group W(R). For every finite representation 7" of R, the Clifford-
Weil group C(T') is a quotient of C(R).

Definition 5.5.1. R is called faithful if Nper gy Anng (1) = (0,0).

Note that with respect to their representations, only the faithful form rings
are of interest, since every representation 7' of R is also a representation of the
faithful form ring R/ Anng (7).

Remark 5.5.2. If R is faithful then every element [T'| € W(R) has a faithful representa-
tive.

Proof. Since R is faithful, for every element r € R — {0} and ¢ € ® — {0} there
exists some 7, , € T (R) such that (r,¢) ¢ Anng(T). Let

Ty =1 er—{oy Loco—10y Tro,

then Anng (Tf) = Nrer—q0}, pco—foy Anng (T, 4) = (0,0), i.e. T is faithful, and so
is every multiple of T}. Let ¢ be the order of [Ty], then [T" L T*| = [T is faithful,
which proves the assertion. 0

By Corollary 5.2.11, the Clifford-Weil group C(T') of a representation 7" of R is
a central extension of the hyperbolic counitary group Ur (R, ®),

C(T)=S(C(T)).Ur(R, ).
Definition 5.5.3. Let F(Gy/) be the free group on the generating set
gU = {d((?", ¢))7 He,ue,ve

r € R*, ¢ € ®,e € R symmetric idempotent}
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of U(R, D), and let the epimorphism vy : F(Gy) — C(T') be as in Remark 5.3.8. The
universal Clifford-Weil group is

C(R) := F(Gu)/ Nrer ker(vr).

Clearly C(T') = F(Gy)/ ker(vr) is a quotient of C(R), for every finite representation T
of R.

Theorem 5.5.4. If R is faithful then C(R) = Hom(W(R),C*). U(R,P) is a finite
central extension of U(R, ®).

Proof. Let 7 : F(Gy) — U(R, ®) be the natural group epimorphism. Since R
is faithful, Nper(r) ker(vr) C ker(n). This induces an epimorphism

7: C(R) = F(Gu)/ Nrer ker(vr) — U(R, D).
It remains to show that ker(7) = Hom(W(R), C*). Clearly
ker(%) = ker(r)/ Nrer ker(vr).
Consider the homomorphism
¢ : ker(r) — Hom(W(R),C*), w — ([T] — Cp),

where vr(w) = (r - id € C(T). That ¢ is well-defined, i.e. that {(; only depends
on the equivalence class [T'], follows from the construction and uniqueness of the
anisotropic representative of [T}, together with Lemma 5.3.6. Clearly the kernel
ker(y) = Nre7 ker(vr). It remains to show that ¢ is surjective, i.e. that

Im(p)L = {[T] € W(R) | ¢(u)([T]) = 1 for all u € ker(r)} = {0}.

Due to the surjectivity of vy : F(R,®) — C(T), the preimage v;'(S(C(T))) =
ker(r). Hence [T1] lies in Im(¢)~ if and only if S(C(T")) is trivial. According to The-
orem 5.1.7, this implies that [7] = 0, and hence Im(p)* = {0}, i.e. ¢ is surjective,
as claimed. O

5.6 Examples

The theory in this chapter allows to determine the minimum length ¢ for which
there exists a self-dual Type 7' code only from the computation of the Clifford-
Weil group C(T'). This is illustrated by the following examples, which give explicit
constructions of scalar elements of order ¢ in C(T').

5.6.1 Doubly-even binary codes

A first application of the theory of Clifford-Weil groups is an alternative proof for
the following well-known result by Gleason.
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Theorem 5.6.1. There exists a self-dual doubly-even binary code of length N if and only
if N is a multiple of 8.

Proof. Consider the Type 25 of doubly-even binary codes defined in Section
2.2.1. The claim is that the element [2f;] has order 8 in the Witt group of the
underlying form ring Ri;. By Theorem 5.1.7 this order equals the order of the
scalar subgroup of the Clifford-Weil group C(2f). As seen in Example 5.1.8, the
group C(2f) < GL(2,C) has order 192 and is generated by the elements

1 1 1 . .
h = h17171 = E ( 1 —1 ) and d= d1 = dlag(l,@),
where i is a root of z* + 1. The scalar subgroup is generated by (d - h)? = 1—\75 -id,
which has order 8. 0

5.6.2 Codes with prescribed automorphisms over fields of char-
acteristic 2

Let I be a finite field of characteristic 2 and let G be a permutation group of degree
N. Recall that a linear code C' < F¥ is called G-invariant if and only if

G C Awt(C) = {r € Sy | nC = C},

where the symmetric group Sy acts naturally on FV by coordinate permutations.
The G-invariant linear codes in F" which are self-dual with respect to the stan-
dard scalar product (-,-) are precisely the self-dual Type 7" codes for the repre-
sentation T = T(V = FV, B) of the form ring R = R(FG, J,1), where V is a left
FG-module in the natural way, and

1
B:FN xFN - Q/Z, (v,w)— §TraceF/F2((U,w)),

and J is the F-linear involution of FG with g7 = g7}, for g € G (cf. Example 2.1.8).
The Witt group W(R) is cyclic of order 2, since

WG, J,1) = W(R), W(R), (W, )] [T(W,4)]

is a group isomorphism (recall that W(FG, J, 1) is the Witt group of equivariant
FG-modules introduced in Section 4.1 and that this group is cyclic of order 2
by Corollary 4.1.20). Hence either 7' is metabolic or [T has order 2 in W(R).
Note that since in the G-module V' @ V/, every simple module occurs with even
multiplicity, the latter already follows from Corollary 4.1.27. Hence it follows
with Theorem 5.1.7 that either 7" is metabolic or S(C(7")) is cyclic of order 2. In
the latter case, an explicit construction of a scalar of order 2 is given in Theorem
5.6.3, and prepared in the following lemma.

Lemma 5.6.2. Let R be a form ring over a ring R of characteristic 2 with associated
unit € = 1, and let ¢ € ker(\). The element d((1, ¢))Hy 1, in the associated hyperbolic
counitary group has order 4, hence (dyhy11)* is a scalar in the Clifford-Weil group of a
representation of R.
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Proof. By definition

a=((3 (0 2) w (1))

One calculates that

(o) e)l= (™)

for all ¢1, ¢ € ® and m € M, and hence

aenmar = (4 9). (7).

In particular d((1, ¢))H 1,1 has order greater than 3. Since R has characteristic 2
and ¢ € ker(\) is a linear R-module, the sum ¢+ ¢ = 0 and hence the above yields

aconma'=((o 1) (00 )

and the claim follows. O

Theorem 5.6.3. Let V be a left FG-module and let 3 : 'V x V. — Q/Z be a non-
degenerate, G-invariant, symmetric, biadditive form on V. Let T = T(V,[3) be the
associated representation of the form ring R = R(FG, J,1) (c¢f. Example 2.1.8). Then
either there exists a self-dual Type T code in V' or the element

<d{w(1) } h17171)4 S C(T)

is a scalar of order 2.

Proof. Let the code C' in V be maximally Type 7. Then the quotient rep-
resentation 7/C = T(C*/C, 3¢) is anisotropic and induced by the G-invariant,
non-degenerate, symmetric, biadditive form

Bo:CH/Ox CH/C —Q/Z, (d+C,d"+C)w B(c, .
The map r : C(T') — C(T'/C) which maps
my = (buic = brorc),  dy = (borc — exp(2mipe(9)(v))buic),
B = (bore = [e(CH/O)72 Decion sy AU, vet)busa-ey)

(cf. Lemma 5.3.6) restricts to an isomorphism of the scalar subgroups, as shown
in Section 5.3. Hence it suffices to show the claim for 7'/C, or alternatively, we
may assume that 7" is anisotropic. Let ¢ := {¢(1) } and h := hy ;1. The element
(dgh)* is a scalar by Theorem 5.6.2, since

A@) = A{L(1)}) =v(1) +7((1) =141 =0,
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ie. ¢ € ker(\). Hence it suffices to show that (dsh)*(e,) = —e, for some v € V.
For the following calculations, observe that the map

1
po:V— §Z/Z’ x— [z, x)

is additive and hence there exists some element v € V with G(v, z) = ¢(z) for all
x € V. In particular (v, vg) = ¢(vg) = B(vg,vg) = B(v,v) for all g € G, since (3 is
G-invariant. This implies that 3(v, v) # 0 since otherwise v € (v)*, i.e. (v) N (v)*
is a nonzero isotropic subspace, which contradicts the anisotropy of 7. Hence
B(v,v) = 1. Moreover,

dy(es) = exp(2mif(z, v))e, = exp(2mif(v, z))e,
forall x € V. Now

hdgh(es) = hdy([V[72Y en) = h(|V[72 ) exp(2miB(v, z)e,)

zeV zeV
= V| Z Zexp(%rzﬂ(w +0,1))e, = €,
weV zeV

since

Zexp(%rzﬂ(w +o,x)) = { |‘6|’ w=v

otherwise.
zeV

Analogously, hd,h(e,) = eg, and hence
(dyh)*(e0) = dg(hdgh)dg(e,) = exp(2mif(v,v))dg(hdgh)(e,) = —dg(eq) = —eo

as claimed. 0

5.6.3 Doubly-even codes with prescribed automorphisms

Let G be a permutation group of degree N, where N is a multiple of 8. In the
case where there exists no binary G-invariant self-dual code of length IV (not nec-
essarily doubly-even), a non-trivial scalar in the appropriate Clifford-Weil group
has been constructed in the preceding section. Hence in this section assume that
there exists a G-invariant self-dual binary code of length N. Then by Theorem
3.2.7 there exists a G-invariant doubly-even self-dual binary code of length N if
and only if G lies in the alternating group Ay. In Lemma 5.6.4 a scalar of order 2 in
the Clifford-Weil group of the Type of doubly-even G-invariant self-dual binary
codes is constructed in the case where G does not lie in the alternating group. To
define this Type, assume that every involution of GG acts fixed-point-freely. Let
1 € FY be the all-ones vector, and on the G-module V := (1)*/(1) consider the
G-invariant quadratic form

Wt(v)'

q: V—oPF,y v+ (1) — 5
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The Type T' = T'(V, q) (cf. Section 2.2.5) models the G-invariant self-dual doubly-
even binary codes. Note that the assumption that every involution of G acts fixed-
point-freely guarantees that 7" is well-defined, since it implies that A(¢)(v, aw) = 0
whenever a +a’ = 0, where J is the F,-linear involution of FoG with g/ = ¢! (cf.
Example 2.1.9).

Lemma 5.6.4. Assume that there exists a G-invariant self-dual binary code of length N
and that every involution of G acts fixed-point-freely. Let T' be the Type of doubly-even
G-invariant binary codes as above. If G is not contained in the alternating group Ay then
S(C(T)) is cyclic of order 2. More precisely, for every element g € G with sign(g) = —1,
the element (hy 11 - d{w(l)} . d{w(g) } )3 is a scalar of order 2.

Proof. Let the code C in V be maximally Type T. Then the quotient C*/C'is
nonzero since there exists no self-dual G-invariant doubly-even code of length N,
since G is not contained in Ay (cf. Theorem 3.2.7) . The quotient representation
T/C =T(C*/C,qc) is induced by the G-invariant quadratic form

qc C’L/C — Ty, ¢ +Cw— q(d)

induced by ¢. With the same argument as in the proof of Theorem 5.6.3, it suffices
to show the claim of the lemma for S(C(7'/C')). As seen in the proof of Theorem
4.2.19, the quadratic G-module (C*/C, q¢) is isometric to (U = F3, f), where G N
Ay acts trivially on U and every element g € G with sign(g) = —1 interchanges
the basis vectors (u,u') of U, where f(u) = f(v') = 0 and f(u + «’) = 1. Hence
with respect to the basis (b, by, by, byt ) of Clb, | x € U], generators of C(T/C')
are
Aoy = diag(l,1,1,-1), dy, oy = diag(l,—1,~1,-1),

1000 1 1 1 1
(o010 Y IR B A
Mg 0100 ™MMTal 1 1 1

0001 1 -1 -1 1

One calculates that the scalar subgroup of this matrix group is cyclic of order 2
and that

(hl,l,l . d{w(l)} : d{w(g)})g = diag(_la _17 _17 _1)7

which shows the assertion. O



Chapter 6

The number of self-dual codes

In this chapter a code is a submodule of a finite right A-module V, where A is a
finite semisimple algebra over a finite field F. Thus as in the previous chapters,
a code has by definition not only the classical structure of a vector space over F,
but additional structure is claimed.

It is often additional structure which is of interest in coding theoretic appli-
cations. For instance if Cy is the cyclic group of order N then the submodules
of the natural FCy-module F are precisely the famous cyclic codes of length N
over F, i.e. those codes which are invariant under a cyclic shift of the coordinates.
More generally, for a permutation group G of degree N, the G-invariant codes,
i.e. those codes C' with Cg = C for all g € G, are precisely the submodules of
the natural FG-module V' = FY. Such codes have received some attention from
several authors (cf. [2, 19, 26]).

The G-invariance of the standard scalar product on F¥ is generalized in Defi-
nition 6.1.4 to the notion of equivariant forms on an A-module V (see also Defini-
tion 4.1.1). The dual, or orthogonal, of a code C in V' with respect to an equivariant
form (3 is

Ct=0C+:={veV|pBwc)=0forallce C}.

which is again a submodule of V, due to the equivariance of 3. If C = C* then
C'is called self-dual. The existence of a self-dual code in V' has been investigated
in Chapter 4.1, and some criteria have been given in some special cases where
A = FG is a group algebra in Sections 4.1.1, 4.1.2 (see also [42]). Provided that
there exists at least one self-dual code in V/, this chapter gives the total number
My, ) of self-dual codes in V, for a semisimple finite algebra A. This was moti-
vated by a question of Cary Huffman, who had already given a formula for the
number of self-dual cyclic codes of length IV over a field of coprime characteris-
tic, answering this question in the case where A = FCy is a semisimple group
algebra. In this chapter it is shown for a general semisimple algebra that My, g
basically depends on the composition factors of V, except if F has characteristic
2 and (3 is symmetric. Still, the latter case remains relatively transparent when
A is a group algebra — then, M(y,,) additionally depends on the existence of a
G-invariant isotropic vector v € V, i.e. f(v,v) = 0.

