Constructive computation of flat outputs of a class of
multidimensional linear systems with variable coefficients
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Abstract— The purpose of this paper is to give a con-
structive algorithm for the computation of bases of finitely
presented free modules over the Weyl algebras of differen-
tial operators with polynomial or rational coefficients. In
particular, we show how to use these results in order to
recognize when a multidimensional linear system defined
by partial differential equations with polynomial or rational
coefficients is flat and, if so, to compute flat outputs and

the injective image representations of the system. These new

results are based on recent constructive proofs of a famous
result in non-commutative algebra due to J. T. Stafford

The Monge problem questions the existence of a matrix of
differential operatorg) € DP*™ such that we have:

kerr(R.) = imz(Q.) & Q (F™).

If such a matrix Q exists, we then say that) is
a parametrization of the system kerz(R.). In the
behavioural approach to multidimensional linear systems,
we say that the behaviouker(R.) admits animage
representation[15], [16], [21], [28], [30]. Let us give a

[27]. The different algorithms have been implemented in the few examples.

package STAFFORD [25] based onOREMODULES [2]. These
results allow us to achieve the general solution of the so-
called Monge problem for multidimensional linear systems
defined by partial differential equations with polynomial
or rational coefficients. Finally, we constructively answer
an open question posed by Datta [5] on the possibility to
generalize the results of [13] to multi-input multi-output
polynomial time-varying controllable linear systems. We show
that every controllable ordinary differential linear system
with at least two inputs and polynomial coefficients is flat.

Keywords— Flat multidimensional linear systems, injective
image representation, constructive computation of bases of
free modules, Stafford’s results, non-commutative algebra.

|. A PEDESTRIAN INTRODUCTION TO THEMONGE
PROBLEM

A. Introduction

Let us introduce the so-callellonge problem(1784).

We refer the reader to [29] and the references therein for

historical details. LetD be aring of differential operators
(e.g., the Weyl algebrd,, (k) = k[z1,...,z,][d1,. .., dy]
of differential operators ini; = 9/0x; with polynomial
coefficients inz;) andF afunctional spacevhich satisfies:
VPl, PQED, Vyl, ygefl P1y1—|—P2yQE.7:.
1)

For instance, ifD is the Weyl algebr&,, (k), we can take

F = C*(R™). In terms of module theory, property (1)

means thatF has a leftD-module structure [26]. Let us

considerR € D?*P and the linear system of PDEs (or

behaviour[15], [16], [21], [28], [30]) defined by:
kerr(R.) = {n € FP|Rn =0}.
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Example 1: 1) We consider the ringD = R(t) [%]
of differential operators inl/dt with rational coef-
ficients int, 7 = C*°(R) and the following matrix

of differential operators

2
R= <d+a(t)d+1, -4

_ 1x2
dt? dt dt a(t))ED ’

where o denotes a time-varying parameter which
belongs taR(¢). Then, we get the following system:
kerr(R.) = {(y, w)T € F?|
(1) + a(t) §(t) + y(t) — u(t) — at) u(t) = 0}.

It was proved in [17] that we have the following
parametrization of the systeker~(R.):

{ y(t) = £(t) + a(t) £(1),

u(t) = &(t) + o) §(t) + (a(t) + 1) (D).

This parametrization ijectiveas we then have:
£=—j+u.

2) Let us consider the ringD = RIdy,ds,ds] of
differential operators with constant coefficients, the
D-module F = C*°(R?) and the system defined by
the divergence operator >, namely:

kerz(div.) = {A = (A;, Ag, A3)T € F3 |
di Ay +dy Ay + d3 Az ZO}
In mathematical physics, it is well-known that the

divergence operator is parametrized by the curl op-
erator, namely, the operator defined by the matrix

0 —ds do
curl = ds 0 —-d; e D3%3
—dy di 0



i.e., we havekerr(div.) = curl (F2). Let us check in the algebra literature to general linear systems. See [3]
whether or not this parametrization is injective, i.e.[17], [18], [19], [20], [21], [23], [24] for more details.
whether or notcurl B = 0 implies B = 0. It is
also well-known in mathematical physics that the Let us introduce a few definitions of homological
curl operator is parametrized by the gradient operatalgebra [26] that will be useful in what follows.
defined bygrad = (di, d2, d3)T. In other words,
we have the following equality: Definition 1: 1) A sequenc€d; : M; — M;_1)icz

{E — (By, By, By)T € F3 | curl B — 5} of morphi_smséi : Mi_ — Mi_l. between leftD-

modules isa complexif we have:
= grad (F).

Hence, the parametrization of the divergence oper-
ator by means of the curl operator is not injective We denote the previous complex by:
because the curl operator is parametrized by the

VieZ, imd; Ckerd;_q.

5 8 5 Sie

gradient operator. oo My S M S M, — ... (3)

B. Systems & Modules 2) Thedefect of exactness of the complex (3)\Atis:
Before giving necessary and sufficient conditions for H(M;) = ker §; /im 6,1

parametrizability, we need to introduce some notations and
results obtained by B. Malgrange [12]. Let us consider a 3) The complex (3) isxact atM; if we have:
matrix R € D?*? of differential operators and let us define - s
the finitely presented lefD-module H(M;) =0 <= kerd; =imdi.

M = D"7/(D'*R), )

where D'*? (resp., DP) denotes the left (resp., right)
D-module of row (resp., column) vectors of length 5) The complex (3) is asplit exact sequencd it is

4) The complex (3) iexactif:

VieZ, kerd; =1imd; 1.

with entries in D. By convention, we setD'*" = 0. exact and there exist morphisras: M;_; — M;
The introduction of the previous lefD-module M is satisfying the following conditions:
very natural as it generalizes well-known algebras which
play central roles in algebraic geometry and number theory. Vi>o0 Si+108; =0,
- 5;00; + 0541 0 8541 = idyy,.

