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Abstract— The purpose of this paper is to give a con-
structive algorithm for the computation of bases of finitely
presented free modules over the Weyl algebras of differen-
tial operators with polynomial or rational coefficients. In
particular, we show how to use these results in order to
recognize when a multidimensional linear system defined
by partial differential equations with polynomial or rational
coefficients is flat and, if so, to compute flat outputs and
the injective image representations of the system. These new
results are based on recent constructive proofs of a famous
result in non-commutative algebra due to J. T. Stafford
[27]. The different algorithms have been implemented in the
package STAFFORD [25] based onOREMODULES [2]. These
results allow us to achieve the general solution of the so-
called Monge problem for multidimensional linear systems
defined by partial differential equations with polynomial
or rational coefficients. Finally, we constructively answer
an open question posed by Datta [5] on the possibility to
generalize the results of [13] to multi-input multi-output
polynomial time-varying controllable linear systems. We show
that every controllable ordinary differential linear system
with at least two inputs and polynomial coefficients is flat.

Keywords— Flat multidimensional linear systems, injective
image representation, constructive computation of bases of
free modules, Stafford’s results, non-commutative algebra.

I. A PEDESTRIAN INTRODUCTION TO THEMONGE

PROBLEM

A. Introduction

Let us introduce the so-calledMonge problem(1784).
We refer the reader to [29] and the references therein for
historical details. LetD be aring of differential operators
(e.g., the Weyl algebraAn(k) = k[x1, . . . , xn][d1, . . . , dn]
of differential operators indi = ∂/∂xi with polynomial
coefficients inxj) andF a functional spacewhich satisfies:

∀ P1, P2 ∈ D, ∀ y1, y2 ∈ F : P1 y1 + P2 y2 ∈ F .
(1)

For instance, ifD is the Weyl algebraAn(k), we can take
F = C∞(Rn). In terms of module theory, property (1)
means thatF has a leftD-module structure [26]. Let us
considerR ∈ Dq×p and the linear system of PDEs (or
behaviour[15], [16], [21], [28], [30]) defined by:

kerF (R.) , {η ∈ Fp |Rη = 0}.
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The Monge problem questions the existence of a matrix of
differential operatorsQ ∈ Dp×m such that we have:

kerF (R.) = imF (Q.) , Q (Fm).

If such a matrix Q exists, we then say thatQ is
a parametrization of the system kerF (R.). In the
behavioural approach to multidimensional linear systems,
we say that the behaviourkerF (R.) admits an image
representation[15], [16], [21], [28], [30]. Let us give a
few examples.

Example 1: 1) We consider the ringD = R(t)
[
d
dt

]

of differential operators ind/dt with rational coef-
ficients in t, F = C∞(R) and the following matrix
of differential operators

R =

(
d2

dt2
+ α(t)

d

dt
+ 1, − d

dt
− α(t)

)
∈ D1×2,

where α denotes a time-varying parameter which
belongs toR(t). Then, we get the following system:

kerF (R.) = {(y, u)T ∈ F2 |
ÿ(t) + α(t) ẏ(t) + y(t)− u̇(t)− α(t)u(t) = 0}.

It was proved in [17] that we have the following
parametrization of the systemkerF (R.):
{

y(t) = ξ̇(t) + α(t) ξ(t),

u(t) = ξ̈(t) + α(t) ξ̇(t) + (α̇(t) + 1) ξ(t).

This parametrization isinjectiveas we then have:

ξ = −ẏ + u.

2) Let us consider the ringD = R[d1, d2, d3] of
differential operators with constant coefficients, the
D-moduleF = C∞(R3) and the system defined by
the divergence operator inR3, namely:

kerF (div.) = { ~A = (A1, A2, A3)
T ∈ F3 |

d1A1 + d2A2 + d3A3 = 0}.
In mathematical physics, it is well-known that the
divergence operator is parametrized by the curl op-
erator, namely, the operator defined by the matrix

curl =




0 −d3 d2

d3 0 −d1

−d2 d1 0


 ∈ D

3×3,



i.e., we havekerF (div.) = curl (F3). Let us check
whether or not this parametrization is injective, i.e.,
whether or notcurl ~B = ~0 implies ~B = ~0. It is
also well-known in mathematical physics that the
curl operator is parametrized by the gradient operator
defined bygrad = (d1, d2, d3)

T . In other words,
we have the following equality:

{ ~B = (B1, B2, B3)
T ∈ F3 | curl ~B = ~0}

= grad (F).

Hence, the parametrization of the divergence oper-
ator by means of the curl operator is not injective
because the curl operator is parametrized by the
gradient operator.

B. Systems & Modules

Before giving necessary and sufficient conditions for
parametrizability, we need to introduce some notations and
results obtained by B. Malgrange [12]. Let us consider a
matrixR ∈ Dq×p of differential operators and let us define
the finitely presented leftD-module

M = D1×p/(D1×q R), (2)

where D1×p (resp.,Dp) denotes the left (resp., right)
D-module of row (resp., column) vectors of lengthp
with entries inD. By convention, we setD1×0 = 0.
The introduction of the previous leftD-module M is
very natural as it generalizes well-known algebras which
play central roles in algebraic geometry and number theory.

Example 2: 1) Cauchy’s construction of the fieldC
of complex numbers wasC = R[x]/(x2 +1), i.e.,C
can be defined as the ring of real polynomials inx
modulo the relationx2+1. If we considerD = R[x]
andR = (x2 + 1) ∈ D, then we obtain that:

M = D/(DR) = R[x]/(R[x] (x2 + 1)) = C.

2) The rings of numbers such as

A = Z[i
√

5]/(Z[i
√

5] (1 + i
√

5) + Z[i
√

5] 2)

appear everywhere in the literature of algebraic num-
ber theory. Hence, if we considerD = Z[i

√
5] and

R = (1 + i
√

5, 2)T ∈ D2, then we get:

M = D/(D1×2R) = A.

3) In algebraic geometry, we associate with any affine
algebraic variety defined by the complex solutions of
a set of polynomialsP1, . . . , Pq ∈ R[x1, . . . , xn] the
algebraA = R[x1, . . . , xn]/I, whereI denotes the
ideal ofR[x1, . . . , xn] generated byP1, . . . , Pm, i.e.,
I =

∑m
i=1DPi. Hence, if we consider the algebra

D = R[x1, . . . , xn] andR = (P1, . . . , Pq)
T ∈ Dq,

we then obtain:

M = D/(D1×q R) = R[x1, . . . , xn]/I = A.

Hence, we see that the leftD-moduleM defined by (2)
extends some well-known algebraic objects encountered

in the algebra literature to general linear systems. See [3],
[17], [18], [19], [20], [21], [23], [24] for more details.

Let us introduce a few definitions of homological
algebra [26] that will be useful in what follows.

Definition 1: 1) A sequence(δi : Mi −→Mi−1)i∈Z

of morphismsδi : Mi −→ Mi−1 between leftD-
modules isa complexif we have:

∀ i ∈ Z, im δi ⊆ ker δi−1.