The number My 3 is determined via a Morita equivalence F given in Section
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6.1, which maps (V, 3) onto a module (U, ') over the F-algebra Z(A). In the case
where A = FG is a group algebra and F is a splitting field for G, this corresponds
the Morita equivalence given in [43]. It is shown that the equivalence F preserves
the number of self-dual codes. Since A is semisimple, Z(A) is a ringdirect sum
of fields. This reduces the determination of My, ), in Section 6.2.3, basically to
an enumeration of all self-dual codes in a vector space endowed with a certain
form. This situation is well understood; formulae are given in [41] and [22], for
instance, and are cited in Subsection 6.2.2, for the convenience of the reader.

In Section 6.3 we give a group WAut(V) (cf. Definition 2.3.7) which acts on
the set €(V) of self-dual codes in V, and define some suitable subgroups I' <
WAut (V') which respect certain properties of codes, like the isometry type, or, in
the case where V' is a permutation module, i.e. has a distinct basis, the weight
distribution.

The total number My ) of self-dual codes in V' is then the sum of the orbit
lengths under I' — the mass formula (Theorem 6.3.2) is a reformulation of this
fact, which relates the ratio % to the stabilizer orders of I'-orbits, hence is a
useful tool to prove completeness of a classification of all self-dual codesin V. As
an example, we classify in Section 6.3.2 the self-dual binary [48, 24]-codes with an
automorphism of order 23.

The contents of this chapter have been published in [11].

6.1 Morita theory for codes

Let A be a finite dimensional algebra over the finite field F and let J be an involu-
tion of 4, i.e. a bijective additive map satisfying (ab)” = v’a” and (a”)” = a for all
a,b € A. Morita theory for algebras with involution has been studied in [8] and
[16], in particular with regard to the connections between Hermitian modules (cf.
Definition 6.1.1) over two different algebras A, E/ over the same ring, where the
Hermitian forms over A factorize through ®@g. This section studies Hermitian
modules V' over a semisimple algebra A over a finite field F, with involution, and
its center £ = Z(A), which is fixed under J, hence naturally carries an involution.

This context naturally arises in the study of codes and their automorphisms,
which is resumed in sections 6.2 and 6.3. There the algebra A = FG is a group
algebra, for some subgroup G < Sy of the symmetric group on N points such
that the characteristic of F does not divide the order of G. The module V = FV is
then the associated permutation module over FG. The group algebra FG carries
a natural F-linear involution given by g — ¢!, for g € G. We will investigate the
number of self-dual codes C' < FY which are G-submodules of V, i.e. Cm = C for
all 7 € G. Orthogonality is in this context defined with respect to the standard
scalar product

N
B: FN xFN - F, (v,0) Zvivl’-,
=1

which takes values in F and is G-invariant, i.e. (v,v") = (vg,v'g) for all v,v" € V
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and g € G. Hence (V,[3) € Mod](FFG’l) in the sense of Definition 6.1.4, which in-
troduces the category Modf’g) of e-equivariant A-modules for a general finite

F-algebra. This category is Morita equivalent to the category Modff’a) given in
Definition 6.1.1. In analogy with the construction given in [8, Th. 8.2] we con-
struct a Morita equivalence F : Mod(AA’E) — ModSEE"s) in Theorem 6.1.11, for some
suitable § € {—1,1}.

Definition 6.1.1. (i) Let € € F*. An e-Hermitian form on a right A-module V is a
biadditive mapping ¢ : V x V — A such that

$(v,wa) = d(v,w)a and (v, w) = e($(w,v))’
forallv,w € V and a € A. If ¢ is non-degenerate, i.e. if
rad(¢) :={v eV | ¢(v,w) =0forallw e V} = {0}

then (V, @) is called an e-Hermitian right A-module. Analogously one defines
e-Hermitian left A-modules.

(ii) Let Mod(AA’e) be the category of e-Hermitian right A-modules. The morphisms from
the object (V, ¢) to the object (V', ¢') are the A-module homomorphisms ¢ : V- — V'
satisfying ¢'(Y(v),Y(w)) = ¢(v,w) for all v,w € V. Since any such homomor-
phism is injective, the morphisms are also called monometries.

Remark 6.1.2. If there exists a nonzero e-Hermitian A-module (V,¢) then e’e = 1,
since

(v, w) = ep(w,v)” = e(ep(v,w)”")’ = ee’¢(v, w)
forallv,w e V.
Remark 6.1.3. Write A = ®!_, D"*", where the D, are field extensions of F. Then the
involution J preserves the center Z(A) = @®._, D;, hence restricts to an automorphism of

order 1 or 2 on Z(A). So there are field automorphisms «; € Aut(D;) and a permutation
7 € Sy of order 1 or 2 such that

(z1,...,2)" = (2707 %n(ty)

forall (z,...,2) € Z(A), where always D; = D, and «; and oy are of the same
order. We extend the automorphism «; to an involution
Q; . D;Z»L‘Xni N D?ixni, MZ — (]\41‘01»;)“'7

where M* is the transpose of the matrix M; and «; is applied componentwise. We obtain
an involution

—. A—>A, (Ml,---yMt>'_>((Ma1 )tr’“.’(M:t))tr).

(1) (t

The composition J o~ : A — A is an automorphism of A restricting to the identity on
the center of A. So by the Theorem of Skolem and Noether (see for instance [23, Th. 1.4]),
the composition J o ~ is given by conjugation with a unit u = (uy, ..., u;) € A*. Hence

(My, .., MY = w0y, M = (g (M) (M) ;™)
forall (M, ..., M) € A.
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Definition 6.1.4. An e-equivariant right A-module is a pair (V, 3), where V is a right
A-module and 3 : V x V — F is a non-degenerate e-equivariant form (cf. Section 4.1).
Analogously one defines e-equivariant left A-modules. By Modf’a) denote the category
of e-equivariant right A-modules, with the monometries as morphisms (cf. Definition
6.1.1).

The categories Mod ;") and Mod " are equivalent, which has been shown in
[31], for instance. The proof is as follows. Let Trace,e, : A — F be the reduced
trace, i.e. if A = @D and M = (Mi,...,M;) € A then Trace,g(M) =
St Trp, /r(Trace(M;)). The functor

T - ModgA’e) — Modg’e), (V, ¢) — (V, Tracereg(¢))

establishes an equivalence. Note that Trace,.;(¢) is non-degenerate whenever ¢
has this property, since rad(Trace,.,(¢)) = rad(¢), due to the non-degeneracy of
Traceeg : A X A — F, (a,b) — Trace,e(ab), cf. [6, Proposition 7.41]. In addition,
the functor 7" preserves orthogonality (cf. Definition 6.1.6). This property ensures

that any (V. ¢) € Mod(AA’g) contains as many self-dual codes as T'((V, ¢)).

Remark 6.1.5. Assume that A is semisimple and that (A, J) is simple, i.e. there exists no

nontrivial proper ideal of A which is left invariant under J. Let (V, 3) € Modf"g) such
that there exists no proper orthogonal decomposition of (V, 3) into other c-equivariant
A-modules. Then one of the following holds.

(i) There exists a field extension D of F such that A = D™", and V = DY™" is
the unique simple right A-module. Let 3 : V x V — D be a non-degenerate e-
equivariant form such that (V, () € Mod(AD’E) and 3 = Tracepr(5). Let u be a
Gram Matrix of (3 with respect to some D-basis of V. Then u'* = cu®, where o is
the restriction of J to D, applied componentwise. Let A : A — D™ ™ be the natural
embedding. Due to the equivariance of 3, A(a)*u = ulA(a’)" forall a € A, i.e.
A(a?) = u(Aa))r(ur) .

(ii) There exists an isomorphism (61,62) : A — D™ " @ D™ a s (61(a), d2(a)), for
some field extension D of F, and V' = D" @ D", Let A : A — D?"*®" be the
natural embedding as block diagonal matrices. If u is as above then u = (_5. *,"),
ie. again, u™ = eu® and A(a’) = u™(A(a)*)™ (u™) ! forall a € A.

Definition 6.1.6. Let M, M’ be categories of e-Hermitian or equivariant modules over
the algebras Axq and Any, respectively. A functor FF @ M — M', (V.B) —
(Fo(V), F1(B)) is said to preserve orthogonality if

FO(CLV@) — FO(C')L’Fl(ﬂ)
for every submodule C < V.

The main result of this section is the following.
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Theorem 6.1.7. Let § € {—1,1} and assume that every simple self-dual A-module car-
ries a non-degenerate de’-Hermitian form. Then there is an orthogonality-preserving
equivalence between the categories Modf’g) and Mod(EE’&), where E = Z(A) is the center
of A, with the restriction of J to E as involution.

Note that according to Remark 4.1.22, for every semisimple algebra A there
exists a decomposition A = eA @ (1 — e)A with some central idempotent e =
e’ such that the algebras eA and (1 — e)A satisfy the assumption of Theorem
6.1.11 on the simple modules. This decomposition is not necessarily proper (for
instance in characteristic 2), nor is it necessarily unique, since a simple self-dual
A-module may carry both e- and —e-equivariant forms, even in odd characteristic
(cf. Corollary 4.1.24).

The equivalence stated in Theorem 6.1.7 will be constructed as a composition

Mod®*) I Mod ™ L Mod (P,
where T is as above. The functor F is defined in Theorems 6.1.10 and 6.1.11,
respectively. The latter Theorem also states that F is an equivalence.

Remark 6.1.8. Let (W, 1)) be a dc’-Hermitian (resp. de’-equivariant) left A-module.
Consider W as a right module W over E = Z(A) via we := e’w forw € Wande € E.
Then (W, 1) is also an d’-Hermitian (resp. de’-equivariant) right E-module, where
the involution of E is the restriction of J.

The functor F transforms A-valued forms into E-valued forms. For its con-
struction we need the following definition.

Definition 6.1.9. Let A = @®!_, D!"*", where the D; are field extensions of F. Define
Traceap: A— E, (M,..., M) — (Trace(Mi)I,,, ..., Trace(M,;)1,,).

Theorem 6.1.10. Let § € {1, —1} and let (W, ) be a 6’ -Hermitian left A-module such
that

Y (w1, wo)wz = Tracea, p (¢ (ws, wa))w: (%)

for all wy,wy, wy € W. Consider W as a right module over E = Z(A) as in Remark
6.1.8. Define a functor

Fi = Fly,) : Mod(AA’s) — 1\/Iod(EE’6)7 (V) —= (V@4 AWE, ¢ @ 1),

where ¢ @ 1 = ((v @ w,v' @ w') — Tracea/s(d(V', v)(w,w'))). Then Fy preserves
orthogonality.

Proof. To show that ¢®1) is well-defined one has to check that it is A-balanced,
i.e. that

Tracea, p(¢(v'a’, va)(w, w')) = Trace g (4(v', v) Y (aw, a'w"))
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forall v,v" € V, w,w’ € W and a € A. Since ¢ and 1) are Hermitian, the left hand
side of the above equation equals

Tracea/p(d(v'd', v)ay(w,w')) = e Trace4/p(¢(v, v'd’) ¢ (aw, w')
= e Trace,5(a"” (v, v (aw, w")).

Due to the elementary properties of the Trace function, the arguments of the latter
term may be permuted by a cyclic shift, i.e. the latter equals

e Trace/p(e”¢(v', v)Yp(aw, w')a'”) = Tracea g (¢(v', v)de’ (a1 (w', aw))”)
= 0’ Tracea/p(o(v', v)de (aw, 'w'"))
= Tracea,p(o(v', v)¥(aw, d'w"))

as claimed. It remains to show that Fy preserves orthogonality, i.e. that
FW(C>L,¢®¢ — FW(CL,¢)

for all submodules C' < V, where (V, ¢) € Mod{*”). The inclusion Fy (C+¢) C
Fy (C)52%¥ follows immediately from the definition of the form ¢ ® 1. For the
inclusion Fyy (C)2%%% C Fyy (CH%), let S8 v; @ w; € Fyy (C)-*2Y. Then

k

k
TraceA/E(Z o(c, v;)Y(w;, w')) = Tracea, g (¢(c, Z v (wi, w'"))) =0
i=1

i=1

forall c € C'and w' € W. Now C'is a right A-module and ¢ is Hermitian, hence
the latter equation implies that

k

Tracea,s(¢(c, Z v (wi, w'))a) =0

i=1

forall c € C,w’ € W and a € A. This implies that always ¢(c, Y5, vab(w;, w')) =
0, due to the non-degeneracy of Traces/r : A x A — E, (x,y) — Tracea g(zy).
Hence always S, vah(w;, w') € C-¢ and hence

k
Z Uﬂ/}(wi, w’) X ’UJ// < FW(CJ_’(ZS)

i=1
for all w” € W. Choosing w', w” € W with Tracea,g(¢(w', w")) = 1, this yields

k k
v (wi, w') @ w' = Zvi ® (w;, whw" = Zvi ® Tracea, g (¢ (w", w'))w;

i=1 =1

WE

V; Qw,; € Fw(cj"(b).

I
-. I
Il >~ =
—



6.1. MORITA THEORY FOR CODES 103

The fact that Fy preserves orthogonality implies that ¢ ® v is non-degenerate
since
rad(¢ ® 1) = F (V) = Fi (V1) = Fi(rad(¢)) = {0}.