Example 2: 1) Cauchy’s construction of the fiel@
of complex numbers wa€ = R[z]/(z?+1), i.e.,C
can be defined as the ring of real polynomialszin

6) A finite free resolutiorof a left D-module M is an
exact sequence of the form

modulo the relation:? + 1. If we considerD = R[z] sBs pixps SR pixpn SR pixpe Tae g
and R = (2? + 1) € D, then we obtain that: (4)’
M = D/(DR) = Rz]/(R[z] (z* + 1)) = C. wherep; € Z; ={0,1,2,...}, R; € DPi*Pi-1,
2) The rings of numbers such as (.R;) : D*Pi  —  Dl¥pi

A — (Ri)(N) = AR,

and R,, = 0 for a certainm > 1.

A =7Z[iV5]/(Z[i V5] (1 +iV5) + Z[i V5] 2)

appear everywhere in the literature of algebraic num-

ber theory. Hence, if we considé? = Z[i /5] and Example 3: The following sequence

R=(1+1i+v5, 2)T € D?, then we get:
M:D/(D1X2R):A O—>MIL>ML>MN—>O

3) In algebraic geometry, we associate with any affin& €xact if f is injective, i.e. ker f = 0, ker g = im f and

. . . . A .

algebraic variety defined by the complex solutions of 1S SUTiective, i.e.cokerg = M" /im g = 0.

a set of polynomiald, ..., P, € Rzq,...,z,] the o o
algebrad = R[z1,...,x,]/I, wherel denotes the We have the following important result and definitions.

ideal ofR[z1,...,z,] generated byPy, ..., Py, i.e.,

I =", DP;. Hence, if we consider the algebra Theorem 1:[26] Let F be a left D-module, M a left

D= Rl[;i z,] and R = (P, P,)T € D1 D-module and (4) a finite free resolution 81. Then, the
- ) n - I y 4 q

we then obtain: " defects of exactness of the following complex
M = D/(D**9R) = R[z1,...,z,]/I = A. B e

Hence, we see that the left-module M defined by (2) where(R;.) : FPi-1 — FPi is defined by R;.)n = R; 7,
extends some well-known algebraic objects encounterddr all € FPi-t, only depend on the lefb-modulesM

QRQ' FP1 Ri. JFPo 07



and F. Up to an isomorphism, we denote these defects of Let us recall the concept dbrmal adjointof a matrix

exactness by: R of differential operators.
ext, (M, F) = kerz(R;.), Definition 3: [3], [19] Let Q C k be a field andD one
extty (M, F) = kerz(Rit1.)/(Ri (FP1)), i>1. of the two following Weyl! algebras

An(k) = k[xl,... ,Z‘n][dl,... ,dn},

Finally, we haveext%(M,F) = homp(M,F), where (6)
homp (M, F) denotes the abelian group &f-morphisms Bu(k) = k(z1,...,2n)lds, .., du].
(namely, D-linear maps) fromM to F. 1) Aninvolutiond of D is ak-linear mapd : D — D
satisfying the following two conditions:
Using the previous result, B. Malgrange made the re- 000 —id
mark that we then havel}; = R, p; = p andps = q) VP Q€eD, P
0(PQ)=0(Q)0(P).
kers(R.) = homp (M, F), ) 2) Let be theinvolution of D defined by:
where = denotes an isomorphism of abelian groups 0(d;) = —d;,
(k-vector spaces ifF has the structure of &-vector Yack, 0(z;) = i,
space) [12]. This idea was developed by the Japanese 0(a) =
school of M. Sato (in particular, M. Sato, M. Kashiwara, a=a
T. Kawai) [8]. In particular, (5) gives an intrinsic If R € D?*P is a matrix of differential operators,
formulation of the systenkerz(R.), as the right hand then theformal adjointof R is defined by:

side of (5) only depends on the lef?-modulesM and
F and we can prove thal/ is intrinsically defined, the
equality M = D'*?/(D'*4 R) being nothing else than a
particular representation of the system (i.e., the begini
of a particular finite free resolution of the lef?-module
M). We refer the reader to [4], [20] for more details
concerning equivalences of linear systems within module R = —(0(dy — x3), 0(ds), O(d3))T
theory and homological algebra. (dy + 23, do, d3)7.

R=(0(R;;))".

Example 5:Let us consideD = A3(Q) and the matrix
R = —(di — x3, dy, ds) € D" of differential
operators. Then, the formal adjoiit of R is defined by:

Before recalling the first main result concerning the We are now in position to state the first main result
Monge problem, let us introduce a few more definitions.concerning the Monge problem.

Definition 2: 1) [26] A left D-module F is called Theorem 3:Let R € D9*P, M = D'*?/(D'*4 R) and
injectiveif, for every left D-module M, and, for all F be an injective cogenerator lef2-module. Then, the
i > 1, we haveext’, (M, F) = 0. following statements are equivalent:
2) [26] A left D-moduleF is calledcogeneratoiif, for 1) There exists) € DP*™ such that we have:
every left D-module M, we have:
kerr(R.) = Q (F™).

homp(M,F) =0 = M=0. 2) There exists) € DP*™ such that we have:

Theorem 2:[26] An injective cogenerator leftD- kerp(.Q) 2 {\ € DYP | A\Q =0} = D1 R.

module 7 exists for every ringD. 3) The left D-module M is torsion-free namely, the

. : L torsion submodule of\f defined b
We give examples of modules which are injective y

cogenerators. t(M)={meM|30£PecD: Pm=0}

is trivial, i.e.,t(M) =0.
4) extp(N,D) = 0, where N is the left D-module
defined by the formal adjoink of the matrix R:

Example 4: 1) If Q is an open convex subset Bf?,
then the space>(Q) (resp., D’(€2)) of smooth
functions (resp., distributions) oft is an injective
cogenerator module over the rimdy,...,d,] of N = D'9/(D"*? R).
differential operators with coefficients iR [12].

2) [30] If F denotes the set of all functions that We refer the reader to [3], [15], [19], [21] for the proofs.
are smooth onR except for a finite number of General algorithms for computing, ext}, (N, D), t(M)
points, then F is an injective cogenerator left and@ as in the previous theorem are developed in [3], [17],
R(t) [%]—module. [19], [21]. These algorithms have been implemented in the

package @EMODULES [2] and they have been illustrated



in the library of examples of @MODULES containing the concepts of free / stably free / projective / reflexive
more than 30 examples. In particular, the parametrizatioistorsion-free modules in systems theory and in the
given in Example 1 can be obtained by using the construparametrizability problem.
tive algorithms developed in [3], [17], [19], [21].

