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1 Introduction

This article summarizes recent progress in an algebraic analysis approach to systems of linear
functional equations and emphasizes computational issues. Concentrating predominantly on
work by a small group of people including the author of this article, the paper adopts a
rather subjective viewpoint. Nevertheless, we hope that this article could also serve as an
introduction to this subject.

We assume that a system of linear functional equations is given; e.g., a system of linear
ordinary or partial differential equations, a linear differential time-delay system, or a multi-
dimensional discrete linear system, etc. The origin of such a system could be mathematical
physics or the engineering sciences, prominently control theory; e.g., the given equations could
describe a finite-dimensional deterministic linear control system. The equations are assumed
to be linear in the unknown functions and their derivatives, shifts, etc., but their coefficients
may be non-constant (e.g., time-varying).

Employing the philosophy and the techniques of algebraic analysis and the theory of
D-modules, i.e., the theory of modules over rings of partial differential operators, cf., e.g.,
[Kas95], [Bjö79], we associate to the system a module over a (not necessarily commutative)
ring D which contains the operators that occur in the given description of the linear system.
The system module reflects structural properties of the solution set of the given system in an
appropriate signal space. In this article we mainly address certain degrees of parametrizability
of this solution set, which is also referred to as a behavior. The favorable case is that the
vector space of solutions can be realized as the image of a D-linear map. An even more
desirable situation is given if such a linear map can be chosen to be injective. An example is
provided by the de Rham complex on an open and convex subset ofRn (which we consider as a
smooth manifold). The behavior defined by the divergence operator admits a parametrization
in terms of the curl operator (not, however, an injective one), and the solutions of the system
defined by the curl operator are parametrized by the gradient operator (cf. Example 4.2
below). Apart from the general interest in solving systems of linear functional equations,
we note that the notion of parametrizability is equivalent to controllability in the context of
linear control theory (cf. Section 4), which explains the impact of the above questions.

Methodically, this paper employs module theory over non-commutative rings, in partic-
ular, Ore algebras, as well as homological algebra. We owe much to work by many other
authors, in particular, to the works in the following (not exhaustive) list: [Obe90, PQ99b,
Qua99, Woo00, Zer00, Pom01, Zer01, PQ03, Qua10a, Qua10b] (in order of appearance).
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For lack of space, more recent developments could not be included in this survey. For
instance, recent progress in the study of autonomous systems using the technique of purity
or grade filtration, cf., e.g., [Bar10], [Qua13]. In the present context, effective methods have
been developed to simplify (e.g., factorize) systems of linear functional equations (cf., e.g.,
[CQ08]), in particular, the technique of “Serre’s reduction” (cf. [BQ10], [CQ12]), which tries to
reduce the number of equations and the number of unknowns of a system of linear functional
equations. Moreover, recent work (cf. [QR13b, QR]) developing effective versions of Stafford’s
theorems (cf. [Sta78]) can only be mentioned here. (Subsection 5.4 presents only one of
Stafford’s theorems.) Specific results about (multidimensional) codes cannot be dealt with
here either (cf., e.g., [LLO04]).

Section 2 introduces the point of view adopted in this paper, using module theory and
homological algebra. We concentrate on a certain class of rings in what follows, which is
introduced in Section 3. This choice allows to perform effectively the module-theoretic con-
structions which are necessary to study the structural properties of systems of linear functional
equations, using Janet bases or Gröbner bases. The central Section 4 addresses the problem
of deciding whether or not the solution set of a linear system can be parametrized. In the
context of control theory this property amounts to controllability of the system. The more
refined question about injective parametrizability, i.e., flatness of linear control systems, is
dealt with in Section 5. Finally, Section 6 lists several software packages which have been
developed in the context of investigating the topics of this article. We conclude in Section 7.

The following notation is used throughout this paper. If D is a ring and R ∈ Dq×p, then
we denote by .R the homomorphism D1×q → D1×p of left D-modules which is defined by
right multiplication with R. Similarly, and more generally, for any left D-module F we write
R. for the homomorphism Fp×1 → Fq×1 of abelian groups induced by the left action of R
on column vectors with entries in F , the reference of R. to F being clear from the context.
Finally, we denote by In the (n × n) identity matrix and by GL(n,D) the group of (n × n)
matrices with entries in D which are invertible over D (i.e., the general linear group). All
rings will be associative algebras with an identity element 1, all ring homomorphisms will
preserve the identity elements, and all modules will be unital. We use the standard notations
N = {1, 2, 3, . . .}, Z, Q, R, C for the sets of natural numbers, integers, rational, real, and
complex numbers, respectively.

The author would like to express his gratitude to A. Quadrat and J.-F. Pommaret who
introduced him to the algebraic analysis approach to systems theory. The efforts of two
referees, whose detailed comments led to a substantial improvement of the paper, are very
much appreciated as well.

2 The system module and behaviors

Inspired by conventions in the study of modules over rings of differential operators, we denote
by D the ring of linear functional operators that allow to formulate a given system of linear
functional equations as

Ry = 0, R ∈ Dq×p, y a vector of p unknowns. (1)

We assume that D is a (not necessarily commutative) Noetherian domain, i.e., the product
(composition) of two non-zero elements (operators) inD is non-zero, and every submodule of a
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finitely generated (left or right) D-module is finitely generated. This entails a straightforward
generalization of the notion of rank from vector spaces to D-modules. For computational
purposes we confine ourselves to certain iterated skew polynomial rings1 as defined in the
next section.

The set in which solutions y of (1) are to be found is assumed to be of the form Fp×1, where
F is a left D-module, the left action of D being chosen accordingly to the given equations in
(1). We refer to F as a signal space.

All (linear) consequences of (1) are obtained by multiplying the equation by matrices with
q columns and entries in D from the left. Hence, we study the cokernel of the homomorphism
.R : D1×q → D1×p of left D-modules induced by R, which is in some sense an intrinsic
representation of (1) (cf. Remark 2.10).

Definition 2.1. We refer to the left D-module

M := D1×p/D1×qR

as the system module defined by Ry = 0.

We denote by e1 := (1, 0, . . . , 0), . . . , ep := (0, . . . , 0, 1) the standard basis vectors of D1×p.

Remark 2.2. The above description ofM is a finite presentation ofM in terms of generators
and relations. We call R a presentation matrix of M . The residue classes e1 +D1×q R, . . . ,
ep +D1×q R of e1, . . . , ep form a generating set for M , and the rows of R form a generating
set for the left D-linear relations that are satisfied by these generators (in the given order).
If π : D1×p → M denotes the canonical projection, then every element of ker(π) is a left
D-linear combination of the rows of R. Usually we express these facts by saying that

0 Moo D1×pπoo D1×q.Roo

is an exact sequence of left D-modules, i.e., the kernel of each homomorphism in this se-
quence coincides with the image of the previous homomorphism if present. A sequence of
left D-modules and homomorphisms as above which satisfies the weaker condition that the
composition of each two consecutive homomorphisms is the zero map is called a complex of
left D-modules.

Remark 2.3. A module-theoretic construction allows to relate the set of solutions or behavior
of the linear system (1) in Fp×1

SolF (R) := { y ∈ Fp×1 | Ry = 0 }

to the system moduleM = D1×p/D1×qR. By definition of a solution y of (1) with components
y1, . . . , yp, the homomorphism of left D-modules

D1×p −→ F : ei 7−→ yi, i = 1, . . . , p,

induces a homomorphism of left D-modules M → F . Conversely, any such homomorphism
ϕ :M → F defines a solution

(ϕ(e1 +D1×qR), . . . , ϕ(ep +D1×qR))T ∈ SolF (R).

1The assumption that D is a left Noetherian domain actually implies (cf. [MR00], Thm. 2.1.15) that D

satisfies the left Ore condition, i.e., every pair of non-zero elements of D has a non-zero common left multiple,
a property shared by all Ore algebras (cf. also Proposition 3.7).
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This correspondence (observed by Malgrange in [Mal62, Subsect. 3.2]) establishes an isomor-
phism

homD(M,F) ∼= SolF (R) (2)

of abelian groups.

Example 2.4. Let Ω be an open and convex subset of R2, F the real vector space of all
smooth real functions on Ω, and D = R[∂x1 , ∂x2 ] the commutative algebra of polynomials in
∂x1 , ∂x2 with real coefficients. Then F is a D-module, where ∂xi acts on functions by partial
differentation with respect to xi, i = 1, 2. Let us consider the linear system Ry = 0, where

R :=

(
∂x1
∂x2

)
∈ D2×1,

i.e., p = 1, q = 2, which can be understood as the gradient operator on the two-dimensional
smooth manifold R2. The system module is defined by M := D/D1×2R. For any solution
y ∈ F , the map

M −→ F : d (e1 +D1×2R) 7−→ d y, d ∈ D,

is well-defined (i.e., d e1 ∈ D1×2R implies d y = 0), and is D-linear. On the other hand, given
a homomorphism ϕ :M → F , we have

∂xi ϕ(e1 +D1×2R) = ϕ(∂xi e1 +D1×2R) = ϕ(0 +D1×2R) = 0, i = 1, 2.

Certain manipulations of the system equations or the system module should be reflected
by certain operations on the solutions of the system or the signal space, as exemplified next.

Example 2.5. In the context of the previous example, we consider the inhomogeneous linear
system Ry = u, where u ∈ F2×1 is given. Every matrix S ∈ Dr×q for some r ∈ N which
satisfies S R = 0 yields a compatibility condition S u = 0 for Ry = u to be solvable. The fact
that D is Noetherian implies that there exists R2 ∈ Dp2×q such that every matrix S as above
is a left multiple of R2. In other words, we have the exact sequence of D-modules

0 Moo D1×p0oo D1×p1.R1oo D1×p2.R2oo (3)

where p0 := p, p1 := q, and R1 := R. We can choose (by a computation described in Exam-
ple 3.10) R2 :=

(
∂x2 −∂x1

)
∈ D1×2. The contravariant functor homD(−,F) transforms

the exact sequence of D-modules (3) into the complex of R-vector spaces

0 // homD(M,F) // Fp0×1 (R1). // Fp1×1 (R2). // Fp2×1 (4)

where canonical isomorphisms homD(D
1×m,F) ∼= Fm×1 are used. The particular choice

of F is irrelevant for showing that the complex (4) is exact at homD(M,F) and at Fp0×1.
In the present context this general fact is consistent with Malgrange’s isomorphism (2) be-
cause SolF (R) ∼= homD(M,F) is a subset of Fp0×1 and is the kernel of the homomorphism
(R1). : F

p0×1 → Fp1×1. If (4) is exact at Fp1×1, i.e., we have ker((R2).) = im((R1).), then
R1 y = u has a solution in Fp0×1 if and only if R2 u = 0, as expected. We would like that
the construction of (3) and its meaning for system equations are translated by the functor
homD(−,F) into the expected statement about solutions of the system as formulated in (4).
For an appropriate choice of the signal space F this is true (cf. also Remark 4.12).

4



Definition 2.6. a) A left D-module F is said to be injective if the functor homD(−,F)
is exact, i.e., if homD(−,F) transforms exact sequences into exact sequences.

b) A left D-module F is said to be a cogenerator for the category of left D-modules if for
every left D-module M the element 0 ∈M is the only element which is in the kernel of
every homomorphism M → F .

Remark 2.7. If F is a cogenerator for the category of left D-modules, then the exactness of
(4) implies the exactness of (3).

In the present context injective modules that are cogenerators for the category of left D-
modules have a meaning that is analogous to algebraically closed fields in algebraic geometry.

Theorem 2.8 (cf., e.g., [Rot09], Lemma 5.49). For every ring D there exists an injective left
D-module which is a cogenerator for the category of left D-modules.

For the computational point of view of this article the abstract construction of the previous
theorem is not useful. However, for certain rings of functional operators, which are relevant
in this context, concrete modules satisfying the above properties are known.

Example 2.9. a) Let k ∈ {R,C} and D = k[∂1, . . . , ∂n]. The following k-vector spaces
F are injective D-modules that are cogenerators for the category of D-modules (cf.
[Mal62, Thm. 3.2], [Ehr70, Thm. 5.20, Thm. 5.14], [Pal70, Thm. 3 in VII.8.2, Thm. 1
in VII.8.1], [Obe90, Thm. 2.54, Sections 3 and 4]):

(i) sequences (aj)j∈(Z≥0)n , where ∂i acts by shifting the i-th index; equivalently, formal
power series, where ∂i acts by partial differentiation;

(ii) convergent power series in n variables, where ∂i acts by partial differentiation;

(iii) k-valued smooth functions on an open and convex subset Ω of Rn, where ∂i acts
by partial differentiation, i.e., F = C∞(Ω);

(iv) k-valued distributions on an open and convex subset Ω of Rn, where ∂i acts by
partial differentiation.

b) LetD = B1(R) be the algebra of differential operators with rational function coefficients
(cf. Example 3.8 b)). Then the R-valued functions on R which are smooth except in
finitely many points form an injective cogenerator for the category of left D-modules
(cf. [Zer06, Thm. 3]).

c) Let Ω be an open interval in R, A = { f/g | f, g ∈ C[t], g(λ) 6= 0 for all λ ∈ Ω }, and
D = A[∂] the skew polynomial ring with the commutation rules that are implied by
the product rule for ∂ = d

dt
(cf. also Example 3.8 b)). Then Sato’s hyperfunctions on Ω

form an injective cogenerator for the category of left D-modules (cf. [FO98, Thm. 4]).

d) Let D be an Ore algebra as in Remark 3.9. Then homk(D, k) is an injective cogenerator
for the category of left D-modules (cf. [Rob06, Thm. 4.4.7]; cf. also [Bou80, § 1.8,
Prop. 11, Prop. 13], [Obe90, Cor. 3.12, Rem. 3.13]).