O

Note that condition (xx) in Theorem 6.1.10 is natural and that, in the situation
of Theorem 6.1.11, there always exists a form ¢ satisfying this condition: Write
A = @l DI""*" and let m be a permutation on ¢ points, o; € Aut(D;) and u =
(u1,...,u) € A* with M/ = ui(Mﬁ(’;))“ui_l, for M; € D}**™ (cf. Remark 6.1.3),
and (u1,...,u;) = de((ugp))™s ..., ug,)"), according to Remark 6.1.5. On W =

)

@!_, DI"*! there exists a non-degenerate §c/-Hermitian form

s

YW XW — A, (@Ezldh @Ezlfi) = @gz1di(fa(i¢))trui_l-
We show that 1) satisfies condition (x*), i.e. that

U(dis friy)g9i = Tracea;p(V (i, frii)))di

for all d;,g; € D"*' < W and f.u € D:(”;)")Xl < W (note that n,; = n; and

Dy(sy = Di). The element (/%) € D}*™ and u;'g; € D}**', hence
(f:(ii)>tru;1gi = TraCG(U’;lgi(fT?(ii))tr) — Trace(gi(f:(ii))tru;l),
where Trace : D["*"™ — D, denotes the usual trace of a matrix. Hence

(dis frt)gi = d(f75) i g: = di Trace(gi( )" ) = Traceays(g:(f7f) " )i
= TraC@A/E(ID(gz‘, fw(i)))diﬂ

which shows that 1 satisfies condition (xx).

The functor F is now obtained by a particular choice of W in Theorem 6.1.10.

Theorem 6.1.11. Let & be a system of representatives for the isomorphism classes of
simple left A-modules, and let W := @ gcsS. Assume that there exists some § € {1, —1}
such that every self-dual simple A-module carries a non-degenerate e’ -Hermitian form.
Fix a non-degenerate 6=’ -Hermitian form 1 on W such that (W, ) satisfies condition
(xx) from Theorem 6.1.10. Then

F = Foyg : Mod{"? — Mod%”

is an equivalence of categories which preserves orthogonality.

Proof. Let W be the set JV with a right A-module structure given by wxa :=
a’w for a € Aand w € W. The form

~

VWP X WP — A (w,w) — dep(w,w)
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is then non-degenerate and Je-Hermitian, as one easily verifies. Note that W is
also a left F-module (since WV is a left A-module). Hence we can define a functor

H: ModSEE"S) — Modff’g), (U,8) — (U@ WP [ 1;),

where

-~

B P(u®wu @w') =, w)(w,w).

To prove that 8 ® @ is well-defined, one has to check that it is E-balanced, i.e.
that

~ ~

B e ue)p(w,w') = B, u)(ew, ew')

for all u,u’ € U, w,w' € W and e, e’ € E. This can be proven by calculations
analogous to those in the proof of Theorem 6.1.10, exploiting the fact that £ =
Z(A). In what follows it is shown that H and F are inverse functors.

(i) First,let (V,¢) € Mod(AA’E) and show that H(F((V,¢))) and (V, ¢) are isomet-
ric. Clearly, V @4 W ® W = A as right A-modules via o : (v ®@ w @ W)
vip(w, w). To see that a is an isometry, we calculate that

(620) @ h(v @ w © W, v @ W' @ @')
=YW @u, v®w)w(w w')
= Tracea/g(¢(v, v )Y (', w))de(w, 1)
= detp(Tracea g (o(v, v') (v, w
= dep(Tracea/g(V(P(v, v )w', w
— Sep (s, w)d(o, v )
= dep(w, w)g(v, V') (w', )
= de (v, w)”, v'P(
= dep(vie(w, ), v'p(w', "))
(w, @), vy (w',
(w, w),v’i(w’,w’
R w W), (v

)i, )
)i, ')

4

¢(vp
(w
¢(a(v
forall v@we@w), (Veouw uw)elUWe WP

(ii) Now let (U, () € Modg) and show that F(H((U, 3))) and (U, 3) are isomet-
ric. The natural isomorphism

Y UQeWPIaW —-U, (u®w)— uTraceA/E(@Z(u?,w))
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is an isometry since

(B) @ Y(u @b @ w,u' @0 & ')
— Tracea/p(8 @ P(u' @ @', u @ ) (w, w'))
= Traceap(B(u, u') (' 0)y (w, w'))
= (B(u, u)TraceA/E(gg( 0’ 7,/1(w' w)w))
= B(u,u’) Trace s, p (0t (W', W) (w, w'"))
= 0ef(u,u') Trace s, (¢ (¢ (w w)w, w'))
= 0ef(u,u') Trace g (¢(Trace g (¢ (w, w))w', w'))
= 0ef(u,u') Trace 4/ p (¢ (w, w)) Trace 4/ p(Y(0', w'"))
= 6ef(uTrace g (¥ (w, w))”),u Traces s (Y (@', w'))
= 0ef(deu Trace /(Y (W0, w)), u' Trace g (Y (W', w")))
= B(uTrace p(¢(w, w)), v Traces, p(Y (', w'")))
=F(v(u®@w @ w),y(u' @ @w'))

forall u@we@w), (Weuw uw)elU WP W.
U

Example 6.1.12. Let A = F3Qs, where Qg = (z,y | z* = 1, 2° = y*, xyz = y) is
the quaternion group. The group algebra A carries an Fs-linear involution J given by
g+ gt for g € G. Let S be the absolutely irreducible A-module of dimension 2, on
which x acts as ( % §) and y acts as (', —}). The module S carries a non-degenerate
symplectic Qg-invariant form (i.e. a —1-equivariant form with respect to J) with Gram
matrix B == (% {). Since Ends(S) = Fs, there exists no symmetric non-degenerate

G-invariant form on S (cf. Corollary 4.1.24).

(i) To determine the number of self-dual codes in the —1-equivariant module

v =1t s L@ (] T )

let ep,,es be the central primitive idempotents belonging to the simple modules
F3 and S, respectively. Consider the first summand of V' as a module for the al-
gebra esA, and the second summand as a module for e, A = Fs. The algebras
er, A, esA have only one irreducible module and hence satisfy the assumption in
Theorem 6.1.11, with 6 = —1 for ep, A and § = 1 for esA. The Morita equiva-
lence from Theorem 6.1.11 maps the first summand to the 1-equivariant Fs-module
12, (F3, (1)), which contains 8 self-dual codes (cf. Lemma 6.2.6), and the second
summand is mapped to itself. The second summand obviously contains 4 self-dual
codes. Hence the number of self-dual codes in (V, ) equals 8 - 4 = 32.

(ii) The module S & S carries a 1-equivariant form with Gram matrix ( % 5). An

application of Theorem 6.1.11 to esA, with § = —1 shows that the number of self-
dual codes equals the number of self-dual codes in the Fs-module (F3, (% {)), which
is 4.
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6.2 Enumeration of self-dual codes

This section gives explicit formulae for the number of self-dual codes in an e-
equivariant A-module, using the Morita equivalence in Theorem 6.1.11.

There exists a central idempotent e = ¢’ such the algebras eA and (1 —e¢) A sat-
isfy the assumption in Theorem 6.1.11 on the simple modules. Every equivariant
A-module (V, ¢) is an orthogonal sum eV L (1 — e¢)V, and every self-dual code
C' C V is the orthogonal sum of a self-dual code eC' in eV and a self-dual code
(1—e)C'in (1—e)V. The number of self-dual codes in V' is hence the product of the
number of self-dual codes in eV with the number of self-dual codes in (1 —¢e)V.

Hence throughout this section assume that A satisfies the assumption in The-
orem 6.1.11, and let § € {—1, 1} such that every simple self-dual A-module carries
a non-degenerate dc/-equivariant form. The Morita equivalence F from Theorem
6.1.11 establishes a bijection between the self-dual codes in (V, ¢) and the self-dual
codes in its Morita equivalent module F((V, ¢)) € Mod%E’d), where £ = Z(A) is a
direct sum of finite fields.

Except when ¢ is even and J is the identity, F((V, ¢)) will be determined up
to isometry by the composition factors of V' in Subsection 6.2.1. For every self-
dual code C' < V, the image F(C) < F(V) is a direct sum of self-dual codes
over finite fields, or over a ring L & L, where L is a finite field. Formulae for the
number of these kinds of codes have been given in [41], e.g. and are reproduced
in Subsection 6.2.2. As a corollary, the number of self-dual codes in (V, ¢) is given
in Subsection 6.2.3.

To fix some notation, let & denote a system of representatives for the isomor-
phism classes of simple right A-modules. For S € &, let Dg := End4(5) and let
ng denote the multiplicity of the simple module S'in V.

6.2.1 Determination of the Morita equivalent module F((V, ¢))

The module V' decomposes into an orthogonal sum, which is respected by the
functor F.

Remark 6.2.1. For S € &, denote by Vs the S-homogeneous component of V. Then
there is an orthogonal decomposition

V =lses, s~s+ Vs Lirrace, rer- (Ve © V). (*)

In particular, the restriction ¢y of ¢ to a summand U in (x) is non-degenerate and
equivariant, and if C' <V is a self-dual code then C' N\ U is a self-dual code in U with
respect to ¢y

Lemma 6.2.3 gives the images under F of the orthogonal summands of V. To
this aim the following result proven in [34] is useful.

Lemma 6.2.2. Let es € Z(A) be the central primitive idempotent belonging to the simple
module S € &. Then e} = eg«. In particular S is self-dual if and only if e, = es.



6.2. ENUMERATION OF SELF-DUAL CODES 107

Lemma 6.2.3. Let S € G, and let eg be the central primitive idempotent belonging to S.
Let n be an integer, and by F denote the Morita equivalence from Theorem 6.1.11.

(i) Assume that S = S*. There is a natural isomorphism Dg = esZ(A), of which the
image is invariant under J according to Lemma 6.2.2. Thus J induces an involution
adg on Dg, which will be further investigated in Lemma 6.2.4.

~

Assume that S™ carries a non-degenerate e-equivariant form 3. Then F((S™, 3))
((Dg)™, "), where ' is 6-equivariant with respect to adg.

If (S™, B) contains a self-dual code then so does ((Dgs)™, 3'), since F preserves or-
thogonality. In odd characteristic, this determines the isometry type of ((Dgs)™, 3'),
as follows:

(a) If 6 = 1then ((Dg)", ) %J_igzl H(Dg) %’J_i%:l (Ds)?, (94)) is an orthogonal
sum of hyperbolic planes H(Dyg) (cf. [37, Ch.1, Cor. 3.10, Th.6.4 and Ch.7, Th.
6.31).

(b) If 6 = —1 then (D)™, 3') =LE, ((Dg)%, (% 8)).

Analogously, if F has characteristic 2 and adg is not the identity then ((Dgs)", ')
is an orthogonal sum of hyperbolic planes.

If F has characteristic 2 and adg is the identity then either (( s)™, (') is an orthog-

onal sum of hyperbolzc planes as above, or isometric to J_f 1 H(DS) 1L W, where
W= (F%(579)).

(ii) Assume that S 2% S*, and consider again the natural isomorphism Dg = esZ(A).
Then D{ = Dg- according to Lemma 6.2.2 and hence the sum Dg® Dg- is invariant
under J. Clearly with respect to any non-degenerate e-equivariant form 3, the
module (S & S*)" contains a self-dual code. The Morita equivalent module

F((S®s)",B8) = ((Ds)" ® (Ds)", 8) =1i, H(Ds)

is an orthogonal sum of hyperbolic planes, where [3' is equivariant with respect to
the restriction of J to Dg & Dg~. Here (Dg)" @ (Dg+)" is a (Dg @ Dg«)-module in
the natural way. Hence the self-dual codes in this module correspond bijectively to
the subspaces of (Dg)™.

Lemma 6.2.4. For a simple self-dual A-module S consider the natural embeddings
F — Dg — Z(A). According to Lemma 6.2.3(i) the involution J on A restricts to an
involution on Dg. This restriction is either the identity on Dg or a field automorphism of
order 2. Clearly the latter holds if J is non-trivial on F.

Assume that {7 = f forall f € F. Then the following are equivalent.

(i) d’ =dforalld € Dy,

(ii) if L O F is a field extension with L = Dg then every composition factor of the right
A ®p L-module S ®p L is self-dual.
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Proof. Let A, := A ®p L and let J) be the L-linear extension of J to A,
defined by (a ® 1)’ :=a’ ® l foralla € A and | € L, which is well-defined since
F is fixed by J. In particular J is trivial on Dg C A if and only if J¥) is trivial on
Dg @y L. Let e € Dg be the central primitive idempotent belonging to .S, and let
e =e; + ...+ e, be a decomposition into central primitive idempotents e, of A,
according to a decomposition of S ®r L into simple modules over Dg ®p L. The
e; generate Dg ®r L as a vector space over L and hence J (L) is trivial on Dg @p L
if and only if it fixes all of the ¢;, i.e. if and only if every composition factor e; A,
of S ®r L satisfies e;A;, = e/ Ap, = (e;Ar)* (see Lemma 6.2.2). O

6.2.2 Enumeration of self-dual codes over finite fields
The formulae in this section are given in [41].

Lemma 6.2.5. (see Ex. 10.4 of [41]) Let F = F, be a finite field, where ¢ = r?, and let
"ix o’ € Gal(F,/F,) be the field automorphism of order 2. Let [3 be a non-degenerate
form on F™ which is equivariant with respect to ". If (F", 3) contains a self-dual code
then the number of self-dual codes in F™ equals

n

Tu(n,q) = [J(a> = (=1)) (

i=1 7

(¢ — 1) (6.3)

'Ew\s

1

Lemma 6.2.6. (see Ex. 11.3 of [41]) Let F = F, be a finite field, where q is odd, and let
3 be a non-degenerate symmetric bilinear form on F". If (F", 3) contains a self-dual code
then the number of self-dual codes in F" equals

n_g
T3i(n,a) =[] @@ +1). (6.4)

i=0
Lemma 6.2.7. (see Ex. 8.1 of [41]) Let I = F, be a finite field, where q is odd, and
let 3 be a non-degenerate symplectic bilinear form on F”, i.e. f(v,w) = —B(w,v) for
all v,w € F". Then (F", 3) contains a self-dual code, and the number of self-dual codes

equals
-1

i) =] - D@ -1 (6.5)
=0
Lemma 6.2.8. (see Ex. 11.3 of [41]) Let F = F, be a finite field, where q is even, and let

B be a non-degenerate symmetric bilinear form on F" such that (F", [3) %’Li%:l H(IF) is
an orthogonal sum of hyperbolic planes, i.e. isotropic. Then the number of self-dual codes
in ™ equals

B

TH(n,q) =@ +1). (6.6)

'zw\:

=1

The following lemma is an immediate corollary of Lemma 6.2.8.
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Lemma 6.2.9. Let F = F, be a finite field, where q is even. Let 3 be a non-degenerate
symmetric bilinear form on F" such that (F",[3) %J_f;ll H(F) L W, where W =
(F2,(§9)). Then the number of self-dual codes in F" equals

T, (n,q) :="T5(n—2,q)

Moreover, we need a formula for the number of subspaces of a vector space,
cf. Lemma 6.2.3 (ii).