We denote the previous complex by:

. . .
δi+2−−−→Mi+1

δi+1−−−→Mi
δi−→Mi−1

δi−1−−−→ . . . (3)

2) Thedefect of exactness of the complex (3) atMi is:

H(Mi) = ker δi/im δi+1.

3) The complex (3) isexact atMi if we have:

H(Mi) = 0 ⇐⇒ ker δi = im δi+1.

4) The complex (3) isexact if:

∀ i ∈ Z, ker δi = im δi+1.

5) The complex (3) is asplit exact sequenceif it is
exact and there exist morphismssi : Mi−1 −→ Mi

satisfying the following conditions:

∀ i ≥ 0,

{
si+1 ◦ si = 0,

si ◦ δi + δi+1 ◦ si+1 = idMi
.

6) A finite free resolutionof a left D-moduleM is an
exact sequence of the form

. . .
.R3−−→ D1×p2 .R2−−→ D1×p1 .R1−−→ D1×p0 π−→M −→ 0,

(4)
wherepi ∈ Z+ = {0, 1, 2, . . .}, Ri ∈ Dpi×pi−1 ,

(.Ri) : D1×pi −→ D1×pi−1

λ 7−→ (.Ri)(λ) = λRi,

andRm = 0 for a certainm ≥ 1.

Example 3:The following sequence

0 −→M ′ f−→M
g−→M ′′ −→ 0

is exact iff is injective, i.e.,ker f = 0, ker g = im f and
g is surjective, i.e.,coker g , M ′′/im g = 0.

We have the following important result and definitions.

Theorem 1:[26] Let F be a leftD-module,M a left
D-module and (4) a finite free resolution ofM . Then, the
defects of exactness of the following complex

. . .
R3.←−− Fp2 R2.←−− Fp1 R1.←−− Fp0 ←− 0,

where(Ri.) : Fpi−1 −→ Fpi is defined by(Ri.) η = Ri η,
for all η ∈ Fpi−1 , only depend on the leftD-modulesM



andF . Up to an isomorphism, we denote these defects of
exactness by:
{

ext0D(M,F) ∼= kerF (R1.),

extiD(M,F) ∼= kerF (Ri+1.)/(Ri (Fpi)), i ≥ 1.

Finally, we haveext0D(M,F) = homD(M,F), where
homD(M,F) denotes the abelian group ofD-morphisms
(namely,D-linear maps) fromM to F .

Using the previous result, B. Malgrange made the re-
mark that we then have (R1 = R, p1 = p andp2 = q)

kerF (R.) ∼= homD(M,F), (5)

where ∼= denotes an isomorphism of abelian groups
(k-vector spaces ifF has the structure of ak-vector
space) [12]. This idea was developed by the Japanese
school of M. Sato (in particular, M. Sato, M. Kashiwara,
T. Kawai) [8]. In particular, (5) gives an intrinsic
formulation of the systemkerF (R.), as the right hand
side of (5) only depends on the leftD-modulesM and
F and we can prove thatM is intrinsically defined, the
equalityM = D1×p/(D1×q R) being nothing else than a
particular representation of the system (i.e., the beginning
of a particular finite free resolution of the leftD-module
M ). We refer the reader to [4], [20] for more details
concerning equivalences of linear systems within module
theory and homological algebra.

Before recalling the first main result concerning the
Monge problem, let us introduce a few more definitions.

Definition 2: 1) [26] A left D-moduleF is called
injective if, for every leftD-moduleM , and, for all
i ≥ 1, we haveextiD(M,F) = 0.

2) [26] A left D-moduleF is calledcogeneratorif, for
every leftD-moduleM , we have:

homD(M,F) = 0 =⇒ M = 0.

Theorem 2:[26] An injective cogenerator leftD-
moduleF exists for every ringD.

We give examples of modules which are injective
cogenerators.

Example 4: 1) If Ω is an open convex subset ofRn,
then the spaceC∞(Ω) (resp.,D′(Ω)) of smooth
functions (resp., distributions) onΩ is an injective
cogenerator module over the ringR[d1, . . . , dn] of
differential operators with coefficients inR [12].

2) [30] If F denotes the set of all functions that
are smooth onR except for a finite number of
points, then F is an injective cogenerator left
R(t)

[
d
dt

]
-module.

Let us recall the concept offormal adjoint of a matrix
R of differential operators.

Definition 3: [3], [19] Let Q ⊆ k be a field andD one
of the two followingWeyl algebras:

An(k) = k[x1, . . . , xn][d1, . . . , dn],

Bn(k) = k(x1, . . . , xn)[d1, . . . , dn].
(6)

1) An involutionθ of D is ak-linear mapθ : D −→ D
satisfying the following two conditions:

∀ P, Q ∈ D,
{

θ ◦ θ = idD,

θ(P Q) = θ(Q) θ(P ).

2) Let θ be theinvolution of D defined by:

∀ a ∈ k,





θ(di) = −di,
θ(xi) = xi,

θ(a) = a.

If R ∈ Dq×p is a matrix of differential operators,
then theformal adjointof R is defined by:

R̃ = (θ(Rij))
T .

Example 5:Let us considerD = A3(Q) and the matrix
R = −(d1 − x3, d2, d3) ∈ D1×3 of differential
operators. Then, the formal adjoint̃R of R is defined by:

R̃ = −(θ(d1 − x3), θ(d2), θ(d3))
T

= (d1 + x3, d2, d3)
T .

We are now in position to state the first main result
concerning the Monge problem.

Theorem 3:Let R ∈ Dq×p, M = D1×p/(D1×q R) and
F be an injective cogenerator leftD-module. Then, the
following statements are equivalent:

1) There existsQ ∈ Dp×m such that we have:

kerF (R.) = Q (Fm).

2) There existsQ ∈ Dp×m such that we have:

kerD(.Q) , {λ ∈ D1×p | λQ = 0} = D1×q R.

3) The left D-moduleM is torsion-free, namely, the
torsion submodule ofM defined by

t(M) = {m ∈M | ∃ 0 6= P ∈ D : P m = 0}
is trivial, i.e., t(M) = 0.

4) ext1D(Ñ ,D) = 0, where Ñ is the left D-module
defined by the formal adjoint̃R of the matrixR:

Ñ = D1×q/(D1×p R̃).

We refer the reader to [3], [15], [19], [21] for the proofs.
General algorithms for computing̃R, ext1D(Ñ ,D), t(M)
andQ as in the previous theorem are developed in [3], [17],
[19], [21]. These algorithms have been implemented in the
package OREMODULES [2] and they have been illustrated



in the library of examples of OREMODULES containing
more than 30 examples. In particular, the parametrizations
given in Example 1 can be obtained by using the construc-
tive algorithms developed in [3], [17], [19], [21].

We note that the concept of torsion-free module is only
a particular one in a long list of possible properties of
modules developed in homological algebra. Let us recall
some of them.

Definition 4: [26] Let us considerR ∈ Dq×p and the
finitely presented leftD-moduleM = D1×p/(D1×q R).

