

Constructive D-module theory

Daniel Andres, daniel.andres@math.rwth-aachen.de Lehrstuhl D für Mathematik, RWTH Aachen University

Support: DFG Graduiertenkolleg 1632 "Experimentelle und konstruktive Algebra"

Introduction

A D-module is a module over a ring of differential operators. If $\mathbb K$ is a field of characteristic zero, the Weyl algebra

$$D_n := \mathbb{K}\langle x_1, \dots, x_n, \partial_1, \dots, \partial_n \mid \partial_i x_j = x_j \partial_i + \delta_{ij} \text{ for } 1 \leq i \leq n \rangle$$

becomes the (non-commutative) ring of linear partial differential operators with polynomial coefficients by the action given by

$$x_i \bullet f := x_i \cdot f$$
 and $\partial_i \bullet f := \frac{\partial f}{\partial x_i}$ for $f \in \mathbb{K}[x] := \mathbb{K}[x_1, \dots, x_n]$.

The b-function of an ideal

For $0 \neq w \in \mathbb{R}^n_{>0}$ and $p \in D_n$ define the initial form $\operatorname{in}_{(-w,w)}(p)$ of p with respect to the weight (-w, w) to be the polynomial consisting of all terms of p, which have maximal weighted total degree with respect to the weight $-w_i$ for x_i and w_i for ∂_i . Moreover, for a left ideal $I \subset D_n$ define the initial ideal of I to be $\operatorname{in}_{(-w,w)}(I) := \langle \operatorname{in}_{(-w,w)}(p) \mid p \in I \rangle$.

Computing the initial ideal

For $\zeta, \eta \in \mathbb{R}^n_{>0}$ consider the *n*-th weighted homogenized Weyl algebra

$$D_{n,(\zeta,\eta)}^{(h)}:=\mathbb{K}\langle x_1,\ldots,x_n,\partial_1,\ldots,\partial_n,h\mid \partial_j x_i=x_i\partial_j+\delta_{ij}h^{\zeta_i+\eta_j} \text{ for } 1\leq i\leq n\rangle.$$

Moreover, for $p = \sum_{\alpha,\beta} c_{\alpha\beta} x^{\alpha} \partial^{\beta} \in D_n$ define the weighted homogenization of p to be

$$H_{(\zeta,\eta)}(p) := \sum_{lpha,eta} c_{lphaeta} x^{lpha} \partial^{eta} h^{\deg_{(\zeta,\eta)}(p) - (\zetalpha + \etaeta)} \in D_{n,(\zeta,\eta)}^{(h)}.$$

Further let $I \subset D_n$ be an ideal, \prec a global ordering on D_n and $\prec_{(-w,w)}^{(h)}$ the global ordering on $D_{n,(\zeta,\eta)}^{(h)}$ defined by $x^{\alpha}\partial^{\beta} \prec_{(-w,w)}^{(h)} x^{\gamma}\partial^{\delta}$

if
$$\zeta \alpha + \eta \beta < \zeta \gamma + \eta \delta$$

or
$$\zeta \alpha + \eta \beta = \zeta \gamma + \eta \delta$$
 and $w(\beta - \alpha) < w(\delta - \gamma)$

or
$$\zeta \alpha + \eta \beta = \zeta \gamma + \eta \delta$$
 and $w(\beta - \alpha) = w(\delta - \gamma)$ and $x^{\alpha} \partial^{\beta} \prec x^{\gamma} \partial^{\delta}$.

Theorem

If $G^{(h)}$ is a Gröbner basis of $H_{(\zeta,\eta)}(I)$ with respect to $\prec_{(u,v)}^{(h)}$, then $\operatorname{in}_{(-w,w)}(G^{(h)}|_{h=1})$ is a Gröbner basis of $\operatorname{in}_{(-w,w)}(I)$ with respect to \prec .

Put $s := \sum_{i=1}^n w_i x_i \partial_i$. If I is holonomic, then $\operatorname{in}_{(-w,w)}(I) \cap \mathbb{K}[s]$ is a non-trivial principal ideal in the subalgebra $\mathbb{K}[s] \subset D_n$. The monic generator $b_{l,w}$ of this intersection is called the (global) b-function of I with respect to w.

Intersecting an ideal with a principal subalgebra

l I heorem

Let A be an associative \mathbb{K} -algebra, $J \subset A$ a left ideal and $s \in A$ satisfying $J \cdot s \subset J$ and $\dim_{\mathbb{K}}(\operatorname{End}_{A}(A/J)) < \infty$. Then $J \cap \mathbb{K}[s] \neq \{0\}$.

Note that both conditions of the previous theorem are fulfilled if $A = D_n$, J is a holonomic left ideal and $s = \sum_{i=1}^n w_i x_i \partial_i$ as in the setup for the *b*-function.