Lemma 6.2.10. Let U be a vector space over the finite field F = F,, n := dim(U). Then
the number of subspaces of U equals

_k— .
= 12
H n—k—i _ 1

n—
k=0 =0 q

6.2.3 Enumeration of self-dual codes in (V, (3)

As before, let F = F, be a finite field with ¢ elements and let A be a finite semisim-
ple algebra over F. Let & be a system of representatives for the isomorphism
classes of simple right A-modules, and for S € & let dg := dimp(End4(S5)). By
ng denote the multiplicity of S'in V. Recall that we assume the existence of some
§ € {—1,1} such that every simple self-dual A-module carries a je’-equivariant
form. The involution J restricts to an involution of the Morita equivalent algebra
E = Z(A) = ®ses Enda(S) (cf. Lemma 6.2.4), and also to a field automorphism
of F (cf. Remark 6.1.3), where F is naturally embedded into Z(A) by f — f - 1.
The restriction to F is either the identity or a field automorphism of order 2 — we
distinguish these two cases to enumerate the self-dual codes in (V, ) € Modf’g),
which in what follows is assumed to contain at least one such code. As corollaries
from the previous Subsections we obtain the following formulae.

Corollary 6.2.11. If ¢ = r* and f7 = f7 for all f € F, then the number of self-dual
codes in (V, 3) equals

Myg =[] Tulns,g®) 11 E(nr, ¢").

€6, S8+ (T T*}C&, T2T*

Corollary 6.2.12. Assume that q is odd and f’ = f for all f € F. This implies ¢ €
{1,—1}. Let

& ={Sec6|S=S ande’ =cforalle € Ends(S)}.

Then the number of self-dual codes in (V, 3) equals

M(V/g H Toé Nnsr, q H Tu(ns,qu> H E(TLT,da).

See SEG—G’, 5228+ (T, T*}C&, T2T*
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In the remaining case where ¢ is even and (3 is symmetric (wWhich implies that
e = 1), it is in general not possible to determine F((V, 3)) only from the compo-
sition factors of V, cf. Lemma 6.2.3(i). Yet this is possible if A = FG' is a group
algebra over the finite group G. It is well-known that if the field L, of even char-
acteristic, is a splitting field for the finite group G of odd order then the trivial
module is the only self-dual irreducible LG-module. An application of Lemma
6.2.4 then yields that the restriction of J to Z(A) = E = @ges End4(5) is non-
trivial on every of these summands, except for the summand belonging to the
trivial module. To investigate the number of self-dual codes in this summand un-
der § one has to distinguish whether (V, 3) is symplectic, i.e. whether 3(v,v) =0
for all v € V. Note that this only depends on the values of 3 on the summands of
V isomorphic to the trivial module, by the following remark.

Remark 6.2.13. Let (V. 3) be an equivariant FG-module, where F has characteristic 2
and the associated involution restricts to the identity on F. If the trivial module does not
occur in 'V then (3 is symplectic.

Proof. Themap @) : V — F, v — (v, v)is additive since 3 is symmetric and [F
has characteristic 2. Moreover, Q(v) = Q(vg) forallv € V and all g € G. Assume
that there exists some v € V with §(v,v) = 1. Then @ is surjective, and hence
there exists an epimorphism of V' onto the trivial G-module, which contradicts
the assumptions. Hence Q(V') = {0}, i.e. 3 is symplectic. O

As an application of Lemma 6.2.3 one obtains

Corollary 6.2.14. Assume that A = F,G is a group algebra over the finite group G,
where q is even and G has odd order, and that f” = f forall f € F. By 1 denote the
trivial FG-module. The number of self-dual codes in (V, [3) equals

Myg ="5n1,q)  J[  Tulns ™) II 20w,
Se®, 12525+ {T,T*}C&, T2T*

where o = + if (V. 3) is symplectic, and o = — otherwise.

6.2.4 Example: Binary extended cyclic codes

LetF = [F, and A = FCy, where Cy is the cyclic group of order N, for some odd
integer N. A binary extended cyclic code, as defined in [28], is an A-submodule
of

V=Ap1=F",

where 1 is the trivial A-module, i.e. Cy acts on V' by cyclic shifts of the first N
coordinates and fixes the (V + 1)st coordinate. The standard scalar product 3 on
V satisfies §(v,v") = [(vg,v'g) for all v,v" € V and g € Cy, hence is equivariant
with respect to the F-linear involution on FCy given by g — ¢~ *, for g € Cy.

The situation where a self-dual binary extended cyclic code exists has been
characterized in [28] as follows.
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Theorem 6.2.15. There exists a self-dual binary extended cyclic code C <V =FCy®1
if and only if —1 ¢ (2) < (Z/pZ)* for all prime divisors p of N, i.e. the order of 2 mod p
is odd.

Remark 6.2.16. If the order of 2 mod p is odd then 2 is a square mod p and hence p =5 +1
by quadratic reciprocity. If p =g —1 then —1 is not a square and hence —1 ¢ (2) <
(Z/pZ)*. However, if p =g 1 then the order of 2 may be even or odd mod p. For p = 41
the order of 2 is 20, for p = 73 the order is 9.

The structure of the module V' = FC is easy to describe and the number of
self-dual codes in V' is particularly easy to determine, cf. Example 6.2.17. The
criterion for the existence of a self-dual binary extended cyclic code in Example
6.2.17 has been given in [27, Th. 3.3] in a more general context.

Example 6.2.17. There exists a self-dual binary extended cyclic code C <V =FCy @1
if and only if the trivial module is the only self-dual irreducible FCy-module. In this case
there are -

Mg =2"7"
such codes, where & is a system of representatives for the isomorphism classes of simple
right FCy-modules.

Proof. Assume that there exists a self-dual code C' < V. Then according to
[42], Corollary 2.4, every self-dual simple FCy-module occurs in a composition
series of V with even multiplicity. On the other hand, every simple FC'y-module
occurs in V with multiplicity 1, except for the trivial module, which occurs in V'
with multiplicity 2. Hence

V =1lirrace, 21 (TeT*)L1L1. ()

Conversely, if the trivial module is the only self-dual irreducible FC'y-module
then clearly V' decomposes as in (¥%). Let T'® T™ be a summand in (%) and let e be
the central primitive idempotent belonging to 7. Then e’ is the central primitive
idempotent belonging to 7™ according to Remark 6.2.2, hence annihilates 7. Thus

ﬁ(t’ t/) = ﬁ(te’ t/> = ﬁ(ta tleJ) = B(t 0) =0

forall ¢,t' € T,i.e. T C T*. Choose a subset 7 C & — {1} such that for every
non-trivial irreducible A-module T, either T or T* is contained in 7. Then

C:=(T|TeT)+(Q1,..,1)

is a self-dual code in V. An application of Corollary 6.2.14 then yields

Myp="T,22 [ =@27)=2%",
{T,T*}QG, TZ1

where the value of dy = dim(End4 (7)) is irrelevant since =(1,297) counts the
number of subspaces of a one-dimensional vector space over a field of size 2¢7. [J
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Example 6.2.18. (i) Binary extended cyclic codes of length 8. The order of 2 in the
unit group F% of F7 equals 3. More precisely, the subgroup of I generated by 2 has
index 2 and the cosets are F5 = {1,2,4} U {3,5,6}. This yields central primitive
idempotents e, f € FoC7,

e=14+a+a*+a* and f=1+a>+a’+a",

where a is a generator of Cy. These satisfy ef = 0 and e/ = f. Hence V =
FoCr @ Fy = FS contains exactly the two self-dual codes

C=(Ve,(1,...,1)) and D= (Vf(1,...,1))

with generator matrices

11111111 11111111
11010010 00101110
Me:=1 11101000/ ™ M= 1 4010110
01110100 11001010

These codes are permutation equivalent to the extended Hamming code of length 8.

(i) Let p bea prime with p =5 —1. Then there exist exactly 22 self-dual binary extended
cyclic codes of length p + 1, where t := [y : (2)] is the index of the subgroup
generated by 2 in the unit group I, of If,,.

(iii) Self-dual binary codes over Fo(C3 C3). The wreath product
G:=C3105 = ((1,2,3), (4,5,6), (7,8,9), (1,4,7)(2,5,8)(3,6,9))

acts on 9 points, hence yields a permutation module V of dimension 9 over A =
FoG. Let V :=V @V @& 1@ 1, then V decomposes as

V=T LT; L1%

where T, and Tg are irreducible modules of dimension 2 and 6 over Fy, both self-dual
with an endomorphism ring isomorphic to F,. Hence the total number of self-dual
codes in 'V equals

My =7, (4,2) - T,(2,4)* =3* =27,

6.2.5 Example: Doubly-even binary codes

Recall the notion of doubly-even binary codes in FY, in Section 2.2.2. Assume
that N is a multiple of 8, i.e. there exists a self-dual doubly-even binary code of
length N. In this section we view a code C' as a module over the group algebra
FyG, where G is a subgroup of the permutation group

P(C)={reSy|Cn=C}.
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For a given permutation group G < Sy, we ask for the number of self-dual
doubly-even codes with G C P(C), i.e. for the doubly-even self-dual codes in the
FyG-module V := FY. We confine ourselves to the case where the order of G is
odd, i.e. the group algebra [F, G is semisimple, in order to apply the results of Sec-
tion 6.1. Hence in what follows assume that the order of G is odd. Theorem 6.2.21
gives the number of G-invariant doubly-even self-dual codes, provided that there
exists at least one such code. (Recall that according to Theorem 3.2, such a code
exists if and only if NV is a multiple of 8 and there exists any self-dual code in FY".)

The group algebra F,G carries an Fy-linear involution given by g — ¢~ *, for
g € G, and the standard scalar product 3 is equivariant with respect to this invo-
lution. Recall that the doubly-even codes in FY’ correspond to the totally isotropic

subspaces of the quadratic space (V, q), where

V= ((1,..., 1))/, .., 1)) = {ve FY | wt(v)iseven}/((1,...,1)),

naturally is a G-module, for every permutation group G of degree N. The
quadratic form is

¢V =Ty v+{((1,...,1) —

with polar form
(@,7) > q(@ +7) — q(3) — q(@) = B(@,7),

where /3 is the non-degenerate equivariant bilinear form on V naturally induced
by (3 via

B:VXV—=Fy (w4 {(1,..., 1)) 0 +{(1,...,1))) — B(v,0).

As seen in Section 3.2, a self-dual code C' < V is doubly-even if and only if ¢
vanishes on C/((1,...,1)) < V,ie. C/{(1,...,1))is maximally isotropic.

Again, let & be a system of representatives for the isomorphism classes of
simple right FoG-modules. Consider the decomposition

V =lses, s=s+ Vs Lirrycs, rzr Vrer,

where VX is the X-homogeneous component of V for X € 6, and VT@T* = VT @
Vr«. Then every maximally isotropic submodule C' < V is of the form

C =1lsce, 525 (C N VS) Lirraces, T (C N vTeaT*) ; (%)

and 1 every summand C N Vs or CnN VT@T is a max1mally isotropic submodule
of VS or VT@T* respectively, since q ] is linear on C. Hence the total number of

maximally isotropic submodules of V is the product of the number of maximally
isotropic submodules in the summands of ().
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Theorem 6.2.19. Let U < V be a submodule such that the trivial module 1 does not
occur in U. Then every self-dual code in U is doubly-even.

Proof. Let C' = C* < U be a self-dual code. Then q is linear on C, ie. q €
Homp,(C, 1) with kernel

ker(q) = {c € C'| wt(c) =4 0} =: Ch,

the doubly-even subcode of C. The image of ¢ is isomorphic to a factor module

of C. Since 1 does not occur in C, this enforces that ¢ vanishes on C,ie. C = C,
is doubly-even. O

Now consider the quadratic space (Vi,q1) = (F%,q1), with non- degenerate
polar form 51, the restriction of ﬁ to V1 Clearly V' contains a doubly-even self-

dual code if and only if (Vl, ¢1) has Witt defect 0. The total number of maximally
isotropic subspaces is then well-known and given in [41], for instance.

Theorem 6.2.20. (see Ex. 11.3 of [41]) Let n := dim(V;). If V contains a doubly-even
self-dual code then the number of maximally isotropic subspaces of (V1,q1) equals

w(n) = [ +1).

=0

Theorem 6.2.19 and 6.2.20 now enable us to determine the number of doubly-
even self-dual codes in V' from the composition factors of V. Again, for a simple
module X € &, denote by nx the multiplicity of X in V.

Theorem 6.2.21. If (V, 3) contains a doubly-even self-dual code then the total number
of doubly-even self-dual codes in V equals

M(I‘I/,B) = w(nl - 2) H T’u(n57 qu) H E(nTv da)’
SeG, 1£5=5* {T,\T*}C6&, TZT*

6.3 The mass formula
For a right A-module V carrying an equivariant form (3 (cf. Definition 6.1.4), let
CV):={C<V|C=C'={veV|B,c)=0forallce C}}.