We note that the concept of torsion-free module is only Theorem 5:[3], [21] Let D be one of the Weyl algebras
a particular one in a long list of possible properties oflefined in (6) and let us consider a matik € D%*P
modules developed in homological algebra. Let us recatlf differential operators, an injective cogenerator B
some of them. module F, kerz(R.) = {n € FP | Rn = 0} and the

following left D-modules

Definition 4: [26] Let us considerR € D?*P and the 1x 1x ~ 1x Ixp 5

finitely presented leftO-module M = D'*?/(D'*4 R). M =DP/(D7R), N =D/(DER),

1) M is said to befree if there exists a non-negative Where R is the formal adjoint ofR. We then have the

integerr € Z, = {0,1,2,...} such that: equivalences presented in Fig. 1.
~ 1xr . . . .
M= D Constructive algorithms have been given in [3], [17],
2) M is said to bestably freeif there existr, s € z, ~ [19] for computing the extension modulesty, (N, D).
such that: Therefore, we can constructively check whether or not
M @ DY*s o pixr, the left D-module M admits some torsion elements, or is

torsion-free, reflexive, projective or stably free. Moregv
3) M is said to beprojectiveif there existr € Z, and  these algorithms allow us to compute the different matrices
a left D-module P such that: Q; € D™Mi-1X™i (my 2 p). We refer the reader to ’E-
M ~ Hlxr MobuULES[2] for implementations of these algorithms and
@P=D". o ; X )
its library of examples illustrating Theorem 5. Finally, we
4) M is said to bereflexiveif the morphism note that it was proved in [20] that the lef--module N
only depends onV/ up to aprojective equivalenc§26],
e+ M — homp(homp (M, D), D), which shows the intrinsicness of the statements given in
defined by Theorem 5.
The parametrizability/image representation problem has
Vme M,V fe€homp(M,D), e(m)(f) = f(m), important applications in the study of controllability of
is an isomorphism of lefiD-modules. multidimensional _Iinear systems in terms of the poss';bili'F
5) M is torsion-freeif we have: to p_atch the solutions qf the systems [15], [16], [28] an_d in
optimal control [22], Diophantine equations [17], motion
t(M)={meM|30#PcD:Pm=0}=0. planning and tracking [6]. See [28] for a nice survey on the
behavioural approach to multidimensional linear systems.
We have the following important results [14], [26]. Finally, we note that “?” in Fig. 1 means that no sim-
ple characterization of freeness is known in homological
Theorem 4: 1) We have the following implications algebra. The purpose of this paper is to study such a
among the module properties: characterization based on one of J. T. Stafford’s results
[27] and to obtain a constructive algorithm for computing
bases of free lefD-modules, whereD is a Weyl algebra
as in (6). We first complete Fig. 1 given in Theorem 5,
2) If D is aleft principal ideal domainnamely, every achieving the previous characterizations and concluding
left ideal of D can be generated by means of arthe parametrizability problem (image representation prob
element of D (e.g., Q(¢) [%]), then every torsion- lem). Moreover, we recall that a multidimensional linear
free left D-module is free. systemker #(R.) is said to belat if there exists an injective
3) If D is aleft hereditary ring namely, every left parametrization, and thus, by Theorem 5, if and only if
ideal of D is projective (e.g.Q[t] []), then every the corresponding lefD-module M = D'*?/(D'*? R)

free — stably free = projective —-
reflexive — torsion-free

torsion-free leftD-module is projective. is free [3], [6], [17]. Hence, if we can effectively decide
4) (Quillen-Suslin theorem) IfD = k[d;,...,d,], freeness, we can then test whether or not a multidimen-
wherek is a field of constants, namely; « = 0 for  sional linear system defined by PDEs with polynomial
all a € kandi = 1,...,n, then every projective or rational coefficients is flat. To finish, we also note
D-module is free. that there is a one-to-one correspondence between the

bases of the free lefi)-module M and the so-called
We can now state the following important theorenflat outputsof kerr(R.). Therefore, the knowledge of a
in the behavioural approach to multidimensional lineaconstructive algorithm which computes bases of a free left
systems defined by PDEs with polynomial or rationamodule M over a Weyl algebraD will give us a way to
coefficients. In particular, it explains the meaning ofcompute the corresponding flat outputs. We point out that



Module M Homological Parametrizations
algebra
with torsion t(M) = extl (N, D) 0
torsion-free exth(N,D) =0 3Q, € DP*™ : kers(R.) = Q (F™)
. ~ Xm mq Xm .
ext’,(N, D) =0, JQ € DPX™M, Qg € DMIXM2
reflexive
i=1,2 kerz(R.) = Q1 (F™),
’ kerz(Q1.) = Q2 (F™?)
3Q, € DP*™ Q; € D™i-1XMi § =292 n:
projective P S .
_ EXtD(N’ D) R ker]:(R.) = Q1 (fml),
1<i<n kerz(Q1.) = Q2 (F72),
stably free -
kerf(Qn—l-) = Qn (]:nLn)
3 Ql c Dp><m7 Tl c pDmXxp .
free ?
ker}-(R.) = Ql (]:m),
W= 1In

Fig. 1.

this problem was still open even for 1-D linear systems 2) If m = 2 and there exist$; € DP1*P2 such that
defined by ordinary differential equations with polynomial Ry Sy = I,,,, then we have the finite free resolution
coefficients. See [13], [23] for more details.