Algorithm (principalIntersect)

Input: $s \in A, J \subset A$ a left ideal such that $J \cap \mathbb{K}[s] \neq \{0\}$.

Output: $b \in \mathbb{K}[s]$ monic such that $J \cap \mathbb{K}[s] = \langle b \rangle$.

G := a finite left Gröbner basis of J

i := 1

loop

if $\exists a_0,\ldots,a_{i-1}\in\mathbb{K}$ such that $\mathsf{NF}(s^i,G)+\sum_{j=0}^{i-1}a_j\,\mathsf{NF}(s^j,G)=0$

then

return $b := s^{i} + \sum_{i=0}^{i-1} a_{i} s^{j}$

else

i := i + 1

end if

end loop

Note that this approach requires a Gröbner basis with respect to an arbitrary well ordering, avoiding the use of (expensive) elimination orderings.

The b-function of a polynomial

Consider a non-constant polynomial $f \in \mathbb{K}[x]$.

Applying the *b*-function of an ideal

Consider the Malgrange ideal of f defined by

$$I_f := \langle t - f, \partial_i + \frac{\partial f}{\partial x_i} \partial_t, i = 1, \dots, n \rangle \subset D_{n+1} = D_n \langle t, \partial_t \mid \partial_t t = t \partial_t + 1 \rangle.$$

Chosing $w=(1,0,\ldots,0)\in\mathbb{R}^{n+1}$ such that the weight of ∂_t is 1,

$$b_f(s) := (-1)^{\deg(b_{I_f,w})} b_{I_f,w}(-s-1)$$

is called the (global) b-function or the (global) Bernstein-Sato polynomial of f.

The annihilator based approach

Let s be a new indeterminate and put $D_n[s] := D_n \otimes_{\mathbb{K}} \mathbb{K}[s]$. Consider the commutative ring $R_f := \mathbb{K}[x, s, f^{-1}]$. The free R_f -module $R_f \cdot f^s$ generated by the formal symbol f^s becomes a left $D_n[s]$ -module via

$$s \bullet g \cdot f^{s+j} := s \cdot g \cdot f^{s+j}, \qquad x_i \bullet g \cdot f^{s+j} := x_i \cdot g \cdot f^{s+j}$$
 and

$$\partial_i \bullet g \cdot f^{s+j} := \frac{\partial g}{\partial x_i} \cdot f^{s+j} + g \cdot \frac{\partial f}{\partial x_i} \cdot (s+j) \cdot f^{s+j-1}$$

for $g \in \mathbb{K}[x,s]$ and $f^{s+j} := f^j \cdot f^s$, $j \in \mathbb{Z}$.

Theorem (Bernstein)

The Bernstein-Sato polynomial is the uniquely determined monic element of minimal degree in $\mathbb{K}[s]$ satisfying $P \bullet f^{s+1} = b_f \cdot f^s$ for some $P \in D_n[s]$.

The theorem provides another option to compute the Bernstein-Sato polynomial. Again principalIntersect is applicable.

Corollary

Denote
$$\mathsf{Ann}_{D_n[s]}(f^s) := \{ p \in D_n[s] \mid p \bullet f^s = 0 \}$$
. Then $\langle b_f \rangle = (\mathsf{Ann}_{D_n[s]}(f^s) + \langle f \rangle) \cap \mathbb{K}[s]$.

Applications

Annihilators of powers of polynomials

Note that -1 is always a root of b_f .

Theorem

Let $\lambda \in \mathbb{C}$ and λ_0 be the minimal integral root of b_f .

If $\lambda \in \mathbb{C} \setminus \{\lambda_0 + k \mid k \in \mathbb{N}\}$, then $\mathsf{Ann}_{D_n}(f^\lambda) = \mathsf{Ann}_{D_n[s]}(f^s)_{|_{s=\lambda}}$. Otherwise, let $G := \{g_1, \ldots, g_r\}$ be a Gröbner basis of $Ann_{D_n[s]}(f^s)$ and $S:=\mathsf{Syz}(f^{\lambda-\lambda_0},{g_1}_{|_{s=\lambda_0}},\ldots,{g_r}_{|_{s=\lambda_0}})$. Then

$$\mathsf{Ann}_{D_n}(f^\lambda) = \mathsf{Ann}_{D_n[s]}(f^s)_{|_{s=\lambda}} + \langle c_0 \mid (c_0, c_1, \ldots, c_r) \in S \rangle.$$

Other applications of b-functions include the following problems.

Other applications

de Rham cohomology localization restriction Weyl closure integration

Implementation

http://www.singular.uni-kl.de bfun.lib dmod.lib dmodapp.lib dmodvar.lib