One may be interested in an overview of the isometry types or weight dis-
tributions which occur here, rather than in the set €(V) itself. Hence in what
follows, we define a finite group Aut(V) acting on €(V') such that properties like
the isometry type of C' € €(V') or the weight distribution are left invariant under
the operation of suitable subgroups of Aut(V').
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6.3.1 Weak isometries of V and the mass formula

Definition 6.3.1. A bijective additive map v : V' — V is called a weak isometry of
Vif B(v,v") = B(v), (V")) and P(va) = P(v)a® for some automorphism o of A
and all v,v" € V. The weak isometries form a group WAut(V'), with the composition
as multiplication, which contains as a subgroup Aut(V') := End (V') N WAut(V'), the
isometries of V.

Clearly WAut(V') acts on €(V'). Now consider the action of some subgroup
I' < WAut(V). By [C] denote the orbit containing C'. If

[(C) ={y el [4(C) = C}
is the stabilizer of C'in I' then [C] has length [I" : I'(C)] and we obtain
Theorem 6.3.2. (Mass formula)

My 1
N 2 N

[creewv)

The mass formula gives a method of classifying the self-dual codes in V' with
respect to a property which is an invariant of the action of I on €(V') — one may
restrict to orbit representatives and weight them by the reciprocal order of their
automorphism group, until the value of the left hand side of Theorem 6.3.2 has
been reached. For instance, the group Aut(V') has the isometry type of C' € €(V)
as an invariant and hence Equation (6.3.2) can be used to classify the self-dual
codes in V' up to isometry.

6.3.2 Example: Permutation modules

Let A = FG be a semisimple group algebra over the finite group G and let V be a
permutation module for G, i.e. V = F" has a distinguished basis, with respect to
which G acts as permutations and which we assume to be an orthonormal basis.
The existence of a distinguished basis enables us to define the weight enumerator
ofacodeC <V,

The weight enumerator contains information on C' which is of interest in coding
theory, like the minimum weight of C. It is invariant under permutations of the
coordinates of C, that is, cwe(Cnm) = cwe(C) for all C' € €(V) and 7 € Sy. In
general, the permutation equivalent code C'r is not contained in €(V), i.e. Sy
does not act on €(V).

If V is faithful then the action of G on V induces an embedding j : G — S;.
Let

N := Ng, (G) < WAut(V)
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be the normalizer of j(G) in Sy. Every n € 9 naturally induces a bijection v —
vn of V. This bijection is a weak automorphism of V' since if «,, is the F-linear
automorphism of A = FG given by g — «,(g) = 'gn then

vgn = vy~ gn = vna,(g)

forallv € V and g € G. Hence 9 acts on €(V'), yielding a mass formula

My 1 ,
W2 o ()
[ClmCe(V)

where [C]y is the orbit of 9 containing C' and 91(C) is the stabilizer of C' under
N. Clearly the weight enumerator is an invariant of this operation. Another
invariant is the conjugacy class of P(C) in Sy, since P(Cn) = n~'P(C)n for every
n € M. In general there is no larger subgroup U with M C U C Sj such that U
acts on €(V'), since every element which acts on €(V') normalizes the Bravais group
B(V) := NeeeqyP(C), cf. Theorem 6.3.3.

Theorem 6.3.3. If B(V') = G then M is the largest subgroup of Sy, which acts on (V).

Proof. Let m € S such that 7 acts on €(V'). Then 7 € 9 since
G = B(V) = Nceey P(C) = 7 H(Neeey P(C))r = 7' B(V)7 = 7~ 'Gn.

O

Example 6.3.4. Self-dual binary codes of length 48 with an automorphism of or-
der 23. The extended quadratic residue code qus < F3® is, up to permutation equivalence,
the only self-dual [48,24, 12]-code, i.e. the only extremal binary self-dual code of length
48, cf. for instance [36]. The code qus has an automorphism o € Syg of order 23 which
acts on the coordinates of qis with four orbits. Hence qug is a submodule of

V — F2023 @F2023 @ 1 EB ]_

over the semisimple algebra A = F3Cys. The algebra A has three irreducible modules,
which are the trivial module 1, a module T' of dimension 11 and its dual T* 2 T with
an endomorphism ring of dimension dy = 11. Hence V has a decomposition V = 1* L
(T @ T*)? and the total number of self-dual codes in 'V equals

My =7,(4,2) 2(2,2'") =3- (2" +3) = 6153.

Considering normalizer equivalence, i.e. the orbits of Ng, (o) on the set €(V') of all
self-dual codes in V, there are only 14 equivalence classes of codes. Representatives
Ch,...,C1y for these classes can easily be computed in MAGMA ([3]) using the mass
formula (%), which then is

6153 1 1 1 1 1 1

16552 o2 Ta0ma T2 o3 T 1oz T a6 TP Tiess
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The below-mentioned tabular lists the stabilizer orders N(C;) of the codes C1,...,Ciy
and gives the number of words of weight 24 in each code, which is helpful to distinguish
codes which are not permutation equivalent.

i IMN(C;)| d(C) Number of words of weight 24
1 92 2 3754060
2 92 2 3765560
3 92 2 3749000
4 92 2 3759120
5) 2024 2 2704156
6 23276 2 3829960
7 23276 2 3829960
8 1012 4 11092764
9 46 8 7691340
10 46 8 7691340
11 46 8 7701000
12 11638 8 7787940
13 11638 8 7787940
14 46 12 7681680

Explicit calculation in MAGMA shows that the codes Cs and C7 are permutation
equivalent, and the codes Cy and Ci3 are permutation equivalent but Cy and Cyq are
not. Hence there are, up to permutation equivalence, 12 self-dual codes in V.
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Chapter 7

Examples

For a finite field F, in this chapter two different scalar products on FV are con-
sidered to define the dual of a linear code. The Euclidean scalar product is given

by

N
ﬂl :FN X IFN _>F7 ((Ula-"7UN)7(w17"'7wN)) = Zviwia
=1

and if F has r* elements then the Hermitian scalar product is given by

N
BT:JFN XFN_)IF? ((U17"'aUN)’(wla"'awN)) HZUZ’U):
=1

In what follows, fix an element v € {1,r}. A vector space automorphism ¢ €
Aut(F") is called monomial if its matrix with respect to the standard basis & =
(e1,...,en) of FV is monomial, i.e. each column and each row has exactly one
nonzero entry. A monomial automorphism is called transitive if its natural action
ontheset {F*-¢; | i € {1,..., N}} is transitive, and v-isometric if 3" (¢o(v), p(w)) =
B (v, w) for all v, w € FV. The dual of a linear code C' < FV is

Ct=Cct={veF"|p(v,c) =0forallcc C},

and C is called self-dual if C' = C*+. The group M"(FY) formed by the isometric
monomial automorphisms of F acts naturally on the set

¢ ={C<FN|C=Ct)

of all self-dual codes in F¥, preserving for instance the minimum weight and
other properties of the code which are of interest in coding theory. The stabilizer
of a code C under this action is called the monomial automorphism group MAut(C').

In this chapter we choose some finite group G and ask for all transitive rep-
resentations A : G — MY (F") such that A(G) is contained in the automorphism
group of a self-dual code. Note that every such representation is induced from
some linear character ;@ of some subgroup H of G, with pu(h)u(h)” = 1 for all
h € H (cf. Remark 7.1.1). The theory developed in the previous chapters is then

119
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applied to investigate the existence of a self-dual A(G)-invariant code in FV. It
follows for instance from Chapter 3 that, if F has odd characteristic, every au-
tomorphism of a self-dual code has determinant 1, i.e. if there exists a self-dual
A(G)-invariant code then A(G) must necessarily be contained in the special or-
thogonal group

SL(FY) = {X € GL(FY) | det(X) = 1},

Moreover, since A(G) acts on F as isometries, the pair (FV, 3”) is an equivariant
module over the group algebra FG in the sense of Section 4.1, where the involu-
tion on FG is given by

J, : FG — F@G, Zagg — Zaggfl.

geG geG

Hence if F has even characteristic or if v = r then the theory developed in Section
4.1 enables us to decide from a composition series of the G-module F" whether
there exists a self-dual A(G)-invariant code in F. If there exists such a code then
the methods developed in Chapter 2.2 can be applied to determine ¢” completely,
or up to an appropriate notion of equivalence. This is performed for self-dual
binary As-invariant codes.

7.1 As-invariant self-dual codes

This section gives a classification of all transitive isometric monomial representa-
tions A of any degree N of the alternating group A; such that A(A;) is contained
in the automorphism group of a self-dual code in F, where F is a finite field of
characteristic 2,3 or 5. A self-orthogonal code whose automorphism group con-
tains A(Aj;) is rightly called Az-invariant, since A(As) =2 A; whenever A is non-
trivial, due to the simplicity of A;. Moreover, if C' is a maximally self-orthogonal
As-invariant code in FV then the quotient C/C is semisimple and does not de-
pend on the choice of C'. These quotients are given for every monomial rep-
resentation of As;. In terms of Witt groups, these quotients are the anisotropic
representatives of the A(As)-module FV in the Witt group W(FAs, J,, 1), which
is therefore discussed in Section 7.1.1.

7.1.1 The Witt group of FA;

Letv € {1,7} and let A : A; — F" be a transitive v-isometric monomial represen-
tation. Let the involution .J, be as above and consider F" as an FA;-module via
v-a=vA(a), forv € F¥N and a € A. Then

ﬁy(v - @, ’LU) - 51/(”’ w - ajy)v ﬁy(vv w) = ﬁy(wav)JV

for all v,w € FY and all a € FAj;, and hence the pair (FV, 3") is 1-equivariant in
the sense of Definition 4.1.1. In this section we determine the structure of the Witt
group W(FA;, J,, 1) and establish a uniform notation to describe the Witt Type of
(FY, 8”) in the subsequent section.



7.1. A5-INVARIANT SELF-DUAL CODES 121

W(FAs;, J,1) in characteristic 2

Over a field F = Fy, for an odd integer f, the group A5 has three simple modules,
namely the trivial module and two 4-dimensional modules S and 7. The A;-
module structure on S is given by the homomorphism

0010 1000
1000 0100

A; — End(S5), (1,2,3) — 0100 | (3,4,5) — 1111 |
0 001 0010

and the As-module structure on 7' is given by

1111 0100
1 010 1100

A; — End(T), (1,2,3) — 0001l (3,4,5) — L o011
0011 0110

All three of these modules carry a non-degenerate G-invariant form with re-
spect to the F-linear involution J of FG given by g — ¢!, for ¢ € G. For the
non-trivial modules S and T, this is seen as follows. Let

Xs : FG — F, a+ Traceg(a),

where Trace denotes the usual trace of a matrix, and define xr analogously. The
dual module S* of S is again a simple A;-module of dimension 4, hence either
isomorphic to S orto T, and xs(g) = xs-(g ') forall g € G. Since x5((1,2,3)) =1
and x7((1,2,3)7') = 0, it follows that S is self-dual and, analogously, that T
is self-dual. Hence both S and T" carry a non-degenerate G-invariant form, by
Remark 4.1.22.

The module S is absolutely irreducible, while over a field Fy; with even f, the
module T' = T} @& T splits into a direct sum of two modules of dimension 2. The
As-module structure on 7} is given by

(17273>'_>(g 4-02)7 (37475)'_><<12 8)7

where ( is a primitive third root of unity in IF. The module 75 is the algebraic con-
jugate of T; under the Galois automorphism F — F, z — 22, i.e. the A;-module
structure on T is obtained by replacing ¢ with (? above. Let g := (1,2, 3)(3,4,5),
then

wnlo) = Trace(( & G D=6 wnlo ) =eel (G )=

and hence xr,(9) = x1,(97") = ¢* Hence the same argument as above shows that
both 77 and 75 are self-dual and hence, with respect to J, carry non-degenerate G-
invariant forms. Now it follows from Corollary 4.1.16 that up to isometry, every
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simple Fyr As-module carries exactly one non-degenerate G-invariant form with
respect to J, whatever the parity of f. Hence if f is odd then

W(FWAFN ‘]7 1) = <[(]F7BF)]> X <[(S7 ﬁS)D X <[(T7 ﬁT)D = X?:ICQ’

and if f is even then

W(Far As, J,1) 2 ([(1, B1)]) x {[(S, Bs)]) x ([(T1, Br)]) x ([(T2, Br)]) = X3y Co.

Now consider the Hermitian case, i.e. assume that f = 2r is even and the
involution is given by

Jr 1 Fyr A — Fyr As, Zagg — agrgfl.

geG

The same argument as above shows that with respect to J,, the simple module S
carries exactly one non-degenerate G-invariant form, up to isometry, and that 7}
and T carry a non-degenerate G-invariant form if and only if

¢(=xn(9) =xn(g ") =",

i.e. if and only if f is a multiple of 4. In this case the Witt group
W(Fas As, Ji, 1) = ([(1, 81)]) x ([(S, Bs)]) %3z ([(Th, Br)] = X3 Co,

and if f is even but no multiple of 4 then the Witt group
W(FasAs, Jr, 1) = ([(1, B1)]) % ([(S, Bs)]) = %71 Co.

W(FAs, J, 1) in characteristic 3

Over a finite field F = I3/, for an odd integer f, the group algebra FA; has three
simple modules, namely the trivial module, a module U of dimension 4 and a
module V' of dimension 6. Since all simple modules have different dimension
and since the dual of a simple module is again a simple module of the same
dimension, all simple modules are self-dual, with respect to either of the two
involutions J, J,. The module U is absolutely irreducible, and the FA;-module
structure on U is given by the homomorphism

0 =100 1000
1 -1 00 0001
0 -1 0 1 0010

To see that with respect to either of the involutions J, J,, the module U carries a
non-degenerate equivariant form, one calculates that

-1 1
Y@ = 17
1 1

—_ = = =

1
1
—1
1
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where the power v € {1,r} is taken componentwise and the sum is over the
pairwise different matrices ¢(g)¢(g)". By definition the non-degenerate form on
U given by this matrix is equivariant.