L . ) 0 pixpr 2T pix(potp) T,z 0. (9
C. Stably free modules & Projective dimension — - — M —0, (9)

The purpose of this section is to give a characterization ~ with the notationsl = (R; S2) and:
of stably free modules which will be used in what follows. _ . H1x(potpa)
Let us start with the following result. T=n®0:D — M
)\:(Al /\2) [ T()\):’]T()\l)
Proof: 1. We suppose that > 3. Let us prove that
(8) is an exact sequence. Using the fact that (7) is an exact
0 — plxpm fm, Biplxpe T oar @) sequence, and thu®,, 1 R,,_> = 0, we obtain

Proposition 1: Let us consider a finite free resolution of
a left D-module M of the form:

1) If m > 3 and there existss,, € DPm-1*Pm such Ty1Tnes = (Rm_1, Sm) ( Ry2 )
that R,, S,, = I,,,, then we have the finite free 0

resolution of M/ = Rp_1Rm_2=0,

Ixpmoy L=t DX (pr—24pm) L2, .
0 — D7pm= Drtpm=zte which proves that D'*Pm-1 T, 1) C kerp(.T},_2).
DLxpm—s Lmos m o g Let us now considef)\, ) € kerp(.T},_2). We then
(8) have(A, w)Tm—2=AR,—2=0and using the fact that
with the following notations: (7) is an exact sequence, there exigts D'*P=-1 such
that \ = v R,,,_1. Let us define:
Rm72
Tm—l = (Rm—17 Sm)7 Tm—2 = ( 0 ) 1
C=v(p, , —SmBm)+ R, € D*Pm-1,



Using the relations?,,, R,,_; = 0 andR,, S,,, = I,,,,, we  with the following notations:

then get )
T-—( f t)eD“2 T=1&0
= 1= d d ) - .
CTmfl C(Rmfla Sm.) tﬁ +2 T
= (VUppoy = Sm Bin) Rn—1 + pt Ry Rin—1,
(L — S Ron) Son -+ 1t Ry Si) Let us state two useful results.
Pm—1 m m m m m
= Whna, =0 ), Proposition 2: 1) [26] Let M be a projective lefD-
which proves thakerp (.7, 2) C (DY*P=»-1T,, ), and module defined by a finite free resolution of the form
thus, the exactness of (8) &t'*(Pm—2+pm), (7). Then, the exact sequence (7) splits.
Moreover, using the fact that (7) is an exact sequence, 2) [26] If F is a left D-module, then the functor
we then have homp(-,F) transforms split exact sequences of
1 o) 1 left D-modules into split exact sequences of abelian
D Pm—2TPm Tm72 = D XPm-2 Rm72 = kerD(-Rm73)> groups
which proves that (8) is exact d&!*Pm-3, o o
Finally, using again the fact thak,, admits a right- We have the following important characterization of
inverses,,, we obtain that the exact sequence stably free leftD-modules.
0 — DxPm S, pixpmoy Bt pixpnap Proposition 3: A left D-module M is stably free iff

there exist two matrice®’ € D?*?" and §' € DP'x¢
satisfying the following two conditions:

@ : (D1Xpm_1 Rim_1) — D1Xpm-1 {

splits, i.e., there exists a morphism

M D1><p’/(D1><q’ R/)7

10
RS =1I,. (10)

such that we have [3], [17], [26]:

Ryp)o(.Sh) +vo( Ryp—1) =idrixp,,_1-
( )0 (:Sm) + oo 2 b Proof: If M is a stably free leftD-module, then

Hence, if\ € kerp(.T,,—1), we then get there existy’, ¢ € Z, such thatM @ D1x7 =~ pixr
Let us denote byy : D — M @ D7 the
ARp—1, ASm)=(0, 0 . ) :
A B m) = ( ) above isomorphism and by, : M @ D¢ — M
A= ASn) B + ARy 1) =0, the canonical projection ontd/. Hence, we obtain the
which proves that the morphisiiT},_+) is injective. following commutative exact diagram
2 can be proved similarly. 0 0
Let us illustrate P ition 1 b f -I l l/
et us illustrate Proposition 1 by means of an example. kerp (1 0 1) Dlxa
Example 6:We consider the ordinary differential linear 1lx,,/ ® L ’;Xq,
system whose solution i®’'(R) is y = 4§, namely, the 0— D — MoD —0
derivative of the Dirac distribution at ¢ = 0: Lmoy . Lm
t2 y(t) — 07 0— ]\f — ]\f[ — 07
If we consider the ringD = A;(Q) of differential \ynich shows that we have:
operators in% with polynomial coefficients int over Q,
R=(1?, td+ 2)T € D? and the leftD-module Y(kerp(mi o)) = 0@ DT =iy (D).
M=D/(D'*?R)y=D/(D#?+D ti 19 Therefore, the first vertical exact sequence becomes the
dt ’ following exact sequence

then a finite free resolution off is defined by 'R 1wy TOW
0 — DY =, pb» 225 M — 0, (11)
O—)Dﬂ)Dbdi)DL)M—)O, L ) )
_ where R’ € D7 *? s the matrix representing the mor-
whereR, = (&, —t) € D'**(see :;13] for more details). phism =1 04, : Dqu'l—> DlXP'lwith respect to the

We easily check thab, = (t, £4)° € D?is a right- standard bases oD'*¢ and D'*?. If we denote by

inverse of R,. Hence, using Proposition 1, we obtain thers : M & D'*4 — D'*4 the canonical projection onto

following finite free resolution of\/ D'*4 we then have:

T T . .
0—)D1X2—1>D1X2—)M—>0’ 71'2021:de1><(1/,



Hence, the morphismr, o ¢ : D*P" — D1%4'| repre-

sented byS’ € DP'*4" with respect to the standard bases

of D*?" and D'*?, satisfies that
(ma0tp)o (Y oir) =idpixa,

i.e., R S’" = I/, which proves the result.

Conversely, if the leftD-module M is the cokernel of
the D-morphism.R’ : D'*7 — D*?" where the matrix
R’ admits a right-inverse’, then we obtain

kerp(.R') ={A € D7 | AR =0} =0
asA = (AR')S’ = 0. Using the fact that a stably free

module is projective, by 1 of Proposition 2, the exact

sequence (11) splits and we obtdif ¢ D1x4" =~ D1xp’
which shows that\/ is a stably free leftD-module.
|
Using the fact that a projective lefb-module is a

Il. CONSTRUCTIVE COMPUTATION OF FLAT OUTPUTS

. Introduction

Let us start by explaining what are the main difficulties
of testing freeness for a lefd-module M.
Let us consider thé-vector space (e.gk = Q, R, C):

V={(z,y, 2)" €k’ |22 +3y+52=0}.