1) M is said to befree if there exists a non-negative
integerr ∈ Z+ = {0, 1, 2, . . .} such that:

M ∼= D1×r.

2) M is said to bestably freeif there existr, s ∈ Z+

such that:
M ⊕D1×s ∼= D1×r.

3) M is said to beprojectiveif there existr ∈ Z+ and
a left D-moduleP such that:

M ⊕ P ∼= D1×r.

4) M is said to bereflexiveif the morphism

ε : M −→ homD(homD(M,D),D),

defined by

∀ m ∈M, ∀ f ∈ homD(M,D), ε(m)(f) = f(m),

is an isomorphism of leftD-modules.
5) M is torsion-freeif we have:

t(M) = {m ∈M | ∃ 0 6= P ∈ D : P m = 0} = 0.

We have the following important results [14], [26].

Theorem 4: 1) We have the following implications
among the module properties:

free =⇒ stably free =⇒ projective =⇒
reflexive =⇒ torsion-free.

2) If D is a left principal ideal domain, namely, every
left ideal of D can be generated by means of an
element ofD (e.g., Q(t)

[
d
dt

]
), then every torsion-

free leftD-module is free.
3) If D is a left hereditary ring, namely, every left

ideal ofD is projective (e.g.,Q[t]
[
d
dt

]
), then every

torsion-free leftD-module is projective.
4) (Quillen-Suslin theorem) IfD = k[d1, . . . , dn],

wherek is a field of constants, namely,di a = 0 for
all a ∈ k and i = 1, . . . , n, then every projective
D-module is free.

We can now state the following important theorem
in the behavioural approach to multidimensional linear
systems defined by PDEs with polynomial or rational
coefficients. In particular, it explains the meaning of

the concepts of free / stably free / projective / reflexive
/ torsion-free modules in systems theory and in the
parametrizability problem.

Theorem 5:[3], [21] Let D be one of the Weyl algebras
defined in (6) and let us consider a matrixR ∈ Dq×p

of differential operators, an injective cogenerator leftD-
moduleF , kerF (R.) = {η ∈ Fp | Rη = 0} and the
following left D-modules

M = D1×p/(D1×q R), Ñ = D1×q/(D1×p R̃),

where R̃ is the formal adjoint ofR. We then have the
equivalences presented in Fig. 1.

Constructive algorithms have been given in [3], [17],
[19] for computing the extension modulesextiD(Ñ ,D).
Therefore, we can constructively check whether or not
the leftD-moduleM admits some torsion elements, or is
torsion-free, reflexive, projective or stably free. Moreover,
these algorithms allow us to compute the different matrices
Qi ∈ Dmi−1×mi (m0 , p). We refer the reader to ORE-
MODULES [2] for implementations of these algorithms and
its library of examples illustrating Theorem 5. Finally, we
note that it was proved in [20] that the leftD-moduleÑ
only depends onM up to aprojective equivalence[26],
which shows the intrinsicness of the statements given in
Theorem 5.

The parametrizability/image representation problem has
important applications in the study of controllability of
multidimensional linear systems in terms of the possibility
to patch the solutions of the systems [15], [16], [28] and in
optimal control [22], Diophantine equations [17], motion
planning and tracking [6]. See [28] for a nice survey on the
behavioural approach to multidimensional linear systems.

Finally, we note that “?” in Fig. 1 means that no sim-
ple characterization of freeness is known in homological
algebra. The purpose of this paper is to study such a
characterization based on one of J. T. Stafford’s results
[27] and to obtain a constructive algorithm for computing
bases of free leftD-modules, whereD is a Weyl algebra
as in (6). We first complete Fig. 1 given in Theorem 5,
achieving the previous characterizations and concluding
the parametrizability problem (image representation prob-
lem). Moreover, we recall that a multidimensional linear
systemkerF (R.) is said to beflat if there exists an injective
parametrization, and thus, by Theorem 5, if and only if
the corresponding leftD-moduleM = D1×p/(D1×q R)
is free [3], [6], [17]. Hence, if we can effectively decide
freeness, we can then test whether or not a multidimen-
sional linear system defined by PDEs with polynomial
or rational coefficients is flat. To finish, we also note
that there is a one-to-one correspondence between the
bases of the free leftD-module M and the so-called
flat outputsof kerF (R.). Therefore, the knowledge of a
constructive algorithm which computes bases of a free left
moduleM over a Weyl algebraD will give us a way to
compute the corresponding flat outputs. We point out that



HomologicalModule M
algebra

Parametrizations

with torsion t(M) ∼= ext1D(Ñ ,D) ∅

torsion-free ext1D(Ñ ,D) = 0 ∃ Q1 ∈ Dp×m1 : kerF (R.) = Q1 (Fm1)

∃ Q1 ∈ Dp×m1 , Q2 ∈ Dm1×m2 :
extiD(Ñ ,D) = 0,

reflexive
kerF (R.) = Q1 (Fm1),

i = 1, 2
kerF (Q1.) = Q2 (Fm2)

∃ Q1 ∈ Dp×m1 , Qi ∈ Dmi−1×mi , i = 2, . . . , n :
projective

extiD(Ñ ,D) = 0,
kerF (R.) = Q1 (Fm1),

=
kerF (Q1.) = Q2 (Fm2),

stably free
1 ≤ i ≤ n

. . .
kerF (Qn−1.) = Qn (Fmn)

∃ Q1 ∈ Dp×m, T1 ∈ Dm×p :

free ?
kerF (R.) = Q1 (Fm),

T1Q1 = Im

Fig. 1.

this problem was still open even for 1-D linear systems
defined by ordinary differential equations with polynomial
coefficients. See [13], [23] for more details.

C. Stably free modules & Projective dimension

The purpose of this section is to give a characterization
of stably free modules which will be used in what follows.
Let us start with the following result.

Proposition 1: Let us consider a finite free resolution of
a left D-moduleM of the form:

0 −→ D1×pm
.Rm−−−→ . . .

.R1−−→ D1×p0 π−→M −→ 0. (7)

1) If m ≥ 3 and there existsSm ∈ Dpm−1×pm such
that Rm Sm = Ipm

, then we have the finite free
resolution ofM

0 −→ D1×pm−1
.Tm−1−−−−→ D1×(pm−2+pm) .Tm−2−−−−→

D1×pm−3
.Rm−3−−−−→ . . .

π−→M −→ 0,
(8)

with the following notations:

Tm−1 = (Rm−1, Sm), Tm−2 =

(
Rm−2

0

)
.

2) If m = 2 and there existsS2 ∈ Dp1×p2 such that
R2 S2 = Ip2 , then we have the finite free resolution

0 −→ D1×p1 .T1−−→ D1×(p0+p2) τ−→M −→ 0, (9)

with the notationsT1 = (R1 S2) and:

τ = π ⊕ 0 : D1×(p0+p2) −→ M

λ = (λ1 λ2) 7−→ τ(λ) = π(λ1).