Over a field F3; with even f, the module V splits into two modules V3, V5 of
dimension 3. The FAs;-module structure on V; is given by the homomorphism

110 ¢ 2
As - End(Vy), (1,2,3)— | 0 1 1 |, (3,45)— | 1 ¢% ¢°% ],
001 1 ¢ ¢

where ( is a root of unity of order 8. The module V; is the algebraic conjugate of
Vi by the Galois automorphism f — f3, i.e. the FA;-module structure on V5 is
obtained by replacing ¢ with ¢* above. Let g := (1, 2,3)(4,5,6), then x1,(g) = * =
xwi (g71), and hence xv,(9) = ¢ = x1,(¢~'). Hence with respect to the involution
J, both V; and V5 are self-dual. Since these modules have odd dimension, one
concludes with Remark 4.1.22 that with respect to J, both V; and V; carry a non-
degenerate 1-equivariant form. This implies that with respect to J, the module V'
carries a non-degenerate 1-equivariant form, too, as follows. Since V is self-dual,
it carries a symplectic or a symmetric non-degenerate G-invariant form. Assume
that this form is symplectic. This gives rise to a symplectic G-invariant bilinear
form ¢y onV ®p L = V; @ V,, where L is a field extension of degree 2 over . The
epimorphism
ay Vi@V — Homp(Vi, L), v (v — ¥(v,01))

has kernel V; since V; is self-dual. Hence 7 restricts to a non-degenerate G-
invariant symplectic bilinear form V; x Vi —, (v1,v]) — %¥(v1,v}). But this is
a contradiction since V; has odd dimension and hence there exists no such form.
Hence V must carry a non-degenerate G-invariant symmetric bilinear form.

Now assume that f = 2r is even, and consider the involution J, on 57 A5. The
module V4 is self-dual with respect to J, if and only if ¢/ = ¢. Since ¢/» = (*', this
holds if and only if r is even, i.e. if and only if f is a multiple of 4. Hence, again
since V1, V, have odd dimension, with respect to J,, these modules carry a non-

degenerate 1-equivariant form if and only if f is a multiple of 4. In conclusion, if
f is odd then the Witt group

W(Ess As, 1) 2 (LB * (U5 xaeqrar {((VioB))
= 04 X 04 Xoe{l,e} (02 X Cg),
where the element € € F* — (IF*)%. For even f, the Witt group
W(Fsr Az, J,1) = Xoeg ([(LoB)]) x ((U,0B0)]) x xi{[(Vi, oBv)])
= XJE{LE} (02 X CQ X 02 X 02)
In the Hermitian case, the Witt group
W(EysAs, i) 2 (1 80]) x ((U.B)]) x X2y (Vi )]} = 2, C
if f is a multiple of 4, and otherwise

W(Fss As, i, 1) 2 ([(1, 81)]) < ([(U, Bv)]) = Ca x Cs.
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W(FAs, J,1) in characteristic 5

Over a finite field F = Fj;, the group algebra FA; has three simple modules,
namely the trivial module, a module X of dimension 3 and a module Y of di-
mension 5. As in the case of characteristic 3, one concludes that all these mod-
ules are self-dual. Hence with respect to either of the involutions J, J, of FA;,
these modules carry a non-degenerate 1-equivariant form or a non-degenerate
-1-equivariant form, by Remark 4.1.22. But the latter does not hold since the
simple modules all have odd dimension. Hence all the simple modules carry a
non-degenerate 1-equivariant form. Now it follows from Corollary 4.1.20 that in
the Euclidean case,

W(Fs545,J,1) = Xoepag ([(1,aB1)]) x ([(X,00x)]) x (Y, 006y)])
Xoe{l,e} (02 X Cg X 02),

12

and in the Hermitian case

W(Fs55 A5, J, 1) = ([(1, B1)]) > ([(X, Bx)]) x ([(Y, By)]) = Ty x Gy x Ca.

W(F A5, J,1) in coprime characteristic

Let F be a finite field whose characteristic does not divide the order of As, i.e.
char(F) ¢ {2,3,5}. The ordinary character table of Aj is

Size |1 15 20 12 12
Order|1 2 3 5 5
i |1 1 1 1 1
X2 |3 =1 0 by 08
Xs |3 -1 0 b b
Yva |4 0 1 -1 -1
s |5 1 —1 0 0

where b; = 145 and b3 = 1=¥5. Let Z; be the simple CA;-module belonging
to the character y;. It is well-known that Z;, Z, and Z5 are realizable over the
rationals and hence over every finite field. The modules Z,, Z; are realizable over
every finite field which has a root of 2 — 5. If F has no root of 2 — 5 then there is
another irreducible F A;-module Z; of dimension 6, which splits into a direct sum
Zs@L = (Zy®L)x (Z3®L) over a field extension L of degree 2 over F. Clearly Z; is
irreducible over F whenever it is realizable over F, since none of the characters y;
is the sum of other characters. Since Z;, Z, and Z; are the only simple modules of
dimension 1,4 and 5, respectively, these modules are self-dual. This implies that
with respect to either of the involutions J, J,, the FA;-modules Z; and Z5 carry a
non-degenerate 1-equivariant form (cf. Remark 4.1.22). The same calculations as
in the case of characteristic 3 show that Z, carries a non-degenerate 1-equivariant
form, too, with respect to either of the involutions. Since every element of A; is
conjugate to its inverse, with respect to the involution J, the modules Z, and Z;
are self-dual, and with respect to the involution J, these modules are self-dual if
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and only if bJ" = bs. If Zy, Z; are self-dual then they carry an 1-equivariant form,
since they have odd dimension, again by Remark 4.1.22. Now it follows with the
same argument as in characteristic 3 that with respect to .J, the module Z; carries
a non-degenerate 1-equivariant form, too. In conclusion, if % — 5 has a root in
F =TF,; and p/ =, 1 then

W(prA5v J, 1) = Xoe{l,e} X?:l <[(Zi7‘762¢)]> = Xoe{l,e} ><?:1 027
where ¢ € ', — (F,)*. If 2> — 5 has a root in ),y and p/ =4 —1 then
W(F,r As, J,1) = x7_1{[(Z, B2,)]) = x_1Ca.
If 22 — 5 has no root in F,; and p/ =, 1 then

W(FprAs, J,1) = Xoepiep Xieqrasey ((Zi08z,)])

Xoe{l,e} Xie{1,4,5,6} Cs,

I

and if 2 — 5 has no root in F; and p/ =; —1 then

Xie{1,4,5} ([(Zi, Bz)]) Xoe{l,e} ([(Ze,0825)])
Xie{1,4,5} Cy Xoe{l,e} Co

W(F s As, J, 1)

I

In the Hermitian case, the Witt group
W(Fyr As, Jr, 1) = Xier ([(Zi, B2,)]) = XierCo,

where I = {1,2,3,4,5} if bJ" = b5, and I = {1,4,5} otherwise.

7.1.2 Classification of all transitive monomial representations of
As

The following Remark gives an outline of the characterization of all transitive
monomial representations of As.

Remark 7.1.1. Let G be a finite group and let A : G — Aut(F") be a transitive mono-
mial representation. Let V. = FN be the corresponding FG-module. Then there exist a
subgroup H of G and a linear character i : H — T* such that V is isomorphic to the
FG-module Wf induced from the F H-module W, = F, where h - w = p(h)w, for h € H
and w € W,. Moreover, A(G) is isometric with respect to the form (* if and only if
p(h)u(h)” =1forall h € H.

Proof. Let & = (ey,...,en) be the standard basis of FV and let H :=
Staba(e)(F*e1). Define a linear character i : H — F* by e;h = eyu(h). In what
follows, bases of V and Wf are constructed such that there exists a G-module
isomorphism which maps basis vectors to basis vectors. To this aim choose ele-
ments g1, ...,9y € G with e;g; = e;. Then G =U Hyg; is a disjoint union of right
cosets. For every element z € G and every ¢ there exists a uniquely determined
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element h,; € H and an integer 7,(i) € {1,..., N} such that g;x = hy 9, ()
Choose an element w € Wf such that wH C F*w, and with respect to the basis
B = (bgy,...,bgn) of WY, G acts as monomial permutations, via

114
bg; - x = bgm(i)ﬂ(hi,m)-

Then the linear map V' — Wf , e19; — bg, is an isomorphism of G-modules. If
A(G) is isometric then

1= B(ex, e1) = Blerh, exh) = Blerp(h), exp(h)) = p(h)u(h)”

for all h € H. Conversely, if always p(h)u(h)” = 1 then

5(61‘1’, €i95) = 5(319#17, elgix) = ﬁ(elgﬂm(i)ﬂ<hi,x>a elgwm(i)ﬂ<hi,x)>
= p(hig)pt(hiz)” B(€19r,(5)s €197, i) = Bl€r,(i)s €xa(iy) = Bles, €3)

foralli e {1,..., N} and all z € G, and hence A(G) is isometric. O

Table 7.1 gives all linear characters of subgroups H of A; and the composition
factors of the induced modules. By the above Remark this is a classification of
all transitive isometric monomial representations A of As. It follows immediately
from Corollary 4.1.20 that in characteristic 2 as well as in Hermitian geometry, the
group A(Aj5) is contained in the automorphism group of a self-dual linear code in
FV if and only if all self-dual composition factors occur with even multiplicity in
the A(As)-module V' = FY. In Euclidean geometry, if F has odd characteristic, it is
in general not possible to decide only from the composition factors of V' whether
there exists a self-dual code C' in V with A(A45) € Aut(C). In this case we use
the following algorithm to compute a maximally self-orthogonal A(Aj;)-invariant
code, with A = FAs.

Remark 7.1.2. (cf. Lemma 4.1.8, Theorem 4.1.9) For a finite F-algebra A with involu-
tion J, the following algorithm computes a maximally self-orthogonal submodule of an
equivariant A-module (V, 3).

1. Compute the set S of all minimal submodules of V.

2. If there exists some element S € S with S C S+ then go to (1) with (S*/S, Bs),
where
Bs: ST/SxSH/S —TF, (§+8,s"+8)— p(s,s").

Otherwise return V.

Note that the quotient (C*+/C, 8¢) is anisotropic and hence semisimple, and
independent from the choice of C, up to isometry. Clearly V' contains a self-dual
code if and only if this quotient is zero. Tables 7.2, 7.3, 7.4, 7.5, 7.6 lists the quo-
tients C/C for the transitive monomial FAs;-modules, using the notation from
Section 7.1.1. This yields the following enumeration of all transitive monomial
representations A of A; such that A(Aj;) is contained in the automorphism group
of a self-dual code.
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Theorem 7.1.3. Let A : A5 — ]F;\; be a transitive isometric monomial representation.
Let H := Staba(c)(F;,e1), and define a linear character yu - H — F*, h — p(h), where
erth = eyu(h). There exists a self-dual code C in TN with A(As) C Aut(C) if and only
if one of the following holds.

1. H={1l}andp =2,
H = (5, i is the trivial character and p = 2,

H = Oy, s the sign character, and p = 3 and f is even, orp =5,

N

H = Cs, pis trivial and p = 2 in Euclidean geometry, or p = 5 in Hermitian
geometry,

H = Cs, pis trivial and p = 2,
H = S5, pis trivial and p = 3 in Hermitian geometry,

H = Dy, pis trivial and p = 2 and f =, 2 in Hermitian geometry,

o N & WO

H = Dy, p is the sign character and p = 5, or the geometry is Hermitian and
p=3and [ =, 2.
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(1°0°0) - - - (0T‘T‘T) (00‘T—‘1°g) (€ 57°7)
(T‘0°0) - - - (0‘T‘r‘n) (00‘T—‘T‘9) (77
(0'te) | (101 (1'0‘0‘D) (1°0°1) (r'o‘on) (0'0'c'T'9) (r'r'r'y "V
(0'z'0) | (0°1°0) (0‘T‘10) - - (1‘T'0‘z—‘9) (TT°1—"1)
(T'o'n) | (1'0°2) (T°00‘a) (0‘1'2) (0‘r‘1'2) (r‘1'0‘2'9) (r'r'r'n e
(o€ | (1°7°) (T1°1°0) - - (001 ‘2= ‘01 (T'1—"1)
(1'r'e) | (20'e) (c'0°0'2) (r't'e) (r'r'r'e) (0‘0‘1'z'01) (r'er‘n £
(t'e'n) | (@1°1) (G1T11) - - (0‘0°0‘T—"g1) (T7T=1-°1)
(r'e'n) | (&1°1) (C11'm) - - (0‘0‘0‘T—"‘S1) (1—‘1—-‘1'1)
(t'e'n) | (&1°1) (CT1'm) - - (0‘0‘0‘T—‘61) (1—11—1)
(¢'1'7) | (e0'¢) (€0‘0'e) (1'2'¢) (1'z'c'e) (0'0‘0'e‘s1) (r'r'r'n (ORS00,

- - (z1'0‘1) - (1122) | (O+DD+D00%1) | (DO

- - (01°1) - (T212) | (D+9'9+H00%r) | (9989 T)

- - (z0°1°1) - (12°1°2) | (D+HDO+D00%) | (DT

- - (21°0°1) - (T7°22) | (+HD+D0%1) | (7285 9DT)
(T2’ | (112 (r'1'1'%) (0°z'p) (0z‘c'D) (z‘2‘0°0 ‘1) (r'r'i'r'y §9)
(z‘e‘1) - - - (Te‘e'p) (0°0‘1—‘0°02) (8857)
(ze‘1) - - - (1e‘e'y) (0°0‘T—"‘0‘02) ()
(T'7'¢) | (612 (¢1'1%) (c'z'v) (c‘'c'c'y) (0°0'z‘0°0g) (111 )
(c9c) | (¥¢o) (R - - (0‘0‘0‘z—‘0¢) (1—‘1)
€v'e) | (1) (G1°1%) (c7°9) (c779) (0‘0‘0°z 08) (‘D) £9)
(¢or'e) | (6'¢'9) (6°c‘e‘9) (7'8°c1) | (¥'8'8°¢1) (00°0°0°09) (1) I
AUxD]| a1 |[QaaTD | (1) | ($Er'ir‘T)