Remark 2.10. Let F be an injective cogenerator for the category of left D-modules. Let
S z = 0 be a linear system with S ∈ Ds×r that is equivalent to Ry = 0 in the sense that there
exist matrices T ∈ Dp×r and U ∈ Dr×p such that T. : Fr×1 → Fp×1 and U. : Fp×1 → Fr×1
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induce isomorphisms SolF (S) → SolF (R) and SolF (R) → SolF (S), respectively, which are
inverse to each other. The assumption on F implies that this condition is equivalent to the
condition that the homomorphisms

D1×p −→ D1×r : v 7−→ v T, D1×r −→ D1×p : w 7−→ wU

induce isomorphisms

D1×p/D1×q R −→ D1×r/D1×s S, D1×r/D1×s S −→ D1×p/D1×q R,

respectively, which are inverse to each other. Hence, equivalent behaviors correspond to
isomorphic system modules, and if some property is recognized as being satisfied by each
module of an isomorphism class of modules corresponding to a linear system Ry = 0, then
this property reflects some structural feature of the behavior that does not depend on the
choice of the defining equations (e.g., the feature of admitting solutions, or, more interestingly,
of being controllable, or flat, etc.).

We recall the following basic notions of module theory.

Definition 2.11. Let D be a left Noetherian domain2. A finitely generated left D-module
M is said to be

a) free if there exists r ∈ Z≥0 such that M ∼= D1×r,

b) stably free if there exist r, s ∈ Z≥0 such that M ⊕D1×s ∼= D1×r,

c) projective if there exist a left D-module N and r ∈ Z≥0 such that M ⊕N ∼= D1×r,

d) reflexive if M → homD(homD(M,D), D), defined by evaluation of homomorphisms
M → D at the given element of M , is an isomorphism,

e) torsion-free if dm = 0 for m ∈ M and d ∈ D implies d = 0 or m = 0, i.e., the torsion
submodule t(M) of M is trivial:

t(M) := {m ∈M | ∃ d ∈ D \ {0}, dm = 0} = {0},

f) torsion if t(M) =M .

In cases a) and b) the (uniquely defined) integer r and r − s, respectively, is called the rank
of M .

Proposition 2.12 (cf., e.g., [Bou80], [Rot09]). Let M be a finitely generated left D-module.
Then the following chain of implications holds:

M free ⇒ M stably free ⇒ M projective ⇒ M reflexive ⇒ M torsion-free.

Remark 2.13. For certain classes of rings, some levels of the hierarchy of modules collapse.

2As mentioned earlier, every pair of non-zero elements of D has a non-zero common left multiple, which
implies, e.g., that t(M) is a left D-module.
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a) If D is a commutative principal ideal domain, then every finitely generated torsion-free
D-module is free. More generally, if D is a right3 principal ideal domain, i.e., every
right ideal of the domain D is generated by one element, then every finitely generated
torsion-free left D-module is free (cf. [Coh06, Prop. 1.4.1]).

b) Let k be a field or a commutative principal ideal domain and D = k[∂1, . . . , ∂n] the
commutative polynomial algebra over k. Then every finitely generated projective D-
module is free (Quillen-Suslin Theorem, cf. [Lam06]; cf. also Subsection 5.3).

c) If D = An(k) is a Weyl algebra over a field k of characteristic zero (cf. Example 3.8 b)),
n ∈ N, then every finitely generated projective leftD-module is stably free (cf. Section 3)
and every stably free left D-module of rank at least 2 is free (cf. Section 5).

Structural properties of behaviors that are addressed in this article can be characterized
in terms of the properties of modules defined above. The unexplained terminology will be
introduced and references will be given below.

Theorem 2.14. Let D be an Ore algebra as in Remark 3.9, R ∈ Dq×p, and F an injective
left D-module which is a cogenerator for the category of left D-modules. Then the behavior
of the linear system Ry = 0 is

a) flat if and only if M is free (cf. Section 5),

b) a projection in F (p+q)×1 of a flat behavior defined over D if and only if M is stably free
(cf. [QR05b, Thm. 2]),

c) controllable, i.e., admits a parametrization, if and only if M is torsion-free (cf. Sec-
tion 4),

d) autonomous (i.e., every left D-linear combination of the components of a solution of
the system is annihilated by a non-trivial operator in D) if and only if M is torsion.

3 Module-theoretic constructions

Determining structural properties of linear systems defined over D in an effective way requires
that certain constructions related to the system module M can be carried out. In particular,
the possibility of deciding membership to a finitely presented D-module and, in the positive
case, representing the element as linear combination of the generators is a least requirement.

Remark 3.1. Let R be a presentation matrix of the left D-moduleM . Row operations which
are invertible over the coefficient ring D transform R into another presentation matrix of M .
As opposed to Gaussian elimination when D is a field, for the more general setting it may be
beneficial to adjoin new rows to the presentation matrix that are left D-linear combinations of
already given rows, the new rows being, of course, redundant for a generating set of relations.

For instance, if D = Q[∂1, ∂2] and M = D/D1×2R, where

R :=

(
∂21 − ∂2

∂1∂2 − ∂2

)
∈ D2×1,

3We thank Burt Totaro for a clarification of this statement and the reference [Coh06].
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then the rows of R form a generating set for the D-linear relations that are satisfied by the
residue class of 1 in M , which generates M . Neither can this generating set be reduced in
size, nor can the generators be written in a simpler way. However, by appending the linear
combination

(−∂2) · (∂
2
1 − ∂2) + (∂1 + 1) · (∂1∂2 − ∂2) = ∂22 − ∂2

to the above presentation matrix, we obtain a generating set of relations that allows an
effective membership test. In fact, solving for the terms of highest degree defines a confluent
and terminating rewriting system for the representatives of residue classes in M , in the sense
that an element d of D represents the zero residue class inM if and only if iterated polynomial
division of d modulo the above three generators eventually yields zero.

The concepts of Gröbner basis and Janet basis realize this idea for certain (not necessarily
commutative) polynomial algebras. The original notions, developed in [Buc06] and [Jan29]
(cf. also [Pom78]), respectively, have been generalized in recent years to more general algebras,
e.g., to Ore algebras, G-algebras, and PBW extensions, cf., e.g., [KRW90], [Kre93], [Chy98],
[Lev05], [Rob06], and [GL11].

In fact, the above polynomials ∂21 − ∂2, ∂1∂2 − ∂2, ∂
2
2 − ∂2 form a Gröbner basis and a

Janet basis for the ideal of D they generate.

We are going to define the class of rings to be dealt with below (cf., e.g., [CS98], [CQR05]).

Definition 3.2. Let k be a field or k = Z and let A be a (not necessarily commutative)
k-algebra which is a domain. Moreover, let σ : A → A be a k-algebra endomorphism and
δ : A→ A a σ-derivation, i.e., a k-linear map which satisfies

δ(a1 a2) = σ(a1) δ(a2) + δ(a1) a2, a1, a2 ∈ A.

Then we denote by A[∂;σ, δ] the k-algebra generated by A and the indeterminate ∂ with
commutation rules

∂ a = σ(a) ∂ + δ(a), a ∈ A,

and call it a skew polynomial ring. The commutation rule implies A[∂;σ, δ] =
⊕

i∈Z≥0
A∂i.

Remark 3.3. In what follows, we assume that σ is a monomorphism. Then the degree in ∂
of a non-zero element d of A[∂;σ, δ] does not depend on the representation of d. Moreover,
the degree of a product of non-zero skew polynomials equals the sum of their degrees. Hence,
A[∂;σ, δ] is a domain.

Definition 3.4. Iterating the definition of a skew polynomial ring, for i = 1, . . . , l, let ∂i be
an indeterminate, σi a k-algebra monomorphism of A[∂1;σ1, δ1] . . . [∂i−1;σi−1, δi−1] and δi a
σi-derivation of A[∂1;σ1, δ1] . . . [∂i−1;σi−1, δi−1] such that for all 1 ≤ j < i ≤ l we have

σi(∂j) = ∂j , δi(∂j) = 0,

and such that

σi ◦ σj = σj ◦ σi, δi ◦ δj = δj ◦ δi, σi ◦ δj = δj ◦ σi, σj ◦ δi = δi ◦ σj

holds when these maps are restricted to A[∂1;σ1, δ1] . . . [∂j−1;σj−1, δj−1]. Then the iterated
skew polynomial ring generated by A, ∂1, . . . , ∂l with commutation rules

∂i d = σi(d) ∂i + δi(d), d ∈ A[∂1;σ1, δ1] . . . [∂i−1;σi−1, δi−1], i = 1, . . . , l,

is called an Ore algebra. When the maps σi and δj are understood, we also denote this ring
by A〈∂1, . . . , ∂l〉.
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Remark 3.5. Let D = A[∂1;σ1, δ1] . . . [∂l;σl, δl] be an Ore algebra as defined above. The
same argument as in Remark 3.3 shows that D is a domain.

Often the k-algebra A is chosen as a commutative polynomial ring k[x1, . . . , xn]. Then
the monomials xa11 · . . . · xann · ∂b11 · . . . · ∂bll , where a ∈ (Z≥0)

n, b ∈ (Z≥0)
l, form a basis for D

as a (left) k-vector space (or Z-module if k = Z).

Because of the following variant of Hilbert’s Basis Theorem (cf., e.g., [Eis95]) we assume
in what follows that σ1, . . . , σl are k-algebra automorphisms.

Theorem 3.6 (cf. [MR00], Thm. 1.2.9). Let A be a left (or right) Noetherian domain. If σ
is an automorphism of A, then A[∂;σ, δ] is left (right, respectively) Noetherian.

The name “Ore algebra” is reminiscent of Ø. Ore’s study of the existence of skew fields
of fractions of certain non-commutative domains.

Proposition 3.7 (cf. [MR00], Cor. 2.1.14). Let D be a (not necessarily commutative) domain.
A skew field of left fractions of D (i.e., whose elements are represented as b−1 a, where a,
b ∈ D, b 6= 0) exists if and only if every pair of non-zero elements of D has a non-zero
common left multiple. An analogous statement holds with “left” replaced with “right”.

In fact, every left Noetherian domain satisfies the left versions of the above equivalent
conditions (cf. [MR00], Thm. 2.1.15), which ensure that a product ã · b̃−1 has a representation
of the form b−1 a, and similarly for right Noetherian domains.

Example 3.8. Let k be a field or k = Z.

a) A commutative polynomial algebra k[∂1, . . . , ∂n] can be understood as an Ore algebra
defined over A = k, where σ1, . . . , σn are the identity maps and δ1, . . . , δn are zero.

b) The Weyl algebra

An(k) := k[x1, . . . , xn][∂1;σ1, δ1] . . . [∂n;σn, δn], n ∈ N,

is defined to be the Ore algebra over k[x1, . . . , xn], where σ1, . . . , σn are the identity
maps and δi is partial differentiation with respect to xi, i = 1, . . . , n. Hence, the
commutation rules for the indeterminates of An(k) are

xi xj = xj xi, ∂i ∂j = ∂j ∂i, ∂i xj = xj ∂i + δi,j , 1 ≤ i, j ≤ n, (5)

where δi,j is the Kronecker symbol. If k = R or C, then these commutation rules
are easily deduced from the differentiation rules for smooth (real or complex) functions
f(x1, . . . , xn); e.g., the product rule reads

∂

∂xi
(xj f(x1, . . . , xn)) = (xj

∂

∂xi
) f(x1, . . . , xn) + δi,j f(x1, . . . , xn), 1 ≤ i, j ≤ n.

We may thus consider An(k) as the ring of partial differential operators on kn with
polynomial coefficients. In an analogous way, we define the ring of differential operators
with rational function coefficients Bn(k) := k(x1, . . . , xn)[∂1;σ1, δ1] . . . [∂n;σn, δn], again
with commutation rules (5).

More generally, if A is a differential ring with commuting derivations δ1, . . . , δn, we
define the ring of differential operators A〈∂1, . . . , ∂l〉 := A[∂1;σ1, δ1] . . . [∂n;σn, δn] with
commutation rules

∂i ∂j = ∂j ∂i, ∂i a = a ∂i + δi(a), a ∈ A, 1 ≤ i, j ≤ n.

9



c) An algebra of shift operators is defined by k[t][∂;σ, δ], where σ is the k-algebra auto-
morphism mapping t to t − 1 and δ is the zero map. Thus, the essential commutation
rules read

∂ f(t) = f(t− 1) ∂, f ∈ k[t],

which rephrase the “product rule” for the action of shift operators. Of course, 1 can be
replaced with a different constant.

d) The types of Ore algebras described above and many more (cf., e.g., [CS98], [CQR05])
can obviously be combined, providing, e.g., algebras of operators for the study of dif-
ferential systems with (point) delay (cf., e.g., Example 5.16), etc.

Remark 3.9. Let D be an Ore algebra which is generated over the commutative polynomial
algebra k[x1, . . . , xn] by ∂1, . . . , ∂l. We assume that D is a computable4 ring in the sense that
the arithmetic operations in D can be carried out effectively and that equality of elements in
D can be decided.