Proof: 1. We suppose thatm ≥ 3. Let us prove that
(8) is an exact sequence. Using the fact that (7) is an exact
sequence, and thus,Rm−1Rm−2 = 0, we obtain

Tm−1 Tm−2 = (Rm−1, Sm)

(
Rm−2

0

)

= Rm−1Rm−2 = 0,

which proves that(D1×pm−1 Tm−1) ⊆ kerD(.Tm−2).
Let us now consider(λ, µ) ∈ kerD(.Tm−2). We then

have(λ, µ)Tm−2 = λRm−2 = 0 and using the fact that
(7) is an exact sequence, there existsν ∈ D1×pm−1 such
that λ = ν Rm−1. Let us define:

ζ = ν (Ipm−1
− SmRm) + µRm ∈ D1×pm−1 .



Using the relationsRmRm−1 = 0 andRm Sm = Ipm
, we

then get

ζ Tm−1 = ζ (Rm−1, Sm)

= (ν (Ipm−1
− SmRm)Rm−1 + µRmRm−1,

ν (Ipm−1
− SmRm)Sm + µRm Sm)

= (ν Rm−1, µ) = (λ, µ),

which proves thatkerD(.Tm−2) ⊆ (D1×pm−1 Tm−1), and
thus, the exactness of (8) atD1×(pm−2+pm).

Moreover, using the fact that (7) is an exact sequence,
we then have

D1×(pm−2+pm) Tm−2 = D1×pm−2 Rm−2 = kerD(.Rm−3),

which proves that (8) is exact atD1×pm−3 .
Finally, using again the fact thatRm admits a right-

inverseSm, we obtain that the exact sequence

0→ D1×pm
.Rm−−−→D1×pm−1

.Rm−1−−−−→D1×pm−1 Rm−1 → 0

splits, i.e., there exists a morphism

ϕ : (D1×pm−1 Rm−1) −→ D1×pm−1

such that we have [3], [17], [26]:

(.Rm) ◦ (.Sm) + ϕ ◦ (.Rm−1) = idD1×pm−1 .

Hence, ifλ ∈ kerD(.Tm−1), we then get

(λRm−1, λ Sm) = (0, 0)

⇒ λ = (λSm)Rm + ϕ(λRm−1) = 0,

which proves that the morphism(.Tm−1) is injective.
2 can be proved similarly.

Let us illustrate Proposition 1 by means of an example.

Example 6:We consider the ordinary differential linear
system whose solution inD′(R) is y = δ̇, namely, the
derivative of the Dirac distributionδ at t = 0:

{
t2 y(t) = 0,

t ẏ(t) + 2 y(t) = 0.

If we consider the ringD = A1(Q) of differential
operators in d

dt
with polynomial coefficients int over Q,

R =
(
t2, t d

dt
+ 2
)T ∈ D2 and the leftD-module

M = D/(D1×2R) = D/

(
D t2 +D

(
t
d

dt
+ 2

))
,

then a finite free resolution ofM is defined by

0 −→ D
.R2−→ D1×2 .R−→ D

π−→M −→ 0,

whereR2 =
(
d
dt
, −t

)
∈ D1×2 (see [3] for more details).

We easily check thatS2 =
(
t, d

dt

)T ∈ D2 is a right-
inverse ofR2. Hence, using Proposition 1, we obtain the
following finite free resolution ofM

0 −→ D1×2 .T1−→ D1×2 τ−→M −→ 0,

with the following notations:

T1 =

(
t2 t

t d
dt

+ 2 d
dt

)
∈ D2×2, τ = π ⊕ 0.

Let us state two useful results.

Proposition 2: 1) [26] LetM be a projective leftD-
module defined by a finite free resolution of the form
(7). Then, the exact sequence (7) splits.

2) [26] If F is a left D-module, then the functor
homD( · ,F) transforms split exact sequences of
left D-modules into split exact sequences of abelian
groups.

We have the following important characterization of
stably free leftD-modules.

Proposition 3: A left D-moduleM is stably free iff
there exist two matricesR′ ∈ Dq′×p′ and S′ ∈ Dp′×q′

satisfying the following two conditions:
{

M ∼= D1×p′/(D1×q′ R′),

R′ S′ = Iq′ .
(10)

Proof: If M is a stably free leftD-module, then
there existp′, q′ ∈ Z+ such thatM ⊕ D1×q′ ∼= D1×p′ .
Let us denote byψ : D1×p′ −→ M ⊕ D1×q′ the
above isomorphism and byπ1 : M ⊕ D1×q′ −→ M
the canonical projection ontoM . Hence, we obtain the
following commutative exact diagram

0 0
↓ ↓

kerD(π1 ◦ ψ) D1×q′

↓ ↓ i1
0 −→ D1×p′ ψ−→ M ⊕D1×q′ −→ 0

↓ π1 ◦ ψ ↓ π1

0 −→ M
id−→ M −→ 0,

↓ ↓
0 0

which shows that we have:

ψ(kerD(π1 ◦ ψ)) = 0⊕D1×q′ = i1(D
1×q′).

Therefore, the first vertical exact sequence becomes the
following exact sequence

0 −→ D1×q′ .R′

−−→ D1×p′ π1 ◦ψ−−−−→M −→ 0, (11)

whereR′ ∈ Dq′×p′ is the matrix representing the mor-
phism ψ−1 ◦ i1 : D1×q′ −→ D1×p′ with respect to the
standard bases ofD1×q′ and D1×p′ . If we denote by
π2 : M ⊕D1×q′ −→ D1×q′ the canonical projection onto
D1×q′ , we then have:

π2 ◦ i1 = idD1×q′ .



Hence, the morphismπ2 ◦ ψ : D1×p′ −→ D1×q′ , repre-
sented byS′ ∈ Dp′×q′ with respect to the standard bases
of D1×p′ andD1×q′ , satisfies that

(π2 ◦ ψ) ◦ (ψ−1 ◦ i1) = idD1×q′ ,

i.e.,R′ S′ = Iq′ , which proves the result.
Conversely, if the leftD-moduleM is the cokernel of

theD-morphism.R′ : D1×q′ −→ D1×p′ , where the matrix
R′ admits a right-inverseS′, then we obtain

kerD(.R′) = {λ ∈ D1×q′ | λR′ = 0} = 0

as λ = (λR′)S′ = 0. Using the fact that a stably free
module is projective, by 1 of Proposition 2, the exact
sequence (11) splits and we obtainM ⊕D1×q′ ∼= D1×p′ ,
which shows thatM is a stably free leftD-module.

Using the fact that a projective leftD-module is a
stably free leftD-module and we can always construct a
finite free resolution of a finitely presented leftD-module
M = D1×p/(D1×q R) [3], we obtain that ifM is a stably
free leftD-module, then, by Proposition 1, (8) is a shorter
finite free resolution ofM . By induction on the length
of the finite free resolutions ofM , we finally obtain a
short finite free resolution ofM of the form (9), where
the matrix T1 admits a right-inverse. Hence, in what
follows, we can always suppose that a stably free left
D-moduleM can be defined byM = D1×p/(D1×q R),
where R ∈ Dq×p admits a right-inverseS ∈ Dp×q.
The corresponding algorithm has been implemented in
OREMODULES [2].