/Sg | ppof FEH | uaAs [ Uy | ppo [/t | uaAl [ ity

I9A0 s1030e] uonisoduwo)) JI9)oeIRYD pPadnpul 1)0ered reaur] | dnoidqng

SIMPOW-4}/ TeTWOUOW dAT}ISUERT) JO s1030eJ uoryisodwo)) 1/ d[qeL,
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Table 7.2: Witt Type of transitive monomial As;-modules, Euclidean geometry,
characteristic 2

Witt Type of induced module,

Subgroup | Linear character Fuclidean geometry
Fyf, f even Fyr, f odd

1 (1) 0 0
Co (1,1) 0 0
(1,-1) - -
Cs (1,1,1) 0 0
5 [Lareqrm,sy (M, Bm)],  f=40 B

(1.6.G) S, Bs], f=a2
2 [Lareqrm,sy (M, Bm)],  f =40 B

(17 C37C3) [57 ﬁS]/ f =, 2
Cs (1,1,1,1,1) 0 0
(1,C5,C52,C53,C54) [J_MG{T27S} (M, Bum)] -
(17<52’C§7C57C§)) [J—MG{T1,S} (M, Bum)] -
(1,82, G5, G5, 63) [Lare(r sy (M, Bur)] -
(1?C§7C§7C527C5) [J—ME{TQ,S} (MvBM)] -

Co x Co (]-7 L1, 1) [J—]ME{I,S} (Ma B]V[)] [J—ME{I,S} (Ma BM)}
(1,-1,1,-1) - -
(1,1,-1,-1) - -
(1,-1,-1,1) - -

S3 ((L L, 1)) [Lvein 15y (M, Bur)] [Larerr,sy (M, Bar)]
1,—-1,1 - -
Dho (17 L1, 1) [J-ie{l,Q} (T% ﬁT@)] [(Ta /BT)}
(1,-1,1,1) - -
Ay (1,1,1,1) [Lareq,sy (M, Bar)] [Lareqr,sy (M, Bar)]
(1,1,¢3,63) [Lareqr,mmy (M, Bar)] -
(1,1,03,(3) [Lareqr,rmy (M, Bar)] -
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Table 7.4: Witt Type of transitive monomial As-modules, Euclidean geometry,
characteristic 5

. Witt Type of induced module,
Subgroup | Linear character Euclic}lle};an geometry over Fys
1 (1) [Lareqryy (M, Bu)
Cy (1,1) [Lareqr,yy (M, Bur))
(1,-1) 0
[Lareqryy (M, Bur) Locnig (X,008x)], f=21
Cs (LLD) [Lareqyy (M, Bur)l, f=20
(1,¢5,83) [Lareqxy (M, Bar)]
(17C§7C3) [J‘MG{LX} (M? ﬁM)]
Cs (1,1,1,1,1) [Lareqiyy (M, Bar)]
(1,65, C3, G, G5) -
(17C527<§7<57C§> -
(1,62, 65, ¢2,¢2) -
(17C54’C§)7C527C5> [( ) _( )
X, Bx) Loeqrey YioBy), [f=21
Cy x Cy (1, 1,1,1) [(X, ﬁx)], F=50
(1,-1,1,-1) [Laeqix,yy (M, Bar)
(1717_17_1) [J—Me{l,X,Y} (M’BM)]
(17—17—171) [J—Me{l,X,Y} (MvﬁM)]
S3 (17 L, 1) [J-MG{XY} (M> BM)]
(17—171) [J-MG{LX} (MvﬁM)]
DlO (1a17171> [J—MEI,Y} (M7 6M)]
(1,-1,1,1) 0
Ay (1,1,1,1) (X, Bx)]
(1,1,¢3,¢3) (Y, By)]
(17 LCI’??QS) [(Y7 63’)]
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Table 7.5: Witt Type of transitive monomial As;-modules, Hermitian geometry,
characteristic 2

. Witt Type of induced module,
Subgroup | Linear character Hermitiar? geometry over Fyr, f even

1 (1) 0
Co (1,1) 0

(17_1) _
Cs (1, 1, 1) 0

(17 3 ??) [(5755)]

(17C§1€3) [(Sa ﬁS)]

Cs (1,1,1,1 1) 0
(1,65, 62, €2, ¢3) [Lameimy,sy (M, Bur)]
(1,C§,C§,C5,C§’) [Lare(ri.sy (M, Bur)]
(1,68, G5, 6) [Lareqri.sy (M, Bu)]
(1,¢3,¢3,¢3,¢) [Lve(m,sy (M, Bu)]

Cg X 02 (1,1,1,1) [J—Me{l,S} (M,BM)]
(1,-1,1,-1) -
(1,1,—1,—1) -
(1,-1,-1,1) -
[Lareqr .5y (M, Bum)], f=40
% 11,1) s s, =12
(17 , ) B

Dig (1,1,1,1) aregr g (M, ) ;zig
(1,-1,1,1) -

Ay (1,1,1,1) [J[_(Me{lﬁ} (M, Bar)]

f=42

(1.1.6,6) [—]—Me{l[I(“l T} ;}M Bum)l, f=40

2 f=42

(11,6, 6) [Lavreqrmmy (M, Bum)], f=40
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Table 7.6: Witt Type of transitive monomial A;-modules, Hermitian geometry,
characteristic 3 and 5

Witt Type of induced module,

Subgroup | Linear character Hermitian geometry
Fs2 Fso
1 1) ey Al L= ey (M)
¢ ay | e QAL 20 e 02,6
(1,-1) 0 0
¢y | e %ff Pl T2 ey O, 600
(17<37C§) [LME{LX} (MHBM)]
(17 <§7 <3) [J_ (]& 3 )] 7 i [LME{LX} (M, /BM)]
1,Va, s MM )|r =4
1’ C Y C b C bl C J— { 2} M M —_
(1’<§7<217C2,<§) [J-j\\ji{i ‘;1} (M ﬂM)] -
(1’<§’C57<§’<52) [J—Me{l i} ( ﬁM)] -
(1?<§7C§7C527<5) [J—ME{I Va} ( ﬁM)] -
Ca x O (1717171) [J—Me{l U} ( ’ﬂM)] [(X,,Bx)}
(17 _17 1’ _1) [J_MG{I[‘? Va} ;]]\4 BM)]’ ; ;i (2) [J—ME{LX,Y} (]\4’7 /BM)]
(1,1,-1,—1) [J—Me{l[\(ﬁ V) S]M Ban)l, ;22 [Larerrxyy (M, Bar)]
(1,—-1,-1,1) [J_Me{l[\(/1 Vol ;}JW , Bar)l, ; ii (2) [iMe{l,X,Y} (M, Bar)]
S (1,1,1) 0 [Lareqx,yy (M, Bur)]
-ty | e SEAOLEZH g (0, 6)
Do (1,1,1,1) (U, Bu)] [Lareqr,yy (M, Bum)]
. 0, f =4 2
CUED ] yrepann (48], F=40 0
Ay (1,1,1, 13 [Laeqroy (M, Bar)] [[((X7 ﬂx))]}
(1717C37C3) - YvﬁY
(LLC%aC?)) - [(YaﬂY)]

7.2 (G-invariant binary codes for some simple groups

G

For a Simple group G e {A5, GLg(FQ), PGL3(F3>, PGLQ(]Fg), PSLQ(F11)7 M117 M12}/
this section classifies all maximally isotropic A(G)-invariant binary codes of
length N < 200, where A : G — Sy is a group homomorphism whose image
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A(G) is transitive. Note that then A is injective, for every simple group G and ev-
ery N > 1, due to the simplicity of G. Hence the A(G)-invariant codes considered
in this section will sometimes shortly be called G-invariant codes.

Section 7.2.1 cites a construction in [5] of a self-orthogonal G-invariant code
D(A,G) such that C € D(A,G)* whenever C is a self-orthogonal G-invariant
code. In some cases dimg,(D(A, G)*/C), which does not depend on the chosen
maximally self-orthogonal code C, turns out to be quite small, and hence there
exist few maximally self-orthogonal G-invariant binary codes.

Section 7.2.2 describes how information on D(A, G)* can be read off a priori
from the table of marks of G. In Section 7.2.3, the number of A(G)-invariant codes
is given, along with some further information, for instance on the code D(G, A)
and the normalizer M = Ng, (A(G)), which acts on the set of all A(G)-invariant
maximally self-orthogonal codes.

7.2.1 A G-invariant code generated by involutions

Let G be a transitive permutation group of degree N. An interesting construction
of a G-invariant self-orthogonal code in FY is given in [5], as follows (see also
Section 2.2.5). For an involution ¢ € G let v* € F) be the vector with v! = 1 if
(i) = 1, and v} = 0 otherwise. Then (v, :(v)) = (v,v") for all v € F3'. This yields
the following easy but important remark.

Remark 7.2.1. Let C(G,N) := (v* | « € G is an involution). Then C(G,N) C C+
for every self-orthogonal G-invariant code in FY. In particular C(G, N) is contained
in every self-dual G-invariant code in FY, provided that such a code exists. The code
C(G, N) is G-invariant, since v'g = v99 ' € C(G, N) for every involution ¢ and all
g €G.

Example 7.2.2. Let A : GL3(Fy) — Sy4 be the transitive permutation representation
Since [Ng(H) : H] = 2, there exists a self-dual G-invariant code D < F}!, namely
some repetition code of minimum weight 2 (cf. Theorem 4.1.30). Hence every self-dual
G-invariant code contains C' := C(G, 14). In particular C'is self-orthogonal.

To construct C, note that all involutions are conjugate in G and hence as a G-module,
C'is generated by v*, where . € G is an arbitrary involution. Every involution in G has
two fixed points, hence wt(v*) = 2. Assume that v = 1, and for every i € {1,...,14}
choose an element g; € G with g;(1) = i. The elements v'g; = v9"% " € C all have
weight 2 and hence two different elements v'g;, v'g; have disjoint support. Since always
(v'g;); = 1, this implies

{v'g; |ie{l,...,14}} =C = D.
Hence by Remark 7.2.1, the code C' = D is the only self-dual G-invariant code in F3*.

Examples like the following are also in [5].
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Example 7.2.3. Let A be the permutation representation of degree 104 of the simple
group PGL3(Fs) = GL3(F3)/Z(GL3(IF3)), with H := Stabapary ) = S x Cy, where
S € Syl;(PGL3(F3)). Let G := A(PGL3(F3)), then G is contained in the alternating
group Ajos. Again, since [Ng(H) : H] = 2, there exists some G-invariant self-dual
repetition code D < F3%, of minimum weight 2. Every involution in G has 8 fixed points
and hence C' := C(G, 104) is a self-orthogonal doubly-even code. Explicit calculations
show that C' is the doubly-even subcode of D, hence has codimension 1 in D. The two
neighbors E, F of D which intersect D in its doubly-even subcode are doubly-even, since
104 is a multiple of 8. Since G < Aoy, the codes E and F are G-invariant, by Theorem
3.2.7. According to Remark 7.2.1, C, D and E are the only self-dual G-invariant codes
in F3™.

7.2.2 Information from tables of marks

The table of marks of a finite group G' contains information on the transitive per-
mutation representations A of GG. This section shows how this information can be
used to determine a priori some properties of self-dual A(G)-invariant codes.

Remark 7.2.4. For a subgroup H of G, let Ay : G — Sig.my, 9 — (Hx — Hxg) be
the natural permutation representation. Every transitive permutation representation is
of the form Ay for some subgroup H (cf. Remark 7.1.1).

By €4 (G) denote the set of all self-dual Ay (G)-invariant codes in FIH. For every
automorphism o of G, there exists a bijection € (G) — €o ) (G) which maps every code
to a permutation equivalent code.

Definition 7.2.5. For two subgroups H,U of G let my  be the number of fixed points
of Ay(U). This number is called the mark of U with respect to H. Clearly if T =
{t1,...,tn} is a set of left coset representatives of H in G then

{ge G|UCgHg '}
|H|

mpy ={i €{l,...,N}| U Ct;Ht;'}| =

In particular mpy y = 0 whenever |H| < |U|, and my g = [No(H) : H|. Let Hy, ..., H;
be representatives for the conjugacy classes of subgroups of G, such that |H,| < ... <
|H,|. Then the lower diagonal matrix M with M;; = mpy, g, is called the table of marks
of G.

Remark 7.2.6. Let . € G be an involution and let H be a subgroup of G, of index N.
The number of fixed points of Ay (v) equals the mark mpy ,y. Hence the mimimum weight
of the binary code C(Ap(G), N) generated by the involutions of G (cf. Remark 7.2.1) is
at most my (. In particular every Ay (G)-invariant self-dual code in ¥ has minimum
weight at most my (. A Ap(G)-invariant self-dual code in FY exists for instance if
mpy, g 1s even (cf. Theorem 4.1.30). Note that my (, as every mark mpy y, is always a
multiple of my g = [Ng(H) : H].
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7.2.3 The G-invariant codes

Let G € {A57 GL3(]F2), PGLg(F3)7 PGLQ(Fg), PSLQ(]Fll), M117 Mlg} and let A be a
transitive permutation representation of G' of degree N < 200. Tables 7.7 to 7.13
list the number of maximally self-orthogonal G-invariant codes in F}’, along with
some further information described below.

The set € of all maximally self-orthogonal G-invariant codes has been deter-
mined as follows. The algorithm in Remark 7.1.2 has been implemented to find
one such code. A system of representatives for the normalizer equivalence classes
of codes has then be computed using the neighbor search algorithm in Remark
2.3.10. Recall that two codes C, D are called normalizer equivalent if there exists
some element n € M = Ng, (A(G)) with Cnp = D (cf. Remark 2.3.11). The total
number of G-invariant codes is then

]
¢ = il
€] Z 191N Aut(C)|’
[Cle€/~m
where [C] denotes the equivalence class of an element C' € €. The entries in Tables
7.7 to 7.13 are as follows.