Let R ∈ Dq×p. The computation of a Gröbner basis or a Janet basis for the submodule
D1×q R of D1×p considers every element of D1×p as a sum of terms, the sequence of summands
being sorted with respect to a given term ordering. Every term is of the form c ·m · ei, where
c ∈ k\{0}, m = xa11 · . . . ·xann ·∂b11 · . . . ·∂bll for some a ∈ (Z≥0)

n, b ∈ (Z≥0)
l, and ei is a standard

basis vector. The term ordering is a total ordering on the set of monomials m · ei as above
such that no infinitely decreasing sequence of monomials exists. Moreover, in what follows, we
make the important assumption on both the commutation rules of D and the term ordering
that left multiplication of an element of D1×p with greatest term c ·m · ei by xj or ∂j yields
elements with greatest terms c · xj ·m · ei and c̃ ·m · ∂j · ei for some c̃ ∈ k \ {0}, respectively.
For every algebra of interest in our context (in particular, the ones in Example 3.8) a term
ordering with this property can be chosen solving the computational tasks discussed below.

The term ordering singles out the greatest term in every non-zero element of D1×p, which
is called its leading term. A Gröbner basis or Janet basis for D1×q R with respect to the
chosen term ordering is defined to be a finite subset of D1×q R \ {0} such that the leading
term of every non-zero element of D1×q R is left divisible5 by the leading term of some element
of the basis. Then every element of D1×q R can be expressed as a left D-linear combination
of the basis elements by iterated subtraction of left multiples of divisors.

A basis computation complements a generating set G for D1×q R with further elements
of D1×q R whose leading terms have no divisors among the leading terms of elements of G.
Suitable new elements are found as left D-linear combinations of elements of G in which the
leading terms cancel; cf. also the example in Remark 3.1. Termination of such an algorithm
follows essentially from Dickson’s lemma, stating that a sequence of monomials in which no
monomial divides any following monomial is finite.

These techniques were developed in the given setting in [Chy98] and [Rob06] (cf. also
[Rob07]). Further properties of the resulting Gröbner basis or Janet basis may be realized

4In concrete examples we may assume that the matrix R is defined over a computable subalgebra of D.
5For Janet bases the divisibility relation of terms is actually a restriction of the usual divisibility relation.

The concept of Janet division (or, more generally, of an involutive division) determines for each monomial the
set of indeterminates which may be multiplied from the left to the monomial when it is used for reduction
of other terms. As a consequence, every element of D

1×q
R has a unique representation as left D-linear

combination of the Janet basis elements taking their so-called multiplicative variables into account. For
a survey on the algorithmic development of this efficient alternative to Buchberger’s algorithm we refer to
[Ger05].
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by an appropriate choice of the term ordering. This possibility makes such computations a
versatile method, e.g., for elimination purposes, cf. also, e.g., [Rob12, Sects. 3.1.1 and 3.1.3].

Example 3.10. Let R ∈ Dq×p be as above. We would like to compute a generating set
for the kernel of the homomorphism .R : D1×q → D1×p of left D-modules. To this end we
compute a Janet basis J for the submodule D1×q (R Iq) of D

1×(p+q) with respect to a term
ordering which ranks m1 · ei higher than m2 · ej if 1 ≤ i ≤ p and p+1 ≤ j ≤ p+ q. For every
λ ∈ ker(.R) we have

λ · (R Iq) = (0 λ).

The elements of J whose first p components are zero form a generating set G for ker(.R) after
removing the first p components. In fact, if λ ∈ ker(.R), then iterated subtraction of left
D-linear combinations of elements of G from (0 λ) eventually results in 0 by definition of a
Janet basis and the property of the term ordering which guarantees that the leading term of
any intermediate element in this reduction process is in a component with index greater than
p. An element of ker(.R) is also called a syzygy of the rows of R.

As another application one can decide whether or not R admits a left inverse with entries
in D. This is the case if and only if the (minimal) Janet basis computed above is given by
the rows of a matrix (

0 ∗
Ip S

)
,

where S ∈ Dp×q. Then S satisfies S ·R = Ip (where necessarily p ≤ q).

Remark 3.11. If D admits an involution θ, i.e., a map θ : D → D satisfying

θ(d1 + d2) = θ(d1) + θ(d2), θ(d1 · d2) = θ(d2) · θ(d1), θ(θ(d)) = d, for all d1, d2, d ∈ D,

then the computation of Gröbner bases and Janet bases for the submodule RDp×1 of the
right D-module Dq×1 can be reduced to the one for the submodule D1×p θ(R) of the left
D-module D1×q, where

θ(R) := (θ((RT )i,j))1≤i≤p, 1≤j≤q ∈ Dp×q.

In particular, the computation of a right inverse of R with entries in D (if it exists) can be
reduced to the computation of a left inverse of θ(R) (and vice versa).

Example 3.12. Let D = An(k) = k[x1, . . . , xn]〈∂1, . . . , ∂n〉 be the Weyl algebra. The most
common involution of D is defined by extending

θ(xi) := xi, θ(∂i) := −∂i, i = 1, . . . , n,

to a map θ : D → D using the definition of an involution. Then θ(R) is the formal adjoint of
the differential operator R ∈ Dq×p, which is also obtained by integration by parts.

Remark 3.13. By iterating the computation of syzygies a free resolution of the leftD-module
M with presentation matrix R1 ∈ Dq×p can be constructed, i.e., an exact sequence of left
D-modules of the form

0 Moo D1×p0oo D1×p1.R1oo D1×p2.R2oo . . .oo (6)
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in which each module is a free left D-module except possibly the module M that we study. If
only finitely many modules in the above exact sequence are non-zero, i.e., (6) is of the form

0 Moo D1×p0oo D1×p1.R1oo . . .
.R2oo D1×pm.Rmoo 0oo (7)

then (7) is said to be a finite free resolution of M . The length of the free resolution (7) is
defined to be m, and the modules in (7) are numbered consecutively such that D1×pi is in
homological degree i. Similarly, an exact sequence

0 Moo P0
oo P1

α1oo P2
α2oo . . .oo (8)

in which each module is a projective (or stably free) left D-module except possiblyM is called
a projective (stably free, respectively) resolution of M .

The concept of free resolution was elaborated in the commutative algebra context by
D. Hilbert, who proved the following celebrated result about the existence of finite free reso-
lutions in this setting. Below we deal with the more general case of Ore algebras as defined
above.

Theorem 3.14 (Hilbert’s Syzygy Theorem; cf., e.g., [Eis95]). Let D = k[∂1, . . . , ∂n] be a
commutative polynomial algebra, where k is a field. Then for every finitely generated D-
module M there exists a finite free resolution of M of length at most n.

We recall a technique to reduce the length of a free resolution (cf. [QR07]). It is essential
for deciding whether or not a finitely generated left D-module is stably free.

Remark 3.15. Let (7) be a finite free resolution of the left D-module M , and let us assume
that Rm admits a right inverse S ∈ Dpm−1×pm . If m ≥ 3, then a shorter free resolution of
M is obtained by replacing the three non-trivial homomorphisms in the highest homological
degrees in (7) with

D1×pm−3 D1×pm−2 ⊕D1×pm

.

(
Rm−2

0

)

oo D1×pm−1
.(Rm−1 S)oo 0.oo

The resulting complex is exact at D1×pm−2 ⊕D1×pm because

ker .
(

Rm−2

0

)
= im .

(
Rm−1 0

0 Ipm

)
= im .

(
Rm−1 S

0 Ipm

)

= im .
(

Ip
m−1

Rm

)
· (Rm−1 S) = im .(Rm−1 S).

In order to show the exactness at D1×pm−1 we note that both homomorphisms π1 := .(S Rm)
and π2 := .(Ipm−1

− S Rm) are projections of D1×pm−1 onto their images. More specifically,
we have

πi ◦ πj = δi,j πi for i, j ∈ {1, 2}, and idD1×pm−1 = π1 + π2,

where δi,j is the Kronecker symbol. This implies D1×pm−1 = im(π1)⊕ im(π2). Since we have
im(π1) = im(.Rm) = ker(.Rm−1), the restriction of .Rm−1 to im(π2) is injective. Hence, there
exists T ∈ Dpm−2×pm−1 such that Ipm−1

− S Rm = (Ipm−1
− S Rm)Rm−1 T = Rm−1 T , and we

have im(π2) = im(.T ). Solving the last matrix equation for Ipm−1
shows that .(Rm−1 S) is

injective. The exactness of the shorter complex at D1×pm−3 is obvious.
If m = 2, then the same technique applies with D1×pm−3 replaced with M and multipli-

cation by Rm−2 on D1×pm−2 replaced with the canonical projection D1×p0 →M .
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The situation of the previous remark arises whenever M is projective.

Remark 3.16. Let M be projective and let ψ0 : F0 → M be a surjective homomorphism,
where F0 is a finitely generated left D-module. Then there exists a left D-module N such
that M ⊕ N is isomorphic to D1×r for some r ∈ Z≥0. With respect to a basis of M ⊕ N a
homomorphismM⊕N → F0 can be defined whose restriction σ0 toM satisfies ψ0◦σ0 = idM ,
i.e., σ0 is a right inverse of ψ0. Then we have F0 = im(σ0) ⊕ ker(ψ0). If F0 is free and
ψ1 : F1 → F0 is a homomorphism with image ker(ψ0), then this construction can be applied
again to ker(ψ0).

Hence, in a finite free resolution (7) of a (finitely generated) projective left D-module M ,
for every i, we have D1×pi = im(σi)⊕ker(.Ri) for some homomorphism σi : im(.Ri) → D1×pi .
In particular, the matrix representing the homomorphism D1×pm−1 → D1×pm whose restric-
tion to im(.Rm) defines σm is a right inverse of Rm.

Even if F0 is not necessarily free, the direct summands M ∼= im(σ0) and C = ker(ψ0),
the module L := F0, the canonical projection ψ, and the canonical injection φ form an exact
sequence with a special property.

Definition 3.17. An exact sequence

0 Moo L
ψoo C

φoo 0oo

is said to be split if there exist homomorphisms σ :M → L and ρ : L→ C such that we have
ψ ◦ σ = idM and ρ ◦ φ = idC . (In fact, the existence of σ implies that of ρ and vice versa.)

Definition 3.18. The left projective dimension of a left D-module M , denoted by lpd(M),
is defined as the minimal length of a finite projective resolution of M and as ∞ if no such
resolution of M exists. The left global dimension of D, denoted by lgld(D), is defined to be
the supremum of the left projective dimensions of left D-modules.

Two left D-modules M1 and M2 are said to be projectively equivalent if there exist pro-
jective left D-modules Q1 and Q2 such that we have M1 ⊕Q1

∼=M2 ⊕Q2.
Corresponding notions for right D-modules M are defined in a similar way, the right

projective dimension of M being denoted by rpd(M) and the right global dimension of D by
rgld(D).

Proposition 3.19 (cf. [MR00], Subsect. 7.1.11). If D is Noetherian then we have lgld(D) =
rgld(D).

Remark 3.20. We have lpd(M) = 0 if and only if M is projective.

Remark 3.21. Schanuel’s lemma (cf., e.g., [Lam99, Cor. 5.5]) states that, for any left D-
module M and each two exact sequences of left D-modules

0 Moo P0
oo P1

oo . . .oo Proo Loo 0oo

0 Moo P̃0
oo P̃1

oo . . .oo P̃roo L̃oo 0oo

where every Pi and P̃j is projective, the left D-modules L and L̃ are projectively equivalent.

Proposition 3.22 (cf. [MR00], Thm. 7.5.3). Let D = A[∂;σ, δ] be an Ore algebra, where σ is
an automorphism of A and lgld(A) is finite. Then we have lgld(A) ≤ lgld(D) ≤ lgld(A) + 1.
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In what follows we assume that D is an Ore algebra as in Remark 3.9, i.e., which ad-
mits Gröbner basis or Janet basis computations. Since the construction of D starts with
either a field or a commutative polynomial ring, an iteration of Proposition 3.22 (and use of
Theorem 3.14) shows that lgld(D) is finite.

Theorem 3.23. Let M = D1×p/D1×q R be a left D-module, where R ∈ Dq×p. Then a finite
free resolution (7) of M can be computed such that either m = 1 and R1 admits a right
inverse, or m ≥ 1 and Rm does not admit a right inverse. In the former case M is stably
free, in the latter case M is not projective. Analogous statements hold for finitely generated
right D-modules.

Proof. The assumptions on D imply that a finite free resolution of M can be constructed by
iteratively computing syzygies (cf. [Rob12, Cor. 3.1.46], or [Eis95, Sect. 15.5] for the case of
a commutative polynomial algebra D). The technique discussed in Remark 3.15 reduces any
finite free resolution ofM to one as described in the theorem. If m = 1 and R1 admits a right
inverse, then the exact sequence is split, which implies that we have D1×p0 ∼= M ⊕ D1×p1 .
Hence, M is stably free. If m ≥ 1 and Rm does not admit a right inverse, then im(.Rm−1)
is not projective because the following short exact sequence bending down to the left is not
split:

. . . D1×pm−2
.Rm−2oo D1×pm−1

.Rm−1oo

uu❧❧❧❧
❧❧
❧❧
❧

D1×pm.Rmoo 0oo

im(.Rm−1)

ii❘❘❘❘❘❘❘❘❘

uu❦❦❦❦
❦❦
❦❦
❦❦
❦

0 0

ii❙❙❙❙❙❙❙❙❙❙❙

Let us assume that there exists a projective resolution ofM of length m−1. By Remark 3.21,
the two modules in the highest homological degree of this projective resolution and of the
above (long) exact sequence of length m− 1 including the upper left arrows are projectively
equivalent. This implies that im(.Rm−1) is projective, which is a contradiction. Therefore,
we have lpd(M) = m. In particular, M is not projective.