Let us illustrate this result by means of an example.

Example 7:Let us considerD = A1(Q) and the left
D-moduleM = D1×2/(D1×2R), whereR is defined by:

R =

( −t2 t d
dt
− 1

−t d
dt
− 2 d2

dt2

)
∈ D2×2.

We can check thatM has the free resolution

0 −→ D
.R2−−→ D1×2 .R−→ D1×2 π−→M −→ 0,

with the notationR2 =
(
d
dt
, −t

)
∈ D1×2. Moreover, the

matrix S2 =
(
t, d

dt

)T
is a right-inverse ofR2. Hence, if

we denote byT1 = (R, S2), then, by Proposition 1, we
obtain the finite free resolution ofM :

0 −→ D1×2 .T1−−→ D1×3 τ−→M −→ 0. (12)

We can check thatT1 admits the following right-inverse:

S1 =




0 −1

−1 0
d
dt

−t


 ∈ D3×2.

Therefore, the exact sequence (12) splits, and thus,M is a
stably free leftD-module of rank 1 and (12) is a minimal
free resolution ofM .

II. CONSTRUCTIVE COMPUTATION OF FLAT OUTPUTS

A. Introduction

Let us start by explaining what are the main difficulties
of testing freeness for a leftD-moduleM .

Let us consider thek-vector space (e.g.,k = Q, R, C):

V = {(x, y, z)T ∈ k3 | 2x+ 3 y + 5 z = 0}.

If we want to compute a basis ofV , we usually do the
following computations:

2x+ 3 y + 5 z = 0 =⇒ x = −3

2
y − 5

2
z

=⇒





x = −3

2
y − 5

2
z,

y = y, ∀ y, z ∈ k.
z = z,

Therefore, we obtain the following basis
{(
−3

2
, 1, 0

)T
,

(
−5

2
, 0, 1

)T}

of the k-vector spaceV , i.e., we have:

V = k

(
−3

2
, 1, 0

)T
+ k

(
−5

2
, 0, 1

)T
.

Let us now consider theZ-module defined by

P = {(x, y, z)T ∈ Z3 | 2x+ 3 y + 5 z = 0}

obtained by taking the ringZ instead of the fieldk. We note
that we cannot repeat the same computations as1/2 does
not belong toZ. However, we have the following charac-
terization of the fact that{(α1, β1, γ1)

T , (α2, β2, γ2)
T }

is a family of generators of theZ-moduleP :



x
y
z


 ∈ P = Z




α1

β1

γ1


+ Z




α2

β2

γ2




⇐⇒ ∃ t1, t2 ∈ Z,





x = α1 t1 + α2 t2,

y = β1 t1 + β2 t2,

z = γ1 t1 + γ2 t2.

(13)

Moreover,{(αi, βi, γi)T }1≤i≤2 is a basis ofP iff (13) is
injective, i.e., iff there existaij ∈ Z, i = 1, 2, j = 1, 2, 3,
such that:

(13) =⇒ ti = ai1 x+ ai2 y + ai3 z, i = 1, 2.

Hence, we find again the fact that freeness is equivalent to
the existence of an injective parametrization of the linear
systemP (see Theorem 5). The Hermite canonical form
of the vector(2, 3, 5)T is (1, 0, 0)T , and thus, we obtain
thatP is a freeZ-module and

P = Z (9, −11, 3)T + Z (7, −8, 2)T ,



i.e., we have the following injective parametrization ofP :




x = 9 t1 + 7 t2,

y = −11 t1 − 8 t2,

z = 3 t1 + 2 t2,

=⇒
{

t1 = −2x− 2 y − z,
t2 = 3x+ 3 y + 2 z.

Finally, we note that no canonical form such as Hermite,
Smith or Jacobson forms exists over the Weyl algebras
An(k) for n ≥ 1 andBn(k) for n ≥ 2 because they are
not left principal ideal domains. Hence, we need to pursue
another way that we are going to describe now.

B. Computation of bases over the Weyl algebras

In what follows, we shall use the notationD for the
Weyl algebrasAn(k) or Bn(k) defined in (6), wherek
is a field containingQ. Let us recall a famous result in
non-commutative algebra due to J. T. Stafford.

Theorem 6:[27] Let a1, a2, a3 ∈ D and the left ideal
I = Da1 + Da2 + Da3 of D generated bya1, a2 and
a3. Then, there existλ, µ ∈ D such that we have:

I = D (a1 + λa3) +D (a2 + µa3).

A direct consequence of Theorem 6 is that any left
ideal ofD can be generated by two elements ofD.

Example 8:Let us considerD = A3(Q) and the left
ideal I = D (d1 +x3)+Dd2 +Dd3 of D. Then, we have
I = D (d1 + x3) +D (d2 + d3) as:





d2 = (d2 (d2 + d3)) (d1 + x3)

−(d2 (d1 + x3)) (d2 + d3),

d3 = (d3 (d2 + d3)) (d1 + x3)

−(d3 (d1 + x3)) (d2 + d3).

Therefore, we can takeλ = 0 andµ = 1 in Theorem 6.

Two constructive proofs of Theorem 6 have recently
been developed in [9], [11]. They have been implemented
in the package STAFFORD [25] using OREMODULES [2].

The following important corollary of Theorem 6 is also
due to J. T. Stafford.

Corollary 1: [27] A stably free leftD-moduleM with
rankD(M) ≥ 2 is free.

The purpose of this paper is to give a constructive
proof of this corollary (contrary to the original one).
In particular, it will give us an effective algorithm for
the computation of bases of the free leftD-module
M = D1×p/(D1×q R), and thus, for the flat outputs
of the corresponding systemkerF (R.) (for any left
D-moduleF). We also note that another algorithm for
the computation of bases of free modules over the Weyl
algebras was given in [7]. However, we believe that our
algorithm is simpler than the one developed in [7] as

it is conceptually nothing else than a Gaussian elimination.

Let us introduce a few definitions.

Definition 5: 1) The general linear groupGLm(D)
is the group of invertible matrices with entries inD:

GLm(D) = {U ∈ Dm×m | ∃ V ∈ Dm×m :

U V = V U = Im }.
2) The elementary groupELm(D) is the subgroup of

GLm(D) generated by all matrices of the form

Im + r Eij , r ∈ D, i 6= j,

whereEij denotes the matrix with1 at position(i, j)
and0 elsewhere.

3) A column vectora = (a1, . . . , am)T ∈ Dm is
said to beunimodular if it admits a left-inverse
b = (b1, . . . , bm) ∈ D1×m, namely, if we have:

b a =
m∑

i=1

bi ai = 1.

4) We denote byUm(D) the set of all unimodular
vectors ofDm.

The next proposition will play an important role in
what follows.