1. Staba(g)(1): The subgroup H of G such that the action of G on the H-cosets
induces the permutation representation A. If required, additional informa-
tion is given to distinguish H from other subgroups, up to automorphisms
of G (cf. Remark 7.2.4).

2. 9 The isomorphism type of 91, which is Ng(H)/H x Auty(G) (cf. Section
23.1).

3. D(G,A): The length, dimension and minimum weight of the code
C(A(G),[G : H]) N C(A(G), |G : H])*, which is self-orthogonal and con-
tained in the orthogonal of every code in € (cf. Section 7.2.1). If the mini-
mum weight is a multiple of 4, an upper index * or ~ indicates that the code
is doubly-even, or singly-even, respectively.

4. C: The length and dimension of a maximally self-orthogonal A(G)-
invariant code.

5. d: The minimum weights of the maximally self-orthogonal G-invariant
codes.

6. |€/ ~ MN|: The number of normalizer equivalence classes of elements of €.

7. |€|: The cardinality of €, as a sum of orbit lengths. The bold numbers indi-
cate the number of orbits of a certain length.

8. B(A(G)) (for small lengths): The Bravais group for €. Note that whenever
this group equals A(A5), the normalizer 9 is the largest subgroup of Sy
which acts on € (cf. Theorem 6.3.3).
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< I=1-T T 0| lo‘g [0‘g] (D)my "y
9 I=1-1 T L [1 9] [9°T ‘0] (9)my el
01 I=1-1 T 01 | [1'01) | [0T T 01] (9)my &g
2=0'1 T ¥
ey U (99 1%D) I=1-1 T ¢ | 191 [0°c1] | (©)my x %) 3o,
9, e=¢-1 T 9| [scr] [0c1] | (D)My x &) | THXE
6= 7=
2TV ¢ ¥
9, I=1-1T T z | ot 0g] [0°0g] | (D)my x %) €D
168D I=1-1 T ¢ | le1t0¢e] | [2e1 0¢8] | (9)my x &) 0,
gzelT = < 612 = <
0¥Z =021 - ¢ z A
0Z6T = 02T - 9T 91 01
0298 = 02T - 1. 1. 8
006€ = 02T - L2+ 09 TT 3¢ 9
0.3 =GT-8+08-18+09 - T+02T T 16 ¥
9, 1 T z | log 09 [0°09] | (D)my x H I
(0)WV)g 2] BN 0| b'wa % (1)®)Vaeyg
YV =D L L31qeL
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v I=1-1 ! iAo Lrell 9 S
[, 2=20"1 I v [v'sl [0°8] (D)my 1ery
o) I=T1-T I | L1l (2L V1] 9 "y
G I=1-1 I 8| [9°18] | +[8'9°1d] (D)my 8a
D 9=9-T I 8 | le1 ‘val 0 ‘vzl (D)my X &) LD
9, z=2¢-1 I v | [01°82] | +laT L 8q] (D)my &S
126 28) I=1-1 I ¢ | lte'er] | [g'18 27 (D)my x %9 "D
e =< £=X
9=9-T I 9
e=¢ T I i
[, e=¢-1 I z | 1z eyl [9°L ‘Ty] 9 R 0)
62z = < 0L=2X
0ST=%-8C+7 6 L€ 48
9e=7-8+¢-C 01 8
8=¢-¥% i 9
W=%-L+C8 q1 e
9=¢-¢ € ¥
9, I=1-1 I Z | [8z9¢] [0‘9¢] (D)my x &) €D
¢z =< yIT =<
e =0 0TI +1-C r4n} i
D X 0 €=¢-1+1°1T z z | [ervs]l | v 1e98] | (9)my x (29 x &) %D
(0)v)g 2| | %~ /3] | P ol MOva 6 (1)P)Vqesg
(CD)ETD = 9 gL 9lqeL
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I=1-1 I -1 Jo‘er] [0‘¢eT] ) gD x (B0 x (50 ("o x (80 x £D))))

IT=1-1 I ¢ | le1'9] [z‘e1 ‘oz] 19, 2o X (50 ("o x (80 x £D)))

T=1-1 I - | lo‘eel 0 ‘6¢] 19 2o X (50 ("o X (80 x £D)))
=TT+ T z 47| leried] tles‘a mm_ (D)my (D)4 > § (S)ON

IT=1-1T I z | l6gsL) [9°eT ‘8] 9, & ("o x (80 X £)))

e=71-¢ € z | l6gsL) [9°eT ‘8] 9, g ("o x (80 X £)))

I=1-1 I z | l6g s 268 ‘8] 9 ¢ x (20 x &9) X (£ x £D))

e=1-¢ ¢ _91 | [6€°211] | 4+[91 ‘8¢ LT1] (9)my ¢D X (8D X 80)

P=1¥% % .8

8=1-8 8 e

2=1'2¢ z ¥

IT=1-1 T ¢ | les'vo1] | L[8°c1F701] 9, (D)ffg> 6 ‘Hxg

t=1-2 4 P

I=1-1 I 2| [eg'v01] | L7 16 701] | (©)MVy X &) (D428 OHxg

P=1¥% % 8

t=1-¢ z 9

2=1-¢ z ¥

T=1-1T I T | [8L9¢1] | 4[8°¢9°0gT] 19 (20 x 89) X (80 x £D)

VZe=1"%2 %4 ¥

e=1-¢ € C | [8L°9¢T] | +[e1 €1 9T 9 "D X (8D X £))

G=¢-1+1-¢ id _z¢ | (o7 ‘F¥1] 0 ‘71 (9)my £ X €19
kl [ %~ /31| P o) O 'va 16 (1) ©Vqeg

(CD)ETOd = D 6’/ 2198l



CHAPTER 7. EXAMPLES
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8=0-T+¢ 1T z A
RI=9-T+¢-T i -8
09=9-9+¢¥+2-G+1-C Al 48
2=0'1 I 9
vV=1C+3¢ T € e
I=1-1T T z | 9 ‘2L [0°5L] | (D)my x &) LD
¢ I g1 | [62'%8] | [71°8c 78] (9)my &6
2] B o] Mva % (1)P)Vqesg
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I=1-T I 4 [1°C1] tler ‘1 e 19 94
I=1-1 I —0g | [r1'99] | _[og T1°99] 9 (y)my
2=1-2C z ¥
IT=1-1 I | 99°cer] | 1[v'go‘cerl o) &y
P=1'¥% % 8
2=12C z 9
2=12C z ¥
I=1-1 I T | 99°zer] | 1[8°¢s zen] @) 9%
IT=1-1 I 402
I=1-1 I 0%
IT=1-1 I 4ol | [0S 991 | 1oz ‘sgFr1] | (0)my | (11 °2)TSd
a1 =2X 6=

9=1-2+¢C i 91

6=T1-1+C ¥ g et | [29%%1] | L9199 %71 | (0)my | (11°2)7TSd

2] BN D Ova| w (1) ®)Vaesg

¢V = D T4 91qeL



144 CHAPTER 7. EXAMPLES



Bibliography

[1] A.Bak. K-Theory of forms. Annals of Mathematics Studies, 98, 1981.
[2] S. D. Berman. On the theory of group codes. Kibernetika, 3:31-39, 1967.

[3] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The
user language. Journal of Symbolic Computation, 24:235-265, 1997.

[4] C. C. Chevalley. The algebraic theory of spinors. Columbia University Press,
1954.

[5] N. Chigira, M. Harada, and M. Kitazume. Permutation groups and binary
self-orthogonal codes. Journal of Algebra, 309:610-621, 2007.

[6] C. W. Curtis and I. Reiner. Methods of Representation Theory, volume 1. John
Wiley and Sons, 1990.

[7] J. Dieudonné. Pseudo-discriminant and Dickson invariant. Pacific Journal of
Mathematics, 5:907-910, 1955.

[8] A. Frohlich and A. McEvett. Forms over rings with involution. Journal of
Algebra, 12:79-104, 1969.

[9] AM. Gleason. Weight polynomials of self-dual codes and the MacWillams
identities. In Actes du Congres International des Mathématiciens, volume 3,
pages 211-215, Nice, 1970. Gauthiers-Villars.

[10] M.]. E. Golay. Notes on digital coding. In Proceedings of the I.R.E., volume 37,
page 657, June 1949.

[11] A. Giinther. A mass formula for self-dual permutation codes. to appear in
Finite Fields and their Applications.

[12] A. Guinther and G. Nebe. Automorphisms of doubly-even self-dual binary
codes. to appear in Journal of the London Mathematical Society.

[13] A. Glinther and G. Nebe. Clifford-Weil groups of quotient representations.
Albanian Journal of Mathematics, 2:159-169, 2008.

[14] A. Giinther, G. Nebe, and E. M. Rains. Clifford-Weil groups for finite group
rings, some examples. Albanian Journal of Mathematics, 2:185-198, 2008.

145



146 BIBLIOGRAPHY

[15] R. W. Hamming. Error detecting and error correcting codes. The Bell System
Technical Journal, 26:147-160, 1950.

[16] C. M. Hernandez and M. R. Sanchez. Relative hermitian Morita theory. L.
Morita equivalences of algebras with involution. Journal of Algebra, 162:146—
167, 1993.

[17] R. Howe. Invariant theory and duality for classical groups over finite fields,
with applications to their singular representation theory. Preprint.

[18] W.C. Huffman and V. Pless. Fundamentals of error-correcting codes. Cambridge
University Press, Cambridge UK, 2003.

[19] G. Hughes. Structure theorems for group ring codes with an application to
self-dual codes. Designs, Codes and Cryptography, 24:5-14, 2001.

[20] M. Klemm. Uber die Reduktion von Permutationsmoduln. Mathematische
Zeitschrift, 143:113-117, 1975.

[21] M. Kneser. Klassenzahlen definiter quadratischer Formen. Archiv der Math-
ematik, 8:241-250, 1057.

[22] M. Kneser. Quadratische Formen. Springer, 2002.

[23] M. Knus, A. Merkurjev, M. Rost, and J. Tignol. The book of involutions. Vol.
44 of American Mathematical Society Colloquium Publications. American
Mathematical Society, Providence, RI, 1998.

[24] F. J. MacWilliams. Codes and ideals in group algebras. Combinatorial Mathe-
matics and its Applications. University of North Carolina Press, Chapel Hill,
1969.

[25] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes.
North-Holland Mathematical Library 16. North-Holland Publishing Co.,
1977.

[26] F.J. MacWilliams, N.J. A. Sloane, and J. G. Thompson. Good self-dual codes
exist. Discrete Mathematics, 3:153-162, 1972.

[27] C. Martinez-Pérez and W. Willems. Self-dual codes and modules for finite
groups in characteristic two. IEEE Trans. Inform. Theory, 50(8):1798-1803,
2004.

[28] C. Martinez-Pérez and W. Willems. Self-dual extended cyclic codes. Appli-
cable Algebra in Engineering, Communication and Computing, 1:1-16, 2006.

[29] J. Morales. Maximal hermitian forms over ZG. Commentarii mathematici Hel-
vetici, 63:209-225, 1988.



BIBLIOGRAPHY 147

[30] A. Munemasa. A mass formula for Type II codes over finite fields of charac-
teristic two. In Codes and designs, Ohio State Univ. Math. Res. Inst. Publ. 10,
pages 207-214, Columbus, OH, 2000.

[31] G. Nebe. On the cokernel of the Witt decomposition map. Journal de Théorie
de Nombres de Bordeaux, 12:489-501, 2000.

[32] G. Nebe, H.-G. Quebbemann, E. M. Rains, and N. ]J. A. Sloane. Complete
weight enumerators of generalized doubly even self-dual codes. Finite Fields
and their Applications, 10:540-550, 2004.

[33] G. Nebe, EM. Rains, and N.J.A. Sloane. Self-dual codes and invariant theory.
Algorithm and Computation in Mathematics 17. Springer, 2006.

[34] T. Okuyama and Y. Tsushima. On a conjecture of P. Landrock. Journal of
Algebra, 104:203-208, 1986.

[35] H.-G. Quebbemann. On even codes. Discrete Mathematics, 98(1):29-34, 1991.

[36] E. M. Rains. Shadow bounds for self-dual codes. IEEE Trans. Info. Theory,
44:134-139, 1998.

[37] W. Scharlau. Quadratic and Hermitian Forms. Die Grundlehren der Mathema-
tischen Wissenschaften 270. Springer, 1985.

[38] P.Sin and W. Willems. G-invariant quadratic forms. Journal fiir die reine und
angewandte Mathematik, 420:45-59, 1991.

[39] N.J.A. Sloane. Gleason’s theorem on self-dual codes and its generalizations.
Talk given at Conference on Algebraic Combinatorics in honor of Eiichi Ban-
nai, Sendai, Japan, June 2006.

[40] N.J.A. Sloane and ].G. Thompson. Cyclic self-dual codes. IEEE Trans. Inform.
Theory, 29(3):364-366, 1983.

[41] D. E. Taylor. The geometry of the classical groups. Sigma Series in Pure Mathe-
matics 9. Heldermann Verlag, 1992.

[42] W. Willems. A note on self-dual group codes. IEEE Trans. Inf. Theory,
48(12):3107-3109, 2002.

[43] W. Willems and A. Zimmermann. On Morita theory for self-dual modules.
Quarterly Journal of Mathematics (Oxford), pages 1-14, 2008.



148 BIBLIOGRAPHY



Lebenslauf

Annika Gulinther

17.08.1983
1990 - 1993
1993 - 2001

Okt. 2001 - Sep. 2003

Okt. 2003 - Sep. 2006
Sep. 2006

Okt. 2006 - Sep. 2009

geboren in Neuss
Burgunderschule in Neuss (Grundschule)
Cornelius-Burgh-Gymnasium in Erkelenz

Grundstudium der Mathematik an der
Heinrich-Heine-Universitiat Diisseldorf

Hauptstudium an der RWTH Aachen
Diplom in Mathematik von der RWTH Aachen

Doktorandin an der RWTH Aachen,
gefordert durch die Landesgraduiertenférderung

149