We obtain the following corollary which generalizes a theorem of J.-P. Serre [Ser58,
Prop. 10] about projective modules over commutative polynomial algebras k[∂1, . . . , ∂n] to
Ore algebras D as above.

Corollary 3.24. Every finitely generated projective left D-module is stably free.

Finally, we are in a position to prove an analogon to Hilbert’s Syzygy Theorem for the
class of Ore algebras which is relevant in what follows.

Corollary 3.25 (cf. [MR00], Cor. 12.3.3, [Rot09], Lemma 8.42, [CQR05], Prop. 8). Let M be
a finitely generated left module over an Ore algebra D as above. Then a finite free resolution
of M of length less than or equal to lgld(D) + 1 can be computed.

Proof. Recall that lgld(D) is finite. We prove the assertion that a free resolution of M of
length at most lpd(M) + 1 exists by induction on the left projective dimension. Let (8) be a
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projective resolution of M of length m = lpd(M). By Corollary 3.24, each Pi is stably free.
In particular, there exist r, s ∈ Z≥0 such that P0⊕D

1×s ∼= D1×r. We obtain exact sequences

0 Moo P0 ⊕D1×sπoo P1 ⊕D1×sβ1oo

vv♠♠♠
♠♠
♠♠
♠

P2
β2oo . . .oo

ker(π)

hh◗◗◗◗◗◗◗◗

vv❧❧❧
❧❧
❧❧
❧❧
❧

0 0

hh❘❘❘❘❘❘❘❘❘❘

where β1 is defined componentwise by α1 and the identity on D1×s, β2 is defined by α2, and
π is defined by P0 → M . If m = 0, then we have ker(π) ∼= D1×s and the assertion follows.
Otherwise we observe that ker(π) has a projective resolution of length m− 1. By induction,
ker(π) has a resolution of length at most m with free modules Fj . Composing F0 → ker(π)
with ker(π) → P0⊕D

1×s yields a free resolution ofM of length at mostm+1. The techniques
discussed in this section (in particular, Example 3.10 and Remark 3.15) allow to compute such
a finite free resolution from any finite presentation of M .

4 Parametrizability of the behavior

We continue to consider a linear system which is defined over an Ore algebra D as in Re-
mark 3.9. In this section the possibility of identifying its set of solutions or behavior as the
image of a D-linear map is investigated. In many control-theoretic situations this possibility
corresponds to controllability of the system.

Definition 4.1. Let F be a signal space, R ∈ Dq×p as above, and P ∈ Dp×m for somem ∈ N.
We call the homomorphism P. : Fm×1 → Fp×1 or simply the matrix P a parametrization of
the linear system Ry = 0 in Fp×1, if

Fm×1 P. // Fp×1 R. // Fq×1 (9)

is an exact sequence of abelian groups, i.e., if ker(R.) = im(P.).

Example 4.2. Let us consider the system of linear partial differential equations

∇ · y := ∂1 y1 + ∂2 y2 + ∂3 y3 = 0 (10)

for an unknown vector y ∈ C∞(Ω)3×1 of smooth functions, where Ω is an open and convex
subset of R3 with coordinates x1, x2, x3 and ∂i denotes the partial differential operator with
respect to xi, i = 1, 2, 3. It is well-known (Poincaré’s lemma) that (10) is equivalent to

∃ z ∈ C∞(Ω)3×1 :




y1
y2
y3


 =




0 ∂3 −∂2
−∂3 0 ∂1
∂2 −∂1 0






z1
z2
z3


 =: ∇× z.

In other words, the curl operator is a parametrization of the linear system ∇ · y = 0 in
C∞(Ω)3×1. Clearly, the linear map C∞(Ω)3×1 → C∞(Ω)3×1 defined by the curl operator
is not injective. In fact, the gradient operator is a parametrization of the linear system
∇ × z = 0 in C∞(Ω)3×1. Finally, the gradient operator defines a linear system ∇u = 0 for
which no parametrization in C∞(Ω) exists. The set of solutions of ∇u = 0 in C∞(Ω) is
actually {u : Ω → R | u constant}, which is not the image of any operator P ∈ D1×m, where
D = R[∂1, ∂2, ∂3], m ∈ N. (This follows from Theorem 4.4 below.)
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The following remark outlines the relationship of parametrizability in the above sense and
some notions of controllability.

Remark 4.3. A parametrization as defined above is also called an image representation in
the behavioral approach to systems theory, cf. [PW98], [Woo00], [Zer00], where the signal
space F is chosen appropriately, e.g., from the list given in Example 2.9. This notion has
been studied in different settings by many authors. In particular, several notions of primeness
of a matrix with entries in a commutative polynomial algebra of operators were developed
which characterize structural properties as discussed here (cf., e.g., [Obe90, Sect. 7], [Zer00]).

For one-dimensional linear differential systems (i.e., linear ODEs) and for multidimen-
sional discrete linear systems, each with constant coefficients, it was shown that the existence
of an image representation is equivalent to controllability of the system, in the sense that the
restrictions of each two trajectories of the behavior to some regions with positive distance
in the domain of definition can be concatenated by a trajectory of the behavior (cf. [PW98,
Thm. 6.6.1] for the one-dimensional case; [Woo00, Sect. 4], [Zer00, Ch. 1] and the references
therein). The corresponding equivalence for systems of linear partial differential equations
with constant coefficients was proved in [PS98, Prop. 2, Thm. 2, Thm. 3]. The case of one-
dimensional linear differential time-delay equations with constant coefficients was settled in
[GL02, Sect. 4.3] (F consisting of complex-valued smooth functions on R). For other notions
of controllability in the context of linear differential time-delay equations, cf. also [FM98].

The equivalence of controllability and torsion-freeness of the system module was first es-
tablished by J.-F. Pommaret [Pom95] and M. Fliess [Fli91], cf. also [Woo00] and the references
therein. This suggested the following definition of controllability for more general kinds of
systems. An observable of a linear system is defined to be any element of the system module
M . For each element y of the behavior an observable corresponds to a certain left D-linear
combination of the signals y1, . . . , yp via Malgrange’s isomorphism (2). The linear system is
said to be controllable if every observable is free, i.e., is not annihilated by a non-zero element
of D.

On the other hand, a corresponding notion of parametrization for non-linear systems
is more difficult to approach. The problem of expressing the solutions of a system of (not
necessarily linear) partial differential equations in terms of arbitrary functions and constants is
also known as Monge’s problem, cf., e.g., [Zer32], [Jan71], or the introduction to [QR07]. The
special case in which the correspondence between solutions and (tuples of) parameter values
is one-to-one is referred to by the notion of (differential) flatness, cf., e.g., [FLMR95], and in
particular, Section 5 for the linear case. The problem of deciding flatness and computing, if
possible, an injective parametrization is not solved in general up to the present day, but cf.,
e.g., [AP07], [Lev11], [LHR13] for some approaches.

The torsion submodule t(M) := {m ∈M | ∃ d ∈ D \ {0}, dm = 0} of the system module
M plays a crucial role for the (non-) parametrizability of the given linear system (cf., e.g.,
[PQ99b], [Pom01]).

Theorem 4.4. Let M be the system module defined by Ry = 0, and let F be an injective
left D-module which is a cogenerator for the category of left D-modules. There exists a
parametrization P ∈ Dp×m of Ry = 0 in Fp×1 for some m ∈ N if and only if t(M) = {0}.

Since we obtain an algorithm which computes a parametrization, if one exists, we include
here a
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Proof. If P ∈ Dp×m is a parametrization of Ry = 0 in Fp×1, then, by definition,

homD(D
1×m,F)

P. // homD(D
1×p,F)

R. // homD(D
1×q,F)

is an exact sequence of abelian groups. Since F is a cogenerator for the category of left
D-modules, the complex

D1×m D1×p.Poo D1×q.Roo (11)

is an exact sequence of left D-modules. Hence, the homomorphism ι : M → D1×m which is
induced by P is injective. Now, t(D1×m) = {0} implies t(M) = {0}.

D1×m D1×p.Poo

zz✉✉
✉✉
✉✉
✉✉
✉✉

D1×q.Roo

M

ι

OO✤
✤

✤

(12)

Conversely, let us assume that t(M) = {0}. Since D is Noetherian, there exist m ∈ N and
P ∈ Dp×m such that

Dm×1 P. // Dp×1 R. // Dq×1 (13)

is an exact sequence of right D-modules. If λ ∈ D1×p satisfies λP = 0, then there exists a
unique epimorphism ϕ : RDp×1 → λDp×1 of right D-modules such that ϕ ◦ (R.) = (λ.), as
is easily checked on the following commutative diagram:

Dm×1 P. // Dp×1 R. //

λ.
$$■

■■
■■

■■
■■

■ RDp×1

ϕ

��✤
✤

✤ = im(R.) ⊆ Dq×1

λDp×1

Let K be the skew field of fractions of D (which exists due to Proposition 3.7). Then ϕ
induces an epimorphism ϕ⊗DK : (RDp×1)⊗DK → (λDp×1)⊗DK of right K-vector spaces.
We choose a complement of (RDp×1)⊗D K in Kq×1 and extend ϕ⊗D K to a K-linear map
Kq×1 → K with image (λDp×1) ⊗D K in an arbitrary way. The latter map is represented
with respect to the standard bases by a matrix ρ ∈ K1×q, and we have ρR = λ. Denoting by
d ∈ D \ {0} a common left denominator of the entries of ρ, we may write 1

d
µR = λ with a

certain matrix µ ∈ D1×q.
Now we claim that (11) is an exact sequence of left D-modules. Let λ ∈ ker(.P ) \ {0}.

By the above reasoning, there exist d ∈ D \ {0} and µ ∈ D1×q such that d λ = µR. If d is
invertible in D, then we have λ ∈ D1×q R. Otherwise, we have λ + D1×q R ∈ t(M) = {0},
i.e., again λ ∈ D1×q R. This shows that (11) is exact. Since F is injective, (9) is exact.

Remark 4.5. We conclude from Theorem 4.4 that the obstructions to parametrizing a linear
system are given by the autonomous elements of the behavior SolF (R), i.e., the left D-
linear combinations T y of the signals or system variables, T ∈ D1×p, for which there exists
d ∈ D \ {0} such that d T η = 0 for every η ∈ SolF (R). For more details, cf. [CQR05].

Example 4.6. In the context of Example 4.2 we have D = R[∂1, ∂2, ∂3]. The system module
associated with the linear system ∇u = 0 defined by the gradient operator is given by
M = D/D1×3R, where R := (∂1, ∂2, ∂3)

T . Clearly, M is torsion, i.e., t(M) = M , because
every element of M is annihilated by ∂1, ∂2, and ∂3. Hence, there exists no parametrization
of ∇u = 0 in C∞(Ω).
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Remark 4.7. The part of the proof of Theorem 4.4 which shows that a parametrization
of Ry = 0 in Fp×1 exists if t(M) = {0} holds actually provides an algorithm which decides
parametrizability and constructs a parametrization if possible. More precisely, a computation
of syzygies (cf. Example 3.10) yields P ∈ Dp×m in (13). By construction, (13) is part of a
free resolution of the right D-module N = Dq×1/RDp×1. The check whether or not the dual
complex (11) is exact in fact computes the cohomology group ext1D(N,D). This standard
construction of homological algebra is recalled below. Now, P is a parametrization of Ry = 0
in Fp×1 if and only if ext1D(N,D) = {0}; cf. Example 4.15 for an illustration.

Definition 4.8. The Auslander transpose of the left D-module with finite presentation
D1×p/D1×q R is defined to be the right D-module with finite presentation Dq×1/RDp×1.

Remark 4.9. If the construction of the Auslander transpose is applied to two finite pre-
sentations of the same left D-module M , then the results are projectively equivalent right
D-modules (cf. Def. 3.18, cf. also [PQ00] and the references therein).

Definition 4.10. Let M1 and M2 be left D-modules. We apply the functor homD(−,M2) to
a projective resolution

0 M1
oo P0

oo P1
α1oo P2

α2oo . . .oo (14)

of M1, where we replace the module M1 with the zero module, and obtain a complex of
abelian groups

0
α∗
0 // homD(P0,M2)

α∗
1 // homD(P1,M2)

α∗
2 // homD(P2,M2) // . . .

where α∗
i := homD(αi,M2) composes homomorphisms Pi−1 → M2 with αi for i ∈ N and

α∗
0 := 0. For n ∈ Z≥0, the abelian group extnD(M1,M2) is defined to be the (co-)homology of

the above (co-)complex at homD(Pn,M2), i.e., the factor group

extnD(M1,M2) := ker(α∗
n+1)/ im(α∗

n),

and is called the n-th extension group of M1 with coefficients in M2. A corresponding notion
is defined in a similar way for right D-modules M1 and M2.

Remark 4.11. a) Standard techniques of homological algebra (cf., e.g., [Rot09]) show
that every choice of the projective resolution (14) of M1 yields the same abelian group
extnD(M1,M2) up to isomorphism. Moreover, it can be shown that, for each n, the n-th
extension group of a direct sum of leftD-modules with coefficients inM2 is isomorphic to
the direct product of the respective n-th extension groups, and that, ifM1 is projective,
we have extnD(M1,M2) = {0} for all left D-modules M2 and all n ∈ N (cf., e.g., [Rot09,
Propositions 7.21 and 8.6]). It follows that we have extnD(N,M2) ∼= extnD(N

′,M2) for
all n ∈ N if N and N ′ are projectively equivalent.

b) If M1 is a right D-module and M2 = D, then extnD(M1,M2) inherits a left D-module
structure from the D-bimodule structure of D, a remark which is relevant for Theo-
rem 4.13 below.
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c) The name “extension group” originates from the fact that the elements of ext1D(M1,M2)
are in bijection with the equivalence classes of extensions of M2 by M1, i.e., the left
D-modules M realizing, up to isomorphism, M2 as a submodule and M1 as a factor
module M/M2, where an equivalence relation is defined by isomorphisms of modules
which respect the submoduleM2 and the factor moduleM1. The binary operation of the
group ext1D(M1,M2) can be translated into a construction of extensions called Baer sum
(cf., e.g., [Rot09, Subsect. 7.2.1] and also [QR08] for system theoretic interpretations).