If we want to compute a basis df, we usually do the
following computations:

3 5
2¢4+3y+52=0 = x:—§y—§z
3 5
T=——y— =2z
2¥ 2%
— Y y=y, Vy z€k

z =2z,

stably free leftD-module and we can always construct a

finite free resolution of a finitely presented léit-module
M = D'*? /(D4 R) [3], we obtain that ifM/ is a stably

free left D-module, then, by Proposition 1, (8) is a shorter

finite free resolution ofM. By induction on the length
of the finite free resolutions of\/, we finally obtain a
short finite free resolution of\f of the form (9), where

the matrix 77 admits a right-inverse. Hence, in what
follows, we can always suppose that a stably free left

D-module M can be defined b/ = D'*?/(D'*4 R),
where R € D?*P admits a right-inverseS € DP*4,

Therefore, we obtain the following basis

(SIONCIDY

of the k-vector spacéd/, i.e., we have:

3 T 5 r
vor () er (o)

Let us now consider th&-module defined by

The corresponding algorithm has been implemented in

OREMODULES [2].
Let us illustrate this result by means of an example.

Example 7:Let us considerD = A;(Q) and the left
D-module M = D'*2/(D'*2 R), whereR is defined by:

R( ) e D?*2,

We can check thad/ has the free resolution

2 d
—t td —1

d2

d
“t% =2 =

0—>D£>D1X2'—R>D1X2L>M—>O,

with the notationR, = (4, —t) € D'*2. Moreover, the
matrix Sy = (t, %)T is a right-inverse ofR,. Hence, if
we denote byl = (R, S2), then, by Proposition 1, we
obtain the finite free resolution a¥/:

0— D2, plx3 T, 0. (12)

We can check thal; admits the following right-inverse:
0 -1

-1 0

d
o

Therefore, the exact sequence (12) splits, and thiiss a

stably free leftD-module of rank 1 and (12) is a minimal
free resolution of)M.

S = S D3*2,

P={(z,y, )T €Z® |20 +3y+52=0}

obtained by taking the ring instead of the field. We note
that we cannot repeat the same computations/asdoes
not belong toZ. However, we have the following charac-
terization of the fact thaf(ay, 81, 1), (a2, B2, 72)T}

is a family of generators of thE-module P:

T a1 Qo
y |€P=Z\| b |+Z | P
z Al V2

(13)
T = a1ty +azts,

y = Bt + Pato,
z =111+ 2 to.

< dtq, ty € Z,

Moreover,{(a;, Bi, 7:)T }1<i<2 is a basis ofP iff (13) is
injective, i.e., iff there existi;; € Z, i =1, 2, j = 1,2, 3,
such that:

(13) = ti=apx+apy+tasz, i=12.
Hence, we find again the fact that freeness is equivalent to
the existence of an injective parametrization of the linear
systemP (see Theorem 5). The Hermite canonical form
of the vector(2, 3, 5)T is (1, 0, 0)7, and thus, we obtain
that P is a freeZ-module and

P=17(9, —11, 3)T +7z(7, -8, 2)T,



i.e., we have the following injective parametrization@f it is conceptually nothing else than a Gaussian elimination

T =9t + T, { =25 —2y— 2 Let us introduce a few definitions.

y=—11t, — 8y, =—>

3 422 to=3x+3y+2z Definition 5: 1) Thegeneral linear groupGL,, (D)
! Z is the group of invertible matrices with entries i

Finally, we note that no canonical form such as Hermite, GL, (D) = {U € D™*™ | 3V € Dmxm .

Smith or Jacobson forms exists over the Weyl algebras UV = VU<I
A, (k) for n > 1 and B, (k) for n > 2 because they are - = I .
not left principal ideal domains. Hence, we need to pursue 2) The elementary grougL,,(D) is the subgroup of

another way that we are going to describe now. GL,,(D) generated by all matrices of the form
B. Computation of bases over the Weyl algebras Ly +rEyj, re€D, i#j,
In what follows, we shall use the notatiab for the whereE;; denotes the matrix with at position(i, 5)
Weyl algebrasA,, (k) or B, (k) defined in (6), where: and0 elsewhere.
is a field containingQ. Let us recall a famous result in 3) A column vectora = (ai,...,an)T € D™ is
non-commutative algebra due to J. T. Stafford. said to beunimodular if it admits a left-inverse
b= (b1,...,by) € D™, namely, if we have:

Theorem 6:[27] Let ay, as, az € D and the left ideal m
I = Day + Das + Das of D generated by, a; and ba — Zbiai =1.
as. Then, there exish, p € D such that we have: =

I =D (a1 + Nas) + D (ag + pas). 4) We denote byU,,(D) the set of all unimodular
vectors of D™,
A direct consequence of Theorem 6 is that any left
ideal of D can be generated by two elements[of The next proposition will play an important role in
what follows.
Example 8:Let us considerD = A3(Q) and the left
ideal I = D (dy +x3) + D dy + D ds of D. Then, we have Proposition 4: Let us considern > 3 and a unimodular
I =D (dy 4 23) + D (ds + ds) as: vectora = (ai,...,am)? € Uy, (D). Then, there exists a
matrix £ € EL,,(D) such that:

dy = (dg(dy+ds3))(dy+ x3) T
—(ds (dy + Ea=(1,0,...,0)".
2 (dy + x3)) (d2 + d3),
ds = (ds(d2+ds))(di+x3) Proof: Applying Theorem 6 to the left ideal

—(d3 (dy + x3)) (d2 + d3). I=Da,+Das+ Dan

Therefore, we can také = 0 andy = 1 in Theorem 6. of D, there exist\, 1 € D such that:
Two constructive proofs of Theorem 6 have recently I =D (a1 + Xam) + D (az + pram).
been developed in [9], [11]. They have been implementeﬂ

in the package B\FFORD [25] using CREMODULES [2]. sing the fact thata € Un(D), we then obtain