Proposition 4: Let us considerm ≥ 3 and a unimodular
vectora = (a1, . . . , am)T ∈ Um(D). Then, there exists a
matrix E ∈ ELm(D) such that:

E a = (1, 0, . . . , 0)T .

Proof: Applying Theorem 6 to the left ideal

I = Da1 +Da2 +Dam

of D, there existλ, µ ∈ D such that:

I = D (a1 + λam) +D (a2 + µam).

Using the fact thata ∈ Um(D), we then obtain∑m
i=1Dai = D, and thus, we have:

D (a1 + λam) +D (a2 + µam) +
m−1∑

i=3

Dai = D.

Hence, we get:

a′ = (a1+λam, a2+µam, a3, . . . , am−1)
T ∈ Um−1(D).

Let us definea′1 = a1+λam, a′2 = a2+µam anda′i = ai,
i ≥ 3, and the following matrix:

E1 =




1 0 0 . . . 0 λ
0 1 0 . . . 0 µ
0 0 1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1




∈ ELm(D).



We then have:

E1 a = (a′1, a
′
2, . . . , a

′
m−1, am)T .

Now, using the fact thata′ ∈ Um−1(D), there exist
b1, . . . , bm−1 ∈ D such that:

m−1∑

i=1

bi a
′
i = 1. (14)

Multiplying (14) by a′1 − 1− am, we obtain:

m−1∑

i=1

(a′1 − 1− am) bi a
′
i = (a′1 − 1− am).

Let us denote bya′′i = (a′1− 1− am) bi, i ≥ 1, and define
the following matrix:

E2 =




1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
a′′1 a′′2 a′′3 . . . a′′m−1 1




∈ ELm(D).

We then have:

E2 (a′1, . . . , a
′
m−1, am)T = (a′1, . . . , a

′
m−1, a

′
1 − 1)T .

Hence, if we define the following elementary matrix

E3 =




1 0 0 . . . 0 −1
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

...
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1




∈ ELm(D),

then we get:

E3 (a′1, . . . , a
′
m−1, a

′
1−1)T = (1, a′2, . . . , a

′
m−1, a

′
1−1)T .

Finally, if we introduce the matrix

E4 =




1 0 0 . . . 0 0

−a′2 1 0 . . . 0 0

−a′3 0 1 . . . 0 0

...
...

...
...

...
...

−a′m−1 0 0 . . . 1 0

−a′1 + 1 0 0 . . . 0 1




∈ ELm(D),

we then obtain:

E4 (1, a′2, . . . , a
′
m−1, a

′
1 − 1)T = (1, 0, . . . , 0)T .

Hence, the matrixE = E4E3E2E1 ∈ ELm(D)
satisfies:

E (a1, . . . , am)T = (1, 0, . . . , 0)T .

Example 9:Let us consider the algebraD = A3(Q)
and the column vectora = (d1 + x3, d2, d3)

T . We easily
check thatb = (d3, 0, −(d1 +x3)) is a left-inverse of
a, i.e.,a ∈ U3(D). Therefore, by Proposition 4, there exists
a matrixE ∈ EL3(D) such thatE a = (1, 0, 0)T . Let us
compute such a matrix. We first need to apply Theorem 6
to the left idealI = D (d1 + x3) + Dd2 + Dd3. Using
Example 8, we can takeλ = 0 andµ = 1. If we define

E1 =




1 0 0
0 1 1
0 0 1


 ∈ EL3(D),

we then obtainE1 a = (d1 + x3, d2 + d3, d3)
T . Now,

we can check that we have the Bézout identity:

(d2 + d3) (d1 + x3)− (d1 + x3) (d2 + d3) = 1.

Therefore, if we definea′′1 = (d1 +x3− 1−d3) (d2 +d3),
a′′2 = −(d1 + x3 − 1− d3) (d1 + x3) and

E2 =




1 0 0
0 1 0
a′′1 a′′2 1


 ∈ EL3(D),

we then get:

E2 (d1 + x3, d2 + d3, d3)
T

= (d1 + x3, d2 + d3, d1 + x3 − 1)
T
.

Then, if we denote by

E3 =




1 0 −1
0 1 0
0 0 1


 ∈ EL3(D),

E4 =




1 0 0
−(d2 + d3) 1 0
−(d1 + x3 − 1) 0 1


 ∈ EL3(D),

andE = E4E3E2E1 ∈ EL3(D), we finally obtain:

E a = (1, 0, 0)T .

We now state the main result of the paper.

Theorem 7:Let R ∈ Dq×p be a matrix which admits a
right-inverseS ∈ Dp×q, namely,RS = Iq, and satisfies
p ≥ q + 2. Then,M = D1×p/(D1×q R) is a free left
D-module withrank(M) = p− q ≥ 2.

Proof: Let us define the formal adjoint̃R ∈ Dp×q of
R ∈ Dq×p (see Definition 3). Taking the formal adjoint on
both sides of the equalityRS = Iq, we then get̃S R̃ = Iq,
which shows that̃R admits the left-inversẽS. In particular,
the first column ofR̃ is a unimodular vector ofDp and
p ≥ q + 2 ≥ 3. Hence, by applying Proposition 4 to the
first column ofR̃, we obtainE1 ∈ ELp(D) such that:

E1 R̃ =




1 ⋆
0
... R̃2

0


 , R̃2 ∈ D(p−1)×(q−1).



If q ≥ 2, then we can easily check that the first column
of the matrix R̃2 ∈ D(p−1)×(q−1) is unimodular and we
havep−1 ≥ q+1 ≥ 3. Applying Proposition 4, we obtain
F2 ∈ ELp−1(D) such that:

F2 R̃2 =




1 ⋆
0
... R̃3

0


 , R̃3 ∈ D(p−2)×(q−2).

Hence, if we denote by

E2 =

(
1 0
0 F2

)
∈ ELp(D),

we then obtain:

(E2E1) R̃ =




1 ⋆ ⋆
0 1 ⋆
... 0
...

... R̃3

0 0



.

If q ≥ 3, then we can also check that the first column of
R̃3 ∈ D(p−2)×(q−2) is unimodular andp− 2 ≥ q ≥ 3. By
induction, we finally obtainEq ∈ ELp(D) such that:

(Eq · · ·E1) R̃ =




1 ⋆ ⋆ · · · ⋆
0 1 ⋆ · · · ⋆
0 0 1 · · · ⋆

0 0 0
.. . ⋆

0 0 0 · · · 1
0 0 0 · · · 0
...

...
...

...
...

0 0 0 · · · 0




.

Hence, if we define the matrixE = Eq · · ·E1 ∈ ELp(D),
then we easily get that every row vector

v = (v1, . . . , vp) ∈ kerD(.(E R̃))

satisfiesvi = 0 for i = 1, . . . , q and vq+1, . . . , vp are
arbitrary elements inD. Therefore, we have:

kerD(.(E R̃)) = D1×(p−q) (0 Ip−q).