Remark 4.12. IfM1 =M is the system module associated with a linear system Ry = 0 and
M2 = F is the chosen signal space, we have ext0D(M,F) ∼= SolF (R) by Malgrange’s isomor-
phism (2), and ext1D(M,F) = {0} implies that compatibility conditions of inhomogeneous
systems Ry = u are all found by computing syzygies of the rows of R1 := R, cf. Example 2.5.

Theorem 4.13 (cf. [PQ03], Cor. 2; [CQR05], Thm. 5). Let N = Dq×1/RDp×1 be the Aus-
lander transpose of M = D1×p/D1×q R. Then we have t(M) ∼= ext1D(N,D).

Corollary 4.14. Let M be the system module defined by Ry = 0, and let F be an injective
left D-module which is a cogenerator for the category of left D-modules. There exists a
parametrization P ∈ Dp×m of Ry = 0 in Fp×1 for some m ∈ N if and only if ext1D(N,D) =
{0}, where N = Dq×1/RDp×1 is the Auslander transpose of M = D1×p/D1×q R.

We illustrate the meaning of this corollary on an example taken from [Fre71, p. 23]. At
the same time we demonstrate that the parametrizability problem can sometimes be solved
even though the injective cogenerator F is not specified. The following example deals with
differential operators with power series coefficients, a situation arising, e.g., in a local study of
a singularity at the origin. In this case we do not know a space of functions F meeting the re-
quirements. More remarks about systems of linear ordinary differential equations with power
series coefficients are given in Subsection 5.5. The following computations were performed
using an extension of the Janet package (cf. Section 6).

Example 4.15. Let A = k{t} be the ring of convergent power series in t, where k ∈ {R,C},
and D = A〈∂〉 the skew polynomial ring generated by A and ∂ with the commutation rules
that are implied by the product rule for ∂ = d

dt
. Since A is a Noetherian domain, so is D (cf.

Theorem 3.6). Let us consider the system of linear ordinary differential equations




ẋ1(t)
ẋ2(t)
ẋ3(t)


 =




1 − sin(2t) cos(2t)
0 0 −2
0 2 0






x1(t)
x2(t)
x3(t)


+




sin(t)
cos(t)
sin(t)


 u(t). (15)

The system may be written as Ry = 0, where

R :=




∂ − 1 sin(2t) − cos(2t) − sin(t)
0 ∂ 2 − cos(t)
0 −2 ∂ − sin(t)


 ∈ D3×4

and y = (x1, x2, x3, u)
T . The system moduleM is defined by the following finite presentation:

0 Moo D1×4oo D1×3.
.Roo

In order to decide whether or not a parametrization of Ry = 0 in F4×1 for an appropriate
signal space F exists and to construct one if possible, we compute ext1D(N,D). In fact, using
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the involution θ from Example 3.12 allows to avoid dealing with right D-modules. Hence, we
are going to determine ext1D(Ñ ,D), where Ñ := D1×3/D1×4R1 and

R1 := θ(R) =




−∂ − 1 0 0
sin(2t) −∂ −2

− cos(2t) 2 −∂
− sin(t) − cos(t) − sin(t)


 .

A syzygy computation (cf. Example 3.10) yields the free (and hence projective) resolution

0 // D
.R2 // D1×4 .R1 // D1×3 // Ñ // 0 (16)

of Ñ , where
R2 =

(
sin(t) ∂ + 2 cos(t) cos(t) ∂ sin(t) ∂ −∂2 − 1

)
.

By applying the functor homD(−, D) to (16) we obtain a complex of right D-modules, which
we again transform into left D-modules by using the involution θ. Hence, defining

R̃2 := θ(R2) =




− sin(t) ∂ + cos(t)
− cos(t) ∂ + sin(t)
− sin(t) ∂ − cos(t)

−∂2 − 1


 ,

we obtain the horizontal complex of left D-modules

D D1×4.R̃2oo D1×3.Roo

D1×3
.S

dd❍❍❍❍❍❍❍❍❍

(17)

and another syzygy computation yields

S :=




∂ 2 −∂ 0
sin(2t) ∂ + 2 0 − sin(2t) ∂ + 2 cos(2t) 0

∂ 0 0 − sin(t)




such that the bended complex in (17) is exact. This allows to compute the factor module
ker(.R̃2)/ im(.R) = im(.S)/ im(.R). By performing a reduction of the rows of S modulo a
Janet basis for D1×3R and by another syzygy computation we obtain the finite presentation

t(M) = (D1×3 S)/(D1×3R) = (D ( 1 − sin(2t) cos(2t) 0 ))/(D1×3R) ∼= D/D (∂ − 1).

Hence, a(t) := x1(t)− sin(2t)x2(t) + cos(2t)x3(t) is a non-trivial autonomous element satis-
fying ȧ(t) = a(t) whenever x1(t), x2(t), x3(t) are the first three components of a solution of
Ry = 0. The given linear system does not admit any parametrization in F4×1, but clearly
for the linear system R′ y = 0, where

R′ :=




1 − sin(2t) cos(2t) 0
0 ∂ 2 − cos(t)
0 −2 ∂ − sin(t)


 ∈ D3×4,
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whose system module is isomorphic to M ′ := M/ t(M) and is therefore torsion-free, a
parametrization in F4×1 for an appropriate signal space F exists. By construction, P := R̃2

is a parametrization: 



x1(t) = − sin(t) φ̇(t) + cos(t)φ(t),

x2(t) = − cos(t) φ̇(t) + sin(t)φ(t),

x3(t) = − sin(t) φ̇(t)− cos(t)φ(t),

u(t) = −φ̈(t)− φ(t)

for a suitable function φ. In fact, we can compute

Q′ :=




1 1
2 − 1

2 cos(2t) −1
2 sin(2t)

0 1
2 sin(2t) −1

2 − 1
2 cos(2t)

0 1
2 − 1

2 cos(2t) −1
2 sin(2t)

0 sin(t) ∂ − cos(t) ∂


 ∈ D4×3, Q2 :=




0
sin(t)

− cos(t)
0




T

∈ D1×4,

Q′ being a right inverse of R′ and Q2 a left inverse of R̃2 satisfying Q2Q
′ = 0. This shows

that the short exact sequence

0 Doo
.Q2

// D1×4
.R̃2oo

.Q′
// D1×3

.R′
oo 0oo

is split. The functor homD(−,F) transforms this exact sequence into the split exact sequence

0 // F
(R̃2). // F4×1

(Q2).
oo

(R′). // F3×1

(Q′).
oo // 0,

no assumption on F being necessary. We have SolF (R
′) = ker((R′).) = im((R̃2).).

Remark 4.16. Let us assume that P is a parametrization of Ry = 0 in Fp×1. Applying the
algorithm outlined in Remark 4.7 again to the linear system P z = 0 is actually a computation
of ext2D(N,D), where N is the Auslander transpose of M . Since the isomorphism type
of extnD(N,D) does not depend on the choice of projective resolution of N , the existence
of a chain of parametrizations of length r can be decided by checking whether we have
extnD(N,D) = {0} for all n = 1, . . . , r (cf. Example 4.18 below).

The existence of a chain of parametrizations of Ry = 0 is a structural property of the
system, i.e., is reflected by the system module M .

Theorem 4.17 (cf. [PQ99a], Corollaries 2, 3, 4; [CQR05], Theorems 5, 6, 7). Let D be an
Ore algebra as in Remark 3.9, i.e., which admits Gröbner basis or Janet basis computations.
Let N = Dq×1/RDp×1 be the Auslander transpose of M = D1×p/D1×q R. Then we have:

a) M is torsion-free if and only if ext1D(N,D) = {0}.

b) M is reflexive if and only if extnD(N,D) = {0} for n = 1, 2.

c) M is projective if and only if extnD(N,D) = {0} for n = 1, 2, . . . , rgld(D) = lgld(D).
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Example 4.18. Resuming Example 4.2, the following part of the de Rham complex for
F = C∞(Ω), where Ω is an open and convex subset of R3, is known to be an exact sequence:

F



∂1
∂2
∂3


.

// F3×1




0 ∂3 −∂2
−∂3 0 ∂1
∂2 −∂1 0


.

// F3×1
( ∂1 ∂2 ∂3 ).

// F .

In other words, the linear systems defined by the divergence operator and the curl operator,
respectively, are parametrizable under the above assumptions. DefiningD := R[∂1, ∂2, ∂3] and
N := D/(∂1 ∂2 ∂3)D

3×1, this is equivalent to ext1D(N,D) = {0} and ext2D(N,D) = {0}.

For lack of space, we only mention here that direct sum decompositions of the system
moduleM as t(M)⊕(M/ t(M)) were studied in the context of multidimensional linear systems
in [QR05a] (cf. also [ZL01]). This study was again refined by the technique of purity or grade
filtration (cf., e.g., [Bar10], [Qua13]). Moreover, parametrizations of linear differential systems
can be applied to solve quadratic variational problems for multidimensional linear systems
(even uncontrollable ones), arising, e.g., in optimal control, as shown in [PQ04], [QR06b].

5 Flatness and injective parametrizations

The case that a parametrization as defined in the previous section may be chosen as an
injective map from the set of parameter values to the set of solutions is particularly interesting.
This structural property of the system, referred to here by flatness, is equivalent to the freeness
of the system module. In this section the notion of flatness is discussed for linear systems
in general, focussing later on particular classes of linear systems, i.e., on particular classes of
rings D of functional operators. After recalling the notion of stable range of a ring, linear
systems with constant coefficients, linear differential systems with polynomial coefficients and
coefficients of a more general kind will be investigated.

5.1 Free modules

The particular role played by free modules F in algebra is due to the universal property
which allows to specify a well-defined homomorphism F → X unambiguously by any choice
of values in a given module X for the elements of a basis of F . As it turns out, the meaning
of freeness of a system moduleM is the possibility to specify any solution of the linear system
unambiguously by a unique tuple of parameter values (cf. also Remark 4.3 for references to
the non-linear case).

Definition 5.1. Let D be a Noetherian domain, R ∈ Dq×p, and F a left D-module.

a) A parametrization P ∈ Dp×m of the linear system Ry = 0 in Fp×1 is said to be injective
if the homomorphism P. : Fm×1 → Fp×1 is injective.

b) The linear system Ry = 0 is said to be flat (over F) if it admits an injective parametriza-
tion (in Fp×1).

Remark 5.2. Flatness of a control system allows for a control paradigm called “open-loop
control” (i.e., without feedback). Given a desired trajectory (which satisfies the governing
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equations of the system) and an injective parametrization, the tuple of parameter values
corresponding to this solution is obtained by inverting the parametrization. Observables which
express the parameters are also referred to as a flat output of the system. By construction,
arbitrary trajectories may be assigned to the flat output. Now, the open-loop control law is
obtained by substituting the given trajectory into the expressions defining the flat output.
For a concrete example, cf. Example 5.16 below.

We recall how freeness can be characterized for finitely presented modules. To this end,
let D be a (not necessarily commutative) Noetherian domain.

Remark 5.3. Let us assume that the left D-module M = D1×p/D1×q R is free. Hence, we
may choose a basis (b1, . . . , br) of M , where

bi = b̂i +D1×q R, b̂i ∈ D1×p, i = 1, . . . , r.

If the rows R1,−, . . . , Rq,− of R are D-linearly independent, then (R1,−, . . . , Rq,−, b̂1, . . . , b̂r)

is a basis of D1×p, and we have r = p− q. By stacking the rows R1,−, . . . , Rq,−, b̂1, . . . , b̂p−q
we obtain a matrix T ∈ GL(p,D), and we have

RT−1 =




1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0


 . (18)

Note that, if M is a finitely generated stably free left module over an Ore algebra as in
Remark 3.9, we can compute a presentation matrix R of M whose rows are D-linearly inde-
pendent by using the technique leading to Theorem 3.23; cf. Example 5.16 for an illustration.

Conversely, let us assume that there exists T ∈ GL(p,D) such that (18) holds. Then, in
particular, R admits a right inverse with entries in D. Using the rows of T as a basis for D1×p

reveals that the residue classes of the last p− q rows of T form a basis for M ∼= D1×(p−q).

Summing up the previous remark, we obtain the following proposition.

Proposition 5.4. Let R ∈ Dq×p be a matrix which admits a right inverse with entries in D.
Then the left D-module M = D1×p/D1×q R is free if and only if there exists T ∈ GL(p,D)
such that (18) holds. If this is the case, then the residue classes of the last p − q rows of T
form a basis for M .

Finally, the module-theoretic characterization of flatness for linear systems can be stated
as follows. We assume that D is an Ore algebra as in Remark 3.9.

Proposition 5.5. Let M be the system module defined by Ry = 0, where R ∈ Dq×p, and
let F be an injective left D-module which is a cogenerator for the category of left D-modules.
There exists an injective parametrization P ∈ Dp×m of Ry = 0 in Fp×1 if and only if M is
free.