>t . Da; = D, and thus, we have:

The following important corollary of Theorem 6 is also m—1
due to J. T. Stafford. D(ar+Aam)+ D (as+ pan)+ Y Da;=D.
=3

Corollary 1: [27] A stably free leftD-module M with  Hence, we get:
rankp (M) > 2 is free. ,
The purpose of this paper is to give a constructive
proof of this corollary (contrary to the original one).Let us definei| = a;+ X ap,, ay = as+par, anda) = a;,
In particular, it will give us an effective algorithm for ¢ > 3, and the following matrix:
the computation of bases of the free leR-module

= (0’1+Aama G2t G,y A3, .- -aam—l)T € Um—l(D)

M = DYr/(D'™4R), and thus, for the flat outputs L 00 ... 0A
. 010 ... 0 p
of the corresponding systenkerz(R.) (for any left 00 1 0 0
D-module F). We also note that another algorithm for E, = € EL,,(D).
the computation of bases of free modules over the Weyl :
algebras was given in [7]. However, we believe that our 0 0 0 10
algorithm is simpler than the one developed in [7] as 0 0 0 0 1



We then have:
T
Eya=(a), ab,...,a,,_1, am)" .

Now, using the fact that' € U,,_;(D), there exist
bi,...,b;m_1 € D such that:

(14)

Multiplying (14) by o} — 1 —

m—1

2 (@

Let us denote by = (a} —1—ay,) b;, @ > 1, and define
the following matrix:

a,,, we obtain:

T —1—am)bja, = (a] —1—an).

1 0 0 ... 0 0
o 1 0 ... 0 0
o o 1 ... 0 0
Ey = ) € EL,.(D).
o o0 0 ... 1 0
al ay af ... all_ ;1
We then have:
By (d),...,a0_1,am)" = (a},...,a),_1,a) —1)T.
Hence, if we define the following elementary matrix
1 0 0 ... 0 —1
010 ... 0 O
0 01 ... 0 O
Es = ) € EL,,(D),
0 0 0 10
0 00 1
then we get:
Bs(dy,....d, ,,a\—1)T =@, db,...,d, ,, a}—1)T.
Finally, if we introduce the matrix
1 00 ... 0O
—alh 10 ... 00
—ay 0 1 ... 00
E4 = e EL’I’TL(D))
—al, ;, 00 ... 10
—af+1 0 0 01
we then obtain:
Ey(1, db,...,d, 4, ay —1)T =(1,0,...,07.

Hence, the matrixE = E4E3EsE, € EL, (D)
satisfies:

E(al,...

Example 9:Let us consider the algebrR = A3(Q)
and the column vectar = (d; + z3, do, dg)T. We easily
check thath = (d3, 0, —(dy+z3)) is a left-inverse of
a,i.e.,a € Us(D). Therefore, by Proposition 4, there exists
a matrix £ € EL3(D) such thatE a = (1, 0, 0)T. Let us
compute such a matrix. We first need to apply Theorem 6
to the left ideall = D (dy + x3) + Dds + D ds. Using
Example 8, we can tak& = 0 andp = 1. If we define

1 00
Ei=[( 0 1 1 | €ELyD),
0 0 1
we then obtainF; a = (d; + x3, do + ds, dg)T. Now,

we can check that we have the&But identity:
(dg + dg) (d1 + xd) - (d1 + xg) (d2 + d3) =1.
Therefore, if we define! = (di + 25— 1—d3) (d2 +d3),

ay = —(di +x3 — 1 —d3) (d1 + z3) and
1 0 O
Ey = 0 1 0 c ELJ(D),
al af 1
we then get:
By (dy + 23, do+ds, ds)"
= (dy +x3, do+ds, dy+a3—1)"
Then, if we denote by
FE3 = ) S EL3
1 0 0
E, = (d2 + ds) 1 0 S ELg(D)
(d1 + x3 — 1) 0 1
andE = E, E3 By E; € EL3(D), we finally obtain:

FEa=(1, 0, 07T,

We now state the main result of the paper.

Theorem 7:Let R € D?7*P be a matrix which admits a
right-inverseS € DP*?, namely,R S = I, and satisfies
p > q+ 2. Then,M = DY?/(D'*R) is a free left
D-module withrank(M) =p —q > 2.

Proof: Let us define the formal adjoirft € DP*1 of
R € D?*? (see Definition 3). Taking the formal adjoint on
both sides of the equalitig S = I, we then getS R = [,
which shows thaf? admits the left- inversé. In particular,
the first column ofR is a unimodular vector oD? and
p > q+ 2 > 3. Hence, by applying Proposition 4 to the
first column of R, we obtainE; € EL,(D) such that:

1 %

~ 0
ElR: . — 9
Ry

R, € DP=1x(a=1)



If ¢ > 2, then we can easily check that the first columrf we define the matrices

of the matrix R, € D®—1x*(=1) js unimodular and we Q= F e pr<v—a),
havep—1 > ¢+ 1 > 3. Applying Proposition 4, we obtain ~ (p—a)
F, € EL,_1(D) such that: T =Ge DP-0xp,
1« S'=85-QTS e DP*1,
N 0 N and apply the involutiorg to (15), we finally obtain the
Ry =1 . & | R € Dlr=2)x(a=2), following Bézout identity [17]:
: 3
R
0 (7)s @=n (16)

Hence, if we denote by
The fact that the Weyl algebras,, (k) and B,,(k) are left

Ey = < Lo ) € EL,(D), qn_d right noetherian rings [14] implies that they atably
0 £ finite [10], namely, for all € DP*? such thatl/ V = I,
we then obtain: for a certainV’ ¢ DP*P, then satisfies/ U = I, i.e.,
U € GL,(D). Applying this result to (16), we obtain the
1 % . . L
01 new Bézout identity:
~ . R

mEyE=| 10 | s Q(g)-1 = SR+QT=I. a7
(:) 0 Rs The matrix(RT T7)T is then invertible oveD, which,

in algebra, is well-known to be equivalent to the fact that

If ¢ > 3, then we can also check that the first column othe leftD-moduleM = D'*?/(D'*9 R) is free [17], [26].
R3 € D®=2)x(a=2) js unimodular angp — 2 > ¢ > 3. By  Let us give the complete proof.