Using the fact thatE is invertible overD, we can check
that kerD(.R̃) = kerD(.(E R̃))E, and thus,

kerD(.R̃) = D1×(p−q) ((0 Ip−q)E) = D1×(p−q) F,

whereF ∈ D(p−q)×p denotes the matrix formed by the
last p− q rows ofE. By taking the lastp− q columns of
the inverseE−1 of E, we obtain a matrixG ∈ Dp×(p−q)

which satisfiesF G = Ip−q. Using the identities

S̃ R̃ = Iq, F R̃ = 0, F G = Ip−q,

we obtain:
(
S̃ − S̃ GF

F

)
(R̃ G) =

(
Iq 0
0 Ip−q

)
= Ip. (15)

If we define the matrices




Q = F̃ ∈ Dp×(p−q),

T = G̃ ∈ D(p−q)×p,

S′ = S −QT S ∈ Dp×q,

and apply the involutionθ to (15), we finally obtain the
following Bézout identity [17]:

(
R
T

)
(S′ Q) = Ip. (16)

The fact that the Weyl algebrasAn(k) andBn(k) are left
and right noetherian rings [14] implies that they arestably
finite [10], namely, for allU ∈ Dp×p such thatU V = Ip,
for a certainV ∈ Dp×p, then satisfiesV U = Ip, i.e.,
U ∈ GLp(D). Applying this result to (16), we obtain the
new B́ezout identity:

(S′ Q)

(
R
T

)
= Ip ⇐⇒ S′R+QT = Ip. (17)

The matrix(RT TT )T is then invertible overD, which,
in algebra, is well-known to be equivalent to the fact that
the leftD-moduleM = D1×p/(D1×q R) is free [17], [26].
Let us give the complete proof.

The conditionRQ = 0 implies that:

(D1×q R) ⊆ kerD(.Q).

Moreover, if v ∈ kerD(.Q), then from (17) we obtain
v = (v S′)R, which shows thatv ∈ (D1×q R) and
kerD(.Q) = (D1×q R). Moreover,kerD(.R) = 0 as S
is a right-inverse ofR, i.e.,RS = Iq, andw ∈ kerD(.R)
impliesw = (wR)S = 0. Finally, (D1×pQ) = D1×(p−q)

because(D1×pQ) ⊆ D1×(p−q) and, for allu ∈ D1×(p−q),
we haveu = (uT )Q ∈ (D1×pQ). Therefore, we obtain
the following split short exact sequence [26]:

0 −→ D1×q .R−→ D1×p .Q−→ D1×(p−q) −→ 0. (18)

Then, a standard argument in homological algebra shows
that M = coker(.R) ∼= (D1×pQ) = D1×(p−q), proving
thatM is a free leftD-module of rankp− q and a basis
is given by the columns ofQ.

Let us illustrate Theorem 7 and its constructive proof.

Example 10:Let us considerD = A3(Q),

R = −(d1 − x3, d2, d3) ∈ D1×3,

the leftD-moduleM = D1×3/(DR), any leftD-module
F (e.g.,F = C∞(R3)) and the system:

kerF (R.) = {(y1, y2, y3)T ∈ F3 |
d1 y1(x) + d2 y2(x) + d3 y3(x)− x3 y1(x) = 0}. (19)

We note that if we remove the last termx3 y1 in the
previous equation, then we obtain the divergence oper-
ator in R3 studied in Example 1. As was recalled in
Example 1, ifF = C∞(R3), the divergence operator is
parametrized by the curl operator, but the curl operator



is not an injective parametrization because the system
formed by the curl operator is parametrized by the gradient
operator. Moreover, using Theorem 5 and the fact that
the gradient operator cannot be parametrized, we obtain
that theD = Q[d1, d2, d3]-module associated with the
divergence operator is reflexive but not free. Hence, it does
not admit a basis.

However, we can check that the matrixR admits the
right-inverseS = (−d3, 0, d1−x3)

T . By Theorem 7,
we then obtain that the leftD-moduleM = D1×3/(DR)
is free of rank 2. By following the constructive proof of
Theorem 7 we can compute a basis ofM and an injective
parametrization of (19).

The formal adjointR̃ = (d1 + x3, d2, d3)
T of R

has already been computed in Example 5. Now, we need
to apply Proposition 4 tõR. The computations were done
in Example 9 and the matrixE ∈ EL3(D) defined there
satisfiesE R̃ = (1, 0, 0)T . Hence, taking the last two
columns ofθ(E), we obtain a basis ofM or, equivalently,
the following parametrization ofkerF (R.)




y1(x) = (1− L1) (d2 + d3) ξ1(x)

+((1− L1) (d1 − x3) + 1) ξ2(x),

y2(x) = (−L2 (d2 + d3) + 1) ξ1(x)

−L2 (d1 − x3) ξ2(x),

y3(x) = (−(1 + L2) (d2 + d3) + 1) ξ1(x)

−(1 + L2) (d1 − x3) ξ2(x),

(20)

with the following notations:
{

L1 = (d2 + d3) (d1 − d3 − x3 + 1),

L2 = −(d1 − x3) (d1 − d3 − x3 + 1).

We can check that (20) is injective as we have




ξ1(x) = (−d2
1 + d1 d3 − x3 d3 + (2x3 − 1) d1

−x2
3 + x3 + 1) y2(x)

+(d2
1 − d1 d3 + x3 d3 − (2x3 − 1) d1

+x2
3 − x3) y3(x),

ξ2(x) = y1(x) + (−d2
3 + d1 d2 − d2 d3 + d1 d3

+d2 − (x3 − 1) d3 − x3 d2 − 2) y2(x)

+(d2
3 − d1 d2 + d2 d3 − d1 d3

+(x3 − 1) d3 + (x3 − 1) d2 + 2) y3(x),

which proves that{ξ1, ξ2} is a flat output ofkerF (R.).
Finally, we point out that the fact that (20) parametrizes

kerF (R.) for any left D-module directly follows from
(16) and (17) or, equivalently, from the fact that (18) is
a so-called split short exact sequence and the functor
homD( · ,F) transforms split exact sequences of left
D-modules into split exact sequences of abelian groups/k-
vector spaces (see 2 of Proposition 2).

Finally, combining Proposition 1 and Theorem 7, we ob-
tain a constructive algorithm for the computation of bases
of a stably free leftD-module M = D1×p/(D1×q R)

of rank at least 2. Indeed, using Proposition 1, we can
compute two matricesR′ ∈ Dq′×p′ andS′ ∈ Dp′×q′ such
that M ∼= D1×p′/(D1×q′ R′) andR′ S′ = Iq′ . Now, the
rank of a module being an intrinsic property, we obtain that
p′ − q′ ≥ 2. Hence, using Theorem 7, we can compute a
basis of the leftD-moduleM ′ = D1×p′/(D1×q′ R′) and
we obtain the matricesS′ ∈ Dp′×q′ , Q′ ∈ Dp′×(p′−q′)

and T ′ ∈ D(p′−q′)×p′ such that we have the following
split short exact sequence:

0 −→ D1×q′ .R′

−−→ D1×p′ .Q′

−−→ D1×(p′−q′) −→ 0.
.S′

←−− .T ′

←−−

Finally, we easily check that an injective parametrization
Q of M can be obtained by removing the lastp′ − p
(zero) rows ofQ′. A basis of M is then defined by
{π(ei T )}i=1,...,(p′−q′), where T ∈ D(p′−q′)×p is the
matrix obtained by removing the lastp′−p columns of the
matrix T ′ and {ei}i=1,...,p′−q′ denotes the standard basis
of D1×(p′−q′).