Proof. If M is free, we may assume that R admits a right inverse (by Proposition 2.12 and
Theorem 3.23). With respect to a basis of M the canonical projection D1×p → D1×p/D1×q R
is represented by a matrix P ∈ Dp×(p−q). By applying the functor homD(−,F) to the split
short exact sequence

0 D1×(p−q)oo D1×p.Poo D1×q.Roo 0oo (19)
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we obtain the split short exact sequence

0 // F (p−q)×1 P. // Fp×1 R. // Fq×1 // 0.

Conversely, if P ∈ Dp×m is an injective parametrization of Ry = 0 in Fp×1, then the ho-
momorphism .P in (12) is surjective because F is a cogenerator for the category of left
D-modules. Since ι in (12) is injective with the same image as .P , we have M ∼= D1×m.

Remark 5.6. Let M = D1×p/D1×q R be free. Using the notation of Remark 5.3, the matrix
whose rows are b̂1, . . . , b̂p−q admits a right inverse P ∈ Dp×(p−q) defining the split short exact
sequence (19). Note that the first part of the proof of Proposition 5.5 does not depend on the
assumption that F is a cogenerator. Hence, the computation of a basis of M (cf. the next
subsections) yields an injective parametrization of Ry = 0 in Fp×1 for any signal space F .

Conversely, if P is an injective parametrization of Ry = 0 in Fp×1, where F is a cogen-
erator for the category of left D-modules, then P admits a left inverse whose rows represent
a basis of M .

5.2 The stable range of a ring

Let D be a (not necessarily commutative) ring. In this subsection we recall a method to split
off a free direct summand of rank one from a given left or right D-module. Clearly, this is
fundamental for a study of stably free D-modules.

Definition 5.7. Let V be either the left D-module D1×r or the right D-module Dr×1, where
r ∈ N. Moreover, let V = V ′⊕V ′′ be the decomposition into submodules of V , where V ′ and
V ′′ are generated by the first r− 1 standard basis vectors and the last standard basis vector,
respectively. For each v ∈ V let v = v′ + v′′ be the corresponding decomposition of v.

a) A vector v ∈ V is said to be unimodular if there exists ϕ ∈ homD(V,D) such that
ϕ(v) = 1.

b) A unimodular vector v ∈ V is said to be stable if there exists ψ ∈ homD(D,V
′) such

that v′ + ψ(v′′) is unimodular (as an element of V ′).

c) A positive integer r is said to be in the stable range of D, considered as a left or right
D-module, if for every s > r, every unimodular vector in D1×s or in Ds×1, respectively,
is stable.

d) The stable rank of D, considered as a left or right D-module, is defined as the least
positive integer in the stable range of D and as ∞ if no such integer exists.

Proposition 5.8 (cf. [MR00], Prop. 11.3.4). The stable rank of D considered as a left D-
module is equal to the one of D considered as a right D-module.

Remark 5.9. Let v ∈ D1×r. Then v is unimodular if and only if v1D+v2D+ . . .+vrD = D.
Let us assume that v is stable. Then there exist u1, . . . , ur−1 ∈ D such that

(v1 + vr u1, v2 + vr u2, . . . , vr−1 + vr ur−1) ∈ D1×(r−1) (20)

is unimodular. Hence, there exist a1, . . . , ar−1 ∈ D such that

(v1 + vr u1) a1 + (v2 + vr u2) a2 + . . .+ (vr−1 + vr ur−1) ar−1 = 1. (21)
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Defining the vector ṽ ∈ D1×r whose first r− 1 entries are given by (20) and whose last entry
is vr and using (21), a suitable right D-linear combination of the first r−1 entries of ṽ can be
added to the last entry of ṽ to get ṽ1−1. By subtracting the last entry of the modified vector
from the first one, we obtain 1 as first entry, which now allows to eliminate the other entries.
These transformations can be realized by right multiplication of v by a product of certain
lower or upper triangular matrices with entries in D whose diagonal entries are equal to 1.
The following lemma summarizes the above discussion (cf. also [QR07] for more details).

Lemma 5.10. Let v ∈ D1×r be stable. Then there exists T ∈ GL(r,D) which is a product
of matrices of the form Ir + dE(i,j), where d ∈ D, i 6= j, and E(i,j) ∈ Dr×r is defined by

E
(i,j)
k,l := δi,k δj,l, such that v T = (1, 0, . . . , 0).

Hence, if the first row of a matrix R ∈ Dq×p is stable, then the right D-module which is
generated by the columns of R is recognized as a direct sum of the free right D-module D
and a right D-module which is generated by the suitably reduced last p − 1 columns of R.
We perform this splitting in the context where R is a presentation matrix. In what follows
we assume that D is an Ore algebra as in Remark 3.9 and we assume that Lemma 5.10 is
constructive, i.e., that suitable u1, . . . , ur−1 ∈ D as in Remark 5.9 can be computed (cf. the
following subsections).

Remark 5.11. Let M = D1×p/D1×q R be a stably free right D-module with presentation
matrix R ∈ Dq×p. Using the technique discussed in Remark 3.15 and leading to Theorem 3.23,
we may assume that R admits a right inverse S ∈ Dp×q. Let v1, . . . , vq be the rows of R.
Then, in particular, v1 is a unimodular vector. If p is greater than the stable rank of D, then
v1 is stable and, by Lemma 5.10, there exists T ∈ GL(p,D) such that v1 T = (1, 0, . . . , 0).
Using T to define a change of basis for D1×p, we conclude

D1×q R ∼= D1×q RT = Dv1 T +Dv2 T + . . .+Dvq T.

Using the fact that v1 T is the first standard basis vector of D1×p, subtraction of a suitable
left D-multiple of v1 T from vi T yields a vector of the form (0, wi), where wi ∈ D1×(p−1),
i = 2, . . . , q. Hence, we have

M ∼= (D ⊕D1×(p−1))/(Dv1 T ⊕ (D (0, w2) + . . .+D (0, wq))) ∼= D1×(p−1)/D1×(q−1)R′,

where the presentation matrix R′ ∈ D(q−1)×(p−1) of M is formed by the vectors w2, . . . , wq.
Let U ∈ GL(q,D) be such that the rows of U RT are T v1, (0, w2), . . . , (0, wq). Then we have
(U RT ) (T−1 S U−1) = Iq, which shows that a right inverse of R′ is obtained from T−1 S U−1

by removing its first row and its first column. If p− 1 is still greater than the stable rank of
D, this reduction step can be applied again to R′.

The reduction technique discussed in the previous remark relies on Lemma 5.10 and
Gaussian elimination over D. Iteration yields the following theorem.

Theorem 5.12 (cf. [QR07], Cor. 44). Let M = D1×p/D1×q R be a stably free left D-module,
where R admits a right inverse over D. If p− q is greater than or equal to the stable rank of
D, then M is free. If a constructive version of Lemma 5.10 is available over D, then a basis
of M can be computed by applying Gaussian elimination over D to R.
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Proof. Iterating the reduction described in Remark 5.11 q− 1 times we obtain a presentation
matrix ofM of shape 1×(p−q+1) which admits a right inverse. By hypothesis, the reduction
can be applied one more time to prove that we have M ∼= D1×(p−q). For computing a basis
of M we keep the shape of the presentation matrices and refrain from subtracting suitable
left D-multiples of v1 T from v2 T , . . . , vq T . Then, the product of (extended versions of) the
matrices T ∈ GL(p,D) provided by Lemma 5.10 is a matrix Q ∈ GL(p,D) such that RQ is
lower triangular with diagonal entries equal to 1. Therefore, the last p− q columns of Q form
an injective parametrization P of Ry = 0 in Fp×1 for any signal space F , and the rows of a
left inverse of P define a basis of M .

Remark 5.13. An involution θ of D (cf. Remark 3.11) allows to apply similar reductions
to the columns of θ(R) instead of the rows of R. Then we use a version of Lemma 5.10 for
columns instead of rows, i.e., in Remark 5.9 we deal with left ideals of D instead of right
ideals. Since the module M under consideration is a left D-module, we can then restrict our
attention to the action of D from one side.

5.3 Linear systems with constant coefficients

A prominent class of linear functional systems is given by matrices of operators which do not
involve multiplication by functions of the coordinates on which the unknown functions depend,
e.g., time-invariant linear ordinary differential equations or time-invariant linear differential
time-delay equations. The systems discussed in Example 4.2 are of this kind, but not, e.g.,
the system treated in Example 4.15. We call such a system a linear system with constant
coefficients. In the algebraic framework described above, such a linear system can be dealt
with by choosing D to be a commutative polynomial algebra.

Let D = k[∂1, . . . , ∂n], where k is a field. Serre’s problem (cf. [Lam06]) asks whether or not
there exists a difference between finitely generated projective (or stably free) and free modules
over D. Since for every finitely generated projective D-module M there exists a presentation
matrix R ∈ Dq×p which admits a right inverse with entries in D, Serre’s problem is equivalent
to the question whether or not such a matrix can be augmented by p − q rows with entries
in D such that the resulting square matrix is invertible over D (cf. Remark 5.3). About
twenty years after J.-P. Serre posed this problem, it was solved by D. Quillen and A. A.
Suslin independently.

Theorem 5.14 (cf. [Qui76], [Sus76]). Let D = k[∂1, . . . , ∂n]. For every matrix R ∈ Dq×p

which admits a right inverse with entries in D there exists a matrix B ∈ D(p−q)×p such that
(RT BT )T ∈ GL(p,D). Every finitely generated projective module over D is free.

Remark 5.15. Several authors have been working on constructive approaches to the Quillen-
Suslin Theorem, cf., e.g., [LS92], [PW95], [LY05], [FQ07]. A recent implementation in Maple
was developed in [Fab09]. For more details, we also refer to [FQ07].

Example 5.16. The following system of linear differential time-delay equations appears in
a study of a flexible rod, cf. [Mou95, p. 120] or [MRPF95]:

{
ẏ1(t)− ẏ2(t− 1)− u(t) = 0,

2ẏ1(t− 1)− ẏ2(t)− ẏ2(t− 2) = 0.
(22)
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We define the commutative polynomial algebraD = R[∂, δ], where ∂ represents the differential
operator d

dt
and δ the shift operator, and the matrix

R :=

(
∂ −∂ δ −1

2 ∂ δ −∂ (1 + δ2) 0

)
∈ D2×3.

Then (22) is expressed as R (y1, y2, u)
T = 0. Let, e.g., F = C∞(R), a choice which will be

justified below. Finally, we define M = D1×3/D1×2R. Then a presentation of the torsion
submodule t(M) of M is given by

t(M) = (D1×3 S)/(D1×2R) = (D (−2 δ δ2 + 1 0))/(D1×2R) ∼= D/D ∂,

where

S :=




−2 δ δ2 + 1 0
∂ −∂ δ −1
∂ δ −∂ δ


 ∈ D3×3

is computed as explained in Section 4. Hence, the given system is not parametrizable, but
the system module associated with S (y1, y2, u)

T = 0 is isomorphic to M/ t(M) and hence
torsion-free. Using the technique discussed in Remark 3.15, the free resolution

0 M/ t(M)oo D1×3oo D1×3.Soo D
.(∂ δ 1)oo 0oo

can be reduced to the following one:

0 M/ t(M)oo D1×4oo D1×3.S̃oo 0oo , S̃ :=

(
−2 δ δ2 + 1 0 0
∂ −∂ δ −1 0
∂ δ −∂ δ 1

)
.

Since S̃ admits a right inverse, M/ t(M) is stably free and therefore free by the Quillen-Suslin
Theorem. We conclude that the linear system S (y1, y2, u)

T = 0 is flat. The Maple implemen-
tation QuillenSuslin of a constructive version of the Quillen-Suslin Theorem developed in
[Fab09] completes the matrix S̃ with a fourth row (1 − δ/2 0 0) to a matrix in GL(4, D).
Inversion of this matrix yields an injective parametrization

P :=




δ2 + 1
2 δ

−∂ (δ2 − 1)


 ∈ D3×1

of S (y1, y2, u)
T = 0 in F3×1, and the residue class of the above fourth row in M/ t(M) is a

flat output. In order to demonstrate the use of a flat output, we note first that every solution
of (22) in F3×1 is of the form 


y1(t)
y2(t)
u(t)


 = P ξ(t) (23)

for some ξ(t) ∈ F and that ξ(t) is uniquely determined by

ξ(t) = y1(t)−
1

2
y2(t− 1). (24)
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Substituting desired trajectories (in F) for y1(t), y2(t), satisfying (22) for some u(t) ∈ F , into
(24), yields ξ(t) and u(t) via (23). Hence, we obtain an open-loop control law realizing the
given trajectories.

The same reasoning applies to any D-module F (cf. Remark 5.6). For more details, we
also refer to [FQ07, Ex. 5.3 and Ex. 5.5].

The construction of a matrix B (or B−1) as in Theorem 5.14 usually eliminates variables
from the system matrix R in an inductive fashion. An application of this strategy is the
following.

Corollary 5.17 (cf. [FQ06] or [FQ07]). Let D = k[∂1, . . . , ∂n], R(∂1, . . . , ∂n) ∈ Dq×p a matrix
admitting a right inverse with entries in D, and F an injective cogenerator for the category of
D-modules (cf. Example 2.9 a)). The flat multidimensional linear system R(∂1, . . . , ∂n) y = 0
is equivalent (in the sense of Remark 2.10) to the controllable (i.e., parametrizable) one-
dimensional linear system R(∂1, 0, . . . , 0) y = 0.