induction, we finally obtain®, € EL, (D) such that: The conditionk @ = 0 implies that:
1 % % - % (D4 R) C kerp(.Q).
8 (1) ’{ T Moreover, if v € kerp(.Q), then from (17) we obtain
o v = (vS')R, which shows thatv € (D'*?R) and
~ 00 0 kerp(.Q) = (D'*?R). Moreover, kerp(.R) = 0 as S
(Eq---E1) R = 00 0 1 is a right-inverse ofR, i.e., RS = I, andw € kerp(.R)
00 0 impliesw = (w R) S = 0. Finally, (D'*? Q) = D'*(P=a)
: becausé D' *? Q) C D'*(P=9) and, for allu € D'* (P9,
00 0 o we haveu = (uT)Q € (D'*? Q). Therefore, we obtain

the following split short exact sequence [26]:

Hence, if we define the matrik = £, --- E; € EL,(D),
then we easily get that every row vector

v=(v1,...,v,) € kerp(.(E R))

0 — plxa SR Dixp ﬁ, Dixr—a) __, . (18)

Then, a standard argument in homological algebra shows
that M = coker(.R) = (D™*? Q) = D**(P=9), proving

satisfiesv; = 0 for i = 1,...,q and vy41,...,v, are thatM is a free leftD-module of rankp — ¢ and a basis
arbitrary elements irD. Therefore, we have: is given by the columns of).
~ [ |
kerp(.(E R)) = D@9 (0 I, ,). Let us illustrate Theorem 7 and its constructive proof.
Using the fact thatt” is invertible overD, we can check _ i
thatkerp(.R) = kerp(.(E R)) E, and thus, Example 10:Let us consideD = A3(Q),

R=—(dy — a3, da, d3)e€ D3

the left D-module M = D'*3/(D R), any left D-module
F (e.g.,F = C*(R3)) and the system:

kerp(.R) = D*®=9 (0 I, ,)E) = D>*®=9 F,

where F € D(P~9x» denotes the matrix formed by the
lastp — ¢ rows of E. By taking the lasp — ¢ columns of

the inverseE " of £, we obtain a matrbG € D»*(»~%) kerz(R.) = {(y1, y2, y3)T € F? | (19)
which satisfiest” G' = I,,_,. Using the identities diy1(z) + do ya(2) + d3 y3(z) — 3 41 (z) = 0}

SR= Iy, FR= 0, FG=1, We note that if we remove the last termy y; in the
we obtain: previous equation, then we obtain the divergence oper-

S ator in R? studied in Example 1. As was recalled in
S—-SGF (R G) = I, 0 _ 1, (15) Example 1, if 7 = C*°(R?), the divergence operator is
F N0 L, ) " parametrized by the curl operator, but the curl operator



is not an injective parametrization because the systeof rank at least 2. Indeed, using Proposition 1, we can
formed by the curl operator is parametrized by the gradiembmpute two matrice®’ € D9 *?" and S’ € D 4" such
operator. Moreover, using Theorem 5 and the fact thahat M = D'*?'/(D'*¢ R') and R’ S’ = I,.. Now, the
the gradient operator cannot be parametrized, we obtaiank of a module being an intrinsic property, we obtain that
that the D = QId, d2, d3]-module associated with the p’ — ¢’ > 2. Hence, using Theorem 7, we can compute a
divergence operator is reflexive but not free. Hence, it dodsasis of the leftD-module M’ = D'*?'/(D'*¢" R’) and
not admit a basis. we obtain the matrice$’ € DV’ x4 Q' e Dr'*®'~d)
However, we can check that the mattk admits the and 7’ € D®~4)x¢" sych that we have the following
right-inverseS = (—ds, 0, d;—x3)T. By Theorem 7, split short exact sequence:
we then obtain that the lefb-module M = D'*3/(D R) )
is free of rank 2. By following the constructive proof of o — pixd -E, pixp’ @, pixe'-d) _, .
Theorem 7 we can compute a basisidfand an injective oS5 T
parametrization of (19).
The formal adjointkR = (di + x3, d2, ds)” of R Finally, we easily check that an injective parametrization
has already been computed in Example 5. Now, we neyl of A/ can be obtained by removing the last— p
to apply Proposition 4 td?. The computations were done (zero) rows of Q’. A basis of M is then defined by
in Example 9 and the matri¥’ € EL3(D) defined there {m(e; T)}iz1,. (p—q)» Where T € D@ =d)*xp s the
satisfiesE R = (1, 0, 0)”. Hence, taking the last two matrix obtained by removing the last—p columns of the
columns off(E), we obtain a basis ai/ or, equivalently, matrix 7’ and {e;}i—1..,»_, denotes the standard basis

.....

the following parametrization dfer (R.) of D1x(®@'—4a).
yi(x) = (1—L1)(dz+ds)&i(a) . , :
(1= Ly) (dy — a5) + 1) o) C. A constructive answer to Datta’s question
In [23], the following result was proved.
= (—La(da+d 1
y2() (=L (d2 +d3) + 1) & () (20)
—La2 (di —23) & (), Corollary 2: Every controllable ordinary differential
ys(x) = (—(1+4 L) (de +d3) +1)&(x) linear system with polynomial coefficients and at least
—(1+ L) (dy — x3) &2(2), two inputs is flat.
with the following notations: Corollary 2 answers an open question posed by Datta
Li = (dy +ds3) (dy — ds — x5 + 1), [5] on the possibility to generalize the results of [13] for
Lo = —(dy — 23) (dy — ds — 25 + 1) multi-input multi-output time-varying controllable liae
2= T\d m &)1 = a3 = I3 : systems. We point out that no effective algorithms for

We can check that (20) is injective as we have the computation of the corresponding flat outputs were
known. Theorem 7 then solves the problem by giving

— (=2 0 — e q —

afz) = (il tdvdy =gy + (225 = 1) dy a constructive answer to Datta’s question in the case
—z3+ x5+ 1) ya(2) of polynomial coefficients. The corresponding algorithm
+(d? —dyds +x3d3 — (223 — 1) dy has been implemented inT&FFORD. Let us illustrate
+32 — x3) ys(z), Corollary 2 by means an example.