C. A constructive answer to Datta’s question

In [23], the following result was proved.

Corollary 2: Every controllable ordinary differential
linear system with polynomial coefficients and at least
two inputs is flat.

Corollary 2 answers an open question posed by Datta
[5] on the possibility to generalize the results of [13] for
multi-input multi-output time-varying controllable linear
systems. We point out that no effective algorithms for
the computation of the corresponding flat outputs were
known. Theorem 7 then solves the problem by giving
a constructive answer to Datta’s question in the case
of polynomial coefficients. The corresponding algorithm
has been implemented in STAFFORD. Let us illustrate
Corollary 2 by means an example.

Example 11:We consider the following time-varying
linear control system:

{
ẋ2(t)− u2(t) = 0,

ẋ1(t)− t u1(t) = 0.
(21)

Let us consider the Weyl algebraD = A1(Q) and the left
D-moduleM = D1×4/(D1×2R), whereR is defined by:

R =

(
0 d

dt
0 −1

d
dt

0 −t 0

)
∈ D2×4.

We denote bykerF (R.) the corresponding system, where
F is any leftD-module (e.g.,F = C∞(R)).

If we consider for the moment the leftB1(Q)-module
P = B1(Q)1×4/(B1(Q)1×2R), then by using a Jacobson
form, we can easily check that we have the following



injective parametrization ofkerF (R.) for any leftB1(Q)-
moduleF (e.g.,F = Q(t)):





x1(t) = ξ1(t),

x2(t) = ξ2(t),

u1(t) =
1

t
ξ̇1(t),

u2(t) = ξ̇2(t).

We note that the previous parametrization ofkerF (R.) is
singular att = 0.

However, we easily check that

S =

(
0 0 0 −1

t 0 d
dt

0

)T

is a right-inverse ofR, i.e., RS = I2 and p − q = 2.
Therefore, by Theorem 7, we obtain that the leftD-module
M = D1×4/(D1×2R) is free. Let us compute a basis of
M , i.e., a non-singular parametrization of the system (21).
The formal adjoint ofR is defined by:

R̃ =

(
0 − d

dt
0 −1

− d
dt

0 −t 0

)T
.

Considering the first unimodular column ofR̃ and applying
Proposition 4, we obtain:

D 0 +D
(
− d
dt

)
+D (−1)

= D (0 + 1 · (−1)) +D
(
− d
dt

+ 0 · (−1)
)
.

Hence, takingλ = 1 andµ = 0, we define the following
matrices:

E1 =




1 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1


 , E2 =




1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1


 ,

E3 =




1 0 0 −1
0 1 0 0
0 0 1 0
0 0 0 1


 , E4 =




1 0 0 0
d
dt

1 0 0

0 0 1 0
2 0 0 1


 .

DefiningE = E4E3E2E1, we then get:

E R̃ =

(
1 0 0 0

0 0 −t − d
dt

)T
.

Now, we consider the second column ofE R̃ and, in
particular, the vector

(
0, −t, − d

dt

)T
. We can check

that this vector is unimodular. Applying Proposition 4, we
obtain:

D 0 +D (−t) +D

(
− d

dt

)
= D

(
0− d

dt

)
+D (−t).

Then, takingλ = 1 and µ = 0, we define the following
elementary matrices:

E′
1 =




1 0 1
0 1 0
0 0 1


 , E′

2 =




1 0 0
0 1 0
−t d

dt
1


 ,

E′
3 =




1 0 −1
0 1 0
0 0 1


 , E′

4 =




1 0 0
t 1 0

d
dt

+ 1 0 1


 .

Defining the matrixE′ = E′
4E

′
3E

′
2E

′
1 ∈ EL3(D) and

E′′ = diag(1, E′) ∈ EL4(D), we then get:

(E′′E) R̃ =




1 0
0 1
0 0
0 0


 .

The last two columns of the formal adjoint ofE′′E form
the following matrix inD4×2:

Q =




t2 −t d
dt

+ 1

t (t+ 1) −(t+ 1) d
dt

+ 1

t d
dt

+ 2 − d2

dt2

t (t+ 1) d
dt

+ 2 t+ 1 −(t+ 1) d2

dt2



.

We then check thatQ admits the left-inverse

T =

(
0 0 t+ 1 −1

t+ 1 −t 0 0

)
∈ D2×4.

Hence, the time-varying linear control system (21) is
injectively parametrized by





x1(t) = t2 ξ1(t)− t ξ̇2(t) + ξ2(t),

x2(t) = t (t+ 1) ξ1(t)− (t+ 1) ξ̇2(t) + ξ2(t),

u1(t) = t ξ̇1(t) + 2 ξ1(t)− ξ̈2(t),
u2(t) = t (t+ 1) ξ̇1(t) + (2 t+ 1) ξ1(t)− (t+ 1) ξ̈2(t)

and a flat output{ξ1, ξ2} of kerF (R.) is defined by:

{
ξ1(t) = (t+ 1)u1(t)− u2(t),

ξ2(t) = (t+ 1)x1(t)− t x2(t).

We do not know whether or not Corollary 2 can be
extended to the case of real analytic coefficients. If we
consider the ring of differential operatorsD = C{t}

[
d
dt

]

with coefficients in the ringC{t} of convergent power
series, it is well known that every left ideal ofD can be
generated by means of two elements ofD [1]. Two such
generators can be found by means of a computation of a
standard basis as it is explained in [1]. However, we do
not know ifD is strongly simple, namely, if, for everya1,
a2 anda3 ∈ D, there existλ andµ ∈ D satisfying:

Da1 +Da2 +Da3 = D (a1 + λa3) +D (a2 + µa3).

If so, then Proposition 4 and Theorem 7 also hold for
this particular ringD = C{t}

[
d
dt

]
. This question will be

studied in the future as well as the case of real analytic
coefficients.



III. C ONCLUSION

Based on new constructive proofs of one of
J. T. Stafford’s results, we have given in this paper
a constructive algorithm which computes bases of free
modules over the Weyl algebras (whose ground fields
contain Q). Using a dictionary existing between system
and module theories, we are now able to constructively
compute the flat outputs of flat multidimensional linear
systems defined by PDEs with polynomial or rational
coefficients. The extension of the results of this paper
to other classes of multidimensional linear systems such
as differential time-delay or discrete systems will be
studied in the future. Finally, as the constructive proofs
of Theorem 6 developed in [9], [11] use computations
of many time-consuming Gröbner bases, we can only
handle relative small examples up to now. Optimization
of the different algorithms will be studied in forthcoming
publications.
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