The next remark shows that a controlled enlargement of the ring D (e.g., admitting the
inverses of shift operators in the context of differential time-delay systems) can turn a merely
controllable linear system into a flat one.

Remark 5.18. Let D = k[∂1, . . . , ∂n] be as above and S ⊂ D a multiplicatively closed subset,
i.e., we have 0 6∈ S and the product of each two elements of S is in S. Then the localization
S−1D is the commutative ring whose elements are represented as d/s, where d ∈ D and s ∈ S,
and addition and multiplication are defined as usual for fractions. For any D-module M , the
localization S−1M is an S−1D-module. Then, for finitely generated D-modules M1 and M2

and every n ∈ Z≥0, there is an isomorphism of S−1D-modules (cf., e.g., [Rot09, Thm. 7.39])

S−1 extnD(M1,M2) ∼= extnS−1D(S
−1M1, S

−1M2).

Using the fact that an element m ∈ M satisfying dm = 0 for some non-zero d ∈ D is zero
in S−1M whenever d ∈ S, localization can arrange for vanishing of extension groups. Hence,
by Theorem 4.17, obstructions to torsion-freeness, reflexiveness, etc., of M are encoded in
the annihilators of the extension groups extnD(N,D), and with an appropriate localization,
S−1M is torsion-free, reflexive, etc. For more details about encoding these obstructions in a
polynomial, called π-polynomial, we refer to, e.g., [Mou95], [CQR05].

5.4 Linear differential systems with polynomial coefficients

In this subsection we consider systems of linear partial differential equations which involve
multiplication of the unknown functions or their derivatives by polynomials or rational func-
tions in the independent variables. If at least one of these polynomials or rational functions is
not constant, a representation of the system as Ry = 0 is defined by a matrix R with entries
in a Weyl algebra or a ring of differential operators with rational function coefficients (cf.
Example 3.8 b)). For systems of this kind whose system module is free of rank at least 2 we
describe an algorithm to compute a basis, i.e., a flat output (cf. [QR06a], [QR07], [GV03]).

The following theorem is of central importance for the techniques discussed in this sub-
section. For more details about Weyl algebras, we refer to [Bjö79].
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Theorem 5.19 (Stafford, cf. [Sta78], Thm. 3.1). Let k be a field of characteristic zero,
n ∈ N. Then every left ideal of the Weyl algebra D = An(k) is generated by two elements.
More generally, for all a, b, c ∈ D and d ∈ D \ {0} there exist u1, u2 ∈ D such that

Da+D b+D c = D (a+ d u1 c) +D (b+ d u2 c). (25)

Analogous statements hold for all right ideals of An(k).

Example 5.20. The left ideal of A3(Q) = Q[x1, x2, x3]〈∂1, ∂2, ∂3〉 which is generated by
a := ∂1, b := ∂2, c := ∂3 is also generated by a′ := a and b′ := b+ x1 c, because we have

c = (−x1 ∂3 − ∂2) a
′ + ∂1 b

′, (26)

and then b is also a left A3(Q)-linear combination of a′ and b′. Here d was chosen to be 1.
For instance, if we choose d = x2, then we have

A3(Q) a+A3(Q) b+A3(Q) c = A3(Q) a′′ +A3(Q) b′′

with a′′ := a and b′′ := b+ d x1 c, because we have

c = ∂3 = −(∂22 + x21 x
2
2 ∂

2
3 + 2x1 x2 ∂2 ∂3 + x1 ∂3) a

′′ + (∂1 ∂2 + x1 x2 ∂1 ∂3 − x2 ∂3) b
′′,

and thus, b can be expressed as a left A3(Q)-linear combination of a′′ and b′′ as well.

Remark 5.21. Effective versions of Theorem 5.19 were developed in [HS01] and [Ley04].
The strategy can be outlined as follows. Two elements u1, u2 ∈ An(k) satisfy (25) if c is a
left An(k)-linear combination of a′ := a + d u1 c and b′ := b + d u2 c, as exemplified in (26).
We may assume that a, b, c, d ∈ An(k) are all non-zero. A computation of u1, u2 starts with
a representation

q c = h1 a+ h2 b, (27)

where q, h1, h2 ∈ An(k), q 6= 0. Since a common left multiple of each pair of elements of
a Weyl algebra can be computed, we obtain such a representation, e.g., by considering the
pair (a, c). By repeatedly adding terms to a and b in a clever way such that in an updated
representation (27) the indeterminates x1, . . . , xn, ∂1, . . . , ∂n are eliminated from the factor
q, one finally arrives at a representation (27), where q is a non-zero element of k and hence
invertible. In order to achieve this goal, quite a few Gröbner or Janet basis computations
are necessary in general, which indicates the complexity of such an algorithm and the size
of its output. Implementations of such a procedure are available in the Macaulay2 package
Dmodules (cf. [LT]) and in the Maple package Stafford (cf. [QR07]).

We are going to demonstrate that an effective version of Theorem 5.19 allows to com-
pute bases of free left modules over An(k) or Bn(k) of rank at least 2. Since we are in
position to use an involution of An(k) or Bn(k) (cf. Example 3.12), we apply the reduction
process for presentation matrices described in Subsection 5.2 to columns instead of rows (cf.
Remark 5.13).

Remark 5.22. Let D = An(k) be the Weyl algebra, where k is a field of characteristic zero.
Let (v1, v2, . . . , vm)

T ∈ Dm×1 be a unimodular vector, where m ≥ 3. By Theorem 5.19, there
exist u1, u2 ∈ D such that Dv1 +Dv2 +Dvm = D (v1 + u1 vm) +D (v2 + u2 vm). Hence,

D (v1 + u1 vm) +D (v2 + u2 vm) +Dv3 + . . .+Dvm−1 = Dv1 +Dv2 + . . .+Dvm = D,
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which shows that (v1+u1 vm, v2+u2 vm, v3, . . . , vm−1)
T is unimodular. We conclude that the

stable rank of D, considered as a right D-module, is at most 2, and the same is true if we
consider D as a left D-module.

In fact, the following theorem is a corollary of Theorem 5.19.

Theorem 5.23 (cf. [Sta78], Cor. 3.2 (a)). Let k be a field of characteristic zero, n ∈ N. Then
the stable ranks of the Weyl algebra An(k) and the ring Bn(k) of differential operators with
rational function coefficients are equal to 2.

Example 5.24. Let us consider the following linear partial differential equation for three
unknown functions y1, y2, y3 of the independent variables x1, x2.

∂y1
∂x1

− y1 +
∂y2
∂x2

+ x2
∂y3
∂x1

= 0.

Defining D := A2(R) and the matrix

R =
(
∂1 − 1 ∂2 x2 ∂1

)
∈ D1×3,

the equation can be written as Ry = 0, where y = (y1, y2, y3)
T . The matrix R admits the

right inverse (x2 ∂2, x2,−∂2)
T . Hence, the left D-module M := D1×3/DR is stably free, and

by Theorems 5.12 and 5.23, M is free. Therefore, the linear system under consideration is
flat. We apply the combination of Remarks 5.11 and 5.22 in order to compute a basis of
M , i.e., we perform row operations on the adjoint R̃ = (−∂1 − 1,−∂2,−x2 ∂1)

T of R (cf.
Example 3.12) as follows. For the entries a := −∂1 − 1, b := −∂2, c := −x2 ∂1 of R̃ we have

Da+D b+D c = D (a+u1 c)+D (b+u2 c) = D (a+c)+D (b+c), u1 := 1, u2 := 1, (28)

because we obtain (a, b, c)T as




−∂1 − 1
−∂2

−x2 ∂1


( (x2 + 1) (x2 ∂1 + ∂2)− 1 (−x2 − 1) ((x2 + 1) ∂1 + 1)

)( a+ c
b+ c

)
.

Since R̃ admits a left inverse over D, the left ideal of D which is generated by a, b, and c is
equal to D. Therefore, (28) implies that (a+ c, b+ c)T admits a left inverse (v1, v2) ∈ D1×2.
Now, multiplying the following matrix product from the left to R̃ yields (1, 0, 0)T :




1 0 0
−(b+ c) 1 0

−(a− 1 + c) 0 1






1 0 −1
0 1 0
0 0 1






1 0 0
0 1 0

(a− 1) v1 (a− 1) v2 1






1 0 u1
0 1 u2
0 0 1




The adjoint U of this matrix satisfies RU = (1, 0, 0). Hence, by Proposition 5.4, the residue
classes in M of the last two rows of T := U−1 form a basis of M .

An implementation of this technique to compute bases of free left D-modules of rank at
least 2 is available in the Maple package Stafford (cf. [QR07]), which is based on OreModules.

In the context of control theory we obtain the following corollary.

Corollary 5.25 (cf. [QR06a], Cor. 2). Every controllable linear ordinary differential system
with polynomial or rational function coefficients and with at least two inputs is flat.
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5.5 Linear differential systems with coefficients of a more general kind

The results of the previous subsection were generalized to systems of linear ordinary differ-
ential equations with formal or convergent power series coefficients in one variable in [QR10].
The case of partial differential equations is also settled if formal or convergent Laurent series
coefficients are allowed (cf. the second paragraph in Remark 5.26 below), but partial differen-
tial equations with formal or convergent power series coefficients need still to be investigated
in this respect. For related module-theoretic results for Dedekind prime rings and certain
simple Dedekind domains, we refer to [MR00, Thm. 5.7.8 and Cor. 7.11.6].

An important source of systems of linear partial differential equations with non-constant
coefficients are systems of non-linear partial differential equations. A linearization of such
a non-linear system is given by the formal Fréchet derivatives of the left hand sides of the
equations (cf. [Rob06], and, for a more geometric point of view, [Pom01]). The linearized
equations can also be expressed algebraically in terms of Kähler differentials. In general, the
coefficients of the resulting linear system depend on the unknown functions of the original
system. A treatment of the linearization along the lines of the previous sections then also
needs to take into account the equations of the non-linear system, as they imply relations for
the coefficients of the linearization.

First we consider systems of linear ordinary differential equations with formal or conver-
gent power series coefficients.

Remark 5.26. Let D be either k[[t]]〈∂〉 or k{t}〈∂〉, i.e., the skew polynomial ring generated
by k[[t]] or k{t} and ∂ with the commutation rules that are implied by the product rule for
∂ = d

dt
. Here k[[t]] and k{t} denote the rings of formal and convergent power series in t,

respectively, and we assume that k is either R or C.
Using a result of Coutinho and Holland (cf. [CH88]), one can prove (cf. [QR10, Corollaries 2

and 3]) that the ring D satisfies the statements of Stafford’s Theorem 5.19. By a theorem of
Caro and Levcovitz (cf. [CL10]), the same is true for D = A〈∂1, . . . , ∂n〉, the ring of differential
operators with coefficients in the field of fractions A of k[[t]] or k{t} (cf. also [QR]).

Using a constructive version of Lemma 5.10 for a ring D as above, Remark 5.11 (and, if
necessary, also Remark 5.22) becomes effective, and bases of free left D-modules of rank at
least 2 can be computed. A Maple package StaffordAnalytic is under development which
implements these routines for the case in which the coefficients are given in finite terms, e.g.,
by rational functions in exp, sin, cos, etc.

Example 5.27. Let us restrict the linear system (15) in Example 4.15 to the first two
equations, i.e., let D = k{t}〈∂〉, where ∂ represents the differential operator d

dt
, k ∈ {R,C},

and define

R :=

(
∂ − 1 sin(2t) − cos(2t) − sin(t)
0 ∂ 2 − cos(t)

)
∈ D2×4.

The system module corresponding to the linear system Ry = 0, where y = (x1, x2, x3, u)
T , is

M := D1×4/D1×2R. The matrix R admits the right inverse

S :=
1

d




0 0
0 0

− cos(t) sin(t)
−2 − cos(2t)


 ∈ D4×2, where d := cos(t) cos(2t) + 2 sin(t).
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In particular, the rows of R are D-linearly independent. By applying Gaussian elimination
(e.g., as described in Remark 5.9, modified according to Remark 5.13) to the rows of

θ(R) =




−∂ − 1 0
sin(2t) −∂

− cos(2t) 2
− sin(t) − cos(t)


 ,

computing the product of the elementary matrices which realize these operations, and apply-
ing the involution, we obtain the matrix

Q :=
1

d




0 0 d 0
0 0 0 d

− cos(t) sin(t) cos(t) ∂ − cos(t) − sin(t) ∂ + sin(2t) cos(t)
−2 − cos(2t) 2(∂ + 1) cos(2t) ∂ + 2 sin(2t)


 ∈ GL(4, D),

which satisfies

RQ =

(
1 0 0 0
0 1 0 0

)
.

In fact, Q is the inverse of the square matrix which is obtained by appending the standard basis
vectors e1 and e2 ofD

1×4 to R, and the first two columns of Q coincide with those of S. Hence,
by Remark 5.3, a basis for the free left D-module M is given by (e1 +D1×q R, e2 +D1×q R).

Similarly to Corollary 5.25 we obtain a corresponding statement about linear control
systems which give rise to left D-modules as considered above.

Corollary 5.28 (cf. [QR10], Cor. 4). Every controllable linear ordinary differential system
with convergent power series coefficients and with at least two inputs is flat.

The last class of linear systems we discuss here arises from linearizing systems of non-linear
(ordinary or partial) differential equations. Although we will not elaborate on the notion of
Kähler differentials, we understand the linearization of a differential equation in this sense,
i.e., the linearized equation is obtained by applying the universal derivation d to the non-
linear equation, and we write Y , Ẏ , Ÿ , etc. for dy, dẏ, dÿ, respectively, when linearizing an
ordinary differential equation for an unknown function y, and similarly for partial differential
equations. The linearization can also be interpreted as a formal Fréchet derivative. For more
details, we refer to [Pom01, Ch. VI] and [Rob06, Sect. 3.2].