Sa(z) = wyi(x)+ (—di+dida —dads+dids Example 11:We consider the following time-varying
+dy — (x3 — 1) d3 — w3dg — 2) y2(7) linear control system:
+(d3 —dydy +dads —di d .

( 3 11 d2 2 U3 | ; 3 ) l‘g(t) — U2(t) = O’ (21)

which proves thaf¢;, &} is a flat output ofker #(R.).

Finally, we point out that the fact that (20) parametrizes.et us consider the Weyl algebia = A;(Q) and the left
ker7(R.) for any left D-module directly follows from D-moduleM = D'**/(D'*? R), whereR is defined by:
(16) and (17) or, equivalently, from the fact that (18) is
a so-called split short exact sequence and the functor R_ ( 0 & 0 -1 > c p2xi
homp(-,F) transforms split exact sequences of left 0 —t 0 ’

D-modules into split exact sequences of abelian graups/
vector spaces (see 2 of Proposition 2). We denote byker+(R.) the corresponding system, where
F is any left D-module (e.g.,F = C*°(R)).

Finally, combining Proposition 1 and Theorem 7, we ob- If we consider for the moment the lef§; (Q)-module
tain a constructive algorithm for the computation of base® = B;(Q)'**/(B;(Q)**? R), then by using a Jacobson
of a stably free leftD-module M = D'*?/(D'*4R) form, we can easily check that we have the following

a
dt



injective parametrization dfer~(R.) for any left B, (Q)-
module F (e.g.,F = Q(t)):

{El(t) = gl(t)a
za(t) = &2(1),
wilt) = 1&00),
us(t) = &a(t).

We note that the previous parametrizationkef - (
singular att = 0.
However, we easily check that

T
00 0 -1
S = 4
t 0 5 0
IS ar -lnverse Oif, l.e., = Ilg an — = 2.
ght fR RS = I dp—q =2

Therefore, by Theorem 7, we obtain that the IBfimodule
M =

R.)is

The formal adjoint ofR is defined by:

d T
B 0 -5 0 -1 '
-4 0 —t 0
Considering the first unimodular column Bfand applying
Proposition 4, we obtain:

DO+ D (=4)+D(-1)
=D0+1-(-1)+D (% +0-(-1)).

Hence, taking\ = 1 and . = 0, we define the following
matrices:

1 0 0 1 1 0 0 O
01 0 O 01 0 0
EE=loo1 0001 0]
0 0 0 1 1 0 0 1
100 -1 1000
< 1 0 0
By — 01 0 O By = dt
0 01 0 0 01 0
Defining E = E4 E5 E5 B, we then get:

10 0 O

T
00 i)

—t —a

E§:<

Now, we consider the second column BfR and, in
particular, the vector(0, —t, —dt)

D4 /(D2 R) is free. Let us compute a basis of
M, i.e., a non-singular parametrization of the system (21).

10 —1
Ey=(01 0
00 1

1
A
d
%‘Fl

0 0
1 0 |.
01

Defining the matrixE’ = Ej E4 E} E{ € EL3(D) and

El/

(E"E)R =

oo o

= diag(1, E’) € EL4(D), we then get:

O O = O

The last two columns of the formal adjoint & FE form

the following matrix inD**2:

12 —td 41
t(t+1) —(t+1) 4 +1
N td 42 Y
tE+1) L 42t 41 —(t+1)5

We then check thaf) admits the left-inverse

_ 0 0 t+1 -1 c p2xa
t+1 -t 0 0 '
Hence, the time-varying linear control system (21) is
injectively parametrized by

wy(t) =126 (t) — t&a(t) + &a(t),

wa(t) =t(t+ D &) ~ (t+1)&(t) + &(1),

uy(t) =t¢§ ()+2§1()—§2( )s

up(t) =t (t+1) &) + (2t + 1) &1(t) — (¢ + 1) (1)

and a flat output{&y, &3} of kerz(R.) is defined by:

Doui(t) — ua(t),

&(t) = (t+
fg(t) ( +1) .’El(t) _th(t).

We do not know whether or not Corollary 2 can be
extended to the case of real analytic coefficients. If we
consider the ring of differential operatofs = C{t} [ %]
with coefficients in the ringC{¢} of convergent power
series, it is well known that every left ideal @ can be
generated by means of two elements/a»f{1]. Two such

We can check generators can be found by means of a computation of a

that this vector is unimodular. Applying Proposition 4, westandard basis as it is explained in [1]. However, we do

obtain:

D0+ D (- )+D< i) D(O—i)—kD(—t).

Then, takingh = 1 and ¢ = 0, we define the following

elementary matrices:

10 1 1 0
Ej=(010], Ej=| 0 1
00 1 -t 4

— o O

)

~

not know if D is strongly simple namely, if, for everya,
ae andasz € D, there existA and i, € D satisfying:

Da, +Da2—|—Da3:D(a1+>\a3)—|—D(a2—|—ua3).

If so, then Proposition 4 and Theorem 7 also hold for
this particular ringD = C{t} [4]. This question will be
studied in the future as well as the case of real analytic
coefficients.



IIl. CONCLUSION

Based on new constructive proofs of one of

J. T. Stafford’s results, we have given in this papel22]
a constructive algorithm which computes bases of free
modules over the Weyl algebras (whose ground fieldgs)

contain Q). Using a dictionary existing between system

and module theories, we are now able to constructivelpéll]
compute the flat outputs of flat multidimensional linear
systems defined by PDEs with polynomial or rational
coefficients. The extension of the results of this papé?
to other classes of multidimensional linear systems sugpe)
as differential time-delay or discrete systems will be

studied in the future. Finally, as the constructive proof?7
of Theorem 6 developed in [9], [11] use computationgysg]

of many time-consuming ®bner bases, we can only

handle relative small examples up to now. Optimizatiorﬁzg]
of the different algorithms will be studied in forthcoming [30]

publications.
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