Remark 5.29. We define a system described by (not necessarily linear) partial differential
equations to be controllable if every observable is free (cf. Remark 4.3). Since linearization of
an autonomous equation shows that some observable of the linearized system is autonomous,
controllability of the linearized system implies controllability of the given system (cf. [Pom01,
p. 809]). The linearized system is described by linear partial differential equations whose
coefficients are subject to the given (not necessarily linear) equations. In order to be able to
apply the techniques of the previous sections, the arithmetic of the coefficient field needs to
be implemented (cf. [Rob06] for more details). In favorable situations the given equations can
be solved for the terms involving the highest derivatives. Then these equations can be used
as rewriting rules for the coefficients of the linearized system. However, as already mentioned
in Remark 3.1, deciding whether or not a given non-linear expression is the left hand side of a
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consequence of the given system requires a particularly suited generating set. In general, such
a preprocessing is necessary to obtain a confluent and terminating rewriting system for the
coefficients. For systems of polynomially non-linear partial differential equations, the prob-
lem is solved by a decomposition of the radical differential ideal generated by the equations
into prime differential ideals, or similar decompositions (cf., e.g., [Dio92], [BLOP09], [Gri89],
[Wan01], [Rob12], [LHR13], and the references therein). Since we confine ourselves to linear
systems in this article, we only mention here work in progress by T. Cluzeau, A. Quadrat,
and the author of this paper investigating certain classes of quasi-linear differential systems
using this approach.

We treat an example taken from [OM02, 5.2.3] (cf. also the references therein). For more
details about the techniques that are applied in this example, we refer to [Rob06] and [Pom01].

Example 5.30. Let us consider the following system of non-linear ordinary differential equa-
tions for unknown functions x1, x2, and u:

{
ẋ1 + (u+ 1

2u
2)x1 = 0,

ẋ2 − ux1 = 0.
(29)

The linearization of this system is given by
{
Ẋ1 + (u+ 1

2u
2)X1 + (1 + u)x1 U = 0,

Ẋ2 − uX1 − x1 U = 0.

Let Q{x1, x2, u} be the differential polynomial ring over Q in the differential indeterminates
x1, x2, u with one derivation, i.e., the polynomial ring in infinitely many indeterminates (x1)i,
(x2)j , uk, where i, j, k ∈ Z≥0. These indeterminates represent the derivatives of the unknown
functions x1, x2, and u. The derivation is trivial on Q and maps (x1)i, (x2)j , uk to (x1)i+1,
(x2)j+1, uk+1, respectively, where (x1)0 = x1, (x2)0 = x2, u0 = u.

The left hand sides of (29) generate a differential ideal I of Q{x1, x2, u} which is prime
because the residue class ring Q{x1, x2, u}/I is an integral domain. Hence, the field of frac-
tions Quot(Q{x1, x2, u}/I) of this residue class ring exists, and we define the skew polynomial
ring D = Quot(Q{x1, x2, u}/I)〈∂〉 whose commutation rules are given by the product rule
of differentiation (cf. Example 3.8 b)). By abusing notation we also write x1, x2, u for the
residue classes of x1, x2, u, respectively, in Quot(Q{x1, x2, u}/I).

The rewriting rules ẋ1 7→ −(u + 1
2u

2)x1, ẋ2 7→ ux1 define a unique normal form for
each coefficient of any skew polynomial in D. By applying these rewriting rules, the module-
theoretic constructions discussed in Section 3 become effective for the ring D.

The system module M is defined by

0 Moo D1×3oo D1×2,
.Roo R :=

(
∂ + (u+ 1

2u
2) 0 (1 + u)x1

−u ∂ −x1

)
.

In order to determine structural properties of the linearization, we compute ext1D(N,D),
where N is the Auslander transpose of M = D1×3/D1×2R. Similarly to Example 4.15, using
the standard involution θ of D, we actually compute ext1D(Ñ ,D), where Ñ := D1×2/D1×3R1,
R1 := θ(R). We obtain the exact sequence of left D-modules

0 // D
.R2 // D1×3 .R1 // D1×2 // Ñ // 0 (30)
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where

R2 =
(
2(1 + u) (2u̇− u2 − u3)x1 ∂ − (4(1 + u) ü− 8u̇2 − 2u (1 + u) (2 + u) u̇)x1,

−2(2u̇− u2 − u3)x1 ∂ + (4ü− 4u (1 + 2u) u̇+ u4 (1 + u))x1,

2(2u̇− u2 − u3) ∂2 − (4ü− 8u (1 + u) u̇+ u3 (1 + u) (2 + u)) ∂

+u (2uü+ u2 (2 + u) u̇− 8u̇2)
)
∈ D1×3.

(31)

We apply the functor homD(−, D) to (30) and transform the right D-modules in the resulting
complex into left D-modules by using the involution θ. Another syzygy computation yields
a matrix S such that the bended complex in

D D1×3.R̃2oo D1×2.Roo

D1×2
.S

dd❍❍❍❍❍❍❍❍❍

is exact, where R̃2 := θ(R2). In fact, the choice S = R is possible, which implies that we
have ext1D(N,D) = {0}. Hence, the linearized system is parametrizable, and therefore, the

non-linear system (29) is controllable. The parametrization R̃2 ∈ D3×1 is actually injective
because a left inverse of R̃2 is given by

(
2

(2u̇− u2 − u3)2 x1

2(1 + u)

(2u̇− u2 − u3)2 x1
0

)
∈ D1×3. (32)

Clearly, a specialization of the above reasoning to particular functions x1, x2, and u is only
legitimate if the denominators (e.g., in (32)) and leading coefficients (e.g., in (31)) arising in
these computations do not vanish. In fact, if u is chosen to satisfy 2u̇ − u2 − u3 = 0, the
corresponding system module is not torsion-free.

6 Software packages

In this short last section some software packages providing implementations of the methods
described in the previous sections are listed. All of these are freely available.

The Control Library In Plural & Singular (or Singular:Control.lib, cf. [LZ05]) is
a library developed by V. Levandovskyy and E. Zerz using the computer algebra system
Singular. Module-theoretic computations can be performed over commutative polynomial
algebras and, more generally, over G-algebras using Gröbner bases. The package provides tools
to determine various autonomy and controllability degrees of linear systems. An additional
package realizing a purity filtration (cf., e.g, [Qua13]) is also under development.

The Maple package OreModules (cf. [CQR07]), developed by F. Chyzak, A. Quadrat,
and the author of this article, performs module-theoretic constructions over Ore algebras as
described in the previous sections using Gröbner bases or Janet bases. It allows to compute
extension groups, parametrizations, flat outputs, and π-polynomials and provides tools to
solve, e.g., linear quadratic optimal control problems. A library of examples with origin in
control theory and mathematical physics illustrates the use of OreModules.
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The package OreModules is complemented by a couple of additional packages. The Maple
package QuillenSuslin (cf. [Fab09]), developed by A. Fabiańska, realizes a constructive
version of the Quillen-Suslin Theorem. Methods to compute bases of free left modules of
rank at least 2 over Weyl algebras are implemented in the Maple package Stafford (cf.
[QR07]), developed by A. Quadrat and the author of this paper. It is based on a constructive
version of Stafford’s Theorem (cf. Theorem 5.19). An extension of this package to (a certain
class of) power series coefficients is under development by the same authors and is called
StaffordAnalytic. It is based on an extension of the Janet package, which is mentioned
next.

The packages listed in the previous two paragraphs profit, in particular, from Maple
packages (and C++ extensions) Involutive, Janet, and JanetOre, developed by the author
of this paper, implementing the involutive basis algorithm for the computation of Janet bases
(cf. [BCG+03], [Ger05], [Rob06]).

Another Maple package which builds on OreModules is called OreMorphisms (cf. [CQ09])
and is developed by T. Cluzeau and A. Quadrat. It implements the computation of homo-
morphisms between finitely presented left modules over Ore algebras and provides various
tools to study equivalences, factorization, and simplification of linear functional systems.

The computation of purity filtrations (cf. [Qua13]) for linear systems over Ore algebras is
possible using the Maple package PurityFiltration developed by A. Quadrat, building on
OreModules.

T. Cluzeau, A. Quadrat and the author of this article develop AlgebraicAnalysis, a
Maple package for the study of linearized systems of partial differential equations (cf. Re-
mark 5.29). It is based on the package Janet (cf. above) which in turn uses some procedures
of the Maple package jets (cf. [Bar01]), developed by M. Barakat, implementing jet calculus.

Finally, a GAP package AbelianSystems is under development by M. Barakat and A. Qua-
drat which implements various methods discussed above using the package homalg, which
realizes methods of homological algebra in GAP (cf. http://homalg.math.rwth-aachen.de;
cf. also [BR08] for the predecessor of homalg in Maple).

7 Conclusion

The module associated with a system of linear functional equations reflects structural prop-
erties of the solution set in a signal space which is an injective cogenerator for the module
category under consideration. The purpose of this paper is to give an overview on some
recent progress in developing effective methods in this context, i.e., algorithms deciding to
what extent a given behavior is parametrizable or whether or not it is autonomous (e.g.,
determining to which class in the hierarchy of modules the given system module belongs, cf.
Proposition 2.12 and Theorem 4.17) and algorithms computing parametrizations of a certain
kind (e.g., computing bases of finitely generated free modules, cf. Section 5). The effective-
ness depends on the ring to be dealt with, and the interpretation of the module-theoretic
constructions in terms of behaviors depends on the duality between equations and solutions.
Investigations of relevant classes of rings and their module structures and of appropriate signal
spaces are topics of current research.

For example, for most cases of systems of linear functional equations with non-constant
coefficients no suitable concrete signal space is known (cf. also [BO12] for recent work on
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the partial differential-difference case with constant coefficients employing the frequency do-
main). Both theory and applications to engineering sciences motivate the study of largely
unexplored classes of rings of operators, e.g., those arising for boundary value problems (cf.
[QR13a], [GRR14] and the references therein). Moreover, restricting the domains of definition
of functions to non-trivial varieties leads to further interesting classes of rings of operators
(cf., e.g., [CH88]), which is also related to problems in the theory of D-modules, sheaves, etc.

For lack of space, this paper does not address more refined studies of autonomous behav-
iors, viz., the technique of purity or grade filtration (cf., e.g., [Bar10], [Qua13]), nor ques-
tions on how controllable and autonomous behaviors can be interconnected (cf., e.g., [ZL01],
[QR05a]). Currently the practical impact of computations of grade filtrations on symbolic
solving of differential systems is studied.

Finally, generalizations to non-linear systems are investigated. In the case of differential
systems, besides applying genuinely non-linear approaches using differential geometry or dif-
ferential algebra, linearization techniques may reduce (some aspects of) the non-linear case
to the context discussed in this paper (cf. Subsection 5.5). In general a decomposition of the
radical differential ideal associated with the differential system into prime differential ideals or
a related decomposition is necessary before linearizing (cf., e.g., [Dio92], [BLOP09], [Gri89],
[Wan01], [Rob12], [LHR13]). Close relationships of (certain aspects of) non-linear systems
and their linearizations are now explored (cf., e.g., [CCQ11]).

Some freely available software packages addressing the topics of this paper were listed in
Section 6.
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[FO98] S. Fröhler and U. Oberst. Continuous time-varying linear systems. Systems Control
Lett., 35(2):97–110, 1998. 5
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control theory and signal processing. Volume 3 of Radon Series on Computational and
Applied Mathematics, pages 23–106. Walter de Gruyter, Berlin, 2007. 26, 28
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[Lev11] J. Lévine. On necessary and sufficient conditions for differential flatness. Appl.
Algebra Engrg. Comm. Comput., 22(1):47–90, 2011. 16

[Ley04] A. Leykin. Algorithmic proofs of two theorems of Stafford. J. Symbolic Comput.,
38:1535–1550, 2004. 29

39

http://kluedo.ub.uni-kl.de/volltexte/2005/1883


[LHR13] M. Lange-Hegermann and D. Robertz. Thomas decompositions of parametric non-
linear control systems. In Proceedings of the 5th Symposium on System Structure and
Control, Grenoble (France), pages 291–296, 2013. 16, 33, 36

[LLO04] P. Lu, M. Liu, and U. Oberst. Linear Recurring Arrays, Linear Systems and Mul-
tidimensional Cyclic Codes over Quasi-Frobenius Rings. Acta Appl. Math., 80:175–198,
2004. 2

[LS92] A. Logar and B. Sturmfels. Algorithms for the Quillen-Suslin theorem, J. Algebra,
145(1):231–239, 1992. 26

[LT] A. Leykin and H. Tsai. Dmodules – Algorithms for D-modules. Macaulay2 package,
http://www.math.uiuc.edu/Macaulay2/. 29

[LY05] H. Lombardi and I. Yengui. Suslin’s algorithms for reduction of unimodular rows. J.
Symbolic Comput., 30(6):707–717, 2005. 26

[LZ05] V. Levandovskyy and E. Zerz. Computer algebraic methods for the
structural analysis of linear control systems. In Proceedings in Ap-
plied Mathematics and Mechanics (PAMM). Wiley-VCH, 2005. Cf. also
http://www.math.rwth-aachen.de/~Eva.Zerz/CLIPS/. 34
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Sophia Antipolis, France, 2010. 1

[Qua10b] A. Quadrat. An introduction to constructive algebraic analysis and its applications